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Abstract

In this paper, we take the recently presented PseudoEdgeNet model to the level of multi-
class cell segmentation in histopathology images solely trained with point annotations. We
tailor its loss function to the challenges of multi-class segmentation and equip it with an
additional false positive loss term. We evaluate it on the assessment of tumor and immune
cells in PD-L1 stained lung cancer histopathology images, and compare it with YOLOv5.
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1. Introduction

Cell detection and segmentation in histopathology images are core steps in research and de-
velopment of digital biomarkers that rely on counting, quantifying and analyzing shape and
spatial interaction of multiple cell types. One example is the tumor proportion score (TPS),
defined as the fraction of tumor cells positive to a PD-L1 immunohistochemical staining
over all tumor cells in a tumor biopsy, assessed by pathologists to select non-small cell lung
cancer (NSCLC) patients to receive immunotherapy. Computer assisted assessment of the
TPS can address the current limitations in the subjective interpretation of PD-L1 expres-
sion at cell level, such as the presence of other PD-L1 positive cells (e.g. macrophages, to
be excluded from the TPS) or the estimation uncertainty inherent in assessing potentially
hundreds of thousands of cells in a tissue sample. We propose to automate the cell quantifi-
cation task at the core of patient selection by detecting, classifying and segmenting PD-L1
positive (PD-L1+) and PD-L1 negative (PD-L1−) tumor and immune cells in PD-L1 stained
NSCLC tissue samples, a task that, to the best of our knowledge, has only been addressed
in (Althammer et al., 2019) using a closed-source solution. We developed µ-PseudoEdgeNet
(µPEN), a novel multi-class formulation of PseudoEdgeNet (PEN) (Yoo et al., 2019), to
produce multi-class cell segmentation from cell point annotations. In addition to altering
the loss terms for multi-class segmentation, we equip µPEN with a false-positive loss to
promote specificity. We empirically show the contribution of each loss term and benchmark
detection performance versus the state-of-the-art detection method YOLOv51.
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2. µ-PseudoEdgeNet

µPEN updates and expands (Figure 1, green area) PEN’s segmentation network f , edge
network g and attention network h, to predict multi-class cell segmentation when only
trained with point annotations in input patches I using the following loss function L:
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Figure 1: µ-PseudoEdgeNet.

where Sc
i is the softmax output at pixel i and

class c, T c
i is the point annotations in the

ground truth matrix. To compute the seg-
mentation loss, we first calculate the Voronoi
boundaries V from all point annotations P ,
from which we compute the cross-entropy
with non-background predictions Sc>0. Sim-
ilarly, we compute the cross-entropy with the
background predictions Sc=0 for all pixels on
Voronoi boundaries V . To ensure cell bound-
ary segmentation, the edge loss is calculated as
the sum of the absolute difference between the
output of the Sobel filter s and the element-
wise multiplication of the output of the edge network g and the attention module h, similar
to the original PEN. In our multi-class version, we adapt the filter to be applied on the
sum of foreground predictions, F = ∑c>0 S

c. Inspired by (Laradji et al., 2018), we intro-
duced a false positive loss term by computing the cross-entropy of all connected components
that cannot be associated with any point annotations in P . This loss term penalizes non-
background predictions in false positive connected components denoted by Bfp, and we
weigh its contribution by introducing the scaling constants λ1 and λ2, which are set to 1
and 10 after empirical evaluation. We train the same CNN backbones as in the original PEN
from scratch with He initialization. At test time, we take the majority vote of all classes in a
connected component and apply morphology based post-processing and test time color and
shape augmentations. As a benchmark for µPEN, we also apply YOLOv5 to our dataset,
using the default setting of its smallest model (YOLOv5s, 7.3M parameters, release 4.0),
pretrained on the MS COCO dataset, only increasing the training IoU threshold to 0.25.

3. Experimental results

We collected n=39 whole-slide NSCLC histopathology images from 33 patients, stained
for PD-L1 and digitized at 40× magnification. A trained medical research assistant (LM)
supervised by lung pathologists (MLS, SV) selected 87 regions of interest (ROI) of 250×250
µm and manually annotated 32,180 cells in total with point annotations of tumor and
immune cells, either PD-L1+ or PD-L1− (four classes in total); annotations where checked
by pathologists. We applied a data split of 21/9/9 for training/validation/testing, balanced
at both patient and cell class level across sets. For YOLOv5, all point annotations were
extended to bounding boxes of size 10×10 µm.
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Figure 2: (Left) Polar chart showing the F1 scores per class & macro-averages. µPEN with-
out FP loss is functionally equivalent to PEN. (Right) Visual results for YOLOv5/µPEN.

We trained µPEN and YOLOv5 on 512×512px patches (0.25µm/px) and selected best
models based on the lowest validation loss. We translated predictions to points by taking
the center-of-mass of the segmentation (µPEN) or bounding box (YOLOv5) and compared
models’ performance via the F1 score: an annotation is a hit when a detection is within
a 4µm distance (average radius of a cell in our dataset). Figure 2 depicts the incremental
improvement of µPEN over PEN using the proposed false positive loss terms (0.611 vs.
0.653). It also shows that µPEN outperforms YOLOv5 when used “off-the-shelf”. However,
further hyper-parameter tuning could boost YOLOv5’s performance.

4. Conclusions

The output of µPEN can potentially power (semi-)automated TPS assessment via cell
localization and classification, as well as future biomarker research based on spatial inter-
action, size and morphology of different cell types without the need to train with manual
annotations of cell borders. This multi-class framework can be easily extended to include
non-tumor and non-immune cells, making this approach applicable to whole-slide images.
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