
Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

SAFE OPPONENT-EXPLOITATION SUBGAME REFINE-
MENT

Mingyang Liu∗, Chengjie Wu∗, Yansen Jing
Institute for Interdisciplinary Information Sciences
Tsinghua University
Beijing, China
{liumy19, wucj19, jingys19}@mails.tsinghua.edu.cn

Qihan Liu & Jun Yang
Department of Automation
Tsinghua University
Beijing, China
lqh20@@mails.tsinghua.edu.cn, yangjun603@tsinghua.edu.cn

Pingzhong Tang & Chongjie Zhang
Institute for Interdisciplinary Information Science
Tsinghua University
Beijing, China
{kenshin, chongjie}@tsinghua.edu.cn

ABSTRACT

In zero-sum games, an NE strategy tends to be overly conservative confronted
with opponents of limited rationality, because it does not actively exploit their
weaknesses. From another perspective, best responding to an estimated opponent
model is vulnerable to estimation errors and lacks safety guarantees. Inspired
by the recent success of real-time search algorithms in developing superhuman
AI, we investigate the dilemma of safety and opponent exploitation and present a
novel real-time search framework, called Safe Exploitation Search (SES), which
smoothly interpolates between the two extremes of online strategy refinement.
We provide SES with a theoretically upper-bounded exploitability and a lower-
bounded evaluation performance. Additionally, SES enables computationally ef-
ficient online adaptation to a possibly updating opponent model, while previous
safe exploitation methods have to recompute for the whole game. Empirical re-
sults show that SES significantly outperforms NE baselines and previous algo-
rithms while keeping exploitability low at the same time.

1 INTRODUCTION

Behind the recent breakthroughs of superhuman AIs in Go (Silver et al., 2016; 2017; Schrittwieser
et al., 2020), heads-up no-limit Texas hold’em (HUNL) (Brown et al., 2018; Moravcı́k et al., 2017;
Brown & Sandholm, 2019; Brown et al., 2020), and Hanabi (Lerer et al., 2020), search plays a vital
role. In perfect information games, Monte Carlo tree search (MCTS) is widely applied to improve
policy’s strength. In zero-sum imperfect information games such as poker, search algorithms are
used to find a Nash equilibrium (NE) approximation in subgames encountered in real time (Brown &
Sandholm, 2017; Burch et al., 2014). They are both theoretically sounded and empirically powerful.

In zero-sum games, NE-based search algorithms (Burch et al., 2014; Moravcik et al., 2016; Brown &
Sandholm, 2017; Brown et al., 2018) find safe strategies with low exploitability and produce strong
baselines against all opponents (Brown & Sandholm, 2019). However, it may be overly conservative
confronted with opponents with limited rationality, and fail to take advantage of their weaknesses

*Equal contribution

1

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

to obtain higher rewards (McCracken & Bowling, 2004; Johanson et al., 2007; Li & Miikkulainen,
2018). From another perspective, there have been extensive studies on opponent exploitation to
address the problem. Some typical works (Carmel & Markovitch, 1996; Billings et al., 2003; Gilpin
& Sandholm, 2006; Li & Miikkulainen, 2018) model the opponent’s strategy based on previous
observations and then search for a new strategy to exploit this model. However, these methods often
neglect the significance of the strategy safety, thus being highly exploitable.

Few exceptions including Johanson et al. (2007) and Ganzfried & Sandholm (2015a) aim to search
for safe and robust counter-strategies. Ganzfried & Sandholm (2015a) provides a characterization of
safe deviations from NE in repeated games. Restricted Nash response (RNR) (Johanson et al., 2007)
finds a Pareto optimal strategy with respect to safety and exploitation in the full game. However, it
is computationally inefficient because it needs to recompute a strategy for the whole game whenever
the opponent model is updated. This can be even infeasible in an online setting where the opponent
model is being updated continuously with streamed data.

In this paper, we study the dilemma of safety and opponent exploitation and present a new scalable
real-time search framework Safe Exploitation Search (SES) that smoothly interpolates between the
two extremes of strategy search, hence unifying safe search and opponent exploitation. It enables
computationally efficient online adaptations to a continuously changing opponent model, which is
hard to address by previous safe exploitation algorithms. The safety criterion requires the refined
strategy to stay close to NE, formally speaking, to expose limited exploitability against any oppo-
nents, while the opponent exploitation criterion requires the strategy to adapt to its specific opponent
and to exploit its weaknesses. We propose a novel maximization objective in the subgame search
framework which combines the safety objective and exploitation, controlled by the exploitation level
α. We construct a new gadget game to optimize this objective, which enables our method’s scala-
bility to large games such as Texas Hold’em. Theoretically, we prove that SES is guaranteed to out-
perform NE at the cost of some constant increase in its own exploitability confronted with non-NE
opponents. Empirically, we evaluate the effectiveness of our search algorithm in 1 didactic matrix
game 2 poker games: Leduc Hold’em (Southey et al., 2005) and Flop Hold’em Poker (FHP)(Brown
et al., 2019). The experiment results demonstrate that our algorithm significantly outperforms NE
baselines against non-NE opponents and keeps low exploitability at the same time. Additionally,
we show that SES is not only much more computationally efficient than previous safe exploitation
methods but also more robust to estimation errors in opponent models.

2 RELATED WORK

This paper investigates the problem of safe opponent exploitation in two-player zero-sum imperfect
information games. We propose a novel search algorithm that balances between NE and exploiting
opponents. Two major relevant research areas are search algorithms in imperfect information games
and opponent exploitation.

Search in imperfect information games. In recent literature, search techniques are witnessed to
be important in developing strong AI strategies in both perfect and imperfect information games
(Burch et al., 2014; Moravcik et al., 2016; Brown & Sandholm, 2017). Texas hold ’em poker is
widely employed as a benchmark for imperfect information games. A primary part of the long-
term research on Texas hold’em poker is the evolution of subgame solving algorithms, which aim
at achieving a more accurate Nash equilibrium approximation in the subgame encountered given a
pre-computed strategy for the full game which we refer to as the blueprint strategy. Unsafe search
(Billings et al., 2003; Ganzfried & Sandholm, 2015b; Gilpin & Sandholm, 2006; 2007) estimates
the subgame reach probability assuming the opponent follows blueprint, and searches for a refined
subgame strategy. Subgame resolving (Burch et al., 2014) and maxmargin search (Moravcik et al.,
2016) are theoretically sounded safe search algorithms which ensure that the subgame strategy ob-
tained is no worse than the blueprint. They search in a gadget game and achieve safety by providing
the opponent with the option not entering the current subgame. DeepStack (Moravcı́k et al., 2017)
and Libratus (Brown et al., 2018) build strong poker AIs with the aid of search. Beyond poker,
search algorithms for subgame refinement have also shown promise in improving joint strategies in
cooperative imperfect information games such as Hanabi (Lerer et al., 2020) and the bidding phase
of contract bridge (Tian et al., 2020). The purpose of our search algorithm is different from previous

2

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

methods in poker literature. We seek to exploit opponents while keeping exploitability low, rather
than simply approximating NE.

Opponent exploitation. Most previous opponent exploitation researches (Carmel & Markovitch,
1996; Billings et al., 2003; Gilpin & Sandholm, 2006; Li & Miikkulainen, 2018) typically model
the opponent’s strategy based on previous observations and then search for a new strategy to exploit
this model, but put little emphasis on safety.

One similar work is Johanson et al. (2007) which proposes p-restricted Nash response (RNR) to find
a safe exploitation strategy to the estimated opponent’s strategy. It calculates a Nash equilibrium for
the whole game restricting that the opponent plays the estimated strategy σfix with probability p, and
any strategy with probability 1− p. In that paper, Johanson et al. (2007) prove that a p-RNR to σfix

is Pareto optimal with respect to exploitation and safety. However, it does not provide an explicit
bound. Additionally, whenever the estimated opponent model changes or we want to use a different
p to balance between safety and exploitation, the original p-RNR has to recompute the strategy for
the whole game. It is computationally inefficient in an online setting, where the opponent model
is updated after every round with new game data. Our algorithm instead takes modeling error into
account and provides explicit bounds for both safety and exploitation. With the aid of real-time
search, it only searches for strategies in subgames encountered instead of the whole game. Our
experiments show that it is more efficient than Johanson et al. (2007).

Ganzfried & Sandholm (2015a) studies safe exploitation strategies in repeated games, which is a
different setting from this paper. Intuitively, it achieves safety by risking in exploitability at most
what it has earned over NE in expectation in previous rounds. Therefore, its expected value in
the whole repeated game is never worse than the NE. In contrast, this paper focuses on the safety
of stage game strategies. Furthermore, our algorithm is complementary to Ganzfried & Sandholm
(2015a). Ganzfried & Sandholm (2015a) calculate an ε-safe best response for the whole game at
each iteration with LP. This procedure is one of the main limitations on the algorithm’s scalability.
Our algorithm, which only refines strategies in subgames in real-time, can be a possible substitute
for LP.

And Moravcı́k et al. (2017) uses a similar mixing distribution technique but it differs from ours in
two aspects. Firstly, the motivation of Moravcı́k et al. (2017) is to speed-up resolving procedure for
an accurate NE by fixing the distribution of infosets on top of the subgame. And it means that their
predicted distribution is not a prediction of their opponnent but a prediction of some unknown NE
strategy. Secondly, the theory of Moravcı́k et al. (2017) neither provides a safety nor an exploitation
theoretical bound on this mixing algorithm unlike us.

To our knowledge, we are the first paper to investigate the safe opponent exploitation problem in sub-
game resolving schemes. Subgame resolving enables online adaptations to a continuously changing
opponent model, eliminating the need to recompute a whole game strategy. It offers computational
benefits in practical opponent exploitation circumstances. Our experiments in section 5 demonstrate
its efficiency and robustness.

There is extensive research (Albrecht & Stone, 2018) on agent modeling. However, this paper only
focuses on the safe exploitation algorithm, but not the agent modeling techniques. We can use
off-the-shelf agent modeling algorithms to estimate the opponent’s strategies.

3 NOTATIONS AND BACKGROUND

An extensive-form imperfect information game G = (P,H,Z,A, χ, ρ, ·, σc, u, I) describes sequen-
tial interactions among agents, where agents have private information. A finite set P consists of n
players and a chance node c which represents the stochastic nature of the environment. The set of
non-terminal decision nodes is denoted as H , and Z is a set of terminal nodes or leaves. The set of
possible actions is A, and χ : H → 2|A| is a function which assigns to each decision node h ∈ H a
set of legal actions. A player function ρ : H → P assigns to each decision node a player p ∈ P who
acts at that node. If action a leads from h to h′, we write h · a = h′. If there exists a sequence of
actions leading from h to h′, we write h ⊑ h′. At each node h ∈ H , the acting player p = ρ(h) picks
an action from legal actions a ∈ χ(h), and leads node h into its child h · a. The chance node always
samples an action from its own distribution σc, which is common knowledge to all players. Utility
functions are u = (u1, u2, . . . , un), where ui : Z → R defines the utility of player i at terminal

3

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

node z ∈ Z. The nature of imperfect information is characterized by infosets I = (I1, I2, . . . , In),
where Ii = (Ii,1, . . . , Ii,ki

) is a partition of H for player i. Two states in the same infoset must
have the same acting player and the same legal action sets. We use I(h) to denote the infoset that
h belongs to. A player p cannot distinguish between states h1 and h2 if I(h1) = I(h2), and thus
should behave identically on all states in the same infoset.

The strategy of a player p is σp : Ip × A → R, where σp(I, a) is a distribution over valid ac-
tions on infoset I . For simplicity, we also use σp(h, a) to denote σp(I(h), a). We use πσ(h)
to denote the probability of reaching state h from the root when agents choose a strategy pro-
file σ = ⟨σ1, σ2, . . . , σn⟩. Formally, πσ(h) =

∏
h′·a⊑h σρ(h′)(h

′, a). We use πσ
−p(h) =∏

h′·a⊑h∧ρ(h′) ̸=p σρ(h′)(h
′, a) to denote the probability of reaching h when player p always chooses

the action that leads to h whenever possible. πσ(h, h′) is the reaching probability of h′ from h.
πσ(h · a, h′) is the the probability of reaching h′ from h if action a is taken at h. These probabilities
can be formally defined in a similar manner.

The expected utility of player p given strategy profile σ is uσ
p =

∑
z∈Z πσ(z)up(z). The counter-

factual value vσp (I, a) is the expected utility that player p will obtain after taking action a at infoset
I , given the joint policy profile is σ. Mathematically, it is the weighted sum of expected values at all
states h ∈ I .

vσp (I, a) =

∑
h∈I,z∈Z πσ

−p(h)π
σ(h · a, z)up(z)∑

h∈I π
σ
−p(h)

(1)

In the rest of the paper, we focus on two-player zero-sum games with perfect recall. Zero-sum means
∀z ∈ Z, u1(z) + u2(z) = 0. Perfect recall means that no player will forget the information which
has been obtained previously in the game. This is a common assumption in related literature.

A best response strategy BRp(σ−p) = argmaxσp u
⟨σp,σ−p⟩
p for player p is the strategy that max-

imize his own expected utility against fixed opponent strategy σ−p. The exploitability of strategy
σp is exp(σp) = uσ∗

p − u
⟨σp,BR−p(σp)⟩
p where σ∗ is the optimal strategy, and is an NE in two-player

zero-sum games. It measures the performance of σp against its best response comparing with the
NE. A counterfactual best response CBRp(σ−p) is a strategy where σp(I, a) > 0 if and only if
vσp (I, a) ≥ maxb v

σ
p (I, b). Counterfactual best response is a best response, but not vice versa. The

counterfactual best response value CBV
σ−p
p (I) = v

⟨CBRp(σ−p),σ−p⟩
p is the expected utility of

the counterfactual best response policy. Since we focus on two-player zero-sum games, we will use
CBV σp(I) as a shorthand notation for CBV

σp

−p (I).

We follow the imperfect information subgame definition as in Burch et al. (2014). An augmented
infoset contains states which cannot be distinguished by the remaining players.

Definition 3.1. An imperfect information subgame S is a forest of trees, closed under both the
descendant relation and membership within augmented infosets for any player. Let Stop be the set
of nodes which are roots of each tree in S.

4 METHOD

In this section, we introduce our novel search algorithm called safe exploitation search (SES), which
exploits the weaknesses of the opponent while ensuring a bounded exploitability efficiently. Let σ
be the pre-computed blueprint strategy. Without loss of generality, assume we search for player 2’s
refined strategy σS

2 by applying SES to all subgames S ∈ S. Finally, the refined strategy for P2 after
search is σ′

2, which is the same as σ2 in {Ii2|∀S ∈ S, Ii2 /∈ S} and is replaced with σS
2 in S ∈ S.

4.1 SAFE EXPLOITATION SEARCH

Our algorithm offers a unified approach to balance these two demands with theoretical guarantees.
The objective of our search algorithm is to find a new subgame strategy σS

2 for S ∈ S which

4

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

maximizes

SE(σS
2) = α

∑
Ij
1∈Stop

p̂(Ij1)
(
vσ1 (I

j
1)− CBV

σS
2

1 (Ij1)
)

+ (1− α) min
Ij
1∈Stop

(
vσ1 (I

j
1)− CBV

σS
2

1 (Ij1)
)
,

(2)

where α ∈ [0, 1] is a hyper-parameter controlling the exploitation level, and p̂(Ij1) is the estimated
probability of player 1 entering infoset Ij1 ∈ Stop. Given P2’s strategy (which is the blueprint σ2)
and P1’s actual strategy (which does not have to be the blueprint σ1), the real probability of player
1 entering infoset Ij1 ∈ Stop (which we denote as p(Ij1)) is determined. p̂(Ij1) is an estimation of
p(Ij1). For instance, in poker, it is the estimated distribution of private cards player 1 holds. Both
theoretically and empirically, such estimation does not have to be fully accurate. It can be done with
off-the-shelf opponent modeling techniques, which lies beyond the focus of this paper.

Intuitively, the maximization objective achieves a balance between opponent exploitation and
safety, controlled by exploitation level α. The first part of the objective is maximized when∑

Ij
1∈Stop

p̂(Ij1)CBV
σS
2

1 (Ij1) is minimized. It aims at finding a strategy σS
2 which results in the

lowest value for P1 under the assumption that the reach probabilities is p̂. It can be interpreted
as exploiting the estimated P1’s strategy. The second part of the objective demands the resolved
strategy to behave well against any reach probability distribution. We use the subgame margin
minIj

1∈Stop

(
vσ1 (I

j
1)− CBV

σS
2

1 (Ij1)
)

(Moravcik et al., 2016) which can be regarded as the worst-
case utility increase for P2.

Our search objective is a convex combination of exploitation and safety, which is closely related
to previous safe exploitation research (McCracken & Bowling, 2004; Johanson et al., 2007). RNR
(Johanson et al., 2007) calculates an exploitation strategy by computing an NE in the full game,
restricting the opponent to play its fixed strategy with probability p and any other strategy with
1 − p. RNR is proved to be Pareto optimal with respect to safety and exploitation. However, it
neither provides an explicit bound on exploitability and performance nor takes modeling errors into
account. Furthermore, without search, RNR has to recompute for the whole game whenever the
opponent’s strategy changes, which limits its efficiency. Experiment section E demonstrates that
SES is much more computationally efficient, and section F shows that, even we augment RNR with
search framework, SES is still much more robust to estimation errors in opponent strategy.

By maximizing the objective 2, we provide sound theoretical results for both safety and opponent
exploitation. Additionally, we provide analyses of how (1) exploitation level α, (2) accuracy of
opponent modeling, and (3) strength of the blueprint strategy impact the theoretical bound. By
gradually increasing α from 0 to 1, our algorithm tends to exploit rather than keep safe.

Theorem 4.1. (safety) Let S be a disjoint set of subgames S. Let σ∗ = ⟨σ∗
1 , σ

∗
2⟩ be the

NE where P2’s strategy is constrained to be the same with σ2 outside S. Define ∆ =

maxS∈S,Ii
1∈Stop

|CBV
σ∗2
1 (Ii1) − vσ1 (I

i
1)|. Let p̃(Ii1) be the reach probability given by σ∗

1 . Let
p̂(Ii1) be the estimation of reach probability p(Ii1) given by the real opponent strategy. Define

τ = maxS∈S,Ii
1∈Stop

| p̂(I
i
1)−p̃(Ii

1)

p̃(Ii
1)

|. Whenever 1− (2τ + 1)α > 0, we have a bounded exploitability
given by:

exp(σ′
2) ≤ exp(σ∗

2) +
2

1− (2τ + 1)α
∆. (3)

Recall that σ′
2 is the refined strategy after search. The proof is provided in Appendix A. This theorem

implies that the exploitability of the new strategy is smaller than that of strategy σ∗
2 plus a constant

value, which is the closest strategy to NE if constrained to differ from σ2 only in S. The correspond-
ing theoretical result of maxmargin search (Moravcik et al., 2016), a safe search algorithm with no
opponent exploitation abilities, is exp(σ′

2) ≤ exp(σ∗
2) + 2∆. Comparing these two results, we can

interpret the term 2/(1 − (2τ + 1)α) as the additional risk introduced by exploiting the opponent.
If exploitation level α = 0, then our bound is as tight as that of maxmargin search (Moravcik et al.,
2016). The bound also gets tighter if the τ gets smaller, or the blueprint σ2 is closer to σ∗

2 .

5

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Theorem 4.2. (opponent exploitation) Let ϵ = ∥p̂ − p∥1 be the L1 distance of the distribution

p(Ii1) and p̂(Ii1). Let η = minS∈S maxIj
1∈Stop

(
CBV1(I

j
1 , σ

S
2)− CBV1(I

j
1 , σ

∗
2)
)
≥ 0. We use

BR
[S,σp]
p (σ) to denote the strategy for player p which maximizes its utility in subgame S ∈ S against

σ−p under the constraint that BR
[S,σp]
p (σ) and σp differs only inside S. By maximizing objective 2,

for all S ∈ S, the refined strategy σ′
2 satisfies

u

〈
BR

[S,σ1]
1 (σ′2),σ

′
2

〉
2 (S) ≥ u

〈
BR

[S,σ1]
1 (σ∗2),σ

∗
2

〉
2 (S)

+
1− α

α
(η − 2∆)− ϵη

(4)

The proof is provided in Appendix A. Observe that the reach probability p is characterized by P1’s
strategy outside S and p̂ is its estimation. Because the search algorithm always find a stronger
response strategy for P1 in S (which is exactly BR

[S,σ1]
1 (σ′

2)) as well, opponent exploitation refers
to adapting to P1’s strategy σ1 outside S. This theorem implies that the utility of the new strategy
σ′
2 is lower bounded by the utility of σ∗

2 when both confronted with P1’s unknown strategy outside
S. It provides theoretical guarantees for the opponent exploitation ability of our algorithm. ϵ can
be interpreted as estimation error. The lower bound increases if the estimation error get smaller or
the blueprint σ2 is closer to σ∗

2 . We show empirically how exploitation level α and estimation error
impact both safety and exploitation abilities in section 5.

4.2 GADGET GAME

S1

C C C

P1

S2

C C C

C

C
1 − 𝛼 𝛼

Figure 1: The gadget game of SES. The shadow and dashed line indicate that player 2 cannot
distinguish between the two branches. C represents chance node, P1 represents player 1’s action
node. S1 and S2 are two identical copies of the subgame S with utility shifted.

In order to find σS
2 which maximize objective 2, a straight-forward method is to reformulate the

maximization problem as a Linear Programming problem (Moravcik et al., 2016). However, LP
solvers (Koller et al., 1994) cannot handle large-scale problems. Alternatively, inspired by Moravcik
et al. (2016), we create a gadget game and then apply iteration-based NE algorithms such as CFR
(Zinkevich et al., 2007; Tammelin et al., 2015; Lanctot et al., 2009) in the gadget game. The gadget
game is carefully designed such that the NE solution found in it is exactly the solution to the original
optimization problem.

As shown in Figure 1, the original subgame is copied into two identical parts S1, S2 in the gadget
game. Player 2’s infosets stretch over both branches, while player 1 can distinguish between the two
parts. The procedure of constructing such gadget game can be summarized into 4 steps: (i). Create
a chance node at the top of the gadget game. (ii) For the left part of the gadget game, we construct a
P1 node to let P1 choose an infoset Ii1 to enter. The following chance node samples a specific state
with probability proportional to πσ

−1(h) for all h ∈ I1. (iii) For the right part, create a chance node
sampling an infoset Ii1. The following chance node again samples a specific state with probability

6

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

proportional to πσ
−1(h) for all h ∈ I1. (iv). Shift the utility of the gadget game by vσ1 (I

i
1). The

details are described below.

1. The chance node at the top goes to the left part with probability 1 − α, and the right part with
probability α. The outcome is visible to P1 but not P2. Therefore, corresponding nodes in both
branches are in the same infosets for P2, and his strategy σS

2 will be the same for both parts. Since
σS
1 is the best-response to σS

2 and the two parts only differ at how to go to each infoset of player 1,
player 1 will also keep his strategy the same in both parts.

2. We subtract u1(z) by vσ1 (I
i
1) for all z ⊑ h, h ∈ Ii1, and add u2(z) by vσ1 (I

i
1) in order to keep

the subgame zero-sum. By doing so, the objective of a Nash Equilibrium of p2 will change from
maximizing −CBV

σS
2

1 (Ii1) to maximizing vσ1 (I
i
1)− CBV

σS
2

1 (Ii1).

3. As for the left part of the gadget game, the P1 node on the second level in Figure 1 enables P1
to enter an arbitrary infoset Ii1. Since this is a zero-sum game, in an NE strategy, he will enter the
one with lowest vσ1 (I

i
1) − CBV1(I

i
1, σ

∗
2) which is exactly the minimization in the second term of

SE(σS
2).

4. The chance node on the second level of the right part will sample an infoset Ii1 according to reach
probability p̂(Ii1). So that the NE objective of this part is exactly the summation in the first term of
SE(σS

2).

And here’s the pseudocode of SES where we take poker as the environment for simplicity.

Algorithm 1 Procedure of SES in Poker
Initialize the game environment
Initialize the private cards distribution p of player 2 as uniform distribution
Initialize the prediction of opponent private cards distribution
Compute a blueprint strategy ⟨σ1, σ2⟩
while Game Not Terminate do

P ←current player
if P = P1 then ▷ Opponent Player

Observe opponent action a
Update the prediction of opponent’s private cards based on a

else if P = P2 then ▷ Resolving Player
if Resolve Current Node then

Compute vσ1 (I
i
1)

Construct Gadget Game
σS
2 ← CFR(Gadget Game)

else
σS
2 ← σ2

end if
Sample action a based on σS

2
p(Ii2)← p(Ii2) · σS

2 (I
i
2, a)

Normalize p
else ▷ Chance Node

Sample public cards C = {c1, c2, ..., ck} from current chance node
∀i = 1, 2, ..., k, pci ← 0
Normalize p

end if
end while

5 EXPERIMENT

Our experiment is done in Leduc Hold’em (Southey et al., 2005) and Flop Hold’em Poker (FHP)
(Brown et al., 2019). Leduc Hold’em is a smaller-scale poker game and FHP is a larger one. The
rules of these two pokers are provided in Appendix B. We demonstrate the exploitability and eval-
uation performance of SES against opponents of various strengths. The exploitability measures a
search algorithm’s safety, while head-to-head evaluation measures the ability of opponent exploita-

7

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

tion. We also illustrate how estimation accuracy of opponent’s strategy and the exploitation level α
impact the results. Please refer to Appendix D for implementation details.

0.0 0.2 0.4 0.6 0.8 1.0

70

60

50

40

30

20

10

0

m
bb

/h
Evaluation(Prshuffle = 0.0)

Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

0.0 0.2 0.4 0.6 0.8 1.0
60

40

20

0

20

40

m
bb

/h

Evaluation(Prshuffle = 0.3)

Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

0.0 0.2 0.4 0.6 0.8 1.0
340

350

360

370

380

390

m
bb

/h

Evaluation(Prshuffle = 0.7)

Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

m
bb

/h

Exploitability(Prshuffle = 0.0)
Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

m
bb

/h

Exploitability(Prshuffle = 0.3)
Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

m
bb

/h

Exploitability(Prshuffle = 0.7)
Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

Figure 2: Experiment results on Leduc poker. Left: Head-to-head payoffs against correspond-
ing opponents. Right: Exploitability. Each row represents a type of opponent with Prshuffle =
0.0, 0.3, 0.7. The X-axis is the exploitation level α.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

m
bb

/h

Evaluation(Prshuffle = 0.0)
Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

0.0 0.2 0.4 0.6 0.8 1.0

4

5

6

7

8

9

m
bb

/h

Evaluation(Prshuffle = 0.3)
Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

0.0 0.2 0.4 0.6 0.8 1.0

10

12

14

16

18

m
bb

/h
Evaluation(Prshuffle = 0.7)

Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

0.0 0.2 0.4 0.6 0.8 1.0

25

30

35

40

45

m
bb

/h

Exploitability(Prshuffle = 0.0)

Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

0.0 0.2 0.4 0.6 0.8 1.0

25

30

35

40

45

m
bb

/h

Exploitability(Prshuffle = 0.3)

Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

0.0 0.2 0.4 0.6 0.8 1.0

25

30

35

40

45

m
bb

/h

Exploitability(Prshuffle = 0.7)

Blueprint
Resolved Strategy(= 0.0)
Resolved Strategy(= 0.3)
Resolved Strategy(= 0.6)
Resolved Strategy(= 0.9)
Resolved Strategy(= 1.2)

Figure 3: Experiment results on FHP. Left: Head-to-head payoffs against corresponding opponents.
Right: Exploitability. Each row represents a type of opponent with Prshuffle = 0.0, 0.3, 0.7. The
X-axis is the exploitation level α.

5.1 OPPONENTS

In our experiments, we test the performance of our algorithm against opponents of various strengths.
For both Leduc Poker and FHP, we create 3 types of opponents with 3 random seeds each. The first
type of opponent is an approximation of NE in the full game, and is regarded as a strong opponent.
It is computed in the same way as the blueprint strategy with a different seed. For the second and
third type of opponents, we enumerate every infoset in the blueprint strategy and shift the action
distribution randomly with probability Prshuffle = 0.3 or 0.7. We multiply the probability of each
action by a random variable from Uniform(0, 1), and then re-normalize the probability distribution.
The procedure is motivated by Brown et al. (2018), in which such method is applied to create a
number of diverse but reasonably strong agents. Even when Prshuffle = 0.7, the strategy keeps close
to NE with average L1 distance of each infoset 0.132 comparing to 1.036 of a random strategy to
NE. So they are regarded as opponents who are not fully rational but with competitive strength.

8

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

5.2 SAFE OPPONENT SEARCH

In Figure 2 & 3, we demonstrate the head-to-head evaluation performances and corresponding ex-
ploitability of the refined strategies found by SES against opponents of various strengths, under
different exploitation level α and estimation errors of opponent’s strategy. Different lines in each
plot refers to corresponding estimation error ϵ, which is the L1 distance of p̂ and p. We evaluate our
refined strategy when ϵ = 0.0, 0.3, 0.6, 0.9, 1.2. Please refer to Appendix D for details of generating
opponent estimations. The blue line is the result of blueprint strategy without conducting any search.

Generally speaking, SES balances between safety and opponent exploitation. The increase of ex-
ploitation level α helps win more chips from opponents, while resulting in the increase of the strat-
egy’s own exploitability. As can be seen in Figure 2 & 3, the exploitability increases when the
exploitation level α grows from 0 to 1, which is consistent with Theorem 4.1. One exception is in
FHP when ϵ is small: the exploitability surprisingly keeps decreasing even if SES puts more empha-
sis on opponent exploitation. Similar situations have also occurred in previous literature (Brown &
Sandholm, 2017). The reason is that our opponent is quite close to NE outside the subgame which
will make p̂ close to p̃ when ϵ is small, which means the τ in Theorem 4.1 is small. As a result,
we will have a low-exploitability resolved strategy when using unsafe search and the exploitability
increases as ϵ increases.

When the estimation is completely correct (ϵ = 0.0, the yellow line), the expected payoff in FHP
(Figure 3) increases as the exploitation level α grows higher. In Leduc poker (Figure 2), since the
game is very small, the pre-computed blueprint is very close to NE. Therefore, when confronted with
relatively strong opponents (Prshuffle = 0.0, 0.3) which are also close to NE, actually few things can
be done other than sticking with the blueprint. So the improvement introduced by SES is small.
When facing relatively weak opponent (Prshuffle = 0.7), the improvement margin is slightly larger.

SES relies on an estimation of opponent’s strategy. In order to test the robustness of our algorithm
when the prediction of p(Ii1) is not accurate, we evaluate the performance of our algorithm with
different values of estimation error ϵ. As illustrated in Figure 2 & 3, the exploitability increases and
the expected payoff drops when ϵ grows larger. The result is expected since an accurate estima-
tion always provides benefits. However, it also demonstrates that SES can still achieve a trade-off
between safety and opponent exploitation even when ϵ is considerably high. For instance, in FHP,
ϵ is between 0 and 2, and ϵ = 1.2 means that the predicted distribution is almost random. When
ϵ ≤ 0.6, the expected payoff still keeps increasing with respect to α. In case of a bad estimation, we
can always choose smaller α to ensure safety.

In Appendix. C, E, F, we provides additional experiments against other related algorithms. In
Appendix. C, we prove that our algorithm is better than simply mixing a best-response strategy and
a NE together. In Appendix E and Appendix F, we do the ablation study against RNR(Johanson
et al., 2007) and its subgame search version which is not mentioned in Johanson et al. (2007) and
we call it EXP-STRATEGY.

6 CONCLUSION

We propose a novel safe exploitation search (SES) algorithm which unifies both safe search and
opponent exploitation. With the aid of real-time search, SES can make online adaptations to a
changing opponent model. We also prove safety and opponent exploitation guarantees of SES in
Theorem 4.1 and Theorem 4.2. The experimental results in our designed matrix game confirm the
existence of the refined strategy which is both safe and actively exploiting the opponent. In games
of poker, our method outperforms NE baselines while keeping exploitability low. SES is also much
more efficient than previous safe exploitation algorithms without search. Additionally, SES is more
robust to opponent modeling errors. The exploitation level α is now regarded as a hyperparameter
in our algorithm. However, ideally, α should be learnt automatically from opponents, and should be
adaptive to opponent’s strategy change. We leave this for future work.

REFERENCES

Stefano V. Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018. ISSN 0004-3702. doi:

9

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

https://doi.org/10.1016/j.artint.2018.01.002. URL https://www.sciencedirect.com/
science/article/pii/S0004370218300249.

Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Schaeffer, Terence Schauen-
berg, and Duane Szafron. Approximating game-theoretic optimal strategies for full-scale poker.
In IJCAI, volume 3, pp. 661, 2003.

Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-information
games. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 689–699, 2017.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019.

Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for imperfect-
information games. In Advances in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems, Montréal, Canada, pp. 7674–7685, 2018.

Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret mini-
mization. In International conference on machine learning, pp. 793–802. PMLR, 2019.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement
learning and search for imperfect-information games. arXiv preprint arXiv:2007.13544, 2020.

Neil Burch, Michael Johanson, and Michael Bowling. Solving imperfect information games using
decomposition. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 28,
2014.

David Carmel and Shaul Markovitch. Learning models of intelligent agents. In AAAI/IAAI, Vol. 1,
pp. 62–67, 1996.

Sam Ganzfried and Tuomas Sandholm. Safe opponent exploitation. ACM Transactions on Eco-
nomics and Computation (TEAC), 3(2):1–28, 2015a.

Sam Ganzfried and Tuomas Sandholm. Endgame solving in large imperfect-information games. In
Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 37–45. Citeseer, 2015b.

Andrew Gilpin and Tuomas Sandholm. A competitive texas hold’em poker player via automated
abstraction and real-time equilibrium computation. In AAAI, pp. 1007–1013, 2006.

Andrew Gilpin and Tuomas Sandholm. Better automated abstraction techniques for imperfect infor-
mation games, with application to texas hold’em poker. In Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems, pp. 1–8, 2007.

Michael Johanson, Michael Bowling, and Martin Zinkevich. Computing robust counter-strategies.
2007.

Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling. Evaluating state-space
abstractions in extensive-form games. In Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, pp. 271–278, 2013.

Daphne Koller, Nimrod Megiddo, and Bernhard Von Stengel. Fast algorithms for finding random-
ized strategies in game trees. In Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pp. 750–759, 1994.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael H Bowling. Monte carlo sampling for
regret minimization in extensive games. In NIPS, pp. 1078–1086, 2009.

Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving policies via search
in cooperative partially observable games. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):7187–7194, Apr. 2020. doi: 10.1609/aaai.v34i05.6208. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/6208.

10

https://www.sciencedirect.com/science/article/pii/S0004370218300249
https://www.sciencedirect.com/science/article/pii/S0004370218300249
https://ojs.aaai.org/index.php/AAAI/article/view/6208
https://ojs.aaai.org/index.php/AAAI/article/view/6208

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Xun Li and Risto Miikkulainen. Dynamic adaptation and opponent exploitation in computer poker.
In Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Peter McCracken and Michael Bowling. Safe strategies for agent modelling in games. In Artificial
Multiagent Learning, Papers from the 2004 AAAI Fall Symposium. Arlington, VA, USA, October
22-24, 2004, volume FS-04-02, pp. 103–110. AAAI Press, 2004. URL https://www.aaai.
org/Library/Symposia/Fall/2004/fs04-02-014.php.

Matej Moravcik, Martin Schmid, Karel Ha, Milan Hladik, and Stephen Gaukrodger. Refining sub-
games in large imperfect information games. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

Matej Moravcı́k, Martina Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael H. Bowling. Deepstack: Expert-level arti-
ficial intelligence in heads-up no-limit poker. Science, 356:508–513, 2017.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.
doi: 10.1038/nature16961. URL https://doi.org/10.1038/nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse Billings,
and Chris Rayner. Bayes’ bluff: opponent modelling in poker. In Proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence, pp. 550–558, 2005.

Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
texas hold’em. In Twenty-fourth international joint conference on artificial intelligence, 2015.

Yuandong Tian, Qucheng Gong, and Tina Jiang. Joint policy search for multi-agent collaboration
with imperfect information. arXiv preprint arXiv:2008.06495, 2020.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization
in games with incomplete information. Advances in neural information processing systems, 20:
1729–1736, 2007.

11

https://www.aaai.org/Library/Symposia/Fall/2004/fs04-02-014.php
https://www.aaai.org/Library/Symposia/Fall/2004/fs04-02-014.php
https://doi.org/10.1038/nature16961

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

A PROOFS

A.1 PROOF OF THEOREM 4.1

Theorem 4.1 (safety) Let S be a disjoint set of subgames S. Let σ∗ = ⟨σ∗
1 , σ

∗
2⟩ be the

NE where P2’s strategy is constrained to be the same with σ2 outside S. Define ∆ =

maxS∈S,Ii
1∈Stop

|CBV
σ∗2
1 (Ii1) − vσ1 (I

i
1)|. Let p̃(Ii1) be the reach probability given by σ∗

1 . Let
p̂(Ii1) be the estimation of reach probability p(Ii1) given by the real opponent strategy. Define

τ = maxS∈S,Ii
1∈Stop

| p̂(I
i
1)−p̃(Ii

1)

p̃(Ii
1)

|. Whenever 1− (2τ + 1)α > 0, we have a bounded exploitability
given by:

exp(σ′
2) ≤ exp(σ∗

2) +
2

1− (2τ + 1)α
∆. (5)

Proof:

For simplicity, we will omit the subscript of CBV
σ∗2
1 by default. In order to prove Theorem 1, we

will use mathematical induction on the level of the infoset. The depth L has the same definition as
in Brown & Sandholm (2017), i.e.

• For all the infosets which are direct parents of the subgames, we define L(I) = 0.

• For the infosets that are not ancestors of the subgames, we define L(I) = 0.

• For any infosets that are ancestors of the subgames, we define
L(I) = maxI′∈succ(I) L(I

′) + 1. That is, it has a higher level than any of its successors.

BASE CASE OF INDUCTION

Firstly, we will prove that for any infoset with level 0, the inequality of theorem 1 holds. For
convenience, we consider that theorem 1 in a specific subgame S.

We will prove the infoset at the top of the subgame first. Since SE(σ∗
2) ≥ (1 − α)(−∆) +

α
∑

i p̂(I
i
1)(−∆) = −∆, we have

(1− α)min
Ij
1

(
vσ1 (I

j
1)− CBV σS

2 (Ij1)
)
+ α

∑
i

p̂(Ii1)(v
σ
1 (I

i
1)− CBV σS

2 (Ii1))

=SE(σS
2)

≥SE(σ∗
2)

≥−∆

(6)

since σS
2 = argmaxσ̃2

SE(σ̃2).

Furthermore, we have∑
i

p̂(Ii1)(v
σ
1 (I

i
1)− CBV σS

2 (Ii1))

=
∑
i

p̂(Ii1)(v
σ
1 (I

i
1)− CBV σ∗2 (Ii1)) +

∑
i

p̂(Ii1)(CBV σ∗2 (Ii1)− CBV σS
2 (Ii1))

≤∆+
∑
i

p̂(Ii1)(CBV σ∗2 (Ii1)− CBV σS
2 (Ii1))

=∆+
∑
i

p̃(Ii1)(CBV σ∗2 (Ii1)− CBV σS
2 (Ii1))

+
∑
i

(p̂(Ii1)− p̃(Ii1))(CBV σ∗2 (Ii1)− CBV σS
2 (Ii1))

(7)

where the second term
∑

i p̃(I
i
1)(CBV σ∗2 (Ii1) − CBV σS

2 (Ii1)) is no larger than 0 because∑
i p̃(I1)CBV σ∗2 (Ii1) is exactly what σ∗

2 minimized. Otherwise, σ∗
2 can change the strategy in

the subgame so that he will get higher reward against σ∗
1 which conflicts the definition of NE.

12

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

And we will further decompose Ii1 ∈ Stop into two parts, {Ii,−1 } and {Ii,+1 }. They have the property
that CBV σ∗2 (Ii,−1) − CBV σS

2 (Ii,−1) ≤ 0 and CBV σ∗2 (Ii,+1) − CBV σS
2 (Ii,+1) > 0. And since∑

i p̃(I
i
1)(CBV σ∗2 (Ii1)− CBV σS

2 (Ii1)) ≤ 0 as discussed above, we have∑
Ii,−
1

p̃(Ii1)(CBV σ∗2 (Ii,−1)− CBV σS
2 (Ii,−1)) +

∑
Ii,+
1

p̃(Ii1)(CBV σ∗2 (Ii,+1)− CBV σS
2 (Ii,+1))

=
∑
i

p̃(Ii1)(CBV σ∗2 (Ii1)− CBV σS
2 (Ii1))

≤0

(8)

which implies that∑
Ii,+
1

p̃(Ii1)(CBV σ∗2 (Ii,+1)−CBV σS
2 (Ii,+1)) ≤ −

∑
Ii,−
1

p̃(Ii1)(CBV σ∗2 (Ii,−1)−CBV σS
2 (Ii,−1)) (9)

Then we have ∑
i

(p̂(Ii1)− p̃(Ii1))(CBV σ∗2 (Ii1)− CBV σS
2 (Ii1))

=
∑
Ii,−
1

(p̂(Ii,−1)− p̃(Ii,−1))(CBV σ∗2 (Ii,−1)− CBV σS
2 (Ii,−1))

+
∑
Ii,+
1

(p̂(Ii,+1)− p̃(Ii,+1))(CBV σ∗2 (Ii,+1)− CBV σS
2 (I

Ii,+
1

1))

≤τ
(
−

∑
Ii,−
1

p̃(Ii,−1)(CBV σ∗2 (Ii,−1)− CBV σS
2 (I

Ii,−
1

1))

+
∑
Ii,+
1

p̃(Ii,+1)(CBV σ∗2 (Ii,+1)− CBV σS
2 (I

Ii,+
1

1))
)

≤− 2τ
∑
Ii,−
1

p̃(Ii,−1)(CBV σ∗2 (Ii,−1)− CBV σS
2 (I

Ii,−
1

1))

≤− 2τ min
Ij
1

(
CBV σ∗2 (Ij1)− CBV σS

2 (Ij1)
)

(10)

The last inequation holds since minIj
1

(
CBV σ∗2 (Ij1) − CBV σS

2 (Ij1)
)
≤ 0 since σ∗

2 is the strategy
with lowest exploitability by only changing strategy of σ2 in the subgames.

Back to Equation 7, we have∑
i

p̂(Ii1)(v
σ
1 (I

i
1)− CBV σS

2 (Ii1)) ≤ ∆− 2τ min
Ij
1

(
CBV σ∗2 (Ij1)− CBV σS

2 (Ij1)
)

(11)

And substitute it into Equation 6,

∆+ (1− α− 2ατ)min
Ij
1

(
CBV σ∗2 (Ij1)− CBV σS

2 (Ij1)
)

≥(1− α)min
Ij
1

(
vσ1 (I

j
1)− CBV σS

2 (Ij1)
)
+ α(∆− 2τ)min

Ij
1

(
CBV σ∗2 (Ij1)− CBV σS

2 (Ij1)
)

≥−∆

(12)

so that
CBV σS

2 (Ij1) ≤ CBV σ∗2 (Ij1) +
2

1− (2τ + 1)α
∆ (13)

for all Ij1 in the subgame.

And for infoset I out of the subgame with level 0, since the refined strategy σS
2 and blueprint strategy

σ2 are the same here, the CBV value is exactly the same and the inequality holds.

13

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

INDUCTIVE STEP

The inductive step mostly follows that of Brown & Sandholm (2017).

Since CBV σS
2 (I1) ≤ CBV σ∗2 (I1) +

2
1−(2τ+1)α∆ holds for every subgame S, σ′

2 will also satisfy
this inequation since ∆ and τ are defined as maximum over all subgames.

Now, suppose CBV σ′2(I1) ≤ CBV σ∗2 (I1) +
2

1−(2τ+1)α∆ holds for any infoset with level lower or
equal to k, we will prove that it also holds for infoset with level k + 1.

By definition of CBV (I1),

CBV σ2(I1, a) =
(∑

h∈I1

πσ2
−1(h)v

⟨CBR(σ2),σ2⟩(h · a)
)
/
∑
h∈I1

πσ2
−1(h)

=
(∑

h∈I1

πσ2
−1(h)

∑
h′∈succ(h,a)

πσ2
−1(h, h

′)v⟨CBR(σ2),σ2⟩(h′)
)
/
∑
h∈I1

πσ2
−1(h)

=
(∑

h∈I1

∑
h′∈succ(h,a)

πσ2
−1(h

′)v⟨CBR(σ2),σ2⟩(h′)
)
/
∑
h∈I1

πσ2
−1(h)

(14)

We can swap the two summations above since the game is perfect recall, then

CBV σ2(I1, a) =
(∑

I′1∈succ(I1,a)

∑
h′∈I′1

πσ2
−1(h

′)v⟨CBR(σ2),σ2⟩(h′)
)
/
∑
h∈I1

πσ2
−1(h) (15)

By substituting the definition of CBV (I ′1) into the equation above,

CBV σ2(I1, a) =
(∑

I′1∈succ(I1,a)

CBV σ2(I ′1)
∑
h′∈I′1

πσ2
−1(h

′)
)
/
∑
h∈I1

πσ2
−1(h) (16)

And by the induction hypothesis,

CBV σ2(I1, a) ≤
(∑

I′1∈succ(I1,a)

(CBV σ∗2 (I ′1) +
2− α

1− α
∆)

∑
h′∈I′1

πσ2
−1(h

′)
)
/
∑
h∈I1

πσ2
−1(h) (17)

Because I1 is out of the subgame and σ∗
2 , σ2 is exactly the same outside the subgame, we will get

CBV σ2(I1, a) ≤
(∑

I′1∈succ(I1,a)

(CBV σ∗2 (I ′1) +
2− α

1− α
∆)

∑
h′∈I′1

π
σ∗2
−1(h

′)
)
/
∑
h∈I1

π
σ∗2
−1(h)

= CBV σ∗2 (I1, a) +
2− α

1− α
∆
(∑

I′1∈succ(I1,a)

∑
h′∈I′1

π
σ∗2
−1(h

′)
)
/
∑
h∈I1

π
σ∗2
−1(h)

= CBV σ∗2 (I1, a) +
2− α

1− α
∆

(18)

Finally, by mathematical induction we get

exp(σ′
2) ≤ exp(σ∗

2) +
2

1− (2τ + 1)α
∆ (19)

A.2 PROOF OF THEOREM 4.2

Theorem 4.2 (opponent exploitation) Let ϵ = ∥p̂ − p∥1 be the L1 distance of the distribution

p(Ii1) and p̂(Ii1). Let η = minS∈S maxIj
1∈Stop

(
CBV1(I

j
1 , σ

S
2)− CBV1(I

j
1 , σ

∗
2)
)
≥ 0. We use

BR
[S,σp]
p (σ) to denote the strategy for player p which maximizes its utility in subgame S ∈ S against

σ−p under the constraint that BR
[S,σp]
p (σ) and σp differs only inside S. By maximizing objective 2,

for all S ∈ S, the refined strategy σ′
2 satisfies

u

〈
BR

[S,σ1]
1 (σ′2),σ

′
2

〉
2 (S) ≥ u

〈
BR

[S,σ1]
1 (σ∗2),σ

∗
2

〉
2 (S) +

1− α

α
(η − 2∆)− ϵη (20)

14

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Proof: Still, we only consider a specific subgame S first.

σS
2 is maximizing

(1− α)min
Ij
1

(
vσ1 (I

j
1)− CBV σS

2 (Ij1)
)

︸ ︷︷ ︸
g(σS

2)

+α
∑
i

p̂(Ii1)(v
σ
1 (I

i
1)− CBV σS

2 (Ii1))︸ ︷︷ ︸
f(σS

2)

(21)

So, we have

(1− α)g(σS
2) + αf(σS

2) ≥ (1− α)g(σ∗
2) + αf(σ∗

2) (22)

and

max
Ij
1

CBV (Ij1 , σ
S
2)− CBV (Ij1 , σ

∗
2) = η ≥ η

⇔g(σS
2)−∆ ≤ −η

⇔g(σS
2)−∆ ≤ ∆+ g(σ∗

2)− η (g(σ∗
2) ≥ −∆)

(23)

Therefore,

αf(σS
2) ≥ αf(σ∗

2) + (1− α)(η − 2∆) (24)

which means∑
i

p̂(Ii1)(CBV σ∗2 (I1)− CBV σS
2 (Ii1))

≥ 1− α

α
(η − 2∆) +

∑
i

p̂(Ii1)(CBV σ∗2 (I1)− CBV σ∗2 (Ii1))

⇔−
∑
i

p̂(Ii1)CBV σS
2 (Ii1) ≥

1− α

α
(η − 2∆)−

∑
i

p̂(Ii1)CBV σ∗2 (Ii1)

⇔−
∑
i

p(Ii1)CBV σS
2 (Ii1) ≥

1− α

α
(η − 2∆)−

∑
i

p(Ii1)CBV σ∗2 (Ii1)

−
∑
i

(p(Ii1)− p̂(Ii1))(CBV σS
2 (Ii1)− CBV σ∗2 (Ii1))

⇒−
∑
i

p(Ii1)CBV σS
2 (Ii1) ≥

1− α

α
(η − 2∆)−

∑
i

p(Ii1)CBV σ∗2 (Ii1)− ϵη

⇔
∑
i

p(Ii1)V2(I
i
1, BR(σS

2), σ
S
2) ≥

1− α

α
(η − 2∆)− ϵη +

∑
i

p(Ii1)V2(I
i
1, BR(σ∗

2), σ
∗
2)

⇔u
⟨BR

[S,σ1]
1 (σ

[S←σS
2]

2),σ
[S←σS

2]

2 ⟩
2 (S) ≥ u

⟨BR
[S,σ1]
1 (σ∗2),σ

∗
2 ⟩

2 (S) +
1− α

α
(η − 2∆)− ϵη

(25)

Since η is defined as minimum over all subgames, we have

u

〈
BR

[S,σ1]
1 (σ′2),σ

′
2

〉
2 (S) ≥ u

〈
BR

[S,σ1]
1 (σ∗2),σ

∗
2

〉
2 (S) +

1− α

α
(η − 2∆)− ϵη (26)

B POKER RULES

RULES OF LEDUC POKER

Leduc Poker is a two players game. In Leduc Poker, there are 6 cards in total, three ranks({J,Q,K})
with two suits({a, b}) each. And at the beginning, every player should put 2 chip into the pot and
then will be dealt with one private card. Then, two players alternatively bet. They can call, raise and
fold. If any of them fold, the game ends and all chips in the pot belongs to the other player. And

15

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Table 1: The payoff matrix of the example zero-sum game. The values are the payoffs for player 2.
We will resolve for player 2.

P2
P1 L M R

U 3 2 4
O 2 3 9.9
D 3 2 9.9
F -100 -100 10

when a player call, he has to put chips in the pot to ensure that he contributes equal chips as the other
player in the pot. When a player raise, he has to ensure that he contributes more chips than the other
player in the pot. A betting round ends when a player calls.

Leduc Poker is divided into two betting rounds. In the first round, a private card is dealt to each
player and then two player start to bet. After the first betting round ends and nobody folds, a public
card is dealt on board and the second betting round starts. When the second round ends, both of the
player show their private hands and the stronger hands win. If a player’s private card has the same
rank as the public card, then he wins. Otherwise, we have J < Q < K and the higher one wins.
And in each betting round, there will be at most two raises in our experiment and each raise should
contribute 2 more chip in the first round and 4 more chips in the second round.

RULES OF FLOP HOLD’EM POKER

The rules of Flop Hold’em Poker is similar to that of Leduc Poker. In FHP, we use the standard 52-
card deck. At the beginning, the first player will contribute 1 chip to the pot and the second player
will contribute 2 chips. And then they will be dealt with 2 private cards each and the first player start
to bet. There are still two betting rounds and the raise sizes are both 2 chips. At the end of the first
betting round, there will be 3 public cards dealt on board. And the players will show their private
card at the end of the second betting round and the larger one wins the game. In FHP, we have the
same rule of card order as a standard Texas hold ’em .

C MATRIX GAME

In this part, we offer a matrix game as an example to show the necessity of considering safety and
expected payoff simultaneously, and to demonstrate the superiority of SES over a simple mixing
strategy, which follows a best response to the estimated opponent model with probability α and
follows the blueprint with probability 1− α.

In the matrix game shown in Table 1, let’s consider two specific NEs. In both NEs, P1 will play L/M
with 0.5 probability each. P2 will play U/O with 0.5 probability in the first NE and O/D with 0.5
probability in the second NE. Suppose the blueprint strategy is the first NE. Consider the case when
P1 plays a rather weak strategy that he will only play R. We apply SES to search for P2’s refined
strategy.

When the estimation of opponent strategy is accurate such that p̂ = p, the best response of P2 is
always playing F, which is highly exploitable, while SES finds the second NE under proper α. To
give more details, the exploitability and expected payoff of the strategy found by SES and the mixing
strategy are shown in Figure 4. We can see that SES achieves both lower exploitability and better
performance than the mixing strategy at almost all α values.

Theoretically, for a mixing strategy mixp(σ1, σ
′
1) which plays σ1 with probability p, and σ′

1 with
1− p (Johanson et al., 2007), we have the following propositions.

Proposition C.1. Utility of a mixing strategy: u(mixp(σ1, σ
′
1), σ2) = pu(σ1, σ2)+(1−p)u(σ′

1, σ2).

Proposition C.2. Exploitability of a mixing strategy: exp(mixp(σ1, σ
′
1)) ≤ p exp(σ1) + (1 −

p) exp(σ′
1). The example in Figure 4 shows that the bound is tight.

16

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Compared with the corresponding theorems 4.1 and 4.2 of SES, we find that the simple mixing strat-
egy cannot provide a safety guarantee and is inferior to SES. In some circumstances, exp(σunsafe)
can be quite large. Therefore, the exploitability of the mixing strategy can also be large even
for a rather small p. In contrast, as shown in Theorem 1, SES’s exploitability does not rely on
exp(σunsafe), which makes our bound for SES tighter than that of mixed strategy in most cases.

0.0 0.2 0.4 0.6 0.8 1.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

ch
ip

s/
h

Evaluation

SES
Mixing

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

ch
ip

s/
h

Exploitability

SES
Mixing

Figure 4: Top: Expected payoffs of SES and the mixing strategy in the proposed matrix game
example. Bottom: Exploitability of the two algorithms.

D IMPLEMENTATION DETAILS

Leduc Poker. In Leduc Poker, we solve for a blueprint strategy using a variant of CFR algorithm
(Lanctot et al., 2009; Tammelin et al., 2015) with 1M iterations in the full game. Then we apply
search in subgames when the board card is dealt.

Flop Hold’em Poker (FHP). As for FHP, there are 1,286,792 different infosets for each betting
sequence. We cluster them into 200 infosets by an abstraction algorithm (Johanson et al., 2013) in
order to make equilibrium finding feasible. Then, we compute a blueprint strategy in this abstraction
with 10,000,000 iterations. We apply search immediately once the flop cards are dealt.

Generate estimated opponent strategy. Given p and ϵ, we use the following procedure to generate
the corresponding p̂ such that |p− p̂| = ϵ. 1. In the beginning, we set p̂ = p. 2. We randomly choose
a subset S+ from index set S of p̂ and we set S− = S−S+. We ensure that

∑
i∈S+

(1.0−p̂(i)) > ϵ/2

and
∑

i∈S−
p̂(i) > ϵ/2 by the following procedure: to get S+, S−, we will randomly permute the

index of p̂ first to get permutation A. Then, we will sample k ∼ Uniform(1, |A|). We will check
whether S+ = {A1, ..., Ak} and S− = {Ak+1, ..., A|A|} satisfy the condition above. We will
continue the process until S+, S− satisfy the condition above. 3. We divide ϵ/2 into 10,000 pieces
with value ϵ

20,000 assigned to each piece. 4. For S+, we will do reject sampling to sample 10,000
pieces to different indexes. We will pick i ∈ S+ randomly each time. If p̂(i)+ ϵ

20,000 < 1.0, we will
assign one piece to i and increase p̂(i) by ϵ

20,000 . The process will continue until we have assigned
all 10, 000 pieces. We will do the same thing for S− except that only when p(i) − ϵ

20,000 > 0 we
will assign one piece to i.

E COMPARISON WITH RESTRICTED NASH RESPONSE

We also compare SES with restricted Nash response (RNR) (Johanson et al., 2007), a previous safe
exploitation algorithm, in FHP. RNR calculates an NE for for the whole game restricting that the
opponent plays the estimated strategy σfix with probability p, and any strategy with probability 1−p.
In each round, we limit the computation time of RNR(normal) to 10 CPU second*, which is the same
for SES. However, as stated in section 2, RNR needs to recompute a strategy for the whole game
in each round. It cannot converge in 10s. So we also compare with RNR(big), which has a budget

*We test it on Intel(R) Xeon(R) Platinum 8276L CPU @ 2.20GHz

17

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

0.0 0.2 0.4 0.6 0.8 1.0
p()

20

15

10

5

0

5

m
bb

/h

Evaluation(Prshuffle = 0.0)

RNR(normal)
RNR(big)
SES

0.0 0.2 0.4 0.6 0.8 1.0
p()

20

30

40

50

60

70

m
bb

/h

Exploitability(Prshuffle = 0.0)

RNR(normal)
RNR(big)
SES

0.0 0.2 0.4 0.6 0.8 1.0
p()

15

10

5

0

5

10

m
bb

/h

Evaluation(Prshuffle = 0.3)

RNR(normal)
RNR(big)
SES

0.0 0.2 0.4 0.6 0.8 1.0
p()

20

30

40

50

60

70

m
bb

/h

Exploitability(Prshuffle = 0.3)

RNR(normal)
RNR(big)
SES

0.0 0.2 0.4 0.6 0.8 1.0
p()

5

0

5

10

15

m
bb

/h

Evaluation(Prshuffle = 0.7)
RNR(normal)
RNR(big)
SES

0.0 0.2 0.4 0.6 0.8 1.0
p()

30

40

50

60

70

m
bb

/h

Exploitability(Prshuffle = 0.7)

RNR(normal)
RNR(big)
SES

Figure 5: Comparison between SES and RNR. Each row represents a type of opponent with
Prshuffle = 0.0, 0.3, 0.7. The X-axis is the parameter α for SES and p for RNR.

of 10M CFR iterations in each round (around 190 CPU second in time). In contrast, SES only
uses 10M CFR iterations to calculate its blueprint once. As is shown in Figure 5, SES significantly
outperforms RNR(normal) in both exploitability and evaluation. SES also achieves much lower
exploitability than RNR(big) and comparable evaluation results with much less computation time.

F COMPARISON WITH EXP-STRATEGY

It is possible to augment p−RNR with real-time search. For a subgame S, we can create a similar
gadget game to SES in Figure 1. The difference is that it keeps the opponent strategy fixed to its
estimation in the whole exploitation part, while SES only uses the reach probability p̂ calculated
from the estimated opponent strategy and allows the search algorithm to find opponent strategies
in the exploitation part as well. To our best knowledge, this algorithm does not exist in previous
literature, and can be regarded as an ablation study for SES. We call it EXP-STRATEGY.

We provide the full comparison results between SES and EXP-STRATEGY in table 2, 3, and 4, with
opponent strategy estimation error equals 0.1, 0.3, and 0.5 accordingly.

Table 2 shows the exploitability and evaluation performance of SES and EXP-STRATEGY under
different exploitation level α (or p in RNR). We add errors in the estimation of opponent strategy,
and use the same estimation for both algorithms. SES performs much better than EXP-STRATEGY:
maintains lower exploitability and achieves higher evaluation performances† The experiment shows
that EXP-STRATEGY is sensitive to modeling errors, because it relies on the estimated strategy
in the whole subgame. SES, which exploits a distribution of infoset instead of the full opponent
strategy, is more robust.

Similar to SES, we derive the theoretical bounds for both exploitability and exploitation for EXP-
STRATEGY. And the theory also demonstrates that EXP-STRATEGY is more sensitive to the ac-
curacy of the estimation. Please refer to Appendix G for details.

G THEORETICAL BOUND OF EXP-STRATEGY

Similar to SES, EXP-STRATEGY maximizes the following objective,

(1− α)min
Ij
1

(
vσ1 (I

j
1)− CBV σS

2 (Ij1)
)
+ α

∑
i

p̂(Ii1)(v
σ
1 (I

i
1)− v

⟨σ̂1,σ
S
2 ⟩

1 (Ii1)) (27)

†The parameter α in SES and p in RNR are not directly comparable. To be precise, we should compare
the “frontier” of exploitability and exploitation for α, p ∈ [0, 1]. For instance, under the same evaluation
performance, which algorithm achieves lower exploitability. In table 2, SES is strictly better.

18

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Table 2: Exploitability and evaluation performance of SES and EXP-STRATEGY, when strategy
estimation error is 0.1.

EXPLOITABILITY EVALUATION

Prshuffle α EXP-STRATEGY SES EXP-STRATEGY SES

0.0

0.0 29.43(±0.01) 29.43(±0.01) 1.20(±0.01) 1.20(±0.01)
0.3 34.64(±0.11) 28.01(±0.07) -2.55(±0.07) 2.28(±0.03)
0.7 132.06(±0.68) 41.59(±0.37) -34.75(±0.14) 1.48(±0.08)
1.0 969.77(±6.92) 55.54(±1.08) -108.02(±0.93) -1.97(±0.23)

0.3

0.0 29.43(±0.01) 29.43(±0.00) 5.15(±0.19) 5.15(±0.19)
0.3 34.75(±0.13) 28.06(±0.04) 1.63(±0.40) 6.21(±0.25)
0.7 134.37(±2.59) 41.95(±0.39) -27.22(±0.91) 6.00(±0.81)
1.0 981.47(±11.86) 55.10(±1.13) -88.94(±6.07) 3.30(±0.96)

0.7

0.0 29.43(±0.01) 29.43(±0.01) 12.35(±1.52) 12.34(±1.52)
0.3 34.84(±0.12) 28.10(±0.02) 9.68(±1.39) 13.55(±1.58)
0.7 137.72(±2.55) 41.90(±0.13) -13.80(±2.08) 13.96(±1.42)
1.0 985.82(±30.43) 55.79(±0.50) -61.84(±5.38) 11.61(±1.56)

Table 3: Exploitability and evaluation performance of SES and EXP-STRATEGY, when strategy
estimation error is 0.3.

EXPLOITABILITY EVALUATION

Prshuffle α EXP-STRATEGY SES EXP-STRATEGY SES

0.0

0.0 29.43(±0.01) 29.43(±0.01) 1.20(±0.01) 1.19(±0.03)
0.3 31.49(±0.27) 26.77(±0.07) 3.19(±0.06) 2.54(±0.04)
0.7 57.80(±2.70) 26.18(±0.67) 0.81(±0.53) 3.68(±0.06)
1.0 589.02(±9.71) 30.14(±2.51) -52.78(±1.76) 4.36(±0.23)

0.3

0.0 29.43(±0.01) 29.43(±0.00) 5.15(±0.19) 5.15(±0.19)
0.3 31.61(±0.25) 26.80(±0.03) 8.40(±0.87) 6.45(±0.24)
0.7 64.77(±4.49) 26.44(±0.53) 11.31(±2.90) 7.69(±0.38)
1.0 618.06(±16.53) 30.04(±1.17) -25.57(±2.38) 8.60(±0.53)

0.7

0.0 29.43(±0.01) 29.43(±0.01) 12.35(±1.52) 12.35(±1.52)
0.3 32.20(±0.33) 26.85(±0.02) 17.12(±0.97) 13.73(±1.56)
0.7 73.91(±1.56) 27.05(±0.35) 28.26(±0.30) 15.25(±1.44)
1.0 600.82(±5.67) 32.48(±1.41) 15.38(±4.74) 16.46(±1.31)

Theorem G.1. (safety) Let S be a disjoint set of subgames S. Let σ∗ = ⟨σ∗
1 , σ

∗
2⟩ be the

NE where P2’s strategy is constrained to be the same with σ2 outside S. Define ∆ =

maxS∈S,Ii
1∈Stop

|CBV
σ∗2
1 (Ii1) − vσ1 (I

i
1)|. We use BR

[S,σp]
p (σ) to denote the strategy for player p

which maximizes its utility in subgame S ∈ S against σ−p under the constraint that BR
[S,σp]
p (σ)

and σp differs only inside S. Let p̂(Ii1) be the estimation of reach probability p(Ii1) given by the
real opponent strategy. Define Ω = maxS maxi(CBV σ∗2 (Ii1) + CBV σ̂1(Ii1)). We have a bounded
exploitability given by:

exp(σ′
2) ≤ exp(σ∗

2) + 2∆ +
α

1− α

(
u

〈
BR

[S,σ1]
1 (σ∗2),σ

∗
2

〉
1 (S) + u

〈
BR

[S,σ2]
2 (σ̂1),σ̂1

〉
2 (S)

)
+

ϵ

1− α
Ω

(28)

19

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Table 4: Exploitability and evaluation performance of SES and EXP-STRATEGY, when strategy
estimation error is 0.5.

EXPLOITABILITY EVALUATION

Prshuffle α EXP-STRATEGY SES EXP-STRATEGY SES

0.0

0.0 29.43(±0.00) 29.43(±0.01) 1.20(±0.01) 1.20(±0.01)
0.3 34.76(±0.21) 28.01(±0.07) -2.32(±0.11) 2.28(±0.03)
0.7 156.79(±3.54) 41.59(±0.37) -39.72(±0.70) 1.48(±0.08)
1.0 1020.47(±10.09) 55.54(±1.08) -114.78(±0.47) -1.97(±0.23)

0.3

0.0 29.43(±0.01) 29.43(±0.01) 5.15(±0.19) 5.15(±0.19)
0.3 34.90(±0.21) 28.06(±0.04) 1.85(±0.51) 6.21(±0.25)
0.7 154.67(±8.22) 41.95(±0.39) -31.78(±1.64) 6.00(±0.81)
1.0 1024.30(±15.31) 55.10(±1.13) -96.89(±5.96) 3.30(±0.96)

0.7

0.0 29.43(±0.01) 29.43(±0.01) 12.34(±1.52) 12.34(±1.52)
0.3 34.95(±0.34) 28.10(±0.02) 9.58(±1.29) 13.55(±1.58)
0.7 158.98(±5.16) 41.90(±0.13) -17.76(±1.96) 13.96(±1.42)
1.0 1019.04(±28.61) 55.79(±0.50) -70.64(±4.37) 11.61(±1.56)

Proof:
(1− α)∆ + (1− α)min

Ij
1

(CBV σ∗2 (Ij1)− CBV σS
2 (Ij1)) + α

∑
i

p(Ii1)CBV σ̂1(Ii1) + ϵmax
i

CBV σ̂1(Ii1)

≥(1− α)min
Ij
1

(vσ1 (I
j
1)− CBV σS

2 (Ij1)) + α
∑
i

p(Ii1)CBV σ̂1(Ii1) + ϵmax
i

CBV σ̂1(Ii1)

≥(1− α)min
Ij
1

(vσ1 (I
j
1)− CBV σS

2 (Ij1)) + α
∑
i

p̂(Ii1)CBV σ̂1(Ii1)

≥(1− α)min
Ij
1

(vσ1 (I
j
1)− CBV σS

2 (Ij1)) + α
∑
i

p̂(Ii1)(−v
⟨σ̂1,σ

S
2 ⟩

1 (Ii1))

≥(1− α)min
Ij
1

(vσ1 (I
j
1)− CBV σ∗2 (Ij1)) + α

∑
i

p̂(Ii1)(−v
⟨σ̂1,σ

∗
2 ⟩

1 (Ii1))

≥− (1− α)∆− α
∑
i

p̂(Ii1)CBV σ∗2 (Ii1)

≥− (1− α)∆− α
∑
i

p(Ii1)CBV σ∗2 (Ii1)− ϵmax
i

CBV σ∗2 (Ii1)

(29)
where the fourth line to the fifth line is derived from the fact that the fourth line is exactly the
objective of σS

2 subtracted a constant .

That is,

min
Ij
1

(CBV σ∗2 (Ij1)− CBV σS
2 (Ij1)) ≥ −2∆−

α

1− α

∑
i

p(Ii1)
(
CBV σ∗2 (Ii1)

+ CBV σ̂1(Ii1)
)
− ϵ

1− α
(max

i
CBV σ∗2 (Ii1) + max

i
CBV σ̂1(Ii1))

(30)

Follows the same induction step,

exp(σS
2) ≤ exp(σ∗

2) + 2∆ +
α

1− α

(
u

〈
BR

[S,σ1]
1 (σ∗2),σ

∗
2

〉
1 (S) + u

〈
BR

[S,σ2]
2 (σ̂1),σ̂1

〉
2 (S)

)
+

ϵ

1− α
Ω

(31)

Theorem G.2. (opponent exploitation) Let ϵ = ∥p̂−p∥1 be the L1 distance of the distribution p(Ii1)

and p̂(Ii1). Let η = minS∈S maxIj
1∈Stop

(
CBV1(I

j
1 , σ

S
2)− CBV1(I

j
1 , σ

∗
2)
)
≥ 0. By maximizing

objective 27, for all S ∈ S, the refined strategy σ′
2 satisfies

u
⟨σ̂1,σ

′
2⟩

2 (S) ≥ u
⟨σ̂1,σ

∗
2 ⟩

2 (S) +
1− α

α
(η − 2∆)− ϵΩ (32)

20

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Proof:

Still, we only consider a specific subgame S first.

σS
2 is maximizing

(1− α)min
Ij
1

(
vσ1 (I

j
1)− CBV σS

2 (Ij1)
)

︸ ︷︷ ︸
g(σS

2)

+α
∑
i

p̂(Ii1)(v
σ
1 (I

i
1)− v

⟨σ̂1,σ
S
2 ⟩

1 (Ii1))︸ ︷︷ ︸
f(σS

2)

(33)

So, we have

(1− α)g(σS
2) + αf(σS

2) ≥ (1− α)g(σ∗
2) + αf(σ∗

2) (34)

and

max
Ij
1

CBV (Ij1 , σ
S
2)− CBV (Ij1 , σ

∗
2) = η ≥ η

⇔g(σS
2)−∆ ≤ −η

⇔g(σS
2)−∆ ≤ ∆+ g(σ∗

2)− η (g(σ∗
2) ≥ −∆)

(35)

Therefore,

αf(σS
2) ≥ αf(σ∗

2) + (1− α)(η − 2∆) (36)

which means∑
i

p̂(Ii1)(v
⟨σ̂1,σ

∗
2 ⟩

1 (Ii1)− v
⟨σ̂1,σ

S
2 ⟩

1 (Ii1)) ≥
1− α

α
(η − 2∆)

⇔−
∑
i

p̂(Ii1)v
⟨σ̂1,σ

S
2 ⟩

1 (Ii1) ≥
1− α

α
(η − 2∆)−

∑
i

p̂(Ii1)v
⟨σ̂1,σ

∗
2 ⟩

1 (Ii1)

⇔−
∑
i

p(Ii1)v
⟨σ̂1,σ

S
2 ⟩

1 (Ii1) ≥
1− α

α
(η − 2∆)−

∑
i

p(Ii1)v
⟨σ̂1,σ

∗
2 ⟩

1 (Ii1)

−
∑
i

(p(Ii1)− p̂(Ii1))(v
⟨σ̂1,σ

S
2 ⟩

1 (Ii1)− v
⟨σ̂1,σ

∗
2 ⟩

1 (Ii1))

⇒−
∑
i

p(Ii1)v
⟨σ̂1,σ

S
2 ⟩

1 (Ii1) ≥
1− α

α
(η − 2∆)−

∑
i

p(Ii1)v
⟨σ̂1,σ

∗
2 ⟩

1 (Ii1)− ϵ(maxCBV σ∗2 (Ii1) + maxCBV σ̂1(Ii1))

⇔
∑
i

p(Ii1)V2(I
i
1, σ̂1, σ

S
2) ≥

1− α

α
(η − 2∆)− ϵ(maxCBV σ∗2 (Ii1) + maxCBV σ̂1(Ii1)) +

∑
i

p(Ii1)V2(I
i
1, σ̂2, σ

∗
2)

(37)

Since η is defined as minimum over all subgames and Ω is defined as maximum over all subgames,
we have

u
⟨σ̂1,σ

′
2⟩

2 (S) ≥ u
⟨σ̂1,σ

∗
2 ⟩

2 (S) +
1− α

α
(η − 2∆)− ϵΩ (38)

21

	Introduction
	Related work
	Notations and background
	Method
	Safe Exploitation Search
	Gadget Game

	Experiment
	Opponents
	Safe Opponent Search

	Conclusion
	Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Poker Rules
	Matrix Game
	Implementation Details
	Comparison with Restricted Nash Response
	Comparison with EXP-STRATEGY
	Theoretical Bound of EXP-STRATEGY

