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Abstract

Algorithmic fairness literature presents numerous mathematical notions and metrics, and
also points to a tradeoff between them while satisficing some/all of them simultaneously.
Furthermore, the contextual nature of fairness notions makes it difficult to automate bias
evaluation in diverse algorithmic systems. Therefore, in this paper, we propose a novel
model called latent assessment model (LAM) to characterize binary feedback provided by
human auditors, by assuming that the auditor compares the classifier’s output to his/her own
intrinsic judgment for each input. We prove that individual and/or group fairness notions are
guaranteed as long as the auditor’s intrinsic judgments inherently satisfy the fairness notion
at hand, and are relatively similar to the classifier’s evaluations. We also demonstrate this
relationship between LAM and traditional fairness notions on three well-known datasets,
namely COMPAS, German credit and Adult Census Income datasets. Furthermore, we also
derive the minimum number of feedback samples needed to obtain probably approximately
correct (PAC) learning guarantees to estimate LAM for black-box classifiers. Moreover, we
propose a novel multi-attribute reputation measure to evaluate auditor’s preference towards
various fairness notions as well as sensitive groups. These guarantees are also validated
using standard machine learning algorithms, which are trained on real binary feedback
elicited from 400 human auditors regarding COMPAS.

1 Introduction

Recently, machine learning (ML) algorithms have been reported as being discriminatory with respect to the
sensitive attributes (e.g. race and gender) in a variety of application domains, such as recommender systems
in criminal justice (Angwin et all 2016)), e-commerce services in online markets (Fisman & Lucay [2016)),
and life insurance premiums (Waxman, 2018). Although a variety of fairness notions have been proposed
to evaluate biases in ML algorithms (Mehrabi et al., |2021)), it is fundamentally impossible to satiate all
fairness notions at the same time (Chouldechoval, [2017} |[Kleinberg et al} [2016). Consequently, heterogeneous
stakeholders compete with each other regarding their preferences across different fairness notions. Further-
more, this dogfight between various stakeholders regarding the selection of an appropriate fairness metric is
context-dependent (Binns| [2018), due to heterogeneity of protected groups across applications. The inability
to select an appropriate fairness notion necessitates the elicitation of human feedback using a crowd-auditing
platform within the fair-ML pipeline.

In a typical crowd-auditing platform (CAP), one can envision human auditors to provide their opinion
regarding the fairness of outcomes generated by an ML algorithm according to some preferred, context-
dependent fairness notion. In order to mitigate any social and psychological concerns/biases/limitations,
we assume that the auditors are only asked to reveal binary feedback (i.e. fair or unfair), but not reveal
their preferred fairness notions. Feedback collected from various auditors is then aggregated to identify a
socially-preferred fairness notion to mitigate social-biases algorithmically. However, there are many practical
challenges in designing an effective crowd-auditing platforms, some of which are given below: (i) physical
limits of human auditors in terms of their ability to give feedback to large datasets, (ii) data labeling is
expensive especially when the number of possible inputs (e.g. types of people affected by the system) is
quite large, (iii) human feedback modeling, where platform learns the fairness notion from limited feedback
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collected from human auditors, (iv) opinion heterogeneity and aggregation, where different human auditors
may have non-aligned opinion regarding the appropriate fairness notion, and above all, (v) biased auditors
whose judgements are poisoned by their inherent biases. This paper focuses on modelling human feedback
and designing a reputation measure to evaluate the auditor’s preference over various fairness notions.

1.1 Related Work

In the past, several researchers have attempted to model human perception of fairness, but have always tried
to fit their revealed feedback to one of the existing fairness notions. For instance, task-based similarity metric
used in individual fairness notion (Dwork et al.,|2012)) were estimated by (Jung et al.,[2019)) based on feedback
elicited from auditors regarding how a given pair of individuals have been treated. Similarly, the work of
(Gillen et al.l |2018) assumes the existence of an auditor who is capable of identifying unfairness given pair of
individuals when the underlying similarity metric is Mahalanobis distance. Saxena investigated how people
perceive the fitness of three different individual fairness notions in the context of loan decisions (Saxena
et al., 2019). The three notions are: (1) treat similar individuals similarly (Dwork et al., |2012), (2) Never
favor a worse individual over a better one (Joseph et all 2016)), and (3) the probability of approval should
be equal to the reward being the greatest (Liu et al., 2017). They show that people exhibit a preference for
the last fairness definition.

From the perspective of group fairness notions, an experiment performed by (Srivastava et al. 2019)) asks
participants to choose among two different models to identify which notion of fairness (demographic parity
or equalized odds) best captures people’s perception in the context of both risk assessment and medical
applications. Likewise, another team surveyed 502 workers on Amazon’s Mturk platform and observed a
preference towards equal opportunity in (Harrison et al., 2020). Note that both papers asked participants
to reveal their analysis concerning a specific fairness notion in the context of given sensitive attributes (e.g.
race, gender) which was clearly pointed out as a limitation of their work. On the contrary, in this paper,
we impose no such restrictions on the auditor in constructing their feedback with respect to satiating any
specific fairness notion. Instead, we assume that the expert auditor employs an intrinsic fair decision rule
(which is unknown) to evaluate a given data tuple. Dressel and Farid in (Dressel & Farid) [2018]) showed that
COMPAS is as accurate and fair as that of untrained human auditors regarding predicting recidivism scores.
On the other hand, (Yaghini et al., |2021) proposed a novel fairness notion, equality of opportunity (EOP),
which requires that the distribution of utility should be the same for individuals with similar desert. Based
on eliciting human judgments, they learned the proposed EOP notion in terms of criminal risk assessment
context. Results show that EOP performs better than existing notions of algorithmic fairness in terms of
equalizing utility distribution across groups. Another interesting work is by (Grgic-Hlaca et al., |2018), who
discovered that people’s fairness concerns are typically multi-dimensional (relevance, reliability, and voli-
tionality), especially when binary feedback was elicited. This means that modeling human feedback should
consider several factors beyond social discrimination. A major drawback of these approaches is that the
demographics of the participants involved in the experiments (Yaghini et al., 2021} |Grgic-Hlaca et al., |2018;
Harrison et al., 2020} [Saxena et al., 2019)) are not evenly distributed. For instance, the conducted experi-
ments ask how models treated Caucasians and African-Americans, but there were insufficient non-Caucasian
participants to assess whether there was a relationship between the participant’s own demographics and what
group was disadvantaged. Moreover, the participants are presented with multiple questions in the existing
literature which cannot be scaled for larger decision-based models (Yaghini et al., [2021)).

1.2 Our Contributions

The main contributions of this paper are three-fold. Firstly, this paper proposes a novel latent assessment
model (LAM) in Section [3] under the assumption that human auditors reveal binary feedback (fair or not)
for the given data tuple collected from the ML algorithm, in contrast to the previous works discussed above.
Unlike most of the past literature on human perception of fairness, we assume that human auditors are
given the freedom to reveal binary feedback (fair or unfair), while not being forced to follow any specific
fairness notion artificially. Although our binary feedback structure is similar to that discussed in (Gillen,
et al., 2018)), we do not assume that this feedback is necessarily aligned with any one fairness notion.
Second, inspired by non-comparative justice principles (Levine & Pannier| [2005; [Feinberg, |1974; Montague,
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1980)), where every individual is to be treated precisely based on their own personal attributes and merits
regardless of how other individuals are treated/affected by the same service, we demonstrate that LAM is
well suited to characterize people’s judgements in the real world. We prove that a system/entity satisfies
individual and/or group fairness notions if the auditor exhibits LAM in his/her fairness evaluations. We
also show that converse holds true in the case of individual fairness. Since both the system and auditor
rules are hidden, we compute PAC learning guarantees on algorithmic auditing based on binary feedback
obtained from human auditors. Third, we introduce a novel multi-attribute reputation measure to evaluate
auditor’s inherent biases based on various fairness notions as well as sensitive attributes. Lastly, we validate
the relationships with traditional fairness notions on three real datasets, namely COMPAS, Adult Income
Census and German credit datasets. Using the feedback data of 400 crowd workers collected by (Dressel &
Farid, 2018]), we compare various learning frameworks such as logistic regression, support vector machines
(SVM) and decision trees to estimate auditor’s intrinsic judgements and their feedback. We also measure
the reputation of the crowd workers to evaluate auditor’s preference towards various fairness notions.

2 Preliminaries: Traditional Fairness Notions

In most practical systems, two types of discrimination exist: () disparate treatment, where an individual is
intentionally treated differently based on his/her membership in a protected class; and (i) disparate impact,
where members of a protected class are more negatively impacted than others. However, algorithmic fairness
literature has studied a different set of fairness notions (ref. (Caton & Haas| |2020; |(Chouldechova & Roth,
2018; Mehrabi et al. 2021; [Pessach & Shmueli, |2020))). Let f(-) be a predictor which predicts an outcome
9 = f(x) where x is the multi-attribute variable and y be the true label.

2.1 Group Fairness Notions

The notion of group fairness seek for parity of some statistical measure across all the protected attributes
present in the data. Different versions of group-conditional metrics led to different group definitions of
fairness. Let A be the set of protected attributes where, a € A is the privileged group and o’ € A is the
underprivileged group.

Statistical Parity: This measures seeks to compute the probability difference of individuals who are
predicted to be positive across different sensitive groups. Formally, it can be defined as followed.

Plj=1|A=a -Plj=1|A=a]<é (1)

Ideal value of this probability difference is 0 indicating equal proportions of positive outcomes. A value
greater than 0 means the privileged group is benefited and value less than 0 means the underprivileged
group is benefited. One major disadvantage is that, when the base rates (ratio of actual positive outcomes)
are significantly different for various groups.

Equal Opportunity: To overcome the drawbacks in statistical parity, (Hardt et all 2016) introduced
the notion of equalized odds which computes the difference between the true positive rates (TPR) of two
protected groups.

Plj=1]y=1,A=a-Plj=1|y=1,A=d| <0, (2)
Smaller differences between groups indicate better fairness. Since this notion considers the true label y, it

assumes that the base rates of the two groups are representative and were not obtained in a biased manner.

Calibration: The measures computed the difference between positive predictive value of two groups. Pos-
itive predictive value represents the probability of an individual with a positive prediction actually experi-
encing a positive outcome. This notion is mathematically formulated as follows.

Py=1|9g=1,A=a|-Ply=1]|§=1,A=d] <é. (3)

Although in some cases equal calibration may be the desired measure, it has been shown that it is incompat-
ible with equalized odds (Pleiss et al., [2017) and is insufficient to ensure accuracy (Corbett-Davies & Goel,
2018|).
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Equal Accuracy: This requires similar accuracy across groups (Berk et al., [2018)).

Ply=g|A=a-Ply=g|A=d] <0 (4)

2.2 Individual Fairness

Individual fairness assessments, rather than measuring discrimination across different sensitive groups, con-
sider fairness for each individual, with the assumption that similar individuals should be treated as similarly
as feasible (Dwork et al., 2012). Formally, given any two individuals z;,xz; € X, the predictor f is (k,d)-
individually fair if

a(f@), f(z;)) <6, D (i ;) < w (5)

Unfortunately, in most practical applications, the similarity metric D(x;, x;) is task-specific and is typically
unknown, which causes a severe restraint on our ability to ensure individual fairness. As a solution, metric
learning was proposed to discern a task-specific similarity metric by evaluating the relative distance between
human judgements (Ilventol, |2019) for any given pair of inputs. On the other hand, (Mukherjee et al. [2020)
utilizes Mahalanobis distance as a fair metric and proposed EXPLORE, an algorithm to learn similarity
between individuals from pairs of comparable and incomparable samples. It learns similarity such that the
logistic regression predicts “comparable” when the fair distance is short, and “incomparable" when the fair
distance is large. Interested readers can refer to (Fleisher] 2021 which discussed various inefficiencies of
individual fairness in detail.

3 Latent Assessment Model and Auditor Evaluation Framework

Consider an expert auditor who is presented with a data tuple (z,9), where x € X is the input given to
ML model g and § = g(x) € Y is the output label as shown in Figure [I} Let f denote the expert auditor’s
decision rule and y = f(x) is the subjective evaluation for the input z. Let the auditor’s binary feedback
regarding (z,§) be denoted as s. In this paper, we model auditor’s judgments as follows:

Definition 1 (e-Latent Assessment Model). An auditor is said to satisfy e-LAM if there exists a tuple
(X, ),d, f,e) such that the auditor compares the system’s output g(x) with an intrinsic judgment f(x) using
a distance metric d and reveal his/her binary feedback as

S:F,ﬁd@mjm»za

0, otherwise.

(6)

For the sake of illustration, consider an individual who committed felony and has multiple prior offences,
received low recidivism score from a risk assessment tool. The expert auditor evaluates the individual
intrinsically and may decide that he/she should receive a higher recidivism score. Then, the auditor judges
the tool’s output as unfair. In this paper, we assume the fair relation f employed by the expert auditor
is unknown. Therefore, we need to learn the proposed e-LAM using statistical learning techniques. This

. ) ___,l Compare

|

. p Fair evaluation
Auditor d ]

User profile z @

Classification
outcome g(x)

Classifier g ———

Y

Figure 1: Latent Assessment Model of the Expert Auditor
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Figure 2: Auditor Evaluation Framework based on ¢ — LAM

will be discussed in Sections [I.3] and [6.2) in greater detail. Although e-LAM comprises of three unknowns in
practice, namely d, f and €, we assume that the distance metric d used by the auditor is known.

Remark 1. In the case of binary classification, the Hamming distance between g and f, denoted as
di(g(x), f(x)), takes a binary value of 0 or 1. Therefore, for any € € (0,1), e — LAM model in Defini-

tion[l, s = g(z) ® f(z).

Note that auditors exhibit different types of biases in the real-world. Examples include confirmation bias,
hindsight bias, anchoring bias, racial and gender bias. Every auditor is susceptible to biases depending on
their prior experiences and/or knowledge about various social groups within the community. Consequently, it
is not reasonable to accept a given auditor’s feedback without evaluating their inherent biases. Our proposed
model, LAM, captures auditor biases through the function f in Equation equation [6} However, in order to
evaluate auditor biases, we investigate the relationship between our proposed LAM and traditional fairness
notions. By doing so, we can estimate any given auditor’s performance in terms of multiple fairness notions.

Since there are multiple fairness perspectives which are not necessarily aligned with each other, we propose a
novel auditor evaluation framework in Figure [2to quantify his/her performance across fairness notions with
respect to diverse sensitive groups. Since auditor’s intrinsic evaluation is unknown, we learn and estimate
auditor’s responses using standard ML algorithms - logistic regression, decision tree, and SVM. We assume
that the auditor is presented a dataset D of size N, for feedback elicitation. The auditor evaluates each
data tuple ¢ € D, and presents a binary feedback s; € {0,1}. Based on the feedback elicited from the
auditor, we can predict auditor’s intrinsic labels {2; = f (i) }iep via learning the auditor’s intrinsic rule f.
However, if the original system is a binary classifier, the problem of finding the auditor’s intrinsic evaluations
is very straightforward. Specifically, for any given input z, the proposed ¢ — LAM in Definition [I| reduces
to s; = g(x;) ® f(x;) in a binary classification setting. Since the XOR function is reversible, we have
2=z = f(x;) = y; ® s;, where y; = g(x;) is the true label in the data tuple.

Given the auditor’s intrinsic labels {21, -+, 2k}, we can compute the auditor’s performance for a given
sensitive/protected group in terms of various fairness notions such as statistical parity (ref. Equation equa-
tion , equal opportunity (ref. Equation equation , calibration (ref. Equation equation [3)) and individual
fairness (ref. Section . Furthermore, note that this multi-dimensional fairness evaluation is different for
different sensitive groups. For example, in the United States, protected groups are typically defined based
on race, gender, religion or any combination of these attributes. Such multi-attribute fairness evaluations
across different sensitive/protected groups naturally steers us towards defining a multi-attribute reputation
matrix
ri1(2, 5 2k) 0 rin(Z, 0, 2K)
R(%1,-+ ,2x) = : : ; (7)

rva(Z,- L 2k) oo ran(,c -, 2K)
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where M is the total number of fairness notions and L is the total number of sensitive groups. For example,
if we are evaluating the auditor based on statistical parity (SP) with respect to the sensitive attribute race,
then rsp, race = P[f(z) =1 | race = a] —P[f(x) =1 | race = d'].

4 Theoretical Guarantees

4.1 Interplay Between LAM and Individual Fairness Notions

In the following proposition, we show how g can be evaluated based on the notion of (k, §)-individual fairness,
when ¢ is e-LAM with respect to auditor’s assessment f.

Proposition 1. g is (k, 2e+9)-individually fair, if g is e-LAM with respect to f, and f is (k,0)-individually
fair.

Proof. Given (x;,y;) and (x;,y;) € X x Y such that D (z;,z;) < & (the two individuals are s-similar), then
f is (k,0)-individually fair if d(f(xi), f(x])) < 4. However, note that if g is e-LAM with respect to f, then

d(g(xz),f(xl)) < € and d(g(xj),f(xj)) < €. Therefore, by applying a chain of triangle inequalities, we

obtain
d(g(@) 9y)) < d(gle). f) +d(Fl@), flay)) +d(f)).9()) .
< 2e+9,
for all x;, x; such that D(z;,z;) < k. O

Remark 2. Proposition[]] reduces to a trivial statement in the case of binary classifiers because of the follow-
ing reason. Note that if f is k-individually fair, we have f(z;) = f(x;) for all x;, x; whenever D(x;,x;) < k.
Furthermore, if g is e — LAM with respect to [ for any e € (0,1), we have g(x) = f(x) for allxz € X. Com-
bining the above two properties, we get g(x;) = f(x;) = f(x;) = g(x;) for all x;,x; such that D(z;, ;) < k.

We illustrate this result using the following example from the banking domain. Consider two individuals
who are looking to apply for a loan. A banking system would evaluate both the applications via collecting
information such as gender, race, address, credit history, collateral, and his/her ability to pay back. At the
same time, consider an auditor who makes fairness judgements based on the rule: "If he/she has cleared
all the debts and possesses reasonably valued collateral, the loan must be granted". Given that the auditor
treats any two similar individuals similarly, the auditor satisfies individual fairness. Hence, if the evaluation
of the banking system is relatively similar to the auditor’s fair relation, from Proposition [T} the banking
system is also individually fair.

Proposition 2. If f is not (k,0)-individually fair and if g is e-LAM with respect to f, then g is not
(k,d — 2¢)-individually fair.

Proof. It f is not individually fair, then for some input pair (x1,z2) such that D(z1,22) < Kk, we have
d(f(x1), f(ze)) > 0 for all kK,6 € R. However, note that if g is eLAM with respect to f, then
d(g(z1), f(z1)) < € and d(g(x2), f(x2)) < e. Therefore, by applying a chain of triangle inequalities, we
have

d(f(z1), f(x2)) < d(g(x1), f(21)) + d(g(22), f(22)) + d (g9(21), 9(x2)) (9)
Substituting the bounds of d (g(x2), f(z2)) and d (g(x1), g(x2)) we get

2¢+d(g(x1),9(x2)) > d(g(z1), f(21)) + d(g(22), f(22)) + d(g(21), 9(2))

> d(f(x1), f(x2)) (10)
>
for all § € R. Therefore, we also have d (g(z1), g(z2)) > § — 2e. O
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Remark 3. For binary classification, Proposition [3 can be reduced as follows. Note that if f is not k-
individually fair, we have f(x;) # f(x;) even though D(z;,x;) < k. Furthermore, if g is € — LAM with
respect to f for any € € (0,1), we have g(x) = f(x) for all x € X. Combining the above two properties, we
get g(z;) = f(z;) # f(z;) = g(x;) for all x;,x; such that D(x;, ;) < k.

Consider the earlier example of banking where, there are two individuals, A and B, who possess the same
degree of merit. Imagine that the bank approves A’s loan application and denies B. This outcome remains
the same as per the auditor’s fair relation. Imagine further that neither A nor B merits the outcome.
Though both banking’s evaluation and auditor’s judgements seem to be similar, they violate the precept,
"treat similar individuals similarly". Moreover, A is treated in a way that A does not merit. Hence, we can
assert that banking evaluation does not satisfy individual fairness.

4.2 Interplay Between LAM and Group Fairness Notions

As discussed earlier, group fairness notions compare certain probabilistic measure across two protected
groups. In the remaining section, we will focus on the relationship between group fairness notions and our
proposed LAM. For the sake of convenience, let us denote p, ,(g,a) = Plg(z) =y | A =al.

Proposition 3. Given that the probability distributions are M -Lipschitz continuous over all possible f and g
functions, g satisfies (2Me + §)-statistical parity, if g is e-LAM with respect to f, and f satisfies §-statistical
parity.

Proof. Given the set of protected attributes A, since f satisfies d-statistical parity, we have ||p,(f,a) —
Pzy(f,a’)|] <6 for all a,a’ € A. Then, we have

P2y(9,0) = pay(9,0") = [Pay(g:a) = pay(f,a)] + [P2y(9,a") = pay(f,a)]

+ [pay(f;a) = pay(f;a)]

(11)

Assuming M-Lipschitz continuity over all f(z), g(z), we have ||psy4(9,a) — pay(f,a)|| < M - €, since
d(g(x), f(z)) < e. Combining all the inequalities, we have

P2y (9, ) = Pa.y(g, )| < 2Me+ 0. (12)

O

Again, consider the earlier example of loan approvals to illustrate the above proposition. Consider that there
exists two groups which are classified based income - low and high. The banking system builds a credit model
based purely. Moreover, the system may decide to use different requirement levels - low interest or default
to low income group, so that the percentage of people getting a loan in low-income group is equal to the
percentage of people getting a loan in high-income group. Now, suppose an auditor presents fair judgements
based on the rule: “If Group A has a FICO credit score of 550 and cleared all the debts, the loan must be
granted. If Group B has a FICO score of 700 and has valuable collateral, grant the loan”. Note that, the
auditor’s fair relation is somewhat similar to that of the bank’s policy. Since the bank’s policy is known to
be statistically fair, the auditor is also unbiased from a group fairness perspective.

Similarly, the following three propositions identify the relationship between our proposed ¢ — LAM and three
other group fairness notions, namely equal opportunity, calibration, and equal accuracy.

Proposition 4. Given that the probability distributions are M -Lipschitz continuous over all possible f and
g functions, g satisfies (2Me + §)-equal opportunity, if g is e-LAM with respect to f, and f satisfies 0-equal
opportunity.

Proof. The proof is similar to that of Proposition [3] Therefore, for the sake of brevity, the proof is not
included. O

Proposition 5. Given that the probability distributions are M -Lipschitz continuous over all possible f and
g functions, g satisfies (2Me + 0)-calibration, if g is e-LAM with respect to f, and f satisfies §-calibration.
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Proof. The proof is similar to that of Proposition Therefore, for the sake of brevity, the proof is not
included. O

Proposition 6. Given that the probability distributions are M -Lipschitz continuous over all possible f and
g functions, g satisfies (2Me + §)-equal accuracy, if g is e-LAM with respect to f, and f satisfies §-equal
accuracy.

Proof. The proof is similar to that of Proposition [3] Therefore, for the sake of brevity, the proof is not
included. O

4.3 PAC-Learning Guarantees for LAM

In practice, the auditor’s intrinsic rule f is not revealed in his/her feedback. Therefore, we need to compute
the intrinsic rule f in order to reproduce auditor’s judgements for other input possibilities. At the same
time, the classifier is typically available to the bias-evaluation platform as a black-box system, i.e., g is also
unknown to the bias-evaluation platform. In other words, a practical bias-evaluation platform is expected
to compute f and identify an appropriate fairness notion for the given context so that the bias evaluation
platform can algorithmically evaluate bias in a system with a large input space.

Definition 2 (PAC Learnability). We say that the classifier f is PAC-learnable if there exists N > 0, € > 0,
0 > 0, and an algorithm A which receives n > N i.i.d. samples from distribution D as input, and outputs
an estimated classifier f,, with at least 1 — & probability such that d(f, fn) <e.

In the following theorem, we provide guarantees for the algorithmic e — LAM evaluations, based on estimated
rules f and §.
Theorem 1. Let N denote the minimum number of samples needed to guarantee e — LAM empirically, i.e.
P (d(gn,fn) < 61am> > 1 — d1am for some €1gm > 0 and djam > 0. Then, for any auditor’s intrinsic rule f
and classifier g, there exists some 0 < Ny, Ny < N, €g,€¢,€,0,04,07 > 0 such that €5 + €5 + €14m < € and
dg+ 05+ 01am < 2496, and an algorithm A that receives i.i.d. samples {(x;,y;, zi)}7—1 as input, and outputs
rules f,, and §, with a probability of d(f(z),g(z)) < € being at least 1 — &, only when

n>N2%Z min (max{N, N;}), (13)

€1,€2,01,02

where Ny and Ny satisfy PAC learning bounds for f and g.

Proof. Our goal is to ensure that
P(d(f(z),g(z)) <€) 21—=A (14)

for some small € > 0 and J > 0. Assuming that there exists some 0 < ¢; < € and 0 < €; < ¢, we obtain an
upper bound to LHS in the above equation using triangle inequality, as shown below:

P(d(g(x). f@) <€) < P(dlg@).an(@) <) + B(d(f(@). fule) <¢f)

(15)
+ P(d(fn(w)’ gn(@)) < T)

where 7 =€ — ¢4 — €5.

Note that the first and the second probability terms correspond to PAC learnability guarantees of g and f re-
spectively. Let Ny(eq,0,) and Ny(eg,07) denote the minimum samples needed to guarantee PAC learnability
at g and f respectively. In other words, the maximum of the two numbers will guarantee PAC learnability
of both g and f, i.e. N(eg,€f,04,0¢) = max{Ny(eq,04), Ny(€r,07)}. However, for the valid inequality in
Equation equation it is also essential to split § between PAC learning bounds for g and f, as well as
the probability corresponding to empirical € — LAM P(d(fn(m),gn(x)) < elam). In other words, the split is

valid only when
€g + €5 + €1am < €, and

(1=6,)+ (1= 05) + (1 = Sjam) > 1 — 6. (16)
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Then, N can be minimized by choosing an appropriate split €4, €7, d, and Jf to obtain the necessary
guarantee stated in Equation equation O

Though we computed the minimum number of samples required, there should exist an algorithm A that
receives i.i.d samples as input to estimate the intrinsic fair rule f of the expert auditor. Therefore, we
validate our findings using different ML models to learn and the predict auditor responses using standard
ML algorithms.

5 Evaluation Methodology and Metrics

In this section, we discuss different methodologies and metrics used to evaluated our proposed e-LAM based
on simulation as well as real human audit data.

5.1 Datasets

We validate our theoretical findings using the following datasets, each of which are pre-processed as follows:

1. ProPublica’s COMPAS dataset (Larson et al), |2016): In this paper, we perform same
preprocessing as the original analysis of ProPublica. The races in the dataset are only restricted to
African-American, Caucasian, and other. We consider females and Caucasians as privileged groups.
The feature two year recidivism (most likely or least likely) is considered as the output full and
0 (least likely) as the favourable outcome. Since the feature age is continuous, we create different
age groups (e.g. 25-45 or > 45) and rename the features as age category. Similar grouping is also
performed on priors count as well.

2. German credit data (Merz € Murphy, |1996): In this dataset, we consider credit history,
savings, employment, sex, and age as input features. Moreover, we categorize age into two groups:
young (< 26) and old (>=26). We assume that males and older individuals as privileged groups
and 1 (good credit risk) as favourable outcome.

3. Adult income dataset (Kohavi € Becker, |1994)): The objective is to predict whether the
income of an individual is > $50K or < $50K. The input features include age, sex, race, and
education. In the pre-processing phase, the continuous feature age is transformed into different
groups of ages (0-10, 11-20, and so on). For the feature race, we limited the labels to binary by
mapping ‘White’ to 1 and all other races to 0. We have 32561 data tuples in total.

4. Real human feedback data (Dressel € Farid,|2018): This data acquisition experiment consists
of a short description of the defendant (gender, age, race, and previous criminal history) is provided
to the human auditor. A total of 1000 defendant descriptions are used that are drawn randomly
from the original ProPublica’s COMPAS dataset. Furthermore, these descriptions were divided into
20 subsets of 50 each. The experiment consisted of 400 different crowd workers and each one of
them was randomly assigned to see one of these 20 subsets. The participants predicted whether a
particular individual would recidivate within 2 years of their most recent crime. The original data
consists whether a crowd worker predicted correctly or not compared to the original classification in
the COMPAS dataset. We preprocessed this dataset and obtained the true prediction given by the
crowd workers.

5.2 Demonstrating Interplay Between LAM and Fairness Notions

Since we have no access to the true labels while evaluating the auditor, we learn and estimate his/her
responses using standard ML algorithms - logistic regression, decision tree, and support vector machine.
The responses, along with the input, will be split into train (75%) and test (25%) sets. The fairness of the
auditor is computed based on predicted labels and is averaged across 25 random train-test splits.

Recall that, individual fairness notion relies on a similarity metric D between two individuals. Inspired
from prior work (Zemel et al.l 2013} [Lahoti et al., [2019; |John et al., [2020), we construct clusters of similar
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Sex Age Race Prior Offenses | Charge Degree
Female 25-45 Caucasian 1to3 M

Male 25-45 Other 0 F
Female | Greater than 45 | African-American 0 F

Male 25 - 45 Other More than 3 M

Male Greater than 45 Other 1to3 M

Table 1: Example of 5 different clusters present in COMPAS dataset

individuals based on context-dependent and non-sensitive attributes from the respective dataset. Clusters are
formed based on the metric Mahalanobis distance which is given as D = \/(z; — z;)TC~(z; — ;), where
x;, x; are observations/rows in a dataset and C' is positive semi-definite covariance matrix. In practice, we
utilize the given dataset as a covariance matrix. For COMPAS, we utilize juvenile counts (both misdemeanor
and felony), prior offences and charge degree to construct clusters (ref. Tablefor example of 5 such clusters).
Similarly, for German credit dataset, we consider credit history, employment and savings attributes. Lastly,
for the Adult income dataset, we use education years and age to measure similarity. Upon constructing the
clusters, we validate whether the respective entity (classifier or the auditor) assigns similar output labels for
every individual in a particular cluster. An entity is said to violate a cluster when it produces different output
labels for individuals in that cluster. If an entity is not individually fair, this experiment would output the
number of clusters violating individual fairness. In other words, the ideal value of this experiment is 0.

We now describe how different group fairness notions (statistical parity, equalized odds, and calibration)
are measured. As defined in Section the conditional probability differences are computed between the
unprivileged group to the privileged group with respect to the favorable outcome. The ideal value of this
difference is 0 for all four measures. In other words, if the probability difference is > 0, the underprivileged
group benefits. Whereas, if the probability difference is < 0, the privileged group benefits. However, many
group fairness notions rely on both true labels and predicted labels, e.g. equal opportunity and calibration.
While evaluating a real-world classifier for group fairness, the auditor’s judgments are true labels y, and the
classifier’s outputs are predicted labels .

We construct arbitrary intrinsic decision rules of the auditor for COMPAS, German credit, and Adult income
datasets as follows. For COMPAS dataset, we consider number of prior offences and degree of the offence
(felony or misdemeanor) to construct the fair relation. Note that, the binary feature two year recidivism
(most likely or least likely) is viewed as the output feature.

1, if z.priors-count € [1,3] and z.charge-degree = F
OR

fi(z) = if z.priors-count > 3 and z.charge-degree = M (17)

0, otherwise.

Similarly, for German credit dataset, the features savings, credit history and employment are considered
while designing the auditor’s relation.
1, if z.savings > 500, x.credit-history = Paid, and z.employment > 2 years
falz) = (18)

2, otherwise.

Since the task of the Adult income dataset is to predict whether yearly income of an individual is > 50K or
<= 50K, we consider the feature education in the auditor’s fair relation as shown below.

1, if xz.education € [Bachelors, Masters, School Professor, Doctorate]
fs(x) = (19)

0, otherwise.

5.3 Auditor Reputation Evaluation

As discussed in Section[d] we propose a multi-dimensional fairness evaluation in a matrix format R. However,
it is necessary to represent auditor’s biases as a one-dimensional score signifying his/her overall performance

10
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Dataset No. of Test | Total No. of | No. of Clusters Auditor
Samples Clusters Violated Evaluation
COMPAS 1543 40 17 Individually fair
German credit 250 22 14 Individually fair
Adult income 8141 61 48 Individually fair

Table 2: Individual fairness evaluation of real-world classifiers and the auditor twin.

with respect to various fairness notions. In crowdsourcing literature, auditors’ reliability is measured by
comparing their responses with majority vote (Jamaludeen et all [2019) or ground truth (Le et al., |2010)).
Since majority vote assumes that every auditor has same expertise, it cannot be applied to our framework
as the biases of the auditors vary from one another. Moreover, due to the absence of ground truth, it is not
possible to compare auditor responses. Therefore, we apply Frobenius norm of the reputation matrix R to
compute the auditor’s scalar reputation score as follows.

|R|[F = (20)

We choose this reputation score due to the following axiomatic properties:

e Perfect Fairness: A utopian auditor satisfies all the fairness notions, i.e. every entry in R becomes
zero. Consequently, ||R||r — 0.

e Lipschitz-Boundedness: Consider any deviation A from R. Then, we have ||[R+ Al|r < ||R||F +
[|A]|F, due to triangle inequality. In other words, the Frobenius norm based score satisfies Lipschitz

property, since
IR+ Allr — [|R]|r

I1A[lF

Lipschitz property is a particularly important since there is a bound to the change in score, even
though the auditor exhibits dynamic preferences regarding fairness notions.

<1

e Equal Treatment of Fairness Notions: Frobenius norm of the matrix R can also be represented

as follows.
|R]|r = /tr(RTR) (21)
Let R, UR, and RV be the reputation matrices of three different auditors. Then, we have
|UR||r = [[RV||F = \/tr(RTR) = [|R||F. (22)

In other words, the three auditors with reputation matrices which differ by orthogonal transforma-
tions have the reputation score.

For the sake of illustration, consider two auditors: (i) one who complies with statistical parity, but
not with calibration, and (ii) another who satisfies calibration but not statistical parity. Assuming
that both (i) and (ii) treats all the remaining fairness notions identically, the Frobenius norm of
their reputation matrices would be same. In other words, our reputation score treats all fairness
notions equally.

6 Results and Discussion

6.1 Simulating Human Assessments on Real Datasets

First, we evaluate individual fairness of COMPAS, German credit, and Adult income datasets, and compare
the datasets with that of the auditor’s simulated responses using the methodology discussed in Section
in Table 2, While none of the classifiers satisfied individual fairness, the simulated auditor is individually

11
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fair across all the three datasets regardless of the learning algorithm. Compared to the three classifiers,
COMPAS is fairer in terms of individual fairness by satisfying 57.5% of the clusters. On the contrary, the
German credit and the Adult income datasets satisfy only 36% and 21% of clusters respectively. Note that,
this experiment is restricted to the features used to construct the similarity metric and the might vary with
a different set of features.
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Figure 3: Evaluation of real-world classifiers and the auditor twin for group fairness notions - statistical
parity (SP), equal opportunity (EQ) and calibration (C), with respect to different protected attributes.
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However, the fairness of the auditor twin is heteroskedastic in terms of group fairness notions. In Figure
we demonstrate how LAM works in the case of three real datasets, namely COMPAS, Adult income, and
German credit as discussed in Section[5.2] Though all three learning algorithms predicted auditor responses
with almost equal accuracy (~ 96%), the fairness of the auditor twin is quite different from one another. In
the context of the COMPAS dataset, we observe that the auditor twin’s judgments are fair when trained
using SVM and random forest. For the specific auditor rule chosen in our simulation experiment, the auditor
twin is fairer compared to COMPAS in terms of equal opportunity and calibration with respect to both
race and gender (ref. Figures . Interestingly, the fairness of the auditor twin remains the same for the
Adult income dataset across all three learning algorithms in contrast to the COMPAS dataset. Moreover,
the auditor twin is fairer compared to the Adult income dataset in terms of both race and gender across
all notions. On the other hand, for the German credit dataset, the auditor twin’s judgments are fair when
trained using SVM. The fairness of the auditor twin in terms of statistical parity remains the same across
all three learning algorithms.

Based on the obtained results, it is essential to choose the appropriate learning model to replicate the
auditor’s responses not only in terms of accuracy but also in fairness. In addition, the choice of the learning
algorithm relies upon the application context as well. We can also observe that the auditor twin satisfies both
individual fairness and certain group fairness (with minimal probability difference) notions simultaneously.
For instance, the auditor twin is absolutely fair in terms of equal opportunity and calibration for COMPAS
and Adult income (when the learning algorithm is random forest). At the same time, the auditor twin is
individually fair across all three datasets. Moreover, the auditor twin’s judgments comply with multiple
group fairness notion (e.g. equal opportunity and calibration with respect to random forest) for probabilistic
bias 6 = 0 simultaneously. However, there’s no guarantee that human auditors would exhibit biases similar
to the shown results in reality. In fact, to support this claim, we analyze real human feedback data based
on different fairness notions and show that not all human auditors perceive fairness in the same manner and
can exhibit unfair judgments.

6.2 Validation using Elicited Feedback from Real Human Auditors

In contrast to simulated responses, we analyze real human feedback data elicited by (Dressel & Farid}, [2018)
using different fairness notions and also learn crowd worker’s intrinsic rule f using various machine learning
algorithms (e.g. logistic regression, decision trees, and support vector machines). In Section we learn
that the choice of learning algorithm varies from one auditor to another. Therefore, in this experiment, we
train each auditor using all three algorithms and choose the one which has the highest accuracy in predicting
his/her responses. Figure |4] highlights the number of crowd workers whose responses are predicted using
ML algorithms across different accuracy levels. It can be observed that logistic regression performs well by
predicting the responses of 249 crowd workers with accuracy greater than 80% compared to other models.
Based on predicted responses from the best learning algorithms, we analyze the fairness of crowd workers
for various notions.

In terms of individual fairness, Figure |5|shows that only a few crowd workers are individually fair (0 violated
clusters). The majority of the crowd workers violate 5% to 20% of the clusters present in the subset given
to them. If observed carefully, the distribution of crowd workers satisfying individual fairness resembles
gamma distribution when o« = 12.75 and 8 = 0.0187. Furthermore, we evaluate the crowd workers based on
different group fairness notions (statistical parity, equalized odds, calibration, and equal accuracy) as defined
in Section [2.1] given a probabilistic threshold §. For each crowd worker, we assess their performance based on
all the four group fairness notions by varying the probabilistic threshold ¢ from 0 to 0.10. Figure [f]shows the
cumulative number of workers who comply with different group fairness notions increases as the threshold
0 increases with respect to both race and gender. Only a few crowd workers comply with group fairness
notions when ¢ = 0 i.e. they exhibit absolutely no bias in terms of respective notion. However, the majority
of the crowd workers’ judgments are unfair (when ¢ > 0.1) with respect to race and gender across all three
notions. An interesting result that can be observed here is that the crowd workers are satisfying multiple
group fairness notions simultaneously. To demonstrate this, we evaluate the crowd workers for combination
of group fairness notions (e.g. statistical parity and equalized odds, equalized and calibration) for both the
sensitive attributes. Figure [7] shows that the number of crowd workers who satisfy multiple group fairness
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Figure 4: The performance of different ML algorithms to predict crowd workers’ responses across various
accuracy levels
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Figure 5: The distribution of crowd workers based on the fraction of clusters violating individual fairness.

notions simultaneously increases as the threshold ¢ increases with respect to both race and gender. Thus,
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Figure 7: Number of crowd workers who satisfy multiple group fairness notions simultaneously increases
with threshold 4.

it is not a trivial task to decide on what fairness notion is appropriate based on human judgments since
different evaluators have different preferences on fairness notions.
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Figure 8: The reputation score distribution of 400 crowd workers.

6.2.1 Crowd Auditors’ Reputation

In this section, we compute the reputation of 400 crowd workers based on different fairness notions - statistical
parity (SP), equalized odds (EQ), calibration (C), equal accuracy (EA) with respect to race and gender, , and
individual fairness (IF). The fairness of the workers is computed using the methodology discussed in Section
Upon computing the fairness of the worker based on different notions, we represent his/her reputation
in a matrix format as shown in the Figure [9] The ideal value of every fairness measure is 0. Note that
¢ is used since individual fairness is independent of sensitive attributes. We then compute the reputation

gender  race &

sp | 015 001 0
EO | 003 001 0
C 0 0.2 0
Ea | 001 0.01 0
IF 0 0 0.06

Figure 9: Reputation matrix of a random crowd worker

scores of the crowd workers using Frobenius norm of the matrices. Figure [§] demonstrates the distribution
of crowd workers based on their reputation scores. The minimum and maximum reputation scores are 0.16
and 1.67 respectively. It can observed that majority of them obtained a reputation score between 0.5 and
1.0. However, an ideal crowd worker would obtain a lower reputation between 0 and 0.25. No crowd worker
is absolutely fair with respect to every fairness notion (||R||r = 0). Moreover, the distribution of crowd
workers comply with gamma distribution when o = 31.25 and 8 = 0.04.
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7 Conclusion and Future Work

We developed a novel latent assessment model to characterize human auditor feedback and demonstrated
its relationship with traditional fairness notions both theoretically and on real datasets. We obtained PAC
learning guarantees on learning auditor’s intrinsic fairness assessments, and demonstrated the learning per-
formance of three learning algorithms on a real human feedback dataset. Consequently, this paper enabled us
to accomplish two important challenges in the design of a crowd-auditing platform: (i) we can learn/mimic
auditor’s intrinsic evaluations using little elicited feedback and automate the evaluation on the remaining
possibilities especially in high-dimensional learning algorithms, and (ii) we can also evaluate auditor biases
with respect to diverse traditional fairness notions. In addition, we use the relationship between LAM and
traditional fairness notions to identify reliable auditors for feedback elicitation based on their reputation
scores.

In future, we will address all the other challenges in the design of crowd-auditing platforms. Since feedback
elicitation is an expensive process, we will improve our LAM model to account for feedback for data bundles,
as opposed to our current feedback model for singleton data tuples. Furthermore, we will also investigate
appropriate fusion rules to aggregate feedback collected from multiple auditor with heterogeneous opinions
based on their reputation.
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