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Abstract

Accurate and up-to-date geospatial data are essential for urban planning, infrastruc-
ture monitoring, and environmental management. Yet, automating urban monitor-
ing remains difficult because curated datasets of specific urban features and their
changes are scarce. We introduce OSMGen, a generative framework that creates
realistic satellite imagery directly from raw OpenStreetMap (OSM) data. Unlike
prior work that relies on raster tiles, OSMGen uses the full richness of OSM JSON,
including vector geometries, semantic tags, location, and time, giving fine-grained
control over how scenes are generated. A central feature of the framework is the
ability to produce consistent before–after image pairs: user edits to OSM inputs
translate into targeted visual changes, while the rest of the scene is preserved.
This makes it possible to generate training data that addresses scarcity and class
imbalance, and to give planners a simple way to preview proposed interventions by
editing map data. More broadly, OSMGen produces paired (JSON, image) data for
both static and changed states, paving the way toward a closed-loop system where
satellite imagery can automatically drive structured OSM updates. Source code is
available at https://github.com/amir-zsh/OSMGen.

1 Introduction

Urban planning can greatly benefit from accurate and timely geospatial data [26, 18]. A readily
available source is OpenStreetMap (OSM) [23], a collaborative project that offers more than just a
visual map: it provides a detailed, structured JSON format containing rich information lost in simple
image tiles, such as precise vector geometries and semantic tags for every feature. While this detailed
data structure is ideal for conditioning a generative process, it has been largely underexplored for this
purpose, partly due to the complexity of the JSON files.

In this work, we leverage the full depth of OSM data for image generation. The core of our contribu-
tion is a novel generative model that synthesizes high-fidelity satellite imagery by conditioning on
the structured information within OSM JSON. In contrast to methods that use rendered map images,
our approach utilizes a richer set of inputs including feature tags, location, and date, enabling highly
controllable and precise synthesis. We also introduce a method to leverage this model for controlled
scene manipulation: by editing the OSM-derived inputs, we can synthesize a corresponding "after"
image that is perfectly co-registered to its "before" state, thereby isolating the visual impact of a
single, defined change.

Our approach enables two powerful applications. First, it can generate vast, pixel-perfect labeled
datasets to address data scarcity in geospatial AI, improving downstream models for tasks like
building footprint segmentation [20] and land-use classification [40]. Second, it serves as a dynamic

*These authors contributed equally.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: UrbanAI 2025.

https://github.com/amir-zsh/OSMGen


03 Feb 2024

Generate a high-resolution satellite image of 
United States, using the provided semantic 
mask. The mask highlights the following 
points of interest: lake, storage tank.

28.019038768421414,-82.72192986346286
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Figure 1: Overview of our ControlNet pipeline. Semantic masks are fed into ControlNet to generate
control feature maps that are added into the U-Net; spatial and temporal embeddings are summed
into the timestep embedding; the text prompt is injected via cross-attention.

simulation tool, allowing urban planners to visualize the impact of proposed developments, such
as new parks or infrastructure, by simply editing the JSON map data, thus supporting data-driven
decision-making.

Crucially, our framework is unique in its ability to generate complete, corresponding pairs of (JSON,
image) data for both before and after states. This provides the exact data required to train the
next generation of cartographic models that can truly "close the loop": detecting changes in new
satellite imagery to suggest automated, structured updates to OSM JSON. This capability promises to
significantly reduce the manual effort needed to keep the world’s map current and accurate [3].

Background. Denoising diffusion models synthesize images by learning to reverse a fixed process
of gradually adding noise [11, 29]. By training a neural network to perform this reverse denoising
operation, the model can generate new, high-fidelity images starting from pure noise. To enable
precise, training-free image editing, we leverage Denoising Diffusion Implicit Models (DDIM) [30],
which introduce a deterministic variant of the diffusion process. This determinism is crucial because
it allows the process to be inverted. Given a real image, DDIM inversion can trace the denoising
path backward to find the unique latent code that generates it. This inversion capability is the key
mechanism that enables high-fidelity, targeted modifications. The technical details of these processes
are detailed further in Appendix A.

2 Methodology

This work presents an end-to-end pipeline for generating satellite imagery conditioned on rich
information derived from raw OSM JSON data. Our approach addresses key shortcomings of methods
that rely on simpler inputs such as raster tiles or bounding boxes, which lack the precise geometries
and detailed tag-level semantics available in the source OSM data [33, 19]; see Appendix C.1 for a
detailed analysis. By leveraging the source JSON, we enable fine-grained, controllable, and spatially
accurate synthesis. Please refer to Appendix D for a detailed literature review on image generation,
satellite image generation, and image editing.
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Data Collection and Preprocessing. To ensure broad geographic coverage, we sample approxi-
mately 20,000 points from the Functional Map of the World (FMoW) benchmark [5], spanning urban
centers, suburbs, and rural areas. For each point, we fix a zoom level z in advance (typically choosing
z = 18 to capture fine-grained structural details and z = 15 for wider contextual views) and compute
the exact 256 × 256-pixel tile bounds around the center latitude and longitude via standard Web
Mercator tile formulas [1]. Using this bounding box and zoom, we retrieve a 256 × 256 satellite
image tile and its corresponding raw OSM JSON for each data point. From the JSON, we extract a
multimodal set of conditions designed to provide comprehensive guidance to the generative model.
The primary conditions are two segmentation masks derived from the raw vector geometries: (1) the
general mask, which groups features into a small number of broad categories such as roads, water
bodies, vegetation, buildings, and other primary surface types, capturing high-level concepts; and (2)
the specific mask, which assigns each fine-grained point-of-interest (POI) subtype (e.g., lakes, rivers,
storage tanks, solar farms) its own mask color so the model can learn the nuances of each type. To
capture spatiotemporal context, we encode the tile’s geographic coordinates using SatCLIP [17] and
its capture date using Date2Vec [28]. Finally, we generate a textual summary of the tile’s most salient
categories and encode it via a frozen CLIP text encoder [25] to provide high-level semantic guidance
(see Appendix B.1 for details).

Generation Framework. As illustrated in Figure 1, our framework augments a frozen Stable
Diffusion U-Net [27] with a trainable ControlNet branch [34]. The general and specific masks are
fused via a convolutional layer and provided to ControlNet to enforce geometric fidelity. Spatial and
temporal embeddings are each passed through a linear projection and then added to the diffusion
timestep embedding, while the text embedding is injected through cross-attention. We train the
ControlNet component, the mask-fusion layer, and the linear projections for spatial and temporal
conditioning, using the standard diffusion loss:

Ldiff = Ex0, t, ϵ

∥∥∥ϵ − ϵθ
(
xt, t | M, eloc, etime, etext

)∥∥∥2
2
.

Here, the network ϵθ is trained to predict the ground-truth noise ϵ from the noisy image latent xt at
timestep t, given the set of conditions: the fused mask M and the location, time, and text embeddings
(eloc, etime, etext).

Controlled Change Generation. To create consistent before/after image pairs, we use DDIM
inversion [30]. This choice is driven by three factors. First, cross-attention–based editing methods
are unsuitable here because they do not account for our nontextual conditions (masks, spatial, and
temporal information) [10]. Second, DDIM inversion is straightforward to implement and agnostic
to the model’s specific architecture. Third, strong spatial conditioning from the masks allows us to
reduce the classifier-free guidance (CFG) scale, mitigating a known limitation of DDIM inversion,
instability at high CFG scales [22, 12], and yielding high-fidelity results. Please refer to Appendix
A.2 for details.

3 Experiments

Experimental Setup We trained the model for 500 epochs using a batch size of 2048. Our
evaluation uses samples from a held-out test set of approximately 2,000 locations from our FMoW-
derived dataset. For each location, we generate a 256x256 pixel tile using the full multi-modal
conditioning framework described previously. All synthesis operations were performed on a single
NVIDIA A100 GPU.

Qualitative Results. Figure 2 shows representative outputs, demonstrating that the model (i)
accurately reproduces road networks and building footprints from the general mask and (ii) renders
rare POI classes (e.g., stadiums, storage tanks) with correct shapes and context from the specific mask.
A brief analysis of seasonality under temporal conditioning is deferred to Appendix E. Consistency
via DDIM Inversion: We apply DDIM inversion and re-denoising with an edited mask to generate
“after” images in which regions outside the edited area remain consistent with the “before” state.
Figure 4 demonstrates samples produced using this method for edits that add, remove, or modify
elements. The pipeline produces consistent pairs without introducing artifacts outside the intended
changes.
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Mask: General Mask: Specific Generated #1 Generated #2 Generated #3 Ground Truth

Figure 2: Qualitative evaluation on held-out FMoW locations. This layout highlights both the model’s
ability to reproduce large-scale structure and to capture fine-grained POI details in context.
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Figure 3: Editing via DDIM inversion. Edits are applied locally while preserving consistency outside
the modified region.

4 Conclusion

We have presented a novel approach for high-fidelity satellite image synthesis conditioned on OSM
JSON. This framework achieves both structural fidelity and semantic richness, opening new avenues
for interactive geospatial content creation and data augmentation. This framework paves the way for
generating large labeled datasets, including static imagery and co-registered before/after pairs, to
be used in downstream tasks, such as segmentation, change detection, and automated proposals for
OSM JSON updates based on satelite image changes.
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A Technical Background

A.1 DDPM

Diffusion Process [11, 29] consists of two processes: a tractable forward process that gradually
adds Gaussian noise to data, and a learned reverse process that recovers clean data from noisy inputs.
Specifically, the forward process is a Markov chain defined as

q(xt | xt−1) = N
(
xt;
√
1− βt xt−1, βtI

)
,

with a variance schedule β1:T . This yields the joint distribution

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1),

and a tractable marginal for xt given x0:

q(xt | x0) = N
(
xt;

√
ᾱt x0, (1− ᾱt)I

)
,

where ᾱt =
∏t

s=1(1− βs). While the forward process is fixed, the true reverse process q(xt−1 |xt),
which is required for generation, is intractable to compute directly; in DDPM (Denoising Diffusion
Probabilistic Models; [11]) this reverse step is approximated by a parameterized model pθ, typically
implemented as a neural network:

pθ(xt−1 | xt) = N
(
xt−1 | µθ(xt, t), Σθ(xt, t)

)
.

When side information c (e.g., text, mask, layout) is available, the reverse model can be conditioned
on c:

pθ(xt−1 | xt, c) = N
(
xt−1 | µθ(xt, t, c), Σθ(xt, t, c)

)
.

A.2 DDIM Inversion

Denoising Diffusion Implicit Models (DDIM) [30] relax the Markovian assumption of DDPM by
introducing a family of non-Markovian transitions. Using the reparameterization trick, the reverse
step can be written as

xt−1 =
√
αt−1

(
xt −

√
1− αt ϵ

(t)
θ (xt,c)√

αt

)
︸ ︷︷ ︸

predicted x0

+
√
1− αt−1 − σ2

t ϵ
(t)
θ (xt,c)︸ ︷︷ ︸

direction toward xt

+ σt ϵt︸︷︷︸
random noise

,

where ϵt ∼ N (0, I) is independent noise at step t. Setting

σt =

√
1− αt−1

1− αt

√
1− αt

αt−1

recovers the stochastic DDPM sampler (Markovian), and setting σt = 0 yields a deterministic update,
i.e., the DDIM transition. DDIM allows skipping intermediate noise levels for faster sampling and,
due to its determinism, enables precise inversion for image editing.

Inversion. Choose an inversion depth t⋆ ∈ {0, . . . , T} that sets the edit strength. Starting from
an observed image xobs and a reference condition cref , apply the deterministic DDIM forward
(noise-adding) updates only up to t⋆:

xt+1 =
√
αt+1

(
xt−

√
1−αt ϵ

(t)
θ (xt,cref )√

αt

)
+
√

1− αt+1 ϵ
(t)
θ (xt, cref), t = 0, . . . , t⋆ − 1,

initialized at x0 = xobs. The latent xt⋆ is the inversion endpoint: t⋆=T gives full inversion; smaller
t⋆ preserves more of xobs (weaker edits). With σt=0, running the matching DDIM denoiser from t⋆

back to 0 under the same condition approximately reconstructs xobs.

Redenoising with new conditions. To edit, re-denoise the inverted latents under a target condition
cnew using the DDIM update

x̃t−1 =
√
αt−1

(
xt−

√
1−αt ϵ

(t)
θ (xt,cnew)√
αt

)
+
√
1− αt−1 ϵ

(t)
θ (xt, cnew), t = t⋆, . . . , 1,
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initialized at the encoded xt⋆ from the inversion pass. If cnew = cref and the same t⋆ and schedule
are used, the procedure approximately reconstructs xobs; otherwise, it produces an edited output
consistent with cnew.

Edit strength. The single knob t⋆ implements the fidelity–edit trade-off introduced above: smaller
t⋆ leads to higher fidelity / weaker edits; larger t⋆ (up to T ) leads stronger edits.

DDIM

DDIM 
Inversion

Generate a high-resolution satellite image of Slovenia, 
using the provided semantic mask. The mask highlights 

the following points of interest: crop field.
45.80755110185972, 13.713653819431622

18 Jan 2024

Conditions

DDIM

Generate a high-resolution satellite image of Slovenia, 
using the provided semantic mask. The mask highlights 

the following points of interest: crop field, stadium
45.80755110185972, 13.713653819431622

18 Jan 2024

Conditions

Generate a high-resolution satellite image of Slovenia, 
using the provided semantic mask. The mask highlights 

the following points of interest: crop field.
45.80755110185972, 13.713653819431622

18 Jan 2024

Conditions

Figure 4: Change synthesis via DDIM inversion.

Figure 4 illustrates this pipeline within our framework to produce consistent edits.

B Detailed Methodology

B.1 Component Encoders and Conditioning

Mask Conditioning via ControlNet We first combine the general and specific segmentation masks
by stacking them into a multi-channel tensor and passing this tensor through a small multilayer
perceptron (MLP) that projects the concatenated mask channels down to the control-image dimension
required by ControlNet. The resulting fused mask embedding is then supplied to ControlNet’s image
encoder. At each U-Net block, ControlNet produces control features from this embedding and adds
them to the corresponding feature maps in the diffusion network, ensuring that the generated output
strictly follows the prescribed geometries and class layout.

Spatial Conditioning (Location Encoder) We encode the tile center’s longitude–latitude pair
(λ, ϕ) using SatCLIP [17]. SatCLIP projects λ and ϕ into a multi-scale sinusoidal basis and refines
them via a two-layer MLP to produce a D-dimensional vector eloc. We then pass eloc through a
learnable linear projection before adding it to the diffusion timestep embedding at every denoising
iteration, thereby injecting geographic context into the noise schedule.

Temporal conditioning (time encoder). To capture seasonal and illumination effects, we encode
the capture timestamp using Date2Vec[28], a pretrained, Time2Vec [14]–inspired encoder. Given
a 6-D timestamp vector (hh:mm:ss, yyyy-mm-dd), Date2Vec produces an embedding comprising
a learned linear component and periodic (sinusoidal) components. As with the spatial pathway,
we apply a learnable linear projection to this embedding before adding it to the model’s timestep
embedding.

Textual Conditioning (Prompt Encoder) We generate a concise prompt for each tile, for example:

“Generate a high-resolution satellite image in Country, using semantic masks
highlighting POI1, POI2, . . . .”
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This prompt is tokenized and encoded by a frozen CLIP text encoder [25] into etext. In the main
U-Net branch, etext is injected via cross-attention, complementing the strict mask and embedding
conditioning with flexible, human-readable guidance.

C Problem Context and Literature Review

C.1 Limitations of Existing Satellite Image Generation Methods

Most prior work conditions satellite image synthesis on raster map tiles or on text prompts augmented
with bounding-box masks. In the raster-tile approach [33, 38], rich vector data are flattened into a
fixed palette of colors and symbols, erasing tag-level distinctions among related feature types (for
example, different road classes or categories of commercial establishments) and forcing generative
models to treat semantically distinct entities as identical. Consequently, these methods cannot
selectively render subtypes of interest at inference time.

When using text descriptions alongside simple rectangular masks[19, 31], each geographic feature is
reduced to an axis-aligned box that encloses its true shape. This approximation discards the precise
polygonal outlines of buildings, the continuous centerlines of roads, and the irregular boundaries of
land-use areas, resulting in spatial misalignment in the synthesized imagery.

Moreover, reliance on a fixed iconography and color scheme limits extensibility. Introducing new
feature classes or applying custom styling to existing ones requires manual tile redesign or retraining
on freshly collected raster datasets, which undermines the goal of fine-grained, user-driven control.
These inherent shortcomings motivate our shift to conditioning directly on raw OSM JSON, where
exact geometries and explicit semantic tags remain fully available.

C.2 Advantages of Conditioning on OSM JSON

Directly using OSM JSON grants access to rich, structured metadata that raster tiles or bounding
box approaches lack. Every feature in the JSON (nodes, ways, and relations) is annotated with
comprehensive key–value tags (e.g. amenity=restaurant, shop=bakery), as well as hierarchical
relations and auxiliary attributes. This level of detail enables the generator to distinguish and render
closely related subclasses of features, rather than treating them as uniform pixels.

Moreover, OSM JSON encodes exact vector geometries such as polygonal footprints for buildings
and land-use areas, and linear centerlines for roads, which we convert into masks to preserve
spatial fidelity. The JSON schema’s flexibility supports fine-grained control over the conditioning
inputs: users can select specific feature types, adjust per-class palettes, or introduce and use various
categories of entities. This deterministic mapping from vector layout to image conditioning ensures
fully controllable and repeatable generation.

D Detailed Related Work

D.1 Image Generation

Diffusion models [29, 11] introduced a new powerful approach for image generation and have
demonstrated superior performance over existing methods such as Generative Adversarial Networks
(GANs) [8] and Variational Auto Encoders (VAEs) [16], often yielding higher-fidelity images [6].
Ho et al. [11] put diffusion models on the map by demonstrating their capability in generating
high-quality images. Latent Diffusion Models (LDM) [27] improved upon image generation using
diffusion by employing the diffusion process in the latent space instead of the pixel space, resulting
in reduced computational complexity and higher fidelity generated images. Furthermore, they used a
text encoder alongside cross-attention to enable conditional generation of images based on input text.
Stable Diffusion [2] uses the same architecture as LDM and trains the model on a much larger dataset.
Furthermore, they improve upon the text encoding process by using CLIP [25] as the text encoder.
ControlNet [34] utilizes the Stable Diffusion model and adds extra conditions to the generation
process besides text. They enforce the extra conditioning by copying and freezing the pretrained
base model. The copied version is trainable and used for learning new conditions, and the output
of this model is added back to the frozen model using zero convolution. This enables the model for
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fine-grained, structure-preserving generation guided by various conditioning inputs like edge maps,
depth information, segmentation masks, or human pose estimations.

D.2 Satellite Image Generation

Recent advances in layout-to-image generation have paved the way for controllable synthesis. In these
works, input layouts, which are often represented as bounding boxes, segmentation masks, or other
structured formats, serve as the primary condition for image generation. Several works have employed
rectangular box layouts for controllable generation, including [37, 4, 9, 36, 24]. In the context of
satellite image generation, one approach is to convert spatial relationship descriptions into structured
layouts that direct image synthesis. For example, Lei et al.[19] propose a two-stage framework that
transforms spatial relationship descriptions into structured layouts and then synthesizes the final
image using an enhanced diffusion model with positional prompts and layout attention. Although
this method produces highly spatially accurate results, its reliance on fixed layouts and a limited
set of classes restricts flexibility in diverse regions. CC-Diff [35] enhances contextual coherence by
integrating a dual resampler with foreground-aware attention to align the generated foreground with
the background, yet it does not incorporate additional metadata that could improve output control.

Another approach is generating satellite images via image-to-image translation. Some works use
GANs for this purpose, including CycleGAN [39] and pix2pix [13]. In particular, pix2pix employs a
conditional adversarial framework with a U-Net generator and a PatchGAN discriminator to translate
input images into outputs. Although this method can be applied to map-to-satellite conversion, it
struggles to deliver high-quality results when the input maps are complex. Diffusion-based approaches
have also been explored. ChangeDiff [32] uses a two-stage diffusion process: a text-to-layout model
generates layouts via multi-class prompts, which a layout-to-image model converts into images. It
yields coherent, diverse outputs, but its narrow vocabulary limits use in complex scenes. Similarly,
Changen2 [38] simulates semantic change events in a scene’s mask and then employs a diffusion
transformer to generate the post-event image. Self-supervised training with SAM-extracted contours
enables robust zero-shot performance, though its coarse masks limit fine detail. Tang et al. [31]
proposed CRS-Diff, a controllable remote sensing generative model that leverages diffusion models
with multi-condition guidance. CRS-Diff supports text, metadata, and image conditions, such as
sketch, segmentation mask, HED, and road maps, through a new conditional control mechanism
that fuses multi-scale features, achieving precise and realistic remote sensing image synthesis.
Additionally, Espinosa and Crowley [7] propose a ControlNet-based method to synthesize satellite
images from OSM maps. Their dataset primarily features green vegetation, and reliance on fixed
zoom-level maps without additional temporal or semantic metadata limits its adaptability. Finally,
DiffusionSat [15] integrates numerical metadata into latent diffusion models for satellite imagery,
yielding high-resolution, temporally diverse, and contextually accurate images; however, it fails for
prompts with multiple entity classes.

D.3 Image Editing

The ultimate goal of this project is to generate a change dataset. For the effective execution of this
task, merely generating satellite images is insufficient. This is because, in a change dataset, the
"before" and "after" images must be highly correlated in unmodified areas, and a proper change
generation method should preserve this dependency. This challenge is quite similar to the classic
problem of image editing, where edits must be applied in a manner that maintains the characteristics
of the original image. A significant challenge in this task is the scarcity of training data for "before"
and "after" edits, which has spurred the development of numerous training-free approaches. These
methods can be broadly categorized into two main groups: (1) methods utilizing cross-attention
and (2) methods based on inversions. Cross-attention-based methods gained popularity with the
introduction of the Prompt-to-Prompt paper [10]. The core idea is that during text-based image
generation, the cross-attention between text tokens and latent features provides a powerful mechanism
that can be altered to generate edits. A drawback of these methods is their reliance on the internal
architecture of the diffusion model, which can limit their applicability. Furthermore, these methods
can only edit images generated by the same model and cannot be applied to arbitrary images.

The other approach for training-free editing employs inversion methods. SDEdit [21] is one of the
pioneers in this area. Here, starting from a condition (such as a rough sketch), noise is added to
the image, but sparingly, so that some information about the original image is retained. This noisy
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image is then denoised to produce the edited image. A similar approach is adopted by the img2img
functionality of Stable Diffusion [2], which also incorporates support for text conditioning. A major
drawback of this approach is that selecting the optimal amount of added noise to balance the trade-off
between faithfulness and realism (or diversity) is quite challenging. One way to address this problem
is by using inversions based on a deterministic method like DDIM [30]. In DDIM inversion, after
the noise addition phase, if conditions (such as the caption) remain unchanged, the denoised image
is guaranteed to be identical to the initial image. This offers the strong fidelity that was lacking
in previous methods. However, DDIM inversion relies on the assumption that noise at steps t and
t + 1 are very close. This assumption can lead to inaccuracies, which are amplified when using
classifier-free guidance. More recent works, such as null-text inversion [22] and DDPM inversion
[12] have been proposed to address this issue.

E Seasonal Variation

To isolate the effect of temporal conditioning, we fix the semantic masks and text description for a
single location and vary only the date input. This cleanly changes season-specific appearance (e.g.,
vegetation density, color palette, and lighting) while leaving geometry unchanged. Sample images
are provided in Figure 5.

Mask: General Mask: Specific Winter Summer

Figure 5: Seasonal conditioning: for fixed masks, varying the date input produces distinct winter and
summer images.
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