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Abstract

Epidemic outcomes have a complex interplay with human behavior and beliefs.1

Most of the forecasting literature has focused on the task of predicting epidemic2

signals using simple mechanistic models or black-box models, such as deep trans-3

formers, that ingest all available signals without offering interpretability. However,4

to better understand the mechanisms and predict the impact of interventions, we5

need the ability to forecast signals associated with beliefs and behaviors in an6

interpretable manner. In this work, we propose a graph-based forecasting frame-7

work that first constructs a graph of interrelated signals based on trend similarity,8

and then applies graph neural networks (GNNs) for prediction. This approach9

enables interpretable analysis by revealing which signals are more predictable and10

which relationships contribute most to forecasting accuracy. We believe our method11

provides early steps towards a framework for interpretable modeling in domains12

with multiple potentially interdependent signals, with implications for building13

future simulation models that integrate behavior, beliefs, and observations.14

1 Introduction15

Understanding the interplay between behaviors, beliefs, and epidemic outcomes remains a funda-16

mental challenge, requiring comprehensive models to guide effective public health interventions.17

Capturing these dynamics is particularly difficult, as the signals are high-dimensional, noisy, and18

interdependent across regions and populations. However, many existing models rely on overly19

simplistic assumptions about these mechanisms ( [19, 13, 4, 12, 3]). Further, existing forecasting20

methods [2, 14] are focused on epidemic signals and do not provide any insight into how these might21

influence (or predict) behaviors and beliefs, and vice versa.22

In this work, we present a graph-based framework that models these relationships explicitly. We23

construct graphs to represent dependencies among features and states, and then apply GraphSAGE24

to leverage these structured relationships for multi-week forecasting tasks. Our study shows that25

both the use of graph neural networks and the choice of graph construction strategy are critical for26

improving mid- to long-term forecasting. Beyond accuracy, the graph-based perspective provides27

interpretability by highlighting which signals and dependencies matter most, offering a principled28

path toward simulation models that integrate behavior, beliefs, and epidemic outcomes.29

Our contributions We introduce a graph-based forecasting framework that combines trend similarity30

graphs with GraphSAGE, and systematically compare different graph construction strategies to31

demonstrate their critical impact on forecasting accuracy across multiple signals including epidemics,32

behavior, and beliefs. We show that the framework provides interpretability by revealing influential33

signals and dependencies, offering insights that can inform simulation models for public health.34
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2 Background and Related Works35

Incorporating Human Behavior Existing works that combine epidemic and behavior modeling take36

a very simplistic view of both aspects [7, 1, 11, 10] with one of more of the following drawbacks. (i)37

They use a simple epidemic model (like SIR) that does not represent the complexities of real-world.38

(ii) They use simple behavioral models where individuals assess the cost of following interventions at39

an individual level. (iii) They present simulations without rigorously grounding their assumptions40

and results with real-world observations. We take a data-driven approach to understand how various41

signals are related to each other, which can then be used in mechanistic modelling.42

Epidemic Forecasting Early approaches to epidemic forecasting relied on statistical and compart-43

mental models such as ARIMA [17] and SEIR [8], which capture short-term dynamics but struggle44

with complex, high-dimensional signals. More recent methods apply machine learning and deep45

learning models, including recurrent neural networks [16] and Transformer [20], to integrate di-46

verse behavioral and epidemiological data. While these black-box models can achieve competitive47

accuracy, especially for short-term horizons, they often lack interpretability and do not explicitly48

model relationships among signals—limitations that motivate graph-based approaches. A number of49

methods are used in forecast hubs [2, 5] but they only target epidemic outcomes (e.g., deaths and50

hospitalization) and not behavior, which is necessary to understand the effect of interventions.51

Graph-based Time Series Forecasting Graph neural networks (GNNs) have recently been applied52

to multivariate time series forecasting in domains such as traffic, climate, and energy, where graph53

structures capture dependencies among signals. Methods such as GCN [9] and GAT[21] leverage54

spatial or relational information to improve prediction accuracy beyond purely sequential models.55

GraphSAGE[6], in particular, has been used to efficiently aggregate information from local neighbor-56

hoods and scale to larger graphs, making it well-suited for dynamic, high-dimensional forecasting57

tasks. However, existing work often assumes a fixed or externally provided graph, with limited58

attention to how the graph itself should be constructed from data – a key focus of our study.59

Signal Similarity and Graph Construction Graph construction is crucial for forecasting perfor-60

mance. Traditional approaches often rely on lagged correlations, which capture delayed dependencies61

among signals. More recent methods, such as DTW+S (Dynamic Time Warping with Shapelets) [18],62

emphasize local trend similarity by aligning shapelet-based representations of time series. These63

strategies highlight the importance of choosing meaningful similarity measures, though their relative64

effectiveness in epidemic forecasting remains underexplored.65

3 Method66

Our goal is to build a framework that reveals dependencies across multiple signals and to show its67

usefulness through a forecasting task. To demonstrate this we choose a collection of a number of68

signals available during COVID-19.69

Dataset To validate our approach, we use a subset of the COVID-19 Trends and Impact Survey70

(CTIS) [15]. The survey was designed to collect large-scale, timely data on the spread and impact71

of COVID-19 across the United States. This subset contains data from 26 U.S. states covering a72

period of 402 days, from May 20, 2020 to June 25, 2022. For each state, we include 26 COVID-1973

related signals, after removing signals that were not fully available in that period. All signals were74

rescaled using min–max normalization to lie within the interval [0, 1]. Each signal falls into one of75

the following four categories (Detailed category grouping and signal explanation are in Appendix A):76

• Health indicators derived from self-reported symptoms of influenza-like and COVID-like illness.77

• Behavioral indicators such as mask-wearing and social distancing.78

• Testing and vaccination indicators based on respondent reports.79

• Demographics and beliefs including attitudes toward COVID-19 treatment and prevention.80

Architecture 1 illustrates the architecture of our TrendGNN workflow. For each state, we generate81

a similarity matrix using DTW+S and sparsify it by retaining the top five most correlated connections82

for each signal. The resulting matrices are aggregated into a block-diagonal structure, with each83

block corresponding to one state. This block-diagonal matrix is then used to construct a unified graph84

encompassing all nodes across states. Finally, the constructed graph is combined with data sampled85

using a rolling window of size four and fed into the network for training.86
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Figure 1: Overview of the TrendGNN pipeline. The dark gray block denotes a block-diagonal matrix,
where each light gray sub-block on the diagonal is an Nsignal ×Nsignal similarity matrix for one state
(computed using DTW+S). Off-diagonal regions are set to zero, and stacking across Nstate yields a
final square matrix of size (Nsignal ×Nstate)

2. The Input, Output, and Target in the diagram each have
size (Nstate ×Nsignal)× window, where the window length is four weeks as shown.

Retrospective Training Setup For the training and evaluation, we adopt a progressive rolling-87

window strategy to split the dataset into training and testing segments – this mimics the real-world88

setup, where every week we are interested in forecasting the outcomes over the next weeks based on89

the data available so far. Specifically, τstart indicates the number of initial weeks used for training.90

For example, if τstart = 20, the model is trained on the first 20 weeks of data and evaluated on the91

subsequent 4 weeks. As τstart increases, the training window gradually expands while the test set92

moves forward accordingly.93

4 Experiments94

Our goal is to show that having a graph of temporal signals improves our ability to forecast all the95

signals. Specifically, we wish to demonstrate that (1) graph-based methods are better (particularly for96

longer horizons), and (2) having a “good” graph of signals is advantageous. We chose forecasting of97

a four-week horizon, which is typical in epidemic forecasting [2].98

Baselines We used several baselines to compare our approach against. Consistent with our approach,99

all models take the past four weeks of data as input and predict the subsequent four weeks. In addition,100

to reduce the influence of randomness, each model was trained five times, and the final results are101

presented as the mean +/- standard deviation.102

Non-GNN Methods. The following baselines do not use the graph obtained form the signals: (i)103

Flat Baseline: directly uses the most recent week’s values as predictions for each task; (ii)ARIMA: a104

traditional statistical model widely used in time-series forecasting; and (iii) Transformer: a modern105

deep learning approach that captures long-range temporal dependencies.106

GNN Methods. To identify the impact of the graph, we construct the graphs with the following107

strategies: (i) Random Graph: for each state, we generate a directed graph among its 26 signals by108

randomly assigning edges, ensuring that each node has on average five outgoing edges; (ii)Fully109

Connected Graph: for each state, we construct a fully connected directed graph among the 26 signals.110

(iii) Lagged Correlation Graph: similar to our approach except that DTW+S is replaced by lagged111

correlation; and (iv) DTW+S Graph: our proposed approach112

Results Our experiments demonstrate that graph-based models consistently outperform both tradi-113

tional models and simple baselines, particularly for medium- to long-term horizons (2–4 weeks)114

3



Table 1: This table reports the prediction errors of different models on 1–4 week-ahead forecasting
tasks, measured by Mean Absolute Error (MAE). B, DB, H, and TV are abbreviations for the four
categories introduced in 3. AVG denotes the average error across these four categories. For each
column, the worst-performing value is highlighted in red, while the best and second-best values are
marked in bold and underlined, respectively.

MAE 1-Week-Ahead 2-Week-Ahead
B DB H TV AVG B DB H TV AVG

Baseline 0.0729 0.1148 0.0501 0.1108 0.0872 0.1082 0.1376 0.0898 0.1306 0.1166
ARIMA 0.0741 0.1059 0.0504 0.1046 0.0837 0.1098 0.1209 0.0894 0.1220 0.1105
Sage (Random) 0.0816 0.1064 0.0620 0.1021 0.0880 0.1117 0.1131 0.1006 0.1084 0.1084
Transformer 0.0780 0.1108 0.0629 0.1069 0.0896 0.1044 0.1195 0.0912 0.1148 0.1075
Sage (Full) 0.0837 0.1055 0.0646 0.1013 0.0888 0.1118 0.1125 0.1014 0.1080 0.1084
Sage (Lagged) 0.0792 0.1067 0.0609 0.1011 0.0870 0.1035 0.1127 0.0975 0.1066 0.1051
Sage (DTW+S) 0.0785 0.1064 0.0622 0.1013 0.0871 0.1026 0.1125 0.0966 0.1067 0.1046

MAE 3-Week-Ahead 4-Week-Ahead
B DB H TV AVG B DB H TV AVG

Baseline 0.1339 0.1417 0.1250 0.1343 0.1338 0.1606 0.1434 0.1553 0.1367 0.1490
ARIMA 0.1370 0.1279 0.1233 0.1299 0.1295 0.1624 0.1333 0.1516 0.1365 0.1459
Transformer 0.1263 0.1200 0.1168 0.1148 0.1195 0.1537 0.1249 0.1414 0.1212 0.1353
Sage (Random) 0.1239 0.1128 0.1212 0.1070 0.1162 0.1315 0.1139 0.1347 0.1077 0.1219
Sage (Full) 0.1225 0.1124 0.1203 0.1072 0.1156 0.1277 0.1132 0.1330 0.1072 0.1203
Sage (Lagged) 0.1126 0.1115 0.1162 0.1055 0.1115 0.1217 0.1135 0.1294 0.1069 0.1179
Sage (DTW+S) 0.1126 0.1117 0.1160 0.1050 0.1113 0.1194 0.1129 0.1276 0.1059 0.1165

in Table 1. Among graph constructions, semantically meaningful approaches such as DTW+S and115

lagged correlation yield clear gains over random or fully connected graphs. While ARIMA performs116

slightly better for the 1-week-ahead case, the best and second-best results across 2–4 week forecasts117

are consistently obtained with DTW+S and lagged-correlation-based graphs. DTW+S is especially118

effective, as it captures temporal misalignments and non-linear similarities, which are common in119

COVID-related indicators, while lagged correlation is limited to linear dependencies with fixed shifts.120

In addition, we report MAE values with standard deviations aggregated by signal categories, and121

include the corresponding table in the appendix for reference.122

Figure 2: Mean absolute error (MAE) distributions of different models across 1–4 week-ahead
forecasting tasks.

5 Conclusion123

Beyond accuracy, the graph view highlights which signals are more predictable and reveals the124

dependencies that drive improvements, offering a more interpretable perspective compared to black-125

box models. These findings underline the importance of constructing meaningful, temporally aligned126

graphs rather than relying on arbitrary connectivity. Future directions include incorporating lag-127

aware causal structures to disentangle true drivers from correlations, as well as enhancing edge- and128

subgraph-level interpretability to support policy decisions and simulation modeling of behavioral and129

epidemic dynamics.130
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A Explanation193

A.1 Dataset Explanation194

1. new_time_value: Date in format (Year-Month-Day).195

2. smoothed_waccept_covid_vaccine_no_appointment: Estimated percentage of respon-196

dents who would definitely or probably choose to get vaccinated, if a vaccine were offered197

to them today, among respondents who have not yet been vaccinated and do not have an198

appointment to do so.199

3. smoothed_wbelief_created_small_group: Estimated percentage of people who believe200

that the statement “COVID-19 was deliberately created by a small group of people who201

secretly manipulate world events” is definitely or probably true.202

4. smoothed_wbelief_distancing_effective: Estimated percentage of respondents who believe203

that social distancing is either very or moderately effective for preventing the spread of204

COVID-19.205

5. smoothed_wbelief_govt_exploitation: Estimated percentage of people who indicate that206

the statement “The COVID-19 pandemic is being exploited by the government to control207

people” is definitely or probably true.208

6. smoothed_wdelayed_care_cost: Estimated percentage of respondents who have ever209

delayed or not sought medical care in the past year because of cost.210

7. smoothed_wdontneed_reason_dont_spend_time: Estimated percentage of respondents211

who say they don’t need to get a COVID-19 vaccine because they don’t spend time with212

high-risk people, among respondents who provided at least one reason for why they believe213

a COVID-19 vaccine is unnecessary.214

8. smoothed_wdontneed_reason_had_covid: Estimated percentage of respondents who say215

they don’t need to get a COVID-19 vaccine because they already had the illness, among216

respondents who provided at least one reason for why they believe a COVID-19 vaccine is217

unnecessary.218

9. smoothed_wdontneed_reason_precautions: Estimated percentage of respondents who say219

they don’t need to get a COVID-19 vaccine because they will use other precautions, such as220

a mask, instead, among respondents who provided at least one reason for why they believe a221

COVID-19 vaccine is unnecessary.222

10. smoothed_whesitancy_reason_cost: Estimated percentage of respondents who say they are223

hesitant to get vaccinated because they are worried about the cost, among respondents who224

answered “Yes, probably”, “No, probably not”, or “No, definitely not” when asked if they225

would get vaccinated if offered (item V3). This series of items was shown to respondents226

starting in Wave 8.227

11. smoothed_whesitancy_reason_distrust_gov: Estimated percentage of respondents who228

say they are hesitant to get vaccinated because they don’t trust the government, among229

respondents who answered “Yes, probably”, “No, probably not”, or “No, definitely not”230

when asked if they would get vaccinated if offered (item V3). This series of items was231

shown to respondents starting in Wave 8.232

12. smoothed_whesitancy_reason_ineffective: Estimated percentage of respondents who say233

they are hesitant to get vaccinated because they don’t know if a COVID-19 vaccine will234

work, among respondents who answered “Yes, probably”, “No, probably not”, or “No,235

definitely not” when asked if they would get vaccinated if offered (item V3). This series of236

items was shown to respondents starting in Wave 8.237

13. smoothed_whesitancy_reason_low_priority: Estimated percentage of respondents who238

say they are hesitant to get vaccinated because they think other people need it more than239

they do, among respondents who answered “Yes, probably”, “No, probably not”, or “No,240

definitely not” when asked if they would get vaccinated if offered (item V3). This series of241

items was shown to respondents starting in Wave 8.242

14. smoothed_whesitancy_reason_religious: Estimated percentage of respondents who say243

they are hesitant to get vaccinated because it is against their religious beliefs, among244

respondents who answered “Yes, probably”, “No, probably not”, or “No, definitely not”245
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when asked if they would get vaccinated if offered (item V3). This series of items was246

shown to respondents starting in Wave 8.247

15. smoothed_whesitancy_reason_sideeffects: Estimated percentage of respondents who say248

they are hesitant to get vaccinated because they are worried about side effects, among249

respondents who answered “Yes, probably”, “No, probably not”, or “No, definitely not”250

when asked if they would get vaccinated if offered (item V3). This series of items was251

shown to respondents starting in Wave 8.252

16. smoothed_whesitancy_reason_wait_safety: Estimated percentage of respondents who253

say they are hesitant to get vaccinated because they want to wait to see if the COVID-19254

vaccines are safe, among respondents who answered “Yes, probably”, “No, probably not”,255

or “No, definitely not” when asked if they would get vaccinated if offered (item V3). This256

series of items was shown to respondents starting in Wave 8.257

17. smoothed_whh_cmnty_cli: Estimated percentage of people reporting illness in their local258

community, as described in this link, including their household.259

18. smoothed_wrace_treated_fairly_healthcare: Estimated percentage of respondents who260

somewhat or strongly agree that people of their race are treated fairly in a healthcare setting.261

19. smoothed_wspent_time_indoors_1d: Estimated percentage of respondents who “spent262

time indoors with someone who isn’t currently staying with you” in the past 24 hours.263

20. smoothed_wtrust_covid_info_friends: Estimated percentage of respondents who trust264

friends and family to provide accurate news and information about COVID-19.265

21. smoothed_wtrust_covid_info_govt_health: Estimated percentage of respondents who266

trust government health officials to provide accurate news and information about COVID-19.267

22. smoothed_wtrust_covid_info_religious: Estimated percentage of respondents who trust268

religious leaders to provide accurate news and information about COVID-19.269

23. smoothed_wwearing_mask_7d: Estimated percentage of people who wore a mask for270

most or all of the time while in public in the past 7 days; those not in public in the past 7271

days are not counted.272

24. smoothed_wworried_catch_covid: Estimated percentage of respondents worrying either a273

great deal or a moderate amount about catching COVID-19.274

25. deaths_incidence_num: Number of new confirmed deaths due to COVID-19, daily.275

26. confirmed_admissions_covid_1d_7dav: Sum of adult and pediatric confirmed COVID-19276

hospital admissions occurring each day.277

27. smoothed_wpublic_transit_1d: Estimated percentage of respondents who “used public278

transit” in the past 24 hours.279

A.2 Signal Grouping280

The 26 signal in our dataset can be grouped into four major categories:281

Health indicators. whh_cmnty_cli, deaths, admissions.282

Behavioral indicators. wwearing_mask_7d, wspent_time_indoors_1d, wpublic_transit,283

wworried_catch_covid.284

Testing and vaccination indicators. vaccine_no_appointment, reason_dont_spend_time,285

reason_had_covid, reason_precautions, reason_cost, reason_distrust_gov,286

reason_ineffective, reason_low_priority, reason_religious, reason_sideeffects,287

reason_wait_safety.288

Demographics and beliefs. created_small_group, distancing_effective,289

govt_exploitation, care_cost, treated_fairly_healthcare, covid_info_friends,290

covid_info_govt_health, covid_info_religious.291
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Figure 3: Distribution of relative improvements in MAE for different models over the baseline across
1–4 week-ahead forecasting tasks. The x-axis shows relative improvement, the y-axis shows signal
categories, and colors denote models. Positive values indicate gains over the baseline, negative values
indicate degradation.

Table 2: Category-level forecasting performance. Mean Absolute Error (MAE) ± standard deviation,
aggregated over signals within each category. The worst-performing models are highlighted in red,
while the best and second-best results are indicated by bold and underline, respectively.

MAE 1-Week-Ahead 2-Week-Ahead
B DB H TV AVG B DB H TV AVG

Baseline 0.0729 ± NA 0.1148 ± NA 0.0501 ± NA 0.1108 ± NA 0.0872 ± NA 0.1082 ± NA 0.1376 ± NA 0.0898 ± NA 0.1306 ± NA 0.1166 ± NA
ARIMA 0.0741 ±NA 0.1059 ±NA 0.0504 ±NA 0.1046 ± NA 0.0837 ±NA 0.1098 ±NA 0.1209 ±NA 0.0894 ±NA 0.1220 NA 0.1105 ± NA
Sage (Random) 0.0816 ± 0.0013 0.1064 ± 0.0004 0.0620 ± 0.0015 0.1021 ± 0.0005 0.0880 ± 0.0006 0.1117 ± 0.0030 0.1131 ± 0.0006 0.1006 ± 0.0010 0.1084 ± 0.0004 0.1084 ± 0.0010
Transformer 0.0780 ± 0.0009 0.1108 ± 0.0005 0.0629 ± 0.0001 0.1069 ± 0.0005 0.0896 ±0.0004 0.1044 ± 0.0013 0.1195 ± 0.0009 0.0912 ± 0.0006 0.1148 ± 0.0005 0.1075 ± 0.0005
Sage (Full) 0.0837 ±0.0013 0.1055 ± 0.0005 0.0646 ±0.0021 0.1013 ± 0.0005 0.0888 ± 0.0009 0.1118 ±0.0016 0.1125 ± 0.0006 0.1014 ± 0.0013 0.1080 ± 0.0004 0.1084 ± 0.0001
Sage (Lagged) 0.0792 ± 0.0005 0.1067 ± 0.0006 0.0609 ± 0.0022 0.1011 ± 0.0006 0.0870 ± 0.0008 0.1035 ± 0.0019 0.1127 ± 0.0003 0.0975 ± 0.0031 0.1066 ± 0.0002 0.1051 ± 0.0008
Sage (DTW+S) 0.0785 ± 0.0019 0.1064 ± 0.0003 0.0622 ± 0.0017 0.1013 ± 0.0007 0.0871 ± 0.0007 0.1026 ± 0.0025 0.1125 ± 0.0011 0.0966 ± 0.0029 0.1067 ± 0.0008 0.1046 ± 0.0004

MAE 3-Week-Ahead 4-Week-Ahead
B DB H TV AVG B DB H TV AVG

Baseline 0.1339 ± NA 0.1417 ± NA 0.1250 ±NA 0.1343 ±NA 0.1338 ± NA 0.1606 ± NA 0.1434 ± NA 0.1553 ± NA 0.1367 ± NA 0.1490 ± NA
ARIMA 0.1370 ± NA 0.1279 ± NA 0.1233 ± NA 0.1299 ± NA 0.1295 ± NA 0.1624 ± NA 0.1333 ± NA 0.1516 ± NA 0.1365 ± NA 0.1459 ± NA
Transformer 0.1263 ± 0.0012 0.1200 ± 0.0008 0.1168 ± 0.0035 0.1148 ± 0.0002 0.1195 ± 0.0013 0.1537 ± 0.0025 0.1249 ± 0.0007 0.1414 ± 0.0024 0.1212 ± 0.0009 0.1353 ± 0.0012
Sage (Random) 0.1239 ± 0.0050 0.1128 ± 0.0007 0.1212 ± 0.0021 0.1070 ± 0.0005 0.1162 ± 0.0015 0.1315 ± 0.0039 0.1139 ± 0.0007 0.1347 ± 0.0013 0.1077 ± 0.0012 0.1219 ± 0.0008
Sage (Full) 0.1225 ± 0.0039 0.1124 ± 0.0009 0.1203 ± 0.0017 0.1072 ± 0.0005 0.1156 ± 0.0011 0.1277 ± 0.0026 0.1132 ± 0.0007 0.1330 ± 0.0034 0.1072 ± 0.0005 0.1203 ± 0.0015
Sage (Lagged) 0.1126 ± 0.0030 0.1115 ± 0.0007 0.1162 ± 0.0030 0.1055 ± 0.0006 0.1115 ± 0.0012 0.1217 ± 0.0023 0.1135 ± 0.0010 0.1294 ± 0.0021 0.1069 ± 0.0007 0.1179 ± 0.0004
Sage (DTW+S) 0.1126 ± 0.0033 0.1117 ± 0.0008 0.1160 ± 0.0022 0.1050 ± 0.0007 0.1113 ± 0.0007 0.1194 ± 0.0044 0.1129 ± 0.0006 0.1276 ± 0.0048 0.1059 ± 0.0008 0.1165 ± 0.0017
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