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Abstract

Epidemic outcomes have a complex interplay with human behavior and beliefs.
Most of the forecasting literature has focused on the task of predicting epidemic
signals using simple mechanistic models or black-box models, such as deep trans-
formers, that ingest all available signals without offering interpretability. However,
to better understand the mechanisms and predict the impact of interventions, we
need the ability to forecast signals associated with beliefs and behaviors in an
interpretable manner. In this work, we propose a graph-based forecasting frame-
work that first constructs a graph of interrelated signals based on trend similarity,
and then applies graph neural networks (GNNs) for prediction. This approach
enables interpretable analysis by revealing which signals are more predictable and
which relationships contribute most to forecasting accuracy. We believe our method
provides early steps towards a framework for interpretable modeling in domains
with multiple potentially interdependent signals, with implications for building
future simulation models that integrate behavior, beliefs, and observations.

1 Introduction

Understanding the interplay between behaviors, beliefs, and epidemic outcomes remains a funda-
mental challenge, requiring comprehensive models to guide effective public health interventions.
Capturing these dynamics is particularly difficult, as the signals are high-dimensional, noisy, and
interdependent across regions and populations. However, many existing models rely on overly
simplistic assumptions about these mechanisms ( [[19} [13} 4} [12, 3]]). Further, existing forecasting
methods [2,[14] are focused on epidemic signals and do not provide any insight into how these might
influence (or predict) behaviors and beliefs, and vice versa.

In this work, we present a graph-based framework that models these relationships explicitly. We
construct graphs to represent dependencies among features and states, and then apply GraphSAGE
to leverage these structured relationships for multi-week forecasting tasks. Our study shows that
both the use of graph neural networks and the choice of graph construction strategy are critical for
improving mid- to long-term forecasting. Beyond accuracy, the graph-based perspective provides
interpretability by highlighting which signals and dependencies matter most, offering a principled
path toward simulation models that integrate behavior, beliefs, and epidemic outcomes.

Our contributions We introduce a graph-based forecasting framework that combines trend similarity
graphs with GraphSAGE, and systematically compare different graph construction strategies to
demonstrate their critical impact on forecasting accuracy across multiple signals including epidemics,
behavior, and beliefs. We show that the framework provides interpretability by revealing influential
signals and dependencies, offering insights that can inform simulation models for public health.
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2 Background and Related Works

Incorporating Human Behavior Existing works that combine epidemic and behavior modeling take
a very simplistic view of both aspects [[7, [1, [11} [10] with one of more of the following drawbacks. (i)
They use a simple epidemic model (like SIR) that does not represent the complexities of real-world.
(ii) They use simple behavioral models where individuals assess the cost of following interventions at
an individual level. (iii) They present simulations without rigorously grounding their assumptions
and results with real-world observations. We take a data-driven approach to understand how various
signals are related to each other, which can then be used in mechanistic modelling.

Epidemic Forecasting Early approaches to epidemic forecasting relied on statistical and compart-
mental models such as ARIMA [17] and SEIR [8]], which capture short-term dynamics but struggle
with complex, high-dimensional signals. More recent methods apply machine learning and deep
learning models, including recurrent neural networks [16]] and Transformer [20], to integrate di-
verse behavioral and epidemiological data. While these black-box models can achieve competitive
accuracy, especially for short-term horizons, they often lack interpretability and do not explicitly
model relationships among signals—Ilimitations that motivate graph-based approaches. A number of
methods are used in forecast hubs [2, 5] but they only target epidemic outcomes (e.g., deaths and
hospitalization) and not behavior, which is necessary to understand the effect of interventions.

Graph-based Time Series Forecasting Graph neural networks (GNNs) have recently been applied
to multivariate time series forecasting in domains such as traffic, climate, and energy, where graph
structures capture dependencies among signals. Methods such as GCN [9]] and GAT[21] leverage
spatial or relational information to improve prediction accuracy beyond purely sequential models.
GraphSAGE]6], in particular, has been used to efficiently aggregate information from local neighbor-
hoods and scale to larger graphs, making it well-suited for dynamic, high-dimensional forecasting
tasks. However, existing work often assumes a fixed or externally provided graph, with limited
attention to how the graph itself should be constructed from data — a key focus of our study.

Signal Similarity and Graph Construction Graph construction is crucial for forecasting perfor-
mance. Traditional approaches often rely on lagged correlations, which capture delayed dependencies
among signals. More recent methods, such as DTW+S (Dynamic Time Warping with Shapelets) [18]],
emphasize local trend similarity by aligning shapelet-based representations of time series. These
strategies highlight the importance of choosing meaningful similarity measures, though their relative
effectiveness in epidemic forecasting remains underexplored.

3 Method

Our goal is to build a framework that reveals dependencies across multiple signals and to show its
usefulness through a forecasting task. To demonstrate this we choose a collection of a number of
signals available during COVID-19.

Dataset To validate our approach, we use a subset of the COVID-19 Trends and Impact Survey
(CTIS) [15]]. The survey was designed to collect large-scale, timely data on the spread and impact
of COVID-19 across the United States. This subset contains data from 26 U.S. states covering a
period of 402 days, from May 20, 2020 to June 25, 2022. For each state, we include 26 COVID-19
related signals, after removing signals that were not fully available in that period. All signals were
rescaled using min—max normalization to lie within the interval [0, 1]. Each signal falls into one of

the following four categories (Detailed category grouping and signal explanation are in[Appendix A):

* Health indicators derived from self-reported symptoms of influenza-like and COVID-like illness.
* Behavioral indicators such as mask-wearing and social distancing.

* Testing and vaccination indicators based on respondent reports.

* Demographics and beliefs including attitudes toward COVID-19 treatment and prevention.

Architecture E] illustrates the architecture of our TrendGNN workflow. For each state, we generate
a similarity matrix using DTW+S and sparsify it by retaining the top five most correlated connections
for each signal. The resulting matrices are aggregated into a block-diagonal structure, with each
block corresponding to one state. This block-diagonal matrix is then used to construct a unified graph
encompassing all nodes across states. Finally, the constructed graph is combined with data sampled
using a rolling window of size four and fed into the network for training.
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Figure 1: Overview of the TrendGNN pipeline. The dark gray block denotes a block-diagonal matrix,
where each light gray sub-block on the diagonal is an Njgnar X Vsigna sSimilarity matrix for one state
(computed using DTW+S). Off-diagonal regions are set to zero, and stacking across Ny, yields a
final square matrix of size (Ngignal X Nstate)Z. The Input, Output, and Target in the diagram each have
size (Ngae X Nsignai) X window, where the window length is four weeks as shown.

Retrospective Training Setup For the training and evaluation, we adopt a progressive rolling-
window strategy to split the dataset into training and testing segments — this mimics the real-world
setup, where every week we are interested in forecasting the outcomes over the next weeks based on
the data available so far. Specifically, 7y, indicates the number of initial weeks used for training.
For example, if 75,y = 20, the model is trained on the first 20 weeks of data and evaluated on the
subsequent 4 weeks. As Ty, increases, the training window gradually expands while the test set
moves forward accordingly.

4 Experiments

Our goal is to show that having a graph of temporal signals improves our ability to forecast all the
signals. Specifically, we wish to demonstrate that (1) graph-based methods are better (particularly for
longer horizons), and (2) having a “good” graph of signals is advantageous. We chose forecasting of
a four-week horizon, which is typical in epidemic forecasting [2].

Baselines We used several baselines to compare our approach against. Consistent with our approach,
all models take the past four weeks of data as input and predict the subsequent four weeks. In addition,
to reduce the influence of randomness, each model was trained five times, and the final results are
presented as the mean +/- standard deviation.

Non-GNN Methods. The following baselines do not use the graph obtained form the signals: (i)
Flat Baseline: directly uses the most recent week’s values as predictions for each task; (ii))ARIMA: a
traditional statistical model widely used in time-series forecasting; and (iii) Transformer: a modern
deep learning approach that captures long-range temporal dependencies.

GNN Methods. To identify the impact of the graph, we construct the graphs with the following
strategies: (i) Random Graph: for each state, we generate a directed graph among its 26 signals by
randomly assigning edges, ensuring that each node has on average five outgoing edges; (ii)Fully
Connected Graph: for each state, we construct a fully connected directed graph among the 26 signals.
(iii) Lagged Correlation Graph: similar to our approach except that DTW+S is replaced by lagged
correlation; and (iv) DTW+S Graph: our proposed approach

Results Our experiments demonstrate that graph-based models consistently outperform both tradi-
tional models and simple baselines, particularly for medium- to long-term horizons (2—4 weeks)
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Table 1: This table reports the prediction errors of different models on 1-4 week-ahead forecasting
tasks, measured by Mean Absolute Error (MAE). B, DB, H, and TV are abbreviations for the four
categories introduced in[3] AVG denotes the average error across these four categories. For each
column, the worst-performing value is highlighted in red, while the best and second-best values are
marked in bold and underlined, respectively.

MAE 1-Week-Ahead 2-Week-Ahead

B DB H TV | AVG B DB H TV | AVG
Baseline 0.0729 0.1148 0.0501 0.1108 0.0872 | 0.1082 0.1376 0.0898 0.1306 0.1166
ARIMA 0.0741 0.1059 0.0504 0.1046 0.0837 | 0.1098 0.1209 0.0894 0.1220 0.1105

Sage (Random) | 0.0816 0.1064 0.0620 0.1021 0.0880 | 0.1117 0.1131 0.1006 0.1084 0.1084
Transformer 0.0780 0.1108 0.0629 0.1069 0.0896 | 0.1044 0.1195 0.0912 0.1148 0.1075
Sage (Full) 0.0837 0.1055 0.0646 0.1013 0.0888 | 0.1118 0.1125 0.1014 0.1080 0.1084
Sage (Lagged) | 0.0792 0.1067 0.0609 0.1011 0.0870 | 0.1035 0.1127 0.0975 0.1066 0.1051
Sage (DTW+S) | 0.0785 0.1064 0.0622 0.1013 0.0871 | 0.1026 0.1125 0.0966 0.1067 0.1046

MAE 3-Week-Ahead 4-Week-Ahead

B DB H TV | AVG B DB H TV | AVG
Baseline 0.1339  0.1417 0.1250 0.1343  0.1338 | 0.1606 0.1434  0.1553 0.1367 0.1490
ARIMA 0.1370  0.1279 0.1233 0.1299 0.1295 | 0.1624 0.1333 0.1516 0.1365 0.1459

Transformer 0.1263 0.1200 0.1168 0.1148 0.1195 | 0.1537 0.1249 0.1414 0.1212 0.1353
Sage (Random) | 0.1239 0.1128 0.1212 0.1070 0.1162 | 0.1315 0.1139 0.1347 0.1077 0.1219
Sage (Full) 0.1225 0.1124 0.1203 0.1072 0.1156 | 0.1277 0.1132 0.1330 0.1072 0.1203
Sage (Lagged) | 0.1126 0.1115 0.1162 0.1055 0.1115 | 0.1217 0.1135 0.1294 0.1069 0.1179
Sage (DTW+S) | 0.1126 0.1117 0.1160 0.1050 0.1113 | 0.1194 0.1129 0.1276 0.1059 0.1165

in Among graph constructions, semantically meaningful approaches such as DTW+S and
lagged correlation yield clear gains over random or fully connected graphs. While ARIMA performs
slightly better for the 1-week-ahead case, the best and second-best results across 2—4 week forecasts
are consistently obtained with DTW+S and lagged-correlation-based graphs. DTW+S is especially
effective, as it captures temporal misalignments and non-linear similarities, which are common in
COVID-related indicators, while lagged correlation is limited to linear dependencies with fixed shifts.
In addition, we report MAE values with standard deviations aggregated by signal categories, and
include the corresponding table in the appendix for reference.

Model Comparison across Week
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Figure 2: Mean absolute error (MAE) distributions of different models across 1-4 week-ahead
forecasting tasks.

5 Conclusion

Beyond accuracy, the graph view highlights which signals are more predictable and reveals the
dependencies that drive improvements, offering a more interpretable perspective compared to black-
box models. These findings underline the importance of constructing meaningful, temporally aligned
graphs rather than relying on arbitrary connectivity. Future directions include incorporating lag-
aware causal structures to disentangle true drivers from correlations, as well as enhancing edge- and
subgraph-level interpretability to support policy decisions and simulation modeling of behavioral and
epidemic dynamics.
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A Explanation

A.1 Dataset Explanation

1.
2.

10.

11.

12.

13.

14.

new_time_value: Date in format (Year-Month-Day).

smoothed_waccept_covid_vaccine_no_appointment: Estimated percentage of respon-
dents who would definitely or probably choose to get vaccinated, if a vaccine were offered
to them today, among respondents who have not yet been vaccinated and do not have an
appointment to do so.

. smoothed_wbelief_created_small_group: Estimated percentage of people who believe

that the statement “COVID-19 was deliberately created by a small group of people who
secretly manipulate world events” is definitely or probably true.

. smoothed_whbelief_distancing_effective: Estimated percentage of respondents who believe

that social distancing is either very or moderately effective for preventing the spread of
COVID-19.

. smoothed_wbelief_govt_exploitation: Estimated percentage of people who indicate that

the statement “The COVID-19 pandemic is being exploited by the government to control
people” is definitely or probably true.

. smoothed_wdelayed_care_cost: Estimated percentage of respondents who have ever

delayed or not sought medical care in the past year because of cost.

. smoothed_wdontneed_reason_dont_spend_time: Estimated percentage of respondents

who say they don’t need to get a COVID-19 vaccine because they don’t spend time with
high-risk people, among respondents who provided at least one reason for why they believe
a COVID-19 vaccine is unnecessary.

. smoothed_wdontneed_reason_had_covid: Estimated percentage of respondents who say

they don’t need to get a COVID-19 vaccine because they already had the illness, among
respondents who provided at least one reason for why they believe a COVID-19 vaccine is
unnecessary.

. smoothed_wdontneed_reason_precautions: Estimated percentage of respondents who say

they don’t need to get a COVID-19 vaccine because they will use other precautions, such as
a mask, instead, among respondents who provided at least one reason for why they believe a
COVID-19 vaccine is unnecessary.

smoothed_whesitancy_reason_cost: Estimated percentage of respondents who say they are
hesitant to get vaccinated because they are worried about the cost, among respondents who
answered “Yes, probably”, “No, probably not”, or “No, definitely not” when asked if they
would get vaccinated if offered (item V3). This series of items was shown to respondents

starting in Wave 8.

smoothed_whesitancy_reason_distrust_gov: Estimated percentage of respondents who
say they are hesitant to get vaccinated because they don’t trust the government, among
respondents who answered “Yes, probably”, “No, probably not”, or “No, definitely not”
when asked if they would get vaccinated if offered (item V3). This series of items was

shown to respondents starting in Wave 8.

smoothed_whesitancy_reason_ineffective: Estimated percentage of respondents who say
they are hesitant to get vaccinated because they don’t know if a COVID-19 vaccine will
work, among respondents who answered “Yes, probably”, “No, probably not”, or “No,
definitely not” when asked if they would get vaccinated if offered (item V3). This series of

items was shown to respondents starting in Wave 8.

smoothed_whesitancy_reason_low_priority: Estimated percentage of respondents who
say they are hesitant to get vaccinated because they think other people need it more than
they do, among respondents who answered “Yes, probably”, “No, probably not”, or “No,
definitely not” when asked if they would get vaccinated if offered (item V3). This series of

items was shown to respondents starting in Wave 8.

smoothed_whesitancy_reason_religious: Estimated percentage of respondents who say
they are hesitant to get vaccinated because it is against their religious beliefs, among

99 ¢

respondents who answered “Yes, probably”, “No, probably not”, or “No, definitely not”
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when asked if they would get vaccinated if offered (item V3). This series of items was
shown to respondents starting in Wave 8.

15. smoothed_whesitancy_reason_sideeffects: Estimated percentage of respondents who say
they are hesitant to get vaccinated because they are worried about side effects, among
respondents who answered “Yes, probably”, “No, probably not”, or “No, definitely not”
when asked if they would get vaccinated if offered (item V3). This series of items was

shown to respondents starting in Wave 8.

16. smoothed_whesitancy_reason_wait_safety: Estimated percentage of respondents who
say they are hesitant to get vaccinated because they want to wait to see if the COVID-19
vaccines are safe, among respondents who answered “Yes, probably”, “No, probably not”,
or “No, definitely not” when asked if they would get vaccinated if offered (item V3). This

series of items was shown to respondents starting in Wave 8.

17. smoothed_whh_cmnty_cli: Estimated percentage of people reporting illness in their local
community, as described in this link, including their household.

18. smoothed_wrace_treated_fairly_healthcare: Estimated percentage of respondents who
somewhat or strongly agree that people of their race are treated fairly in a healthcare setting.

19. smoothed_wspent_time_indoors_1d: Estimated percentage of respondents who “spent
time indoors with someone who isn’t currently staying with you” in the past 24 hours.

20. smoothed_wtrust_covid_info_friends: Estimated percentage of respondents who trust
friends and family to provide accurate news and information about COVID-19.

21. smoothed_wtrust_covid_info_govt_health: Estimated percentage of respondents who
trust government health officials to provide accurate news and information about COVID-19.

22. smoothed_wtrust_covid_info_religious: Estimated percentage of respondents who trust
religious leaders to provide accurate news and information about COVID-19.

23. smoothed_wwearing mask_7d: Estimated percentage of people who wore a mask for
most or all of the time while in public in the past 7 days; those not in public in the past 7
days are not counted.

24. smoothed_wworried_catch_covid: Estimated percentage of respondents worrying either a
great deal or a moderate amount about catching COVID-19.

25. deaths_incidence_num: Number of new confirmed deaths due to COVID-19, daily.

26. confirmed_admissions_covid_1d_7dav: Sum of adult and pediatric confirmed COVID-19
hospital admissions occurring each day.

27. smoothed_wpublic_transit_1d: Estimated percentage of respondents who “used public
transit” in the past 24 hours.

A.2 Signal Grouping

The 26 signal in our dataset can be grouped into four major categories:
Health indicators. whh_cmnty_cli, deaths, admissions.

Behavioral indicators. wwearing_mask_7d, wspent_time_indoors_1d, wpublic_transit,
wworried_catch_covid.

Testing and vaccination indicators. vaccine_no_appointment, reason_dont_spend_time,
reason_had_covid, reason_precautions, reason_cost, reason_distrust_gov,
reason_ineffective, reason_low_priority, reason_religious, reason_sideeffects,
reason_wait_safety.

Demographics and beliefs. created_small_group, distancing_effective,
govt_exploitation, care_cost, treated_fairly_healthcare, covid_info_friends,
covid_info_govt_health, covid_info_religious.


https://cmu-delphi.github.io/delphi-epidata/api/covidcast-signals/fb-survey.html#estimating-community-cli
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Figure 3: Distribution of relative improvements in MAE for different models over the baseline across
1-4 week-ahead forecasting tasks. The x-axis shows relative improvement, the y-axis shows signal
categories, and colors denote models. Positive values indicate gains over the baseline, negative values
indicate degradation.

Table 2: Category-level forecasting performance. Mean Absolute Error (MAE) + standard deviation,
aggregated over signals within each category. The worst-performing models are highlighted in red,
while the best and second-best results are indicated by bold and underline, respectively.

MAE T-Week-Ahead 2-Week-Ahead

B DB H TV | AVG B DB H TV | AVG
Baseline 0.0729 £ NA 0.1148 £ NA 0.0501 + NA 0.1108 £ NA 0.0872 = NA 0.1082 + NA 0.1376 £ NA 0.0898 + NA 0.1306 + NA 0.1166 = NA
ARIMA 0.0741 +NA 0.1059 +NA 0.0504 NA 0.1046 £ NA 0.0837 xNA 0.1098 NA 0.1209 +NA 0.0894 +NA 0.1220 NA 0.1105 £ NA

Sage (Random) | 0.0816 +£0.0013  0.1064 £ 0.0004  0.0620 £ 0.0015  0.1021 £ 0.0005  0.0880 £ 0.0006 | 0.1117 £0.0030  0.1131 £0.0006 0.1006 + 0.0010  0.1084 £ 0.0004  0.1084 + 0.0010
Transformer 0.0780 £0.0009  0.1108 £0.0005  0.0629 +0.0001  0.1069 +0.0005  0.0896 £0.0004 | 0.1044 £0.0013  0.1195+0.0009 0.0912£0.0006 0.1148 +0.0005  0.1075 £ 0.0005
Sage (Full) 0.0837 £0.0013  0.1055 £0.0005  0.0646 +0.0021 ~ 0.1013 £0.0005  0.0888 +0.0009 | 0.1118 £0.0016 ~ 0.1125 £ 0.0006 0.1014 £ 0.0013  0.1080 = 0.0004  0.1084 £ 0.0001
Sage (Lagged) | 0.0792+0.0005 0.1067 £0.0006 0.0609 +0.0022  0.1011 £ 0.0006  0.0870  0.0008 | 0.1035+0.0019  0.1127 +0.0003  0.0975 £0.0031  0.1066 + 0.0002  0.1051 =+ 0.0008
Sage (DTW+S) | 0.0785+0.0019  0.1064 + 0.0003 0.0622 + 0.0017 0.0871 +0.0007 | 0.1026 + 0.0025  0.1125 £ 0.0011 _ 0.0966 +0.0029  0.1067 + 0.0008  0.1046 + 0.0004

MAE 3-Week-Ahead 4-Week-Ahead

B DB H TV | AVG B DB H TV | AVG
Baseline 0.1339 £+ NA 0.1417 £ NA 0.1250 +NA 0.1343 £NA 0.1338 + NA 0.1606 £ NA 0.1434 £ NA 0.1553 £+ NA 0.1367 £ NA 0.1490 £ NA
ARIMA 0.1370 £ NA 0.1279 £ NA 0.1233 £ NA 0.1299 + NA 0.1295 £ NA 0.1624 + NA 0.1333 £ NA 0.1516 £+ NA 0.1365 = NA 0.1459 £ NA

Transformer 0.1263 £0.0012  0.1200 +0.0008  0.1168 +0.0035  0.1148 £0.0002  0.1195 £0.0013 | 0.1537 £0.0025 0.1249 £0.0007 0.1414 £0.0024  0.1212£0.0009 0.1353 £0.0012
Sage (Random) | 0.1239 +£0.0050  0.1128 £0.0007  0.1212 £0.0021  0.1070 £0.0005  0.1162 £ 0.0015 | 0.1315+0.0039  0.1139 £0.0007 0.1347 £0.0013  0.1077 £0.0012  0.1219  0.0008
Sage (Full) 0.1225+0.0039  0.1124 £0.0009 0.1203 +£0.0017  0.1072 £0.0005  0.1156 +£0.0011 | 0.1277 £0.0026  0.1132 +0.0007  0.1330 +0.0034  0.1072 £ 0.0005  0.1203 + 0.0015
Sage (Lagged) | 0.1126 +0.0030  0.1115 £ 0.0007 0.1162 +0.0030 0.1055+0.0006  0.1115 +0.0012 | 0.1217 £0.0023  0.1135+0.0010 ~ 0.1294 £ 0.0021  0.1069 + 0.0007  0.1179 + 0.0004
Sage (DTW+S) | 0.1126 +0.0033  0.1117 +0.0008  0.1160 + 0.0022  0.1050 + 0.0007  0.1113 + 0.0007 | 0.1194 £ 0.0044  0.1129 + 0.0006  0.1276 + 0.0048  0.1059 + 0.0008  0.1165 + 0.0017
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