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Abstract

Variational mean field approximations tend to struggle with contemporary over-
parametrized deep neural networks. Where a Bayesian treatment is usually associ-
ated with high-quality predictions and uncertainties, the practical reality has been
the opposite, with unstable training, poor predictive power, and subpar calibration.
Building upon recent work on reparametrizations of neural networks, we propose a
simple variational family that considers two independent linear subspaces of the
parameter space. These represent functional changes inside and outside the support
of training data. This allows us to build a fully-correlated approximate posterior
reflecting the overparametrization that tunes easy-to-interpret hyperparameters.
We develop scalable numerical routines that maximize the associated evidence
lower bound (ELBO) and sample from the approximate posterior. Empirically, we
observe state-of-the-art performance across tasks, models, and datasets compared
to a wide array of baseline methods. Our results show that approximate Bayesian
inference applied to deep neural networks is far from a lost cause when constructing
inference mechanisms that reflect the geometry of reparametrizations.

1 The troubles of the overparametrized Bayesian

Bayesian inference provides an attractive framework for learning from data, marginalizing a data-
dependent likelihood with a data-independent prior leads to a combined probability measure that can
be used for learning. For most model classes, the marginalization is intractable, and we resort to
approximate methods of integration. While this has shown itself to be a very successful approach,
overparametrized models have subtle characteristics that lead to significant challenges in practice.

Specifically, overparametrizations lead to a many-to-one relationship where several parameter con-
figurations describe the same function. Dinh et al. (2017) exemplify that the neural network
f(x) = w1 ReLU(w2 x) can be reparametrized as f(x) = w1/γReLU(γ w2 x) for any γ ̸= 0,
implying that the weights (w1, w2) and (w1/γ, γw2) yield identical functions. Thus, despite having
two trainable parameters, the neural network only has one degree of freedom. Making matters worse,
the discrepancy between the number of parameters and degrees of freedom generally grows with the
model size. If the marginalization can be performed analytically, the resulting measure will reflect
this structure; however, if we need to resort to approximate methods, we need to carefully design our
approximation so that the correct geometry of the problem can be parametrized. If not, the resulting
object will not be a valid probability measure over the space of functions and application of this
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object will lead to pathological solutions where the same function has different densities dependent
on its parametrization (Watanabe, 2009).

In recent work, Roy et al. (2024) showed that the parameters describing the same function are
continuously connected sets in the weight space. This has damaging effects as traditional posterior
approximations like Laplace approximations (MacKay, 1992) or mean-field approximations (Blun-
dell et al., 2015) cannot accurately reflect the reparametrizations, which lead to the disappointing
performance of approximate Bayesian inference in these types of models.

In this paper, we study variational inference applied to overparametrized deep neural networks.
We propose an approach that takes the intractable posterior and factorizes it into two orthogonal
parts, a data-dependent and a data-independent measure. These can, intuitively, be seen as modeling
uncertainties on the training data in one subspace and elsewhere in the other. Importantly, this leads to
an easy-to-interpret structure analogous to the likelihood and the prior that lead to the posterior in the
first place. Despite having an interpretable and simple decomposition, our approach is fundamentally
fully correlated and captures dependencies between all model parameters, addressing the pathological
behavior of previous methods. This introduces a computational challenge, which we address through
a stochastic extension of the alternating projections algorithm that was recently proposed for post hoc
posterior approximation (Miani et al., 2025). The result is a scalable, architecture-agnostic approach
to Bayesian training of deep neural networks that achieves state-of-the-art performance on a wide
array of contemporary models and datasets. The code for reproducing our experiments is available
online1. An easy-to-use library with an implementation of our method is also available online2.

2 Background and related work

The aspiration of Bayesian deep learning is to combine the predictive advantages of deep neural
networks with the theoretical justifications of the Bayesian framework, hoping to achieve the benefit
of both. While the individual layers in a neural network are simple mathematical objects, the
compositional structure of the layers renders posterior inference analytically intractable for any
interesting model. There has been a range of different approaches to recover posterior estimates of
the neural network weights (Hernandez-Lobato and Adams, 2015; Hron et al., 2018; Li et al., 2015;
MacKay, 1995), but often the benefits have failed to materialise. Rather, it is common to experience
either over- or underfitting (Daxberger et al., 2021; Kristiadi et al., 2022; Wenzel et al., 2020; Zhang
et al., 2024), and most Bayesian training schemes are reported to be brittle (Warburg et al., 2023).
Success in achieving the promises of a Bayesian treatment of deep neural networks has been so
elusive that it raises the question if there is something inherent in their structure that renders it numb
to a Bayesian approach (Sharma et al., 2023).

Singular learning theory (Watanabe, 2009) argues that the troubling structure comes from over-
parametrizations, where a single function can be described in more than one way. While mathemati-
cally elegant, the algebraic geometric approach has been difficult to turn into computational practice.
Instead, Roy et al. (2024) framed the problem in terms of differential geometry by studying how the
geometry of the function space embeds itself into the parameter space. From this, the authors were
able to characterise the manifold of reparametrizations in a manner that lends itself to computation.
Specifically, the manifold can be characterized locally by the kernel3 of the Fisher–Rao metric over
the network parameters θ (Amari, 2016),

Fθ = Ey∼pθ(y|x)

[
∂ log pθ(y|x)

∂θ

∂ log pθ(y|x)
∂θ

⊤
]
∈ RD×D. (1)

Here log pθ(y|x) is the log-likelihood of the data parametrized by θ ∈ RD. The kernel of this matrix
infinitesimally gives directions in weight space where log pθ(y|x) is constant for all observations in
the support of the data. This provides a characterization of why Bayesian learning has not succeeded,
showing that for deep learning to harvest the benefit of a Bayesian treatment, the geometrical structure
needs to be reflected in the approximate posterior. For a detailed discussion, we refer to (Kunstner
et al., 2019; Miani et al., 2025).

1https://github.com/eugene/viking-paper-experiments
2https://github.com/fadel/viking
3Throughout the paper, kernel refers to the null space of a matrix, while image is its orthogonal complement.
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Figure 1: Panels a and b show isotropic Gaussian samples that have been projected onto the kernel
and image of the empirical Fisher–Rao metric associated with a neural network trained on the shown
data. The kernel samples retain the predictions of the neural network, while the image samples do
not. Panel c shows the learned weight-variances of IVON trained on CIFAR-10. These variances are
near-identical across weights, suggesting that an isotropic approximate posterior has been learned.

Miani et al. (2025) take steps towards integrating knowledge of overparametrization into a post-hoc
approximate posterior. They note that the kernel of per-datum loss-Jacobian, which is closely related
to the Fisher–Rao metric (1), consists of functions with identical training loss. Assuming noise-free
data, they restrict the approximate posterior to only have probability mass in this kernel, resulting in
a posterior approximation from which all samples have the same loss (see Figure 1a,b).

Variational inference (Blei et al., 2017) has shown itself to be an efficient and robust approach
to approximate Bayesian inference and has been applied in several different ways to deep neural
networks. Existing variational approximations predominantly use Gaussian variational distributions
p(θ|x) ≈ N (θ|θ̂,Σ), see, e.g., (Blundell et al., 2015; Shen et al., 2024), where θ̂ and Σ are the
variational parameters learned. To ensure that the approximation is tractable, the covariance Σ is
commonly given a diagonal or block-diagonal structure, i.e., a mean field approximation (Daxberger
et al., 2021). Current state-of-the-art in this direction appears to be IVON (Shen et al., 2024), which
develops a Newton-like optimization scheme for the evidence lower bound (ELBO) associated with
the mean field approximation. In our experience, IVON tends to learn near-identical variances for
all network weights (Figure 1c), suggesting that the posterior approximation is inaccurate. Further,
mean field approximations tend to be brittle and sensitive to the choice of hyperparameters. One
hypothesis for this behavior is that the independence assumptions of mean field cause instabilities
in overparametrized models, where parameters, by construction, are highly correlated. In this work,
we want to build a full variational inference method that respects the geometry induced by the
overparametrization characterized by Roy et al. (2024). To achieve this, we split the parameter space
into the kernel and image of the Fisher–Rao metric, considering these independent.

The numerical computations associated with non-trivial covariance structures can be daunting. The
first challenge is that for large neural networks, the covariance matrix cannot be stored in memory as
its size grows quadratically with the number of network parameters. One remedy is to note that some
matrices, e.g., the Fisher–Rao metric (1) and the generalized Gauss–Newton matrix (Daxberger et al.,
2021), are functions of the training data. This implies that vector products of such matrices can be
implemented without instantiation — a so-called matrix-free approach. This allows for working with
non-trivial covariances at the cost of a higher compute budget, see, e.g., (Miani et al., 2024, 2025;
Roy et al., 2024) for examples.

3 VIKING: Variational Inference with Kernel- and Image-spaces of
numerical Gauss–Newton matrices

We next build a variational training loop designed with overparametrization in mind. We start from
the ever-present prior p(θ) = N (θ|0, α−1I) over parameters θ ∈ RD, with precision α ∈ R. As
motivated earlier, we choose a variational family q(θ) that is linked to the kernel of an empirical
estimate of the Fisher–Rao (FR) metric at θ̂, denoted ker(Fθ̂) ⊂ RD. Specifically,

q(θ) = N (θ|θ̂,Σθ̂), Σθ̂ = σ2
kerUθ̂U

⊤
θ̂
+ σ2

im(I−Uθ̂U
⊤
θ̂
). (2)

Here, Uθ̂ ∈ RD×R is a R-dimensional basis of the kernel, such that Uθ̂U
⊤
θ̂

is a projection matrix that
maps parameter vectors in RD to the linear subspace ker(Fθ̂). In other words, for any v ∈ RD we
have Uθ̂U

⊤
θ̂
v ∈ ker(Fθ̂), wherein the model’s loss is unchanged at the data used to estimate the FR.
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Algorithm 1: The VIKING algorithm

Input: Initial values of (θ̂, σker, σim), dataset with B mini-batches
Output: Optimized values of (θ̂, σker, σim), representing q(θ) (Equation 2)

1 for each epoch do
2 for each Monte Carlo sample s = 1 to S do
3 Take ϵ(s,0) ∼ N (0, I)
4 for each mini-batch t = 1 to B do
5 Compute ϵ(s,t) from ϵ(s,t−1) (Equation 14) ▷ Alternating projections

6 ϵ
(s,0)
ker ← ϵ(s,B)

7 for each mini-batch t = 1 to B do
8 for each Monte Carlo sample s = 1 to S do
9 Compute ϵ

(s,t)
ker from ϵ

(s,t−1)
ker (Equation 18)

10 ϵ
(s,t)
im ← ϵ(s,0) − ϵ

(s,t)
ker

11 θ(s) ← θ̂ + σkerϵ
(s,t)
ker + σimϵ

(s,t)
im ▷ A sample from q(θ)

12 θ̂, σker, σim ← Gradient step on L(θ̂, σker, σim) using {θ(s)}Ss=1 (Equation 3)

This proposed approximate posterior is perhaps the simplest possible choice that is adapted to
overparametrized models: it has one scalar parameter, σ2

im ∈ R+, that influences the predictive
uncertainty on the training data, and another scalar parameter σ2

ker ∈ R+ that reflects uncertainty
elsewhere. Arguably, it is overly simplistic to calibrate a neural network through two scalars, but we
will see that it is surprisingly competitive, suggesting that explicitly reflecting overparametrization is
important in Bayesian approximations.

3.1 The VIKING ELBO

To estimate q(θ), we maximize the usual (variational) lower bound L of the likelihood p(y|θ,x)
L(θ̂, σker, σim) = Eθ∼q [log p(y|θ,x)]−KL(q(θ)∥p(θ)), (3)

where KL denotes the Kullback-Leibler divergence. We call the result Variational Inference with
Kernel- and Image-spaces of numerical Gauss–Newton matrices (VIKING). The overall algorithmic
steps involved in our method are summarized in Algorithm 1. We refer to the two terms of the ELBO
as the reconstruction term and the KL term, respectively, and discuss their evaluation in what follows.

The reconstruction term. Assume access to an algorithm to approximate products between the
projection matrix Uθ̂U

⊤
θ̂

and any vector v ∈ RD. For s = 1, . . . , S, we can then estimate of the
reconstruction term as

ϵ(s) ∼ N (0, I) ∈ RD, (4)

(projection onto kernel space) ϵ
(s)
ker = Uθ̂U

⊤
θ̂
ϵ(s) ∈ RD, (5)

(image space is orthogonal) ϵ
(s)
im = (I−Uθ̂U

⊤
θ̂
)ϵ(s) = ϵ(s) − ϵ

(s)
ker ∈ RD, (6)

θ(s) = θ̂ + σkerϵ
(s)
ker + σimϵ

(s)
im ∈ RD, (7)

Eθ∼q [log p(y|θ,x)] ≈
1

S

S∑
s=1

log p(y|θ(s),x) ∈ R . (8)

Here, Equation 5 requires careful computation, to be addressed later. Once ϵ(s)ker is computed, obtaining
a sample θ(s) from the approximate posterior is trivial.

The KL term. Since we have both a Gaussian prior and a Gaussian approximate posterior, we can
evaluate the KL term in closed form with

KL(q(θ)∥p(θ)) = 1

2

(
αTr(Σθ̂)−D + α∥θ̂∥2 −D log(α)− log det(Σθ̂)

)
. (9)
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Recall the construction of Σθ̂ from Equation 2. Since Σθ̂ is a sum of scaled projection matrices, it
has R eigenvalues equal to σ2

ker and D−R eigenvalues equal to σ2
im. We can, thus, evaluate

Tr(Σθ̂) = σ2
kerR+ σ2

im(D−R), and (10)
log det(Σθ̂) = 2R log(σker) + 2(D−R) log(σim), (11)

requiring only an estimate of the kernel dimension R to evaluate the full KL term in closed form.

To estimate R, we note that Uθ̂U
⊤
θ̂

is a projection matrix, i.e., it has R eigenvalues that are 1 while
the remaining are 0. Consequently,

R = Tr(Uθ̂U
⊤
θ̂
) ≈ 1

S

S∑
s=1

ϵ(s)
⊤
︷ ︸︸ ︷
Uθ̂U

⊤
θ̂
ϵ(s) =

1

S

S∑
s=1

ϵ(s)
⊤
ϵ
(s)
ker, (12)

where the approximation is Hutchinson’s trace estimator (Hutchinson, 1989). Note that we may reuse
ϵ
(s)
ker (Equation 5) from the reconstruction term.

3.2 Kernel projections

At first glance, the ELBO terms (Equations 8 and 9) seem straightforward. The practical difficulty
lies in projecting onto ker(Fθ̂) as per Equation 5. One noticeable challenge is Uθ̂U

⊤
θ̂

having D×D
entries, where D is the number of model parameters. With many modern models having millions
or billions of parameters, it is not possible to instantiate this matrix, and we resort to matrix-free
algorithms.

We start by defining the matrix containing a stack of per-datum loss gradients,

Jθ̂ =

 ∇θ̂ log pθ̂(y1|x1)
...

∇θ̂ log pθ̂(yN |xN )

 ∈ RN×D. (13)

This matrix is chosen such that the kernel of J⊤
θ̂
Jθ̂ estimates the kernel of the Fisher–Rao metric,

ker(Fθ̂) (Equation 1), as is common practice in Bayesian deep learning (Miani et al., 2025). For a
deeper discussion of the implications of this choice, we refer to Kunstner et al. (2019). Projecting
onto the kernel of J⊤

θ̂
Jθ̂ can then be written as a least-squares problem over Jθ̂,

ϵ
(s)
ker = Uθ̂U

⊤
θ̂
ϵ(s) = argmin

u

{
∥u− ϵ(s)∥2 subject to Jθ̂u = 0

}
. (14)

Using Lagrange multipliers, we can rewrite the loss in Equation 14 as

ℓ(u,λ) =
1

2
∥u− ϵ(s)∥22 + λJθ̂u,

with minima ϵ
(s)
ker and λ∗ that satisfy[

I J⊤
θ̂

Jθ̂ 0

] [
ϵ
(s)
ker
λ∗

]
=

[
ϵ(s)

0

]
; (15)

more explicitly, the optimal solution is

ϵ
(s)
ker = ϵ(s) − J⊤

θ̂
λ∗, λ∗ = (Jθ̂J

⊤
θ̂
)−1Jθ̂ϵ

(s) (16)

The numerical bottleneck of the projection is thus inverting the matrix Jθ̂J
⊤
θ̂

. We never invert this
matrix explicitly, but instead solve the linear system Jθ̂J

⊤
θ̂
ξ = Jθ̂ϵ

(s) with the conjugate gradients
algorithm (Hestenes et al., 1952). The conjugate gradients algorithm is a matrix-free method, which
means that we never materialize the system matrix, and instead, require only matrix-vector products
and vector-matrix products, which are accessible with automatic differentiation (since the system
matrix consists of stacks per-data gradients).

Importantly, conjugate-gradient solves can be numerically brittle as they rely on well-conditioned
systems. This frequently leads to inaccurate projections, in the sense that ϵ(s)

ker and ϵ(s)

im are not
orthogonal, even if they should. The solution to this problem is to either precondition the linear
system or to improve the numerical robustness of the conjugate gradients method with reorthogonal-
ization – we found the latter to perform well, thus, all experiments use conjugate gradients with full
reorthogonalization (Gratton et al., 2021); see also Maddox et al. (2022).
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3.3 Stochastic alternating projections

The projection algorithm performs most of the computation that eventually gets us samples from
the approximate posterior q(θ). Unfortunately, following Equation 16 to project onto the FR kernel
requires working with Jθ̂J

⊤
θ̂

, a N×N matrix. Recently, Miani et al. (2025) proposed a scalable
mini-batched algorithm for projecting onto matrix kernels, based on von Neumann’s alternating
projections (1949). In our setting, this algorithm would iteratively project onto the kernel of batched
FR estimates,

ϵ 7→ U
(t)

θ̂
U

(t)⊤
θ̂

ϵ, (17)

where ϵ is the vector to be projected and U
(t)

θ̂
U

(t)⊤
θ̂

is the kernel-projection of the tth batch. This
process can be shown to converge onto the kernel of the complete-data FR (Miani et al., 2025).

Unfortunately, the alternating projections algorithm still requires one or more passes through the
entire dataset to project a single vector. As we require a sample from the approximate posterior in
every optimization step, alternating projections is inapplicable to mini-batched ELBO optimization.

The fundamental issue is that in each ELBO optimization step, we change the approximate posterior
mean θ̂, such that the FR and its kernel also change. A naive procedure would draw an initial
sample ϵ(0) ∼ N (0, I), and repeatedly project this onto mini-batch FR kernels throughout ELBO
optimization, hoping that the posterior mean changes sufficiently slowly to maintain the properties of
kernel samples. Empirically, we have not found this to be the case.

With this in mind, we propose a stochastic extension of the alternating projections algorithm suitable
for mini-batched ELBO optimization. Let ϵ(t) denote a sample in the FR kernel associated with the
posterior mean at step t (e.g., one parameter update step). We then update the sample as

ϵ(t) = U
(t)

θ̂
U

(t)⊤
θ̂

(√
γ ϵ(t−1) +

√
1− γ η(t)

)
, η(t) ∼ N (0, I), (18)

where the hyperparameter γ ∈ [0, 1] controls the noise of this stochastic alternating projection. For
γ = 1, we recover the above naive approach that disregards the change in kernel, while for γ = 0
we merely project onto the kernel of the current batched FR estimate. In-between values implement
a soft “sliding window” along the history of projections, where previous projection information is
preserved and then eventually forgotten after a certain number of steps.

0 20 40 60 80
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0.80

0.85

0.90
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 = 0.0
 = 0.5
 = 1.0

Figure 2: Performance of γ values.

What is the effect of additional noise? Empirically, we
find the stochastic extension essential to training models suc-
cessfully. In Figure 2, we show the accuracy curves over
training of a small CNN classifier on Fashion MNIST, with
dashed horizontal lines indicating performance on test data.
The experiment evaluates values of γ: no noise (γ = 1.0),
only noise (γ = 0.0), and an in-between choice (γ = 0.5), as
per Equation 18. The model without noise quickly achieves
the highest training accuracy, but its dependency on the pro-
jected samples, which change only once per epoch, leads to a
poorer approximate posterior and generalization.

3.4 Post-hoc variational inference or full model fitting?

0 5 10 15 20 25 30
Epoch

0.4

0.6

0.8

Ac
cu

ra
cy

Post-hoc sigmas
Full ELBO

Figure 3: Post-hoc tuning σker, σim.

Given the computational effort to evaluate and run the ELBO,
it is important to question whether this could be avoided
entirely. One possibility is to start from a well-performing
model, and only use the ELBO to tune the variational param-
eters σker and σim, i.e., post-hoc variational inference with
a fixed model. This can be efficiently implemented as we
only need to project one set of samples, which can be reused
throughout optimization. With the same experimental setting
from before, Figure 3 shows the behavior of such a training
procedure. Interestingly, post-hoc tuning is not per se prob-
lematic and indeed leads to a well-performing model. However, the figure shows that optimizing the
variational mean with the ELBO improves upon the post-hoc approach.
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IVON (Shen et al., 2024) VIKING (ours)
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Figure 5: A toy regression example on a sinusoid curve with 10 data points. Top: The curves show
the training points in black, with the mean fit as a red line and 100 posterior predictive samples as
blue lines. Bottom: The standard deviation of the predictions over each point in the horizontal axis.
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Figure 4: Warmup by pretraining.

Warming up as a shortcut. As observed, we can still ob-
tain a well-behaved model from the post-hoc tuning proce-
dure. Naturally, this informally suggests another way to save
computational effort, resources, and time: “warming up” the
model, first with regular maximum likelihood estimation (or
through a pretrained model), and then continuing with ELBO
optimization.

We test this hypothesis experimentally, comparing a model
trained from scratch using our ELBO and one that starts with
a model first fitted using maximum likelihood (Figure 4). Our
findings are twofold: (i) warmup using maximum likelihood is an effective way to quickstart the
ELBO learning process with the ELBO; (ii) there is a sweet spot where full convergence of a model
on maximum likelihood can lead to the ELBO optimization getting stuck. We conjecture that this
behavior is due to the sharpness of some minima, which negatively affects the evaluation of the
expectation term, as it attempts to sample regions of the weight space around the current model
weights, which could have drastically different performance, negatively affecting optimization.

4 Experiments

We evaluate VIKING against popular Bayesian deep learning methods using standard benchmarks
for Bayesian deep learning. Aiming to maintain consistency and simplify comparisons, we adopt
the loss-Jacobian (see Section 3.2) when using our proposed variational family. Further details on
models, hyperparameters used, and training procedures are in Appendix C.

Toy (sinusoid) regression. We first illustrate posterior samples in a 1D regression in Figure 5. We
train the same model with both IVON (Shen et al., 2024) and VIKING. While IVON obtains a good
model fit, its posterior samples are uninformative with respect to uncertainties. On the other hand,
VIKING shows higher variance close to the boundary of data and beyond, where the model should be
less confident.

Image classification. Using standard benchmarks, we evaluate our method against the maximum
a posteriori (MAP) estimate, the (loss-projected) post-hoc method from Miani et al. (2025), IVON
(Shen et al., 2024), SWAG (Maddox et al., 2019), and a last-layer Laplace approximation. On MNIST
(LeCun et al., 2010) and Fashion MNIST (Xiao et al., 2017), we train a LeNet (LeCun et al., 1989)
model, while on SVHN (Netzer et al., 2011) and CIFAR-10 (Krizhevsky and Hinton, 2009) we use a
small ResNet (He et al., 2016). The models are compared using accuracy, negative log-likelihood
(NLL), expected calibration error (ECE), and maximum calibration error (MCE) (Naeini et al., 2015).

The results in Table 1 show that our ELBO generalize better in most cases, which we hypothesize is
due to the interaction between evaluations of the expectation term which constantly “explores” the
weight space around the current mode through the sampling mechanism, whereas the kernel and
image variances that allow this exploration are kept in check by the KL term. On calibration metrics,
our method is particularly effective against the baselines on the SVHN and CIFAR-10 datasets, where
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Table 1: Experimental results over three runs (mean and standard deviation) on in-distribution test
data. MAP is a point (model) estimate. VIKING and the post-hoc method from Miani et al. (2025)
use the loss-projected variant.

Accuracy↑ Conf.↑ NLL↓ ECE↓ MCE↓

M
N

IS
T

MAP 0.986 ± 0.001 0.996 ± 0.000 0.070 ± 0.005 0.247 ± 0.011 0.861 ± 0.045

VIKING (ours) 0.991 ± 0.001 0.992 ± 0.000 0.055 ± 0.003 0.096 ± 0.004 0.690 ± 0.102

Miani et al. (2025) 0.949 ± 0.000 0.813 ± 0.018 1.225 ± 0.099 0.666 ± 0.007 0.894 ± 0.011

IVON 0.989 ± 0.001 0.990 ± 0.001 0.043 ± 0.002 0.077 ± 0.005 0.651 ± 0.042

SWAG 0.982 ± 0.000 0.982 ± 0.001 0.064 ± 0.006 0.788 ± 0.005 0.906 ± 0.013

Last Layer LA 0.975 ± 0.002 0.977 ± 0.002 0.090 ± 0.005 0.784 ± 0.007 0.887 ± 0.008

Fa
sh

io
n

M
N

IS
T MAP 0.883 ± 0.002 0.942 ± 0.003 0.410 ± 0.010 0.153 ± 0.008 0.590 ± 0.141

VIKING (ours) 0.900 ± 0.001 0.928 ± 0.001 0.332 ± 0.003 0.075 ± 0.002 0.611 ± 0.160

Miani et al. (2025) 0.871 ± 0.006 0.744 ± 0.031 1.529 ± 0.371 0.617 ± 0.025 0.901 ± 0.013

IVON 0.897 ± 0.004 0.926 ± 0.001 0.335 ± 0.011 0.073 ± 0.005 0.683 ± 0.024

SWAG 0.898 ± 0.001 0.931 ± 0.006 0.327 ± 0.001 0.725 ± 0.003 0.907 ± 0.003

Last Layer LA 0.896 ± 0.002 0.931 ± 0.005 0.339 ± 0.011 0.727 ± 0.004 0.902 ± 0.004

SV
H

N

MAP 0.947 ± 0.004 0.963 ± 0.004 0.201 ± 0.014 0.055 ± 0.010 0.608 ± 0.228

VIKING (ours) 0.960 ± 0.001 0.964 ± 0.001 0.177 ± 0.002 0.028 ± 0.002 0.308 ± 0.024

Miani et al. (2025) 0.949 ± 0.003 0.948 ± 0.005 0.191 ± 0.007 0.734 ± 0.017 0.880 ± 0.012

IVON 0.943 ± 0.002 0.888 ± 0.007 0.302 ± 0.016 0.082 ± 0.004 0.492 ± 0.248

SWAG 0.947 ± 0.004 0.897 ± 0.007 0.217 ± 0.014 0.745 ± 0.007 0.874 ± 0.003

Last Layer LA 0.946 ± 0.001 0.943 ± 0.005 0.197 ± 0.009 0.740 ± 0.007 0.899 ± 0.009

C
IF

A
R

-1
0

MAP 0.824 ± 0.012 0.869 ± 0.003 0.536 ± 0.055 0.075 ± 0.012 0.619 ± 0.243

VIKING (ours) 0.877 ± 0.004 0.893 ± 0.003 0.407 ± 0.010 0.041 ± 0.004 0.331 ± 0.094

Miani et al. (2025) 0.855 ± 0.002 0.701 ± 0.013 2.643 ± 0.205 0.559 ± 0.006 0.802 ± 0.005

IVON 0.835 ± 0.017 0.763 ± 0.005 0.817 ± 0.075 0.086 ± 0.014 0.436 ± 0.244

SWAG 0.865 ± 0.029 0.914 ± 0.035 0.445 ± 0.063 0.694 ± 0.018 0.881 ± 0.005

Last Layer LA 0.894 ± 0.001 0.944 ± 0.001 0.406 ± 0.005 0.704 ± 0.000 0.880 ± 0.007

Im
ag

en
et

te

MAP 0.852 ± 0.002 0.883 ± 0.007 0.481 ± 0.009 0.084 ± 0.010 0.717 ± 0.082

VIKING (ours) 0.887 ± 0.003 0.906 ± 0.002 0.403 ± 0.010 0.077 ± 0.001 0.612 ± 0.162

IVON 0.876 ± 0.023 0.849 ± 0.013 0.656 ± 0.136 0.069 ± 0.011 0.464 ± 0.230

the overparametrization of the model (around 220k parameters) is more prominent. Additional results
including deep ensembles and SGLD (Welling and Teh, 2011) are in Appendix A.

Does it scale to larger models? To evaluate the scalability of our approach, we also train a
ResNet34 (21.7 million parameters) on Imagenette (Howard, 2019) using VIKING and IVON. We
predominantly aim to demonstrate that VIKING scales to contemporary models despite learning a
fully correlated covariance. The results show a superior performance of our ELBO-trained model,
but inferior calibration metrics compared to IVON (Table 1).

Out-of-distribution detection. Next, we evaluate VIKING in out-of-distribution (OOD) detection
tasks. We use the maximum variance of the softmax probabilities across output dimensions as an
OOD score for both IVON and VIKING. In addition to the datasets from before, we use EMNIST
and CIFAR-100 as OOD data. For ease of comparison, our experimental setup replicates that of
Miani et al. (2025), so we additionally use their reported numbers for the other baselines as well.

Table 2 summarizes the obtained results. At a glance, VIKING performs on par with the best
models, sometimes overperforming the other baselines by a big margin (e.g., MNIST→ FMNIST
and KMNIST) and other times being a close second. Overall, this further confirms the empirical
performance of our variational family and ELBO optimization in obtaining robust models.

Generative modelling. Finally, we demonstrate our approach applied to generative modelling. We
train a variational autoencoder (VAE, Kingma and Welling (2013)) with 6.5 million parameters until
convergence. From that starting point, we further refine the model’s decoder using both IVON and
VIKING. We draw 32 samples from each of the resulting approximate decoder posteriors, which we
use to both reconstruct images and measure uncertainties.

Figure 6 displays the reconstructed samples and the variance across the posterior samples per recon-
structed image. Overall, both posteriors qualitatively recover well-performing models. The methods
discern themselves more prominently upon inspection of the variances across the reconstructions of
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Table 2: Area under ROC (↑) performance on out-of-distribution detection. VIKING and the
post-hoc method from Miani et al. (2025) use the loss-projected variant.

In-dist. MNIST FMNIST
Out-of-dist. FMNIST KMNIST EMNIST MNIST KMNIST EMNIST

MAP 0.928 ± 0.015 0.934 ± 0.004 0.890 ± 0.002 0.728 ± 0.048 0.791 ± 0.014 0.659 ± 0.035

VIKING (ours) 0.972 ± 0.003 0.965 ± 0.002 0.913 ± 0.006 0.898 ± 0.025 0.926 ± 0.002 0.830 ± 0.020

Miani et al. (2025) 0.899 ± 0.011 0.856 ± 0.002 0.893 ± 0.006 0.914 ± 0.035 0.907 ± 0.026 0.928 ± 0.007

IVON 0.948 ± 0.004 0.945 ± 0.007 0.918 ± 0.008 0.801 ± 0.020 0.867 ± 0.005 0.739 ± 0.025

SWAG 0.917 ± 0.024 0.861 ± 0.032 0.916 ± 0.010 0.685 ± 0.014 0.655 ± 0.015 0.751 ± 0.032

Last Layer LA 0.793 ± 0.215 0.759 ± 0.166 0.782 ± 0.182 0.768 ± 0.001 0.699 ± 0.020 0.824 ± 0.016

In-dist. SVHN CIFAR-10
Out-of-dist. CIFAR-10 CIFAR-100 SVHN CIFAR-100

MAP 0.946 ± 0.006 0.941 ± 0.007 0.831 ± 0.019 0.778 ± 0.013

VIKING (ours) 0.947 ± 0.002 0.943 ± 0.002 0.827 ± 0.007 0.805 ± 0.003

Miani et al. (2025) 0.966 ± 0.009 0.960 ± 0.006 0.863 ± 0.008 0.800 ± 0.013

IVON 0.822 ± 0.014 0.826 ± 0.009 0.648 ± 0.019 0.714 ± 0.012

SWAG 0.777 ± 0.029 0.787 ± 0.027 0.798 ± 0.040 0.782 ± 0.042

Last Layer LA 0.914 ± 0.005 0.908 ± 0.005 0.811 ± 0.024 0.801 ± 0.026

Reconstructions Variances across channels

V
IK

IN
G

(o
ur

s)
IV

O
N

Figure 6: Reconstructed samples taken from the latent space prior of variational autoencoders trained
with IVON and VIKING. Using 32 posterior samples, the posterior variances compare key semantic
features, such as contours between foreground and background, and eyes.

the different posterior samples. Notably, IVON tends to capture variance across all features of the
image, including the background. VIKING focuses the variance on facial features and outline instead,
showing a disregard for the less-relevant aspects of the data.

To assess the model uncertainties, we compute the median value of the standard deviations per
pixel produced by each of the 16k generated samples and summarize their distribution in Figure 7.
Our in-distribution samples come from a standard Gaussian sample, whereas out-of-distribution
samples come from a Gaussian with twice the variance. The uncertainties produced by VIKING
show well-separated distributions clearly detecting OOD samples, while IVON does not.
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IVON VIKING

Figure 7: Histograms of uncertainties on 16K in- and out-of-distribution latent samples according
to IVON and VIKING. Uncertainties are computed as median of pixel-wise standard deviations
computed by decoding the latent sample using 32 posterior model samples.

5 Discussion

This paper introduces a variational family (‘VIKING’) that explicitly takes model overparametrization
into account. This is achieved through a decomposition of the Fisher–Rao metric into parameter
subspaces that capture directions in which the per-training data loss remains unchanged and direc-
tions in which this loss changes. Intuitively, uncertainty along these directions can be interpreted
as uncertainty over the training data and general model uncertainty. This is similar to the conven-
tional splits into aleatoric and epistemic uncertainty commonly found, e.g., in Gaussian processes
(GPs, Rasmussen and Williams 2006). The parameters we estimate, thus, come with a degree of
interpretability.

Scaling VIKING to large models is, however, not straightforward, as the approximate posterior
correlates all parameters, yet we cannot afford to instantiate the covariance matrix due to excessive
memory costs. We have developed a stochastic extension to von Neumann’s (1949) alternating
projections algorithm that scales to large models through a matrix-free implementation. The approach
readily applies to large contemporary models including a ResNet with 21.7 million parameters and a
generative model with 1.6 million parameters.

Empirically, our results show that VIKING tends to be consistently as good as or better than current
state-of-the-art methods. This lends credibility to the hypothesis that overparametrization should be
explicitly taken into account when designing approximate posteriors.

The key limitation is the additional computational overhead incurred by the projection algorithm.
Standard gradient descent requires a single backward pass for one gradient update, while VIKING
requires the number of CG iterations backward passes per sample. In practice, we train with one
Monte Carlo sample and only need a few CG iterations, so the additional cost is manageable. Using
more sophisticated linear algebra and custom gradients, significantly more efficient and numerically
accurate least squares solvers can be employed (Roy et al., 2025), overcoming some of the time-
efficiency and numerical issues in our approach.
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Table 3: Experimental results over three runs (mean and standard deviation) on in-distribution test
data. MAP is a point (model) estimate. VIKING and the post-hoc method from Miani et al. (2025)
use the loss-projected variant. Ensemble is over five models.

Accuracy↑ Conf.↑ NLL↓ ECE↓ MCE↓

M
N

IS
T

MAP 0.986 ± 0.001 0.996 ± 0.000 0.070 ± 0.005 0.247 ± 0.011 0.861 ± 0.045

VIKING (ours) 0.991 ± 0.001 0.992 ± 0.000 0.055 ± 0.003 0.096 ± 0.004 0.690 ± 0.102

Miani et al. (2025) 0.949 ± 0.000 0.813 ± 0.018 1.225 ± 0.099 0.666 ± 0.007 0.894 ± 0.011

IVON 0.989 ± 0.001 0.990 ± 0.001 0.043 ± 0.002 0.077 ± 0.005 0.651 ± 0.042

SGLD 0.990 ± 0.000 0.975 ± 0.001 0.062 ± 0.002 0.067 ± 0.002 0.684 ± 0.054

SWAG 0.982 ± 0.000 0.982 ± 0.001 0.064 ± 0.006 0.788 ± 0.005 0.906 ± 0.013

Last Layer LA 0.975 ± 0.002 0.977 ± 0.002 0.090 ± 0.005 0.784 ± 0.007 0.887 ± 0.008

Ensemble 0.992 0.989 0.078 0.116 0.675

Fa
sh

io
n

M
N

IS
T

MAP 0.883 ± 0.002 0.942 ± 0.003 0.410 ± 0.010 0.153 ± 0.008 0.590 ± 0.141

VIKING (ours) 0.900 ± 0.001 0.928 ± 0.001 0.332 ± 0.003 0.075 ± 0.002 0.611 ± 0.160

Miani et al. (2025) 0.871 ± 0.006 0.744 ± 0.031 1.529 ± 0.371 0.617 ± 0.025 0.901 ± 0.013

IVON 0.897 ± 0.004 0.926 ± 0.001 0.335 ± 0.011 0.073 ± 0.005 0.683 ± 0.024

SGLD 0.899 ± 0.001 0.899 ± 0.001 0.316 ± 0.003 0.026 ± 0.004 0.734 ± 0.019

SWAG 0.898 ± 0.001 0.931 ± 0.006 0.327 ± 0.001 0.725 ± 0.003 0.907 ± 0.003

Last Layer LA 0.896 ± 0.002 0.931 ± 0.005 0.339 ± 0.011 0.727 ± 0.004 0.902 ± 0.004

Ensemble 0.910 0.913 0.670 0.052 0.793

SV
H

N

MAP 0.947 ± 0.004 0.963 ± 0.004 0.201 ± 0.014 0.055 ± 0.010 0.608 ± 0.228

VIKING (ours) 0.960 ± 0.001 0.964 ± 0.001 0.177 ± 0.002 0.028 ± 0.002 0.308 ± 0.024

Miani et al. (2025) 0.949 ± 0.003 0.948 ± 0.005 0.191 ± 0.007 0.734 ± 0.017 0.880 ± 0.012

IVON 0.943 ± 0.002 0.888 ± 0.007 0.302 ± 0.016 0.082 ± 0.004 0.492 ± 0.248

SGLD 0.698 ± 0.103 0.378 ± 0.027 1.935 ± 0.070 0.321 ± 0.128 0.605 ± 0.181

SWAG 0.947 ± 0.004 0.897 ± 0.007 0.217 ± 0.014 0.745 ± 0.007 0.874 ± 0.003

Last Layer LA 0.946 ± 0.001 0.943 ± 0.005 0.197 ± 0.009 0.740 ± 0.007 0.899 ± 0.009

Ensemble 0.965 0.955 0.231 0.051 0.769

C
IF

A
R

-1
0

MAP 0.824 ± 0.012 0.869 ± 0.003 0.536 ± 0.055 0.075 ± 0.012 0.619 ± 0.243

VIKING (ours) 0.877 ± 0.004 0.893 ± 0.003 0.407 ± 0.010 0.041 ± 0.004 0.331 ± 0.094

Miani et al. (2025) 0.855 ± 0.002 0.701 ± 0.013 2.643 ± 0.205 0.559 ± 0.006 0.802 ± 0.005

IVON 0.835 ± 0.017 0.763 ± 0.005 0.817 ± 0.075 0.086 ± 0.014 0.436 ± 0.244

SGLD 0.495 ± 0.030 0.345 ± 0.020 2.409 ± 0.135 0.153 ± 0.039 0.375 ± 0.073

SWAG 0.865 ± 0.029 0.914 ± 0.035 0.445 ± 0.063 0.694 ± 0.018 0.881 ± 0.005

Last Layer LA 0.894 ± 0.001 0.944 ± 0.001 0.406 ± 0.005 0.704 ± 0.000 0.880 ± 0.007

Ensemble 0.919 0.891 0.486 0.064 0.780

Im
ag

en
et

te

MAP 0.852 ± 0.002 0.883 ± 0.007 0.481 ± 0.009 0.084 ± 0.010 0.717 ± 0.082

VIKING (ours) 0.887 ± 0.003 0.906 ± 0.002 0.403 ± 0.010 0.077 ± 0.001 0.612 ± 0.162

IVON 0.876 ± 0.023 0.849 ± 0.013 0.656 ± 0.136 0.069 ± 0.011 0.464 ± 0.230

A Additional experimental results

In Table 3 we detail the same experiments from the main paper, but with two additional baselines.
The first is a simple deep ensemble, where five copies of the model are trained independently and
their predictions are averaged. Here, the best-performing MAP model hyperparameters from the
existing experiments are used to train the models again using additional seeds to build the ensemble.

The second is Stochastic Gradient Langevin Dynamics (SGLD, Welling and Teh, 2011), which is
implemented in JAX using code provided by Izmailov et al. (2021). The hyperparameters are opti-
mized using a grid search with a similar budget we use for VIKING, using experimental evidence by
Izmailov et al. (2021) as a guideline. When collecting posterior samples from SGLD, we allowed for a
burn-in period of 50 epochs, then collected each posterior sample after additional 50 epochs are done,
totalling 300 epochs, which approximately corresponds to 50 epochs of ELBO training with VIKING.

These baselines are included as additional evidence that, given similar compute budgets, VIKING
outperforms classical approaches such as SGLD and deep ensembles in calibration metrics, while still
achieving competitive performance. Notably, deep ensembles achieve the best predictive performance,
but that is not reflected in the calibration metrics. SGLD, on the other hand, struggled in the harder
datasets with bigger models (SVHN, CIFAR-10), showing that the compute budget available is
probably not enough, needing either a significantly larger number of training steps to converge or
hyperparameter tuning. When it does properly converge, such as on Fashion MNIST and MNIST, its
performance is not far behind the state of the art.
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B Additional methodological details

Here we expand on the rationale and discussion present in the main paper. Our aim is to address
potential questions, issues, and minor challenges pertaining the formulation and use of our varia-
tional family. For notational simplicity, we omit the dependence on θ in the analysis below where
convenient.

B.1 Is the rank R differentiable?

We know that the derivative of the rank R with respect to θ̂ is either zero or undefined, as R is integer-
valued and bound to be piecewise-constant. Its importance in optimizing the KL (Kullback-Leibler
divergence) term is clearer by first assuming that ∂R/∂θ̂ = 0. Then,

∂KL

∂θ̂
=

∂

∂θ̂

{
1

2

(
αTr(Σ)−D + α∥θ̂∥2 −D log(α)− log det(Σ)

)}
=

∂

∂θ̂

{
1

2

(
α(σ2

kerR+ σ2
im(D−R)) + α∥θ̂∥2 − 2R log(σker)− 2(D−R) log(σim)

)}
=

∂

∂θ̂

{α

2
∥θ̂∥2

}
.

(19)

Under this assumption, the KL term reduces to a more usual ℓ2 regularization. In practice, since the
estimated R is not an integer, this assumption does not become problematic. In our implementation,
we stop the gradients of the computed R to ensure this.

B.2 Understanding the KL term in isolation

Let us consider the kernel component of the posterior in isolation and the KL term of the ELBO L
(Equation 3) separately to interpret what signal might exist in that term and why that can influence
our hyperparameter choices.

Suppose our posterior covariance is given by Σq ∈ RD×D and our prior covariance is given by
Σp ∈ RD×D. Due to the restrictions to the subspace, we can write Σq = UΛU⊤ and Σp = α−1I.
We want to find the Λ that minimizes the KL term. We can write the terms that depend only on Σq as

KL = Tr(Σ−1
p Σq)− log |Σ−1

p Σq|.

Note that

Σ−1
p Σq =

(
α−1I

)−1
UΛU⊤

= U(αΛ)U⊤,

implying the eigenvalues of Σ−1
p Σq are given by αΛ, yielding

Tr(U(αΛ)U⊤) =

D∑
i=1

αλi, and log |U(αΛ)U⊤| =
D∑
i=1

log(αλi).

For all i = 1, . . . , D, λi = α−1 minimizes f(αλi) = αλi − log(αλi) . The covariance that
minimizes the KL divergence is thus

Σ = α−1UU⊤. (20)

Since our posterior is Σq := σ2
kerUU⊤ + σ2

im(I−UU⊤), we optimize α and σ2
ker jointly by always

ensuring α−1 = σ2
ker ⇔ α = 1/σ2

ker.

C Experimental details

For reproduction purposes, we detail each experiment (in order of appearance in the main paper).
Note that the code implementing VIKING and for reproducing the experiments is publicly available4.

4https://github.com/eugene/viking-paper-experiments

15

https://github.com/eugene/viking-paper-experiments


We start with a few general experimental and implementation details used across the experiments.
All optimization steps were done using the Adam optimizer. In what follows, we address specific
components of the optimization that are shared across all experiments, unless otherwise noted.

Variational parameters σker and σim. In all experiments, the variational parameter σker is tied
to the prior precision α, such that α = 1/σ2

ker is always true (for the reasoning, see Equation 20, in
Appendix B) and use logα as an optimization variable. Furthermore, we observe that the posterior
samples used to evaluate the expectation term of the ELBO can be quite sensitive to larger values
of σim, especially since only the kernel part of the projection is guaranteed to not deviate arbitrarily
from the MAP predictions. For this reason, we always initialize this variational parameter such that
log σim = −2 to prevent it from having a large influence in the posterior samples in the beginning,
resulting in more stable optimization.

Practical optimization with the KL term. Experimentally, we find that the ELBO as formulated
can be quite often dominated by the KL term during optimization. This is mostly exacerbated when
the number of model parameters grows. For this reason, in all experiments, we follow common
procedure and instead optimize

L(θ̂, σker, σim) = Eθ∼q[log p(y|θ,x)]− βKL(q(θ)∥p(θ)), (21)

where 0 < β < 1 (fixed) controls the relative strength of the KL term.

Reorthogonalized conjugate gradients (CG). As discussed in Section 3.2, we use a variant of
conjugate gradients that improves numerical stability by reorthogonalizing the basis vectors at every
iteration. Aiming for a good trade off between numerical robustness and performance, we use 10
iterations in all CG solves.

Posterior sampling. For computing the expectation term of the ELBO during training (either while
optimizing just sigmas or the full model as well), we use a single sample from our posterior, that is,
S = 1. Empirically, we observe little gain over using multiple samples and this can be compensated
by training for longer, with the benefit of accelerating alternating projections and reducing memory
usage significantly. When evaluating on validation and test sets, we draw 20 posterior samples.

C.1 Architectures and data preprocessing

Unless otherwise noted, all data is standardized, that is, every data point is first subtracted by the mean
of training data and the result is divided by the standard deviation of training data, both computed
across dimensions. Naturally, this is performed also for the validation and test sets. On MNIST and
Fashion MNIST, we train a LeNet; on SVHN and CIFAR-10, we train a small ResNet.

LeNet architecture. Composed of two 5×5 convolution layers with 6 and 16 channels, respectively,
each followed by 2× 2 max-pooling with stride 2, then three fully-connected layers with 128 and
80 units, with the last one being the number of classes as units; all layers have hyperbolic tangent
activation functions. The total number of parameters is 44,426.

ResNet architecture (small variant). Composed of (3, 3, 3) residual blocks of channel sizes 16,
32, and 64, respectively; all layers have ReLU activation functions. The total number of parameters
is 272,378.

C.2 Ablation experiments (Section 3)

This section details the experiments illustrated by Figures 2 to 4 in the main paper.

Stochastic alternating projections. For each γ = 0.0, 0.5, and 1.0, we train the LeNet model
specified above on the Fashion MNIST dataset. Table 4 details the other hyperparameters used.

Post-hoc variational inference of σker and σim. Since we assess the need for a full model ELBO
optimization versus only post-hoc tuning of the variational parameters, we need to start from a
reasonably-performing model. In both settings, we thus begin with training the model using maximum
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Table 4: Experiments evaluat-
ing γ (Section 3.3).

Hyperparam. Value

β 10−4

Batch size 32
Init. logα 4

Train. epochs 50
Learn. rate 10−3

Table 5: Post-hoc σker, σim ex-
periments (Section 3.4).

Hyperparam. Value

β 10−4

γ 0.5
Batch size 32
Init. logα 4

Warmup epochs 20
Learn. rate 10−4

Table 6: Warmup experiments
(Section 3.4).

Hyperparam. Value

β 10−4

γ 0.5
Batch size 32
Init. logα 4

Learn. rate (MLE) 10−4

# epochs (ELBO) 50
Learn. rate (ELBO) 10−4

likelihood for 20 epochs, with the same batch size as later, but a learning rate of 10−5 instead to
prevent an early overfitting. Following that, the post-hoc setting optimizes the variational parameters
(σker and σim) for 20 epochs. In the other setting, in order to draw a better parallel and more clearly
highlight the benefits of full model optimization using our ELBO, we tune only the sigmas for 5
epochs. For those epochs, the performance is thus comparable. We then continue with 15 more
epochs where the model is also trained, for a total of also 20 epochs. Table 5 shows the values of all
other hyperparameters used.

Warming up as a shortcut. The only change across different runs is the number of epochs the
model was trained with maximum likelihood at the start (warmup): 0, 20, or 50. Table 6 contains the
values of the other hyperparameters.

C.3 Main experiments

The experiments in Section 4 require further details for full reproducibility, given below.

C.4 Toy (sinusoid) regression

In these experiments, we train a neural network with three fully-connected layers, two with 10
units and one with a single output unit. The training data consists of 10 samples from the sinusoid
y = 5 sin(10x) + z, where x ∈ [0.35, 0.65], z ∼ N (0, s), and s ∈ [10−3, 1], from which 20
consecutive points in specified range of x are drawn, but only the first and last five are used,
introducing the visible gap. The VIKING experiment uses the model Jacobian (not loss Jacobian as
every other experiment) and a linearized predictive5 to highlight the properties of guaranteed zero
variance in the predictions when projecting onto the kernel of the GGN of the model on training data.
The model is trained for 2,000 epochs with a learning rate of 10−2 and adaptive gradient clipping of
rate 10−1, using 100 posterior samples at each step. The logα prior (log σker = −1/2 logα, kept tied
as described earlier) is initialized with zero. For IVON, we train the same model for 5,000 epochs
with the same learning rate, using 5 posterior samples at each training step. The ESS hyperparameter
is set to 10 (number of data points) and HESS-INIT is set to 15. The plots in Figure 5 depict the
predictions of 100 posterior samples.

C.5 Image classification

Grid search. On MNIST, Fashion MNIST, SVHN, and CIFAR-10, both VIKING and IVON were
subjected to a grid search. On VIKING, the grid search is over batch size (16 or 32), number of
warmup epochs (Section 3.4; 20 or 50), learning rate (10−3 or 10−4), β (10−4, 10−5, or 10−6), and
γ (0.2, 0.5, or 0.8). For IVON, the grid search is over batch size (16, 32, or 128), number of epochs
(50 or 100), and learning rate (10−3 or 10−4). Table 7 breaks down the best hyperparameters per
method and dataset.

5With θ ∼ q(θ) denoting a posterior sample, instead of making predictions as y = fθ(x), we linearize the
model around θ̂ as y = fθ̂(x) + Jθ̂(x)(θ − θ̂).
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Table 7: Hyperparameters broken down per dataset. “MC samples” indicates the number of posterior
samples used for training.

MNIST F-MNIST SVHN CIFAR-10

V
IK

IN
G

Batch size 32 16 32 32
Warmup epochs 50 20 50 20

Learning rate 10−4 10−4 10−4 10−4

β 10−5 10−5 10−6 10−6

γ 0.8 0.2 0.8 0.5
MC samples 1

Warmup learning rate 10−3

Initial logα 4.0
Initial log σim −2.0

σker, σim tuning 5 epochs

IV
O

N

Batch size 16 16 16 16
Epochs 100 100 100 100

Learning rate 10−3 10−3 10−3 10−3

MC samples 5
ESS Number of data points

HESSINIT 1.0

Table 8: Hyperparameters for the ResNet-34 experiment on Imagenette. “MC samples” indicates the
number of posterior samples used for training. In KIVI, epochs and learning rates are split between
warmup and ELBO, respectively.

VIKING IVON

Batch size 128 128
Epochs 100, 50 150

Learning rate 5 · 10−2, 10−3 10−1

β 10−7 N/A
γ 0.2 N/A

MC samples 1 5

Large models. In this experiment, we investigate the applicability of VIKING when training a
ResNet-34, whose number of parameters is 21,797,672 and compare it against IVON. Due to a limited
compute budget with larger models, we do not perform an extensive grid search. Table 8 summarizes
all hyperparameters, organized per method.

C.6 Generative modelling

Model architecture. Encoder: with five 4× 4 convolutional layers, the first two with 128 channels,
followed by the next three with 256 channels, with the first and last having a stride of one and
the others a stride of two; two fully-connected layers, one with 256 units and the second with 64
units (latent dimensions) for the VAE approximate posterior mean and 64 for the VAE approximate
posterior variance. Decoder: two fully-connected layers, one with 256 units and one with 16384
units; five 4× 4 resize convolutional layers (Odena et al., 2016), with the same stride configuration
as the encoder, but with 256, 128, 64, and 32 channels, respectively. All layers in the encoder and
decoder have an ELU activation function. Total number of parameters: 6.5 million.

Maximum likelihood training. We train for 500 epochs with a maximum learning rate of 10−3 and
batch size 256 on raw data without augmentation. Furthermore, we used the Adamax optimizer and
scheduled a 1000-step (updates) linear warmup to the maximum learning rate and then exponentially
decayed it.
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VIKING finetuning. From the maximum likelihood checkpoint, we train for 10 VIKING epochs
using 8 posterior samples, γ = 0.5, β = 10−8, batch size 8, learning rate 10−4 and adaptive gradient
clipping at 0.1. The value of logα is 7.0 and log σim is −5.0.

IVON finetuning. From the maximum likelihood checkpoint, we train for 20 IVON epochs using 5
Monte Carlo samples, using a batch size of 256 and a learning rate of 10−5.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract predominantly discuss the problem and our methodology all of
which are appropriate. In terms of performance claims, our approach is generally on par or
better than baselines as reported in the experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The last section of the paper has an explicitly annotated section concerning
limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not contain theorems.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To the best of our ability, we provide model and training details (predominantly
in the supplements). We will further release code for full reproduceability.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use standard benchmark data that is openly accessible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The supplementary material provides these details. We will further release
code for full transparency.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All quantitative experiments provide error bars to the extend possible. Some
experiments are designed to convey intuitions; these do not provide error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The supplementary material provides these details; All experiments are carried
out on conventional hardware (x86 architecture, NVIDIA GPU’s).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper develops new methodology.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper is about improving general Bayesian model fitting. The method
we propose has the same positive (as well as negative potential) as other machine learning
technologies.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Datasets are cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: No assets are introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Such topics are not in scope for this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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