
IotaCode: A Small Code Model Can Be Reinforced to Beat the Bigger One

Anonymous ACL submission

Abstract

Large language models (LLMs) are one of the001
most rapidly developing areas of research in002
machine learning. To fine-tune LLMs to better003
align with user requests and values, reinforce-004
ment learning techniques based on human feed-005
back (RLHF) have been developed, allowing006
for the inclusion of negative as well as positive007
examples. An important domain for the appli-008
cation of large language models is the analysis009
and generation of source code. In this study, we010
investigated how modern RLHF algorithms can011
be applied to code generation using the Code-012
Contests problem set. The best results were013
achieved using the Proximal Policy Optimiza-014
tion algorithm, which significantly improves015
the supervised fine-tuning baseline, producing016
IotaCode model with 1.3 billion parameters017
that surpass the performance of the AlphaCode018
model with 9 billion parameters.019

1 Introduction020

In the realm of programming, the path to master-021

ing code development is not solely illuminated by022

correct solutions; rather, it is also shaped by the023

trials and errors inherent in the coding process. The024

educational value of errors, when systematically025

analyzed and corrected, cannot be overstated. This026

pedagogical perspective underpins the increasing027

application of Reinforcement Learning from Hu-028

man Feedback (RLHF) methodologies, particularly029

the Proximal Policy Optimization (PPO) algorithm,030

in training language models for code generation.031

These models are uniquely positioned to not only032

produce solutions but also learn from their own in-033

accuracies, thus mimicking a more authentic learn-034

ing experience akin to that of a human programmer.035

The efficacy of these models, particularly in their036

ability to learn from both successful outcomes and037

mistakes, hinges on the robustness of the "teacher"038

or reward model. This model is trained to distin-039

guish effective and flawed code by evaluating a040

wide array of coding attempts. Consequently, the 041

development of a capable teacher model requires 042

a substantial corpus of correct and incorrect code 043

samples. In this context, code contest platforms 044

emerge as invaluable resources. These platforms 045

are arenas where programmers continuously con- 046

tribute solutions to a myriad of problems, generat- 047

ing a rich dataset of both successful solutions and 048

common errors. 049

By leveraging such datasets, especially erro- 050

neous submissions, we can train more nuanced and 051

effective models. These models are adept at not 052

only identifying and rectifying errors, but also guid- 053

ing the learning process towards a more holistic un- 054

derstanding of coding practices. The overarching 055

goal is to refine the capabilities of language mod- 056

els so that they not only solve problems, but also 057

foster a deeper understanding and proficiency in 058

the programmer using them, thereby enhancing the 059

educational journey of learning through mistakes. 060

The contributions of this work are two-fold: 061

(i) we present a relatively small IotaCode1 1.3B 062

model for code generation which outperform Al- 063

phaCode 9B model on the hard test set of Code- 064

Contests and 065

(ii) we demonstrate that PPO algorithm with re- 066

ward model can be effectively applied to the code 067

generation domain, unlike in previous works, while 068

novel alignment algorithms show no improvement 069

over supervised fine-tuning. 070

2 Dataset 071

Data sources for this work include the CodeCon- 072

tests dataset (Li et al., 2022) and a collection of pub- 073

lic solutions from the Codeforces website, along 074

with metadata. CodeContests consists of texts 075

and solutions for 13,328 problems from several 076

1Traditionally the letter ι (reading “iota”) is associated
with something very small, since it is visually the smallest
letter in Greek aplhabet.

1

sites (Aizu, AtCoder, CodeChef, Codeforces, Hack-077

erEarth). There are a total of 4.4 million correct078

solutions and 8.7 million incorrect solutions. The079

dump contains solutions for 6,998 problems from080

1,534 programming contests. The test set problems081

were excluded from the dump to ensure proper082

evaluation.083

Supervised fine-tuning requires data to be for-084

matted as prompt and completion pairs. In the085

context of generating programs, prompts are prob-086

lem statements and completions are solutions. To087

promote diversity, we mixed the CodeContests and088

dump data in approximately equal ratios, result-089

ing in a total of 1.2 million samples. The average090

sequence length is 1500 tokens. To save GPU mem-091

ory and eliminate outliers, we only kept samples092

shorter than 4000 tokens, corresponding to the 99th093

percentile.094

Alignment algorithms require data to be format-095

ted as triplets consisting of a prompt, a preferred096

completion, and a dispreferred completion. There-097

fore, the CodeContests dataset is a natural choice098

due to the presence of incorrect solutions. Preferred099

completions are those with an “OK” verdict, while100

all other completions are considered dispreferred.101

We tested two strategies for collecting triplets: the102

first was to select solutions closest in terms of Lev-103

enshtein distance, and the second was to simply104

assign a random wrong solution to each correct105

one. We did not observe significant differences be-106

tween these two approaches. Therefore, we mixed107

random and closest negatives, resulting in a total108

of 2 million triplets.109

3 Method110

Traditionally, the alignment of language mod-111

els (Christiano et al., 2017) is based on the training112

objective, specified as:113

max
πθ

Ex∼D,y∼πθ(y|x)114 [
rϕ(x, y)

]
− βDKL

[
πθ(y|x)||πref(y|x)

]
, (1)115

where D is the training dataset, x is the prompt, y is116

the completion, πθ is the policy (language model)117

being optimized, and rϕ(x, y) is the scalar output118

of the reward model for prompt x and completion119

y, πref is the reference model (usually obtained by120

supervised fine-tuning pre-trained LLM).121

Conventionally (Ouyang et al., 2022), the opti-122

mization of the objective 1 is handled by reinforce-123

ment learning, especially by the Proximal Policy124

Optimization (PPO) (Schulman et al., 2017) algo- 125

rithm. PPO is an on-policy actor-critic reinforce- 126

ment learning algorithm, designed to prevent large, 127

destabilizing changes, ensuring smoother training 128

by using a clipped surrogate objective. At first a 129

reward model (RM) is trained to match human pref- 130

erences on a dataset of ranked response pairs by 131

optimizing the log likelihood of a Bradley-Terry 132

model (Bradley and Terry, 1952) 133

min
ϕ

−E(x,yw,yl)∼D [log σ(rϕ(x, yw)− rϕ(x, yl))] ,

(2) 134

where yw and yl are preferred and unpreffered 135

responses respectively. Afterwards, the LLM is 136

trained to generate responses maximizing the RM’s 137

values. 138

Despite these successes, reinforcement learning 139

algorithms face inherent limitations such as ineffi- 140

ciency, instability, extensive resource requirements, 141

and complex hyperparameter tuning, which can im- 142

pede the performance and scalability of LLMs. To 143

overcome these challenges, recent studies have in- 144

troduced various variants of RL-free methods that 145

do not rely on PPO. 146

A recent development by Direct Preference Op- 147

timization (Rafailov et al., 2023) introduced an 148

RL-free approach aimed at aligning a policy model 149

by optimizing the likelihood of the preferred and 150

unpreferred responses. The DPO loss function is 151

mathematically articulated in Equation 3 as fol- 152

lows: 153

LDPO(πθ;πref) = −E(x,yw,yl)∼D 154[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
.

(3)

155

Despite DPO being more stable and easier to im- 156

plement than PPO, it still requires separate super- 157

vised fine-tuning phase and calling reference model 158

during training. Addressing these limitations an 159

even simpler approach named Odds Ratio Prefer- 160

ence Optimization (ORPO) (Hong et al., 2024) was 161

introduced, which efficiently penalizes the model 162

from learning undesired generation styles during 163

SFT by adding odd ratio penalty term to the lan- 164

guage modelling loss. 165

Loss function is formulated as follows: 166

LORPO = E(x,yw,yl)∼D[LSFT + λLOR], (4) 167

where 168

LOR = − log σ

(
log

oddsθ(yw|x)
oddsθ(yl|x)

)
, (5) 169

2

where LSFT is standard supervised loss (Eq. 7) and170

oddsθ(y|x) =
pθ(y|x)

1− pθ(y|x)
. (6)171

4 Experiments172

For our experiments, we use DeepSeek Coder173

1.3B (Guo et al., 2024) as the base model. This174

model is a transformer decoder-only architecture,175

pretrained on a large corpus of code and natural176

language.177

SFT First phase is supervied fine-tuning (SFT),178

where the model is trained to generate correct so-179

lution by optimizing standard language modelling180

loss:181

LSFT =
∑
i

log pθ(yi|x, y<i), (7)182

where yi refers to i-th solution token, x is prompt183

(problem text), y<i are tokens before yi.184

Due to the high sequence length (4000 max),185

the batch size was set to 1, and gradients were186

accumulated over 4 steps. Considering parallelism187

and gradient accumulation, the effective batch size188

was 8. AdamW (Loshchilov and Hutter, 2018) was189

used for optimization with a learning rate of 1e-4,190

a cosine annealing decay schedule (Loshchilov and191

Hutter, 2016), and 5000 linear warm-up steps.192

DPO Fine-tuning all parameters with DPO sig-193

nificantly degraded the model’s performance. To194

introduce additional regularization into the training195

process, we used LoRA (Hu et al., 2021) with a196

rank of 32, applied to all layers except the embed-197

ding layer. It is worth noting that using LoRA dur-198

ing DPO significantly reduces memory consump-199

tion, as there is no need to keep a separate reference200

model in memory, one can simply disable adapter201

parameters during forward pass. For greater sta-202

bility, in accordance with the original paper, the203

effective batch size was increased to 64, the learn-204

ing rate was set to 1e-6, and β was set to 1.0. The205

remaining parameters were the same as in SFT206

training.207

ORPO ORPO training hyperparameters are sim-208

ilar to DPO, excepting β = 0.1.209

Reward Model Training The reward model210

plays a crucial role by assessing the relative quality211

of generated code, which is central to our training212

approach. Training this model presents unique chal-213

lenges, especially in the context of programming214

contests:215

• Challenge of Plateauing: During the training 216

phase, we observed a plateau in the loss and 217

performance metrics, as the model struggled 218

to differentiate effectively between higher and 219

lower quality solutions. 220

• Domain Adaptation Strategy: To address 221

this, a domain adaptation approach was 222

adopted by pretraining the reward model in a 223

language modeling setup using code contest 224

data. This strategy helped prevent plateau- 225

ing by acquainting the model with the typi- 226

cal structures and logic found in contest prob- 227

lems. 228

• Training Details: The model was trained 229

with a learning rate of 1.4×10−5 over a single 230

epoch, using a dataset comprising 2,000,000 231

samples, ensuring robust assessment capabili- 232

ties. 233

PPO Proximal Policy Optimization is utilized 234

to iteratively refine the policy model based on the 235

feedback from the reward model. This method is 236

designed to enhance the policy’s ability to gener- 237

ate higher-quality code by aligning it more closely 238

with the reward evaluations. Training with PPO 239

involves: 240

• LoRA Adapters: Low-Rank Adapters 241

(LoRA) are utilized to restrict the model’s 242

flexibility, thus maintaining control over the 243

learning process and preventing overfitting. 244

LoRA is applied with a rank of 32 to all layers 245

except the embedding layer. 246

• Training Details: The effective batch size is 247

set to 28, with a learning rate of 1.4×10−5. A 248

cosine annealing decay schedule is used, with 249

training conducted over 10 epochs given the 250

dataset’s size of about 8,000 unique problems. 251

Evaluation The problems in CodeForces compe- 252

titions are significantly more challenging than those 253

in HumanEval (Chen et al., 2021) or MBPP (Austin 254

et al., 2021), requiring the recognition and use of 255

non-trivial algorithms. Therefore, following the 256

approach of AlphaCode (Li et al., 2022), we gener- 257

ate 1,000 solutions for each problem. The test set 258

of the CodeContests dataset consists of 165 prob- 259

lems, each with 2-3 public tests and 200 private 260

tests. For efficient generation of a large number of 261

solutions, we use the VLLM server2 with PagedAt- 262

tention (Kwon et al., 2023) support and automatic 263

2https://github.com/vllm-project/vllm

3

https://github.com/vllm-project/vllm

solved
problems

compile
rate

AlphaCode 9B 24
AlphaCode 1B 20
DeepSeek 1.3B-instruct 15
SFT 21 78.7
SFT + DPO 21 78.8
SFT + ORPO 21 77.3
SFT + PPO 25 40.3

Table 1: Performance on the CodeContests test split
having 165 problems.

batching of asynchronous requests. This setup al-264

lows us to generate 165,000 solutions with a 1.3B265

model in approximately 30 hours.266

The results are presented in Table 1. Reward-267

free algorithms DPO and ORPO did not improve268

the model’s performance. The best results were269

achieved by the model trained with PPO, which270

successfully solved 4 more problems than the SFT271

model and surpassed the performance of the Al-272

phaCode 9B model, despite having 7 times fewer273

parameters. We believe that the superiority of PPO274

in generating solutions for algorithmic problems is275

due to PPO being an online algorithm, unlike DPO276

and ORPO. We leave the theoretical explanation of277

this observation for future work.278

5 Related Work279

Initial experiments with large language models like280

GPT-Neo (Black et al., 2022) and GPT-J (Wang281

and Komatsuzaki, 2021) revealed that incorporat-282

ing code into the training data enables program283

synthesis, even with medium-sized models. Con-284

currently, specialized models aimed at code com-285

prehension and program synthesis from natural lan-286

guage prompts have been developed. These in-287

clude CodeBERT (Feng et al., 2020), GraphCode-288

BERT (Guo et al., 2021), Codex (Chen et al., 2021),289

CodeT5 (Wang et al., 2021), UnixCoder (Guo290

et al., 2022), CodeGen (Nijkamp et al., 2023), Star-291

Coder (Lozhkov et al., 2024), and phi-1 (Gunasekar292

et al., 2023). AlphaCode (Li et al., 2022) demon-293

strated the ability of language models to efficiently294

solve even competitive level coding problems.295

Source code can be evaluated in terms of func-296

tional correctness and compilability. CodeRL (Le297

et al., 2022) and PPOCoder (Shojaee et al., 2023)298

use actor-critic deep reinforcement learning to di-299

rectly optimize these aspects by running generated300

code against test cases. 301

6 Conclusion 302

This study presented a comprehensive examination 303

of the application of reinforcement learning with 304

human feedback (RLHF) algorithms to the field 305

of code generation, focusing on the challenges of 306

programming contests. We specifically explored 307

how the Proximal Policy Optimization (PPO) al- 308

gorithm can be utilized to enhance the capabili- 309

ties of large language models in generating code 310

that aligns more closely with human expert per- 311

formance. The experimental results demonstrate 312

that integrating feedback mechanisms through the 313

reward model substantially improves the model’s 314

ability to generate viable code solutions, ultimately 315

surpassing traditional supervised learning methods. 316

In contrast, novel reward-free algorithms DPO and 317

ORPO show no improvement over SFT. 318

The findings suggest that the careful integration 319

of reinforcement learning techniques can lead to 320

significant advancements in the performance of 321

models designed for code generation. Moreover, 322

the study highlights the potential of combining var- 323

ious training paradigms to overcome inherent limi- 324

tations in each method, thereby setting a new stan- 325

dard for model training in applied AI fields. 326

7 Limitations 327

Despite the successes reported, this study acknowl- 328

edges several limitations that warrant considera- 329

tion: 330

• Resource Intensity: The training methodolo- 331

gies employed, particularly PPO and the use 332

of reward models, are resource-intensive, re- 333

quiring substantial computational power and 334

data, which might not be feasible in all re- 335

search or practical contexts. 336

• Generalizability: While the results are 337

promising within the scope of programming 338

contests, the generalizability of these models 339

to other domains of code generation or dif- 340

ferent programming languages has not been 341

thoroughly explored. 342

• Dependency on Quality Data: The perfor- 343

mance of the models heavily relies on the 344

availability and quality of the training data. In 345

environments where high-quality or domain- 346

specific data is scarce, the models’ effective- 347

ness could be significantly diminished. 348

4

• Complexity in Implementation: The imple-349

mentation of combined training approaches,350

such as integrating LoRA with PPO, intro-351

duces complexity that can increase the diffi-352

culty of model tuning and maintenance.353

• Potential for Overfitting: There is a risk of354

overfitting when fine-tuning with highly spe-355

cific data sets such as those from code con-356

tests, potentially limiting the model’s perfor-357

mance on novel or unseen problems.358

Future work will aim to address these limitations359

by exploring more efficient training algorithms, ex-360

panding the applicability of models to a broader361

range of programming tasks, and enhancing the362

models’ ability to generalize from limited or noisy363

data. Additionally, efforts will be made to stream-364

line model architectures to reduce resource con-365

sumption without compromising the quality of the366

generated code.367

References368

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten369
Bosma, Henryk Michalewski, David Dohan, Ellen370
Jiang, Carrie Cai, Michael Terry, Quoc Le,371
and Charles Sutton. 2021. Program Synthesis372
with Large Language Models. arXiv preprint.373
ArXiv:2108.07732 [cs].374

Sid Black, Stella Biderman, Eric Hallahan, Quentin An-375
thony, Leo Gao, Laurence Golding, Horace He, Con-376
nor Leahy, Kyle McDonell, Jason Phang, Michael377
Pieler, USVSN Sai Prashanth, Shivanshu Purohit,378
Laria Reynolds, Jonathan Tow, Ben Wang, and379
Samuel Weinbach. 2022. Gpt-neox-20b: An open-380
source autoregressive language model. Preprint,381
arXiv:2204.06745.382

Ralph Allan Bradley and Milton E. Terry. 1952. Rank383
Analysis of Inclomplete Block Design: The Method384
of Paired Comparisons. Biometrika, 39(3-4):324–385
345.386

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming387
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-388
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,389
Greg Brockman, Alex Ray, Raul Puri, Gretchen390
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-391
try, Pamela Mishkin, Brooke Chan, Scott Gray,392
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz393
Kaiser, Mohammad Bavarian, Clemens Winter,394
Philippe Tillet, Felipe Petroski Such, Dave Cum-395
mings, Matthias Plappert, Fotios Chantzis, Eliza-396
beth Barnes, Ariel Herbert-Voss, William Hebgen397
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie398
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,399
William Saunders, Christopher Hesse, Andrew N.400
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan401

Morikawa, Alec Radford, Matthew Knight, Miles 402
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 403
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 404
Sutskever, and Wojciech Zaremba. 2021. Evaluating 405
Large Language Models Trained on Code. arXiv 406
preprint. ArXiv:2107.03374 [cs]. 407

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar- 408
tic, Shane Legg, and Dario Amodei. 2017. Deep 409
reinforcement learning from human preferences. In 410
Advances in Neural Information Processing Systems, 411
volume 30. Curran Associates, Inc. 412

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 413
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 414
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 415
BERT: A pre-trained model for programming and 416
natural languages. In Findings of the Association 417
for Computational Linguistics: EMNLP 2020, pages 418
1536–1547, Online. Association for Computational 419
Linguistics. 420

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 421
César Teodoro Mendes, Allie Del Giorno, Sivakanth 422
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 423
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, 424
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, 425
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, 426
and Yuanzhi Li. 2023. Textbooks are all you need. 427
Preprint, arXiv:2306.11644. 428

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming 429
Zhou, and Jian Yin. 2022. UniXcoder: Unified Cross- 430
Modal Pre-training for Code Representation. arXiv 431
preprint. ArXiv:2203.03850 [cs]. 432

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 433
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy- 434
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun 435
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, 436
Jian Yin, Daxin Jiang, and Ming Zhou. 2021. Graph- 437
CodeBERT: Pre-training Code Representations with 438
Data Flow. arXiv preprint. ArXiv:2009.08366 [cs]. 439

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 440
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 441
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and 442
Wenfeng Liang. 2024. DeepSeek-Coder: When 443
the Large Language Model Meets Programming 444
– The Rise of Code Intelligence. arXiv preprint. 445
ArXiv:2401.14196 [cs]. 446

Jiwoo Hong, Noah Lee, and James Thorne. 2024. 447
ORPO: Monolithic Preference Optimization 448
without Reference Model. arXiv preprint. 449
ArXiv:2403.07691 [cs]. 450

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, 451
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, 452
et al. 2021. Lora: Low-rank adaptation of large lan- 453
guage models. In International Conference on Learn- 454
ing Representations. 455

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 456
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 457
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 458

5

https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.2108.07732
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/abs/2306.11644
https://doi.org/10.48550/arXiv.2203.03850
https://doi.org/10.48550/arXiv.2203.03850
https://doi.org/10.48550/arXiv.2203.03850
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2403.07691
https://doi.org/10.48550/arXiv.2403.07691
https://doi.org/10.48550/arXiv.2403.07691

memory management for large language model serv-459
ing with pagedattention. In Proceedings of the 29th460
Symposium on Operating Systems Principles, pages461
611–626.462

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio463
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:464
Mastering code generation through pretrained models465
and deep reinforcement learning. In Advances in466
Neural Information Processing Systems, volume 35,467
pages 21314–21328. Curran Associates, Inc.468

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,469
Julian Schrittwieser, Rémi Leblond, Tom Eccles,470
James Keeling, Felix Gimeno, Agustin Dal Lago,471
Thomas Hubert, Peter Choy, Cyprien de Mas-472
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-473
Sen Huang, Johannes Welbl, Sven Gowal, Alexey474
Cherepanov, James Molloy, Daniel J. Mankowitz,475
Esme Sutherland Robson, Pushmeet Kohli, Nando476
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.477
2022. Competition-level code generation with alpha-478
code. Science, 378(6624):1092–1097.479

Ilya Loshchilov and Frank Hutter. 2016. Sgdr:480
Stochastic gradient descent with restarts. ArXiv,481
abs/1608.03983.482

Ilya Loshchilov and Frank Hutter. 2018. Decoupled483
weight decay regularization. In International Confer-484
ence on Learning Representations.485

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-486
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,487
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,488
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur489
Zucker, Younes Belkada, Zijian Wang, Qian Liu,490
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-491
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue492
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,493
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,494
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,495
Niklas Muennighoff, Xiangru Tang, Muhtasham496
Oblokulov, Christopher Akiki, Marc Marone, Cheng-497
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,498
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas499
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten500
Scholak, Sebastien Paquet, Jennifer Robinson, Car-501
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-502
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz503
Ferrandis, Lingming Zhang, Sean Hughes, Thomas504
Wolf, Arjun Guha, Leandro von Werra, and Harm505
de Vries. 2024. StarCoder 2 and The Stack v2: The506
Next Generation. arXiv preprint. ArXiv:2402.19173507
[cs].508

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan509
Wang, Yingbo Zhou, Silvio Savarese, and Caiming510
Xiong. 2023. Codegen: An open large language511
model for code with multi-turn program synthesis.512
Preprint, arXiv:2203.13474.513

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,514
Carroll Wainwright, Pamela Mishkin, Chong Zhang,515
Sandhini Agarwal, Katarina Slama, Alex Ray, John516

Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 517
Maddie Simens, Amanda Askell, Peter Welinder, 518
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022. 519
Training language models to follow instructions with 520
human feedback. In Advances in Neural Information 521
Processing Systems, volume 35, pages 27730–27744. 522
Curran Associates, Inc. 523

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 524
pher D Manning, Stefano Ermon, and Chelsea Finn. 525
2023. Direct preference optimization: Your language 526
model is secretly a reward model. In Thirty-seventh 527
Conference on Neural Information Processing Sys- 528
tems. 529

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec 530
Radford, and Oleg Klimov. 2017. Proximal policy 531
optimization algorithms. CoRR, abs/1707.06347. 532

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and 533
Chandan K. Reddy. 2023. Execution-based code gen- 534
eration using deep reinforcement learning. Preprint, 535
arXiv:2301.13816. 536

Ben Wang and Aran Komatsuzaki. 2021. GPT-J- 537
6B: A 6 Billion Parameter Autoregressive Lan- 538
guage Model. https://github.com/kingoflolz/ 539
mesh-transformer-jax. 540

Yue Wang, Weishi Wang, Shafiq Joty, and Steven 541
C. H. Hoi. 2021. CodeT5: Identifier-aware Uni- 542
fied Pre-trained Encoder-Decoder Models for Code 543
Understanding and Generation. arXiv preprint. 544
ArXiv:2109.00859 [cs]. 545

6

https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://api.semanticscholar.org/CorpusID:15884797
https://api.semanticscholar.org/CorpusID:15884797
https://api.semanticscholar.org/CorpusID:15884797
https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.48550/arXiv.2402.19173
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2301.13816
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859

	Introduction
	Dataset
	Method
	Experiments
	Related Work
	Conclusion
	Limitations

