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Abstract

Cross-domain few-shot learning (CD-FSL) has drawn increasing attention for
handling large differences between the source and target domains–an important
concern in real-world scenarios. To overcome these large differences, recent works
have considered exploiting small-scale unlabeled data from the target domain
during the pre-training stage. This data enables self-supervised pre-training on
the target domain, in addition to supervised pre-training on the source domain.
In this paper, we empirically investigate which pre-training is preferred based on
domain similarity and few-shot difficulty of the target domain. We discover that
the performance gain of self-supervised pre-training over supervised pre-training
becomes large when the target domain is dissimilar to the source domain, or the
target domain itself has low few-shot difficulty. We further design two pre-training
schemes, mixed-supervised and two-stage learning, that improve performance. In
this light, we present six findings for CD-FSL, which are supported by extensive
experiments and analyses on three source and eight target benchmark datasets with
varying levels of domain similarity and few-shot difficulty. Our code is available at
https://github.com/sungnyun/understanding-cdfsl.

1 Introduction

Few-shot learning (FSL) is a machine learning paradigm to learn novel classes from few examples
with supervised information [66, 69]. Unlike standard supervised learning, a model is pre-trained
on the source dataset consisting of base classes and then transferred into the target dataset consisting
of novel classes with few examples, where base and novel classes are disjoint but share similar data
domains. However, this underlying assumption is not applicable to real-world scenarios because
source (base classes) and target (novel classes) domains are different in general. This leads to poor
generalization performance because of the change in feature and label distributions, posing a new
challenge in FSL [24, 64].

In this regard, cross-domain few-shot learning (CD-FSL) is gaining immense attention with the BSCD-
FSL (Broader Study of CD-FSL) benchmark [24], which enables us to evaluate real-world few-shot
learning tasks. The BSCD-FSL benchmark is a collection of four different datasets with varying
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levels of domain similarity to large-scale natural image collections, such as ImageNet [11]. Although
there are two possible directions for FSL, meta-learning [17, 35, 64] and transfer learning [4, 12, 62],
transfer learning has been reported to have higher performance than meta-learning approaches in
cross-domain scenarios. Therefore, following the transfer learning pipeline, recent studies for CD-
FSL [47, 30] have mainly focused on improving the pre-training phase before fine-tuning on the
target labeled data with novel classes.

To address the challenge of different domains, there have been recent efforts to leverage unlabeled
examples from the target domain as auxiliary data for pre-training, in addition to labeled examples
from the source domain. For example, along with the supervised cross-entropy loss, STARTUP [47]
and Dynamic Distillation [30] incorporate distillation loss and FixMatch-like loss for self-supervision,
respectively. In other words, they develop sophisticated pre-training approaches that can leverage
source and target data together. However, the basic pre-training schemes, supervised learning (SL) on
the source domain and self-supervised learning (SSL) on the target domain, have not been thoroughly
studied with respect to their pros and cons in CD-FSL.
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Figure 1: Our insights on the pre-training ap-
proaches. (A) SSL is preferred for all datasets with
small domain similarity. (B) SL is preferred for
high-difficulty datasets with large domain similar-
ity. The formal definitions of similarity and diffi-
culty are explained in Section 3.2.

In this paper, we establish an empirical under-
standing of the effectiveness of SL and SSL
for a better pre-training process in CD-FSL. To
this end, we begin by scrutinizing an opposing
finding of the previous works [47, 30]. We dis-
cover that readily available SSL methods, e.g.,
SimCLR [3], can outperform the standard SL
method for pre-training, even when the amount
of unlabeled target data for SSL is much smaller
than that of labeled source data for SL (see Sec-
tion 4).

Next, we investigate why the CD-FSL per-
formance depends on different pre-training
schemes using the two properties: domain sim-
ilarity and few-shot difficulty. Domain Similar-
ity is the similarity between the source and target
domains, which is known to affect the transfer-
ability of the source domain features into the
target domain [10, 36]. However, we find it in-
sufficient to identify the effectiveness of SL and
SSL based on domain similarity alone. To solve
this conundrum, we propose Few-Shot Difficulty as a measure of the inherent hardness of a dataset,
based on the upper bound of empirical FSL performance. By grounding our analysis on these two
metrics, we discover coherent insights on CD-FSL pre-training schemes, depicted in Figure 1. Our
analyses point to two conclusions: (A) When domain similarity is small, SSL is preferred due to the
limited transferability of source information. On the other hand, (B) SL is preferred when domain
similarity is large and few-shot difficulty is high, because supervision from the source dataset achieves
stronger performance compared to self-supervision on difficult target data (see Section 5).

Finally, to investigate whether SL and SSL can synergize, we design a joint learning scheme using
both SL and SSL, coined as mixed-supervised learning (MSL). It is observed that SL and SSL can
synergize when they have similar performances. Furthermore, we extend our analysis to a two-stage
pre-training scheme, motivated by recent works on CD-FSL [47, 30]. We observe that this generally
improves performance because the SL pre-trained model provides a good initialization for the second
phase of pre-training (see Section 6).

2 Related Work

2.1 Few-Shot Learning (FSL)

FSL has been mainly studied in the literature based on two approaches, meta-learning and transfer
learning. In the meta-learning approach, a model is trained on the meta-train set (i.e., source data)
in an episodic manner, mimicking the evaluation procedure, such that fast adaptation is possible
on the meta-test set (i.e., few-shot target data). This family of approaches include learning a good
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initialization [38, 17, 18, 48, 43], learning a metric space [66, 54, 58], and learning an update rule
[50, 1, 19]. By contrast, in the transfer-based approach [4, 12, 62], a model is pre-trained on the
source dataset following the general supervised learning procedure in a mini-batch manner, and
subsequently fine-tuned on the target dataset for evaluation.

2.2 Cross-Domain Few-Shot Learning (CD-FSL)

CD-FSL has addressed a more challenging and realistic scenario where the source and target domains
are dissimilar [24, 64]. Such a cross-domain setting makes it difficult to transfer source information
into the target domain owing to large domain differences [44, 36, 40, 73]. In general, the most recent
methods have been developed on top of the fine-tuning paradigm because this paradigm outperforms
the traditional meta-learning approach such as FWT [24]. STARTUP [47] and Dynamic Distillation
[30] are the two representative algorithms, and they suggested using small-scale unlabeled data from
the target domain in pre-training such that a pre-trained model can be well-adaptable for the target
domain. Specifically, both algorithms first train a teacher network with cross-entropy loss on labeled
source data. Then, STARTUP trains the student network with cross-entropy loss on the source data
together with two unsupervised losses on the target data: distillation loss [28] and self-supervised
loss (i.e., SimCLR [3]). Dynamic Distillation trains the student network with cross-entropy loss on
labeled source data and KL loss based on FixMatch [55] on unlabeled target data.

2.3 Self-Supervised Learning (SSL)

SSL has attracted attention as a method of learning useful representations from unlabeled data [14,
13, 72, 46, 42]. When this field first emerged, hand-crafted pretext tasks, such as solving jigsaw
puzzles [41] and predicting rotations [20], were designed and utilized for training. In recent times,
there has been an effort to use contrastive loss, which enhances representation learning based on
augmentation and negative samples [3, 61, 26, 2]. This contrastive loss encourages the alignment
of positive pairs and uniformity of data distribution on the hypersphere [67]. This improves the
transferability of a model by encouraging it to contain lower-level semantics compared to supervised
approaches [31]. However, this advantage is conditional on the availability of numerous negative
samples. To alleviate such constraint, non-contrastive approaches that do not use negative samples
have been proposed [23, 5, 71, 63]. In our empirical study, we use two contrastive approaches,
SimCLR [3] and MoCo [26], and two non-contrastive approaches, BYOL [23] and SimSiam [5]. The
details of each algorithm are described in Appendix A.

For the completeness of our survey, we include prior works that address SSL for cross-domain
and/or few-shot learning. Kim et al. [32] addressed self-supervised pre-training under label-shared
cross-domain, while our setting does not share the label space between domains. Ericsson et al. [16]
observed that SSL on the source data improves performance on the BSCD-FSL dataset. However,
domain-specific SSL (i.e., SSL on target data) was not addressed. Cole et al. [8] showed that adding
data from different domains can lead to performance degradation when data is numerous. Phoo and
Hariharan [47] and Islam et al. [30] argued that plain SSL methods struggle to outperform SL for
CD-FSL. We investigate domain-specific SSL and demonstrate its superiority, which opposes the
finding from previous studies.

3 Overview Table 1: Summary of the notations.

Notation Description

DB ,DN Source and target datasets, DB \DN = ;
CB , CN Base classes for DB and novel classes for DN

DU (⇢DN ) Unlabeled target data for SSL
DL (⇢DN ) Labeled target data for evaluation, DU \DL = ;
n, k # classes and examples for n-way k-shot
DS (⇢DL) A support set with size nk for fine-tuning
DQ (⇢DL) A query set for evaluation, DS \DQ = ;
f A feature extractor (backbone network)
hsl A classification head for SL during pre-training
hssl A projection head for SSL during pre-training
g A classification head during fine-tuning

We clarify the scope of our empirical
study, propose formal definitions of do-
main similarity and few-shot difficulty,
and describe experimental configura-
tions. Table 1 summarizes the nota-
tions used in this paper.

3.1 Scope of the Empirical Study

Our objective is to learn a feature ex-
tractor f on base classes CB in source
data DB , which can extract informa-
tive representations for novel classes
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CN in target data DN . Typically, a classifier g is fine-tuned and the model g � f is evaluated using
labeled target examples DL (⇢ DN ) after pre-training f on the source data DB under the condition
that the base classes are largely different from the novel classes.

Following the recent literature [47, 30], we further assume that additional unlabeled data DU (⇢ DN )
is available in the pre-training phase. We follow the split strategy used in Phoo and Hariharan [47],
where 20% of the target data DN is used as the unlabeled data DU for pre-training. Note that the size
of the unlabeled portion is very small (e.g., only a few thousand examples) compared to large-scale
datasets typically considered for self-supervised learning. In this problem setup, the pre-training
phase of CD-FSL can be carried out based on three learning strategies:

• Supervised Learning: Let f and hsl be the feature extractor and linear classifier for the base
classes CB , respectively. Then, a model hsl�f is pre-trained only for the labeled source data DB by
minimizing the standard cross-entropy loss `ce in a mini-batch manner,3

Lsl(f, hsl;DB) =
1

|DB |
X

(x,y)2DB

`ce(hsl � f(x), y). (1)

• Self-Supervised Learning: Let hssl be the projection head. Then, a model hssl � f is pre-trained
only for the unlabeled target data DU , which is much smaller than the labeled source data, by
minimizing (non-)contrastive self-supervised loss `self (e.g., NT-Xent),1

Lssl(f, hssl;DU ) =
1

2|DU |
X

x2DU

h
`self

�
z1; z2; {z�}

�
+ `self

�
z2; z1; {z�}

�i
(2)

where zi = hssl � f(Ai(x)),

and Ai(x) is the i-th augmentation of the same input x. This training loss forces z1 to be similar
to z2 and dissimilar to the set of negative features {z�}. In addition, there are non-contrastive
SSL methods that do not rely on negative examples, i.e., {z�}=;. We provide a more detailed
explanation of SSL losses, including multiple (non-)constrastive approaches in Appendix A.

• Mixed-Supervised Learning: MSL exploits labeled as well as unlabeled data from different
domains simultaneously. MSL can be intuitively formulated by minimizing the interpolation of
their losses in Eqs. (1) and (2),

Lmsl(f, hsl, hssl;DB ,DU ) = (1� �) · Lsl(f, hsl;DB) + � · Lssl(f, hssl;DU ), (3)

where 0 < � < 1 and the feature extractor f is hard-shared and trained through SL and SSL
losses with a balancing hyperparameter �. This can be a generalization of STARTUP and Dynamic
Distillation, which use Eq. (3) in the second pre-training phase with a moderate modification after
the typical pre-training phase using SL.

Our analysis focuses on pre-training and fine-tuning schemes due to the superiority of transfer-based
methods over typical FSL algorithms such as MAML [17], which is shown in [24]. Based on the three
learning strategies above, we conduct an empirical study to gain an in-depth understanding of their
effectiveness in the pre-training phase, providing deep insight into the following questions:

1. Which is more effective for pre-training, using only SL or SSL? B Section 4
2. How to apply domain similarity and few-shot difficulty to identify the more effective pre-training

scheme between SL and SSL, for CD-FSL? B Section 5
3. Can MSL, a combination of SL and SSL, as well as a two-stage scheme improve performance?

B Section 6

3.2 Domain Similarity and Few-Shot Difficulty

We present a procedure for estimating the two metrics on datasets, which are used to analyze the
pre-training schemes. First, we use domain similarity introduced in [10], which is based on Earth
Mover’s Distance (EMD [52]) because the distance between the two domains can be considered as

3The batch loss on the entire data is used for ease of exposition.
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the cost of moving images from one domain to the other in the transfer learning context [10, 36].
Further details on this metric, e.g., advantages of EMD, are explained in Appendix D.

We can easily compute EMD using the retrieved sample representations.4 We create the prototype
vector pi, which is an averaged representation for all examples belonging to class i. Next, let i 2 CB
and j 2 CN be a class in base (source) and novel (target) classes, respectively. Then, the domain
similarity between the source and target data is formulated as

Sim(DB ,DN ) = exp
�
�↵ EMD(DB ,DN )

�
where EMD(DB ,DN ) =

P
i2CB , j2CN

fi,j di,jP
i2CB , j2CN

fi,j

subject to fi,j � 0,
X

i2CB , j2CN

fi,j = 1,
X

j2CN

fi,j 
|DB [i]|
|DB |

,
X

i2CB

fi,j 
|DN [j]|
|DN | , (4)

where di,j = ||pi � pj ||2; fi,j is the optimal flow between pi and pj subject to the constraints
for EMD; D[i] returns all examples of the specified class i in D; and ↵ is typically set to 0.01 [10].
Namely, EMD can be interpreted as the weighted distance of all combinations between the base and
novel classes. The larger similarity indicates that source and target data share similar domains.

Next, we propose few-shot difficulty, which quantifies the difficulty of a dataset based on the empirical
upper bound of few-shot performance in our problem setup, regardless of its relationship to the source
dataset. To capture the upper bound of FSL performance, we use 20% of the target dataset as labeled
data to pre-train the model in a supervised manner. Then, the pre-trained model is evaluated on the
remaining unseen target data for the 5-way k-shot classification task.5 As the generalization capability
indicates the hardness [56], the classification accuracy for unseen data is used and converted into the
few-shot difficulty using an exponential function with a hyperparameter � (the default value is 0.01),

Di↵(D, k) = exp(�� Acc(D, k)), (5)
where Acc(D, k) returns the average of 5-way k-shot classification accuracy over 600 episodes for
the given data D. Note that in our paper, k is set to 5, but the order of difficulty is the same regardless
of k. High few-shot difficulty implies that the achievable accuracy is low even when there is no
domain difference between pre-training and evaluation.

3.3 Experimental Configurations

Cross-Domain Datasets. We use ImageNet, tieredImageNet, and miniImageNet as source datasets
for generality. Regarding the target domain, we prepare eight datasets with varying domain similarity
and few-shot difficulty; domain similarity is computed based on both the source and target datasets,
while few-shot difficulty is computed based on the target dataset. To summarize their order in Figure
1, domain similarity to ImageNet: Places > CUB > Cars > Plantae > EuroSAT > CropDisease
> ISIC > ChestX, and few-shot difficulty: ChestX > ISIC > CUB > Cars > Plantae > Places >
EuroSAT > CropDisease. For instance, Places data has the largest domain similarity to ImageNet,
while ChestX has the highest few-shot difficulty. Appendix B provides the details of each dataset.
The detailed values for domain similarity and few-shot difficulty are reported in Appendix D and
E, respectively. These are visualized in Appendix F. We also provide the results on the case when
source and target domains are the same, i.e., the standard FSL setting, in Appendix O.

Evaluation Pipeline. We follow the standard evaluation pipeline of CD-FSL [24]. The evaluation
process is performed in an episodic manner, where each episode represents a distinct few-shot task.
Each episode is comprised of a support set DS and a query set DQ, which are sampled from the
entire labeled target data DL. The support set DS and query set DQ consist of n classes that are
randomly selected among the entire set of novel classes CN . For the n-way k-shot setting, k examples
are randomly drawn from each class for the support set DS , while kq (typically 15) examples for the
query set DQ. Thus, the support and query set are defined as,

DS = {(xs
i , y

s
i )}n⇥k

i=1 and DQ = {(xq
i , y

q
i )}

n⇥kq

i=1 . (6)
4To extract the representation of images, we follow Li et al. [36] by using a large model trained on a

large-scale dataset, ResNet101 pre-trained on ImageNet. Note that Cui et al. [10] used JFT dataset [57], which
is not released for public use. Furthermore, we measure domain similarity using different feature extractors,
described in Table 6 of Appendix D. Our analysis is consistent regardless of the feature extractor used.

5We use a few-shot learning task instead of classification on the entire data, preventing the performance from
being distorted by other factors, such as data imbalance and the number of classes.
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Table 2: 5-way k-shot CD-FSL performance (%) of the models pre-trained by SL and SSL. We report
the average accuracy and its 95% confidence interval over 600 few-shot episodes. B and S indicate
base and strong augmentation, respectively. The best accuracy is marked in bold for each backbone.

Source
Data

Pre-train Method Aug. EuroSAT CropDisease ISIC ChestX
Scheme k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5

ImageNet SL Default B 66.14±.83 84.73±.51 74.18±.82 92.81±.45 31.11±.55 44.10±.58 22.48±.39 25.51±.44

tiered
ImageNet SL Default B 61.81±.88 79.87±.67 66.82±.90 87.19±.59 30.35±.60 41.67±.55 22.34±.38 25.08±.45

S 60.07±.88 79.95±.66 65.70±.94 86.34±.60 29.75±.56 40.60±.58 22.11±.42 25.20±.41

- SSL

SimCLR B 70.37±.86 87.80±.46 90.94±.69 97.44±.29 34.13±.69 44.37±.66 21.41±.41 25.05±.42
S 84.30±.73 94.12±.32 91.00±.76 97.46±.34 36.39±.66 47.85±.65 21.55±.41 25.26±.44

MoCo B 51.21±.93 68.19±.74 70.22±.95 87.11±.60 27.79±.53 36.60±.59 21.44±.43 24.28±.43
S 69.11±.98 81.01±.73 80.08±.97 92.48±.52 29.54±.59 39.28±.58 21.74±.42 24.58±.44

BYOL B 60.98±.91 84.88±.56 81.58±.78 96.82±.27 35.31±.64 49.26±.64 22.65±.42 28.80±.49
S 66.16±.86 87.83±.48 85.77±.73 96.93±.30 34.53±.62 47.59±.63 22.75±.41 28.36±.46

SimSiam B 44.06±.86 61.03±.72 75.36±.82 92.31±.44 26.99±.52 35.68±.52 22.02±.41 26.06±.46
S 70.80±.88 85.10±.57 84.72±.80 96.05±.36 30.17±.56 39.51±.55 22.17±.40 26.56±.46

(a) ResNet18 is used as a backbone.
mini

ImageNet SL Default B 64.03±.91 82.72±.59 73.38±.87 91.53±.49 30.68±.58 41.77±.59 22.64±.40 26.26±.45
S 65.03±.88 84.00±.56 72.82±.87 91.32±.49 29.91±.54 40.84±.56 22.88±.42 27.01±.44

- SSL

SimCLR B 66.77±.84 86.39±.48 89.33±.66 96.82±.32 33.32±.63 44.50±.64 22.26±.42 24.34±.42
S 79.50±.78 92.36±.37 89.49±.74 97.24±.33 34.90±.64 46.76±.61 21.97±.41 25.62±.43

MoCo B 48.70±.92 66.85±.72 68.77±.92 87.67±.57 27.76±.54 38.03±.57 21.55±.42 24.48±.44
S 76.20±.89 89.54±.46 80.19±.99 93.41±.53 30.20±.55 41.14±.57 21.64±.40 24.49±.43

BYOL B 61.18±.82 83.11±.57 80.50±.75 94.85±.35 33.02±.62 46.72±.65 22.90±.41 27.40±.47
S 66.45±.80 86.55±.50 80.10±.76 94.53±.41 33.50±.59 45.99±.63 23.11±.42 27.71±.44

SimSiam B 44.57±.82 63.67±.67 82.83±.73 95.37±.34 30.74±.60 41.28±.62 22.76±.42 27.50±.47
S 71.66±.88 85.21±.59 81.25±.77 95.13±.37 31.80±.59 41.44±.59 23.22±.41 27.83±.46

(b) ResNet10 is used as a backbone.

For evaluation, a classifier g is fine-tuned on the support set DS , using features extracted from the
fixed pre-trained backbone f . Note that g is for the evaluation purpose different from hsl and hssl

for pre-training. The fine-tuned model g � f is then tested on the query set DQ. We set n = 5 and
k = {1, 5}, and the accuracy is averaged over 600 episodes following convention [24, 47].

Implementation. We use different backbone networks depending on the source data. For ImageNet
and tieredImageNet, ResNet18 is used as the backbone, while ResNet10 is used for miniImageNet. For
ResNet18 pre-trained on ImageNet with SL, we use the model provided by PyTorch [45] repository.
This setup is exactly the same for all pre-training schemes. Additional details on the training setup
are provided in Appendix C.

4 Supervised Learning on Source vs. Self-Supervised Learning on Target

We begin by investigating the superiority of SSL on the target dataset over SL on the source dataset for
pre-training. We compare the CD-FSL performance of pre-trained models using four representative
(widely cited) SSL methods (SimCLR [3], MoCo [26], BYOL [23], and SimSiam [5]) with that of an
SL method (Default) in Table 2. Four different domain datasets from the BSCD-FSL benchmarks
(EuroSAT, CropDisease, ISIC, and ChestX) are used as target data. Table 2 provides empirical
evidence of the findings in this section. Recent literature has reported that SSL pre-training does not
work better than SL for the CD-FSL task because of insufficient unlabeled examples in the target
domain [47, 30]. However, our observation contradicts this previous finding.

OBSERVATION 4.1. SSL on the target domain can achieve remarkably higher performance over SL
on the labeled source domain, even with small-scale (i.e., a few thousand) unlabeled target data.

EVIDENCE. SSL methods are observed to outperform SL in most cases, even though SSL does not
leverage source data for pre-training. In particular, SSL methods show much higher performance
compared to the model pre-trained on the entire ImageNet dataset, which has more than 1.2M training
examples. This leads to the conclusion that SSL on the target domain can be better than SL on
the source domain for CD-FSL pre-training. In other words, unlabeled target data available at the
pre-training phase is worth more than labeled source data, even if the unlabeled target data is much
smaller (e.g., 8k examples for CropDisease) than the labeled source data. In Appendix G, we show
that SSL can outperform SL using even smaller portions of unlabeled target data.
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(a) 5-way 1-shot (b) 5-way 5-shot

Figure 2: 5-way k-shot CD-FSL performance (%) of SL and SSL according to domain similar-
ity (values in x-axis), with ImageNet source data. The red box shows that SL outperforms SSL in
the second largest domain similarity, while SSL outperforms SL in the largest domain similarity.

OBSERVATION 4.2. SSL achieves significant performance gains with strong data augmentation.

EVIDENCE. In addition, the results in Table 2 provide the performance sensitivity to data augmen-
tation. For this study, two types of augmentation are used: (1) base augmentation from [3], which
consists of random resized crop, color jitter, horizontal flip, and normalization, and (2) strong aug-
mentation from [30], which adds Gaussian blur and random gray scale to the base (see the detail
of the augmentations in Appendix C). With strong augmentation, SSL methods exhibit significant
performance gains of up to 27.50%p compared to base augmentation, i.e., MoCo on EuroSAT in
Table 2(b). However, SL does not benefit from strong augmentation as SSL does. This has also been
observed in the literature [3]. Therefore, the performance of SSL can be further improved for CD-FSL
if more suitable augmentation is applied. Based on this observation, we use strong augmentation for
SSL as the default setup in the rest of our paper.

Meanwhile, the superiority among SSL algorithms varies with target dataset. In Table 2, we observe
that SimCLR performs best in EuroSAT and CropDisease, while in ISIC, SimCLR and BYOL both
perform well. For ChestX, BYOL and SimSiam show good performance. The SSL methods can
be categorized into two groups: contrastive (SimCLR and MoCo) and non-contrastive (BYOL and
SimSiam). For the rest of our paper, we focus our analysis on SimCLR and BYOL, which are
representative methods from each group with robust performance. The results for other target datasets
are presented in Appendix H.

5 Closer Look at Domain Similarity and Few-Shot Difficulty

We investigate why the CD-FSL performance depends on different pre-training schemes, i.e., SL
or SSL, based on the two metrics: domain similarity and few-shot difficulty in Eqs. (4) and (5). We
analyze the relationship between few-shot performance and the two metrics on various target datasets
and provide insights for developing a more effective pre-training approach.

Including BSCD-FSL, we consider four additional datasets from different domains: Places, CUB,
Cars, and Plantae. Note that these additional datasets are known to be more similar to ImageNet
than the BSCD-FSL datasets are [16], and our estimated similarity shows the same trend. We mainly
use ImageNet as the source dataset to make our analysis more reliable. We analyze their domain
similarity and few-shot difficulty and display them in Figure 1, where ImageNet is used as source
data for domain similarity. In this section, to select the SSL method for each dataset, we use SimCLR
for all datasets except ChestX, where BYOL is used, based on the performance observed in Section 4.

5.1 Domain Similarity

Figure 2 shows the CD-FSL performance of the pre-trained models using SL and SSL for eight target
datasets with varying domain similarity, where all the datasets are sorted by domain similarity. A
common belief about domain similarity is that, as domain similarity increases, it is more beneficial
for pre-training to use a large amount of labeled source data [10, 36, 16]. Our analysis shows that this
belief is partially true.

OBSERVATION 5.1. SL does not consistently benefit from large domain similarity.

EVIDENCE. For the aforementioned belief to be true, the performance gain of SL over SSL should be
greater as domain similarity increases. However, although SL outperforms SSL in the CUB dataset
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(a) Small Similarity (ImageNet) (b) Large Similarity (ImageNet)

(c) Small Similarity (miniImageNet) (d) Large Similarity (miniImageNet)

Figure 3: 5-way k-shot performance gain of SSL over SL for the two dataset groups according to
the few-shot difficulty (small markers: k=1, large markers: k=5). Results are shown for two source
datasets: ImageNet and miniImageNet, each with their corresponding backbones.

with the second largest domain similarity, in the Places dataset with the largest domain similarity, SSL
rather exhibits higher CD-FSL accuracy than SL (see the red box in Figure 2). Furthermore, in the
ChestX dataset with the smallest domain similarity, SL and SSL have similar performances. These
results demonstrate that unlike prior belief, large domain similarity does not always guarantee the
superiority of SL. In other words, there is an inconsistency that cannot be explained solely by domain
similarity, and we explore why this inconsistency occurs by taking few-shot difficulty into account.

5.2 Few-Shot Difficulty

In this sense, we study the impact of few-shot difficulty by categorizing the eight datasets into
two groups: one with small domain similarity (i.e., BSCD-FSL) and another with large domain
similarity (i.e., other datasets). Figure 3 shows the performance gain of SSL over SL for datasets
with varying few-shot difficulty for each group. The performance gain of SSL over SL is defined as
(Errorsl � Errorssl)/Errorsl, which indicates the relative improvement of the classification error.

OBSERVATION 5.2. Performance gain of SSL over SL becomes greater at smaller domain similarity
or lower few-shot difficulty.

EVIDENCE. For both groups, the performance gain of SSL over SL becomes greater as few-shot
difficulty decreases. In particular, the performance gain is the greatest on the CropDisease and Places
datasets with the lowest few-shot difficulty in each group, while the performance gain is the least on
the ChestX and CUB datasets with the highest few-shot difficulty in each group. For the target data
with higher few-shot difficulty, it may not be easy to learn discriminative representations by solely
using SSL without label supervision.

Meanwhile, comparing the two groups (BSCD-FSL vs. other datasets), it is observed that the
performance gain of SSL over SL is significantly worse for the group with large domain similarity.
Namely, the performance gain is near or less than zero when domain similarity is large because
features learned from SL with label supervision can be better transferred. Note that the negative value
of performance gain means that SL outperforms SSL. Furthermore, the performance gain is closely
related to the source dataset size for the datasets with large similarity (see Figures 3(b) and 3(d)). For
instance, on the CUB dataset, the performance gain (k=5) is �2.276 and �0.249 for ImageNet and
miniImageNet, respectively. However, when domain similarity is small (see Figures 3(a) and 3(c)),
the source dataset size does not significantly affect the performance gain of SSL over SL.

In summary, we first conclude that SSL is advantageous to SL when the target domain is extremely
dissimilar to the source domain (i.e., the performance gain is greater than 0), which is in line with
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Table 3: 5-way 5-shot CD-FSL performance (%) of the models pre-trained by SL, SSL, and MSL
including their two-stage versions. ResNet18 is used as the backbone model, and ImageNet is used as
the source data for SL and MSL. The balancing coefficient � in Eq. (3) of MSL is set to be 0.875.
Datasets are grouped by domain similarity and sorted by few-shot difficulty in ascending order in
each group (CropDisease < ChestX | Places < CUB). The best results are marked in bold.

Pre-train Method Small Similarity Large Similarity
Scheme CropDisease EuroSAT ISIC ChestX Places Plantae Cars CUB

SL Default 92.81±.45 84.73±.51 44.10±.58 25.51±.44 79.22±.64 63.21±.82 66.38±.80 83.93±.66

SSL SimCLR 97.46±.34 94.12±.32 47.85±.65 25.26±.44 80.43±.61 60.07±.84 44.55±.74 47.36±.79

Si
ng

le
-S

ta
ge

BYOL 96.93±.30 87.83±.48 47.59±.63 28.36±.46 72.47±.63 61.02±.82 48.56±.76 51.31±.78

MSL SimCLR 96.50±.35 90.11±.40 45.38±.63 26.05±.44 82.56±.58 64.76±.83 51.84±.79 64.53±.80
BYOL 96.74±.31 90.82±.40 49.14±.70 29.58±.47 81.27±.59 67.39±.81 46.76±.73 69.67±.82

(a) Performance comparison for single-stage schemes.

SL!SSL SimCLR 97.88±.30 95.28±.27 48.38±.60 25.25±.44 84.40±.53 66.35±.82 51.31±.84 57.11±.88
BYOL 97.58±.26 91.82±.39 49.32±.63 28.27±.48 78.87±.60 67.83±.82 54.70±.84 60.60±.82

Tw
o-

St
ag

e

SL!MSL SimCLR 97.49±.30 91.70±.35 47.43±.62 26.24±.44 85.76±.52 69.24±.81 58.97±.82 81.51±.72
BYOL 97.09±.31 90.89±.40 50.72±.67 30.20±.48 83.29±.55 74.16±.77 68.87±.80 84.34±.67

SL!MSL+ STARTUP 96.06±.33 89.70±.41 46.02±.59 27.24±.46 85.00±.52 69.40±.84 68.43±.82 89.60±.55
DynDistill 97.60±.35 92.28±.46 50.06±.86 29.65±.67 82.22±.81 71.49±1.06 69.45±1.12 86.54±1.88

(b) Performance comparison for two-stage schemes.

Observation 4.1. This implies supervision with a huge amount of source data cannot overcome domain
differences. However, when domain similarity is large, the few-shot difficulty must be considered to
determine a better strategy between SSL and SL. Namely, SL becomes more preferable as few-shot
difficulty increases due to the benefits from supervision on the source dataset. The same trend is
observed when tieredImageNet is used as the source dataset (Appendix I).

6 Advanced Scheme: MSL and Two-Stage

In this section, we further study SL and SSL in a more advanced scheme from the domain similarity
and few-shot difficulty perspective, in line with previous observations. We first investigate whether
SL and SSL can synergize by studying MSL. Next, we analyze the two-stage pre-training scheme
used in recent works [47, 30].

6.1 Can SL and SSL Synergize?

To identify whether SL and SSL can complement each other, we first consider a mixed-loss pre-
training scheme, MSL, described in Eq. (3). We define that synergy between SL and SSL occurs
when MSL is superior to both SL and SSL. Table 3(a) summarizes the performance of the models
under each pre-training scheme on eight target datasets, grouped by their domain similarity (BSCD-
FSL vs. other datasets) and then sorted by the few-shot difficulty in ascending order. In MSL, the
hyperparameter � is set to be 0.875 found by a grid search, detailed in Appendix J.

OBSERVATION 6.1. SL and SSL can synergize when SL and SSL have similar performances.

EVIDENCE. In Table 3(a), it is observed that SL and SSL can synergize (i.e., MSL > SL, SSL) on
four datasets: ISIC, ChestX, Places, and Plantae. SL and SSL have similar performances on these
datasets, as shown by the large markers (k=5) in Figures 3(a) and 3(b). MSL can learn diverse
features, owing to differences in training domains (i.e, source vs. target) and learning frameworks (i.e.,
supervised vs. unsupervised), which allows for synergy [16, 37, 22, 21]. However, when either SL or
SSL significantly outperforms the other, MSL does not perform best. In addition, MSL performance
can be improved further in the large similarity group by emphasizing the SL component through a
larger batch size (Appendix K).

6.2 Extension to Two-Stage Approach

We extend the single-stage to two-stage approaches, extracting more sophisticated target representa-
tions. In two-stage pre-training, a model is pre-trained in prior with labeled source data in the first
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phase and further trained through SSL or MSL in the second phase, i.e., SL!SSL or SL!MSL.
This pipeline has been adopted by recent algorithms, such as STARTUP [47] and DynDistill [30], but
they additionally maintain an extra network or incorporate the knowledge distillation in the second
phase, i.e., SL!MSL+. Table 3(b) summarizes the CD-FSL performance of two-stage schemes.

OBSERVATION 6.2. Two-stage pre-training schemes are better than their single-stage counterparts.

EVIDENCE. Two-stage pre-training approaches generally achieve much higher performance than
their single-stage counterparts, i.e., SL! SSL outperforms SSL, and SL!MSL outperforms MSL.
When SL is used separately in the first phase, it appears to provide a good initialization for the
second phase because a converged extractor on the source data is better than a random extractor [40].
Also, the benefit of the two-stage pre-training is significant when domain similarity is large. This
observation is promising for practitioners because pre-trained models on ImageNet or bigger datasets
are readily accessible. In addition, our simple two-stage methods, without any additional techniques,
are shown to achieve comparable performance to the meticulously designed two-stage approaches
such as STARTUP, even though our main goal is analysis of basic pre-training methods. Appendix L
summarizes the full results including meta-learning based algorithms.

7 Conclusion

We established a thorough empirical understanding of CD-FSL. Our work is a pioneering study that
unveils hidden findings in the empirical use of CD-FSL. We believe it can inspire subsequent studies
like theoretical analysis, which our paper did not cover. In particular, we focused on the effectiveness
of SL, SSL, and MSL, which can be realized with single- and two-stage pre-training schemes. We
(1) observed that their performances are closely related to domain similarity between the source
and target datasets and few-shot difficulty of the target dataset, and (2) proposed how they can be
effectively combined for pre-training. Through our empirical study, we presented six findings that
have been either misunderstood or unexplored. To justify all the findings, extensive experiments were
conducted on benchmarks with varying degrees of domain similarity and few-shot difficulty.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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