
VIKING: Deep variational inference with stochastic projections

Samuel G. Fadel, Hritikk Roy, Nicholas Krämer,
Yevgen Zainchkovskyy, Stas Syrota, Alejandro Valverde Mahou
Technical University of Denmark
`{samma,hroy,pekra,yeza,stasy,avama}@dtu.dk`

Carl Henrik Ek
University of Cambridge
`che29@cam.ac.uk`

Søren Hauberg
Technical University of Denmark
`sohau@dtu.dk`

Abstract

Variational mean field approximations tend to struggle with contemporary overparametrized deep neural networks. Where a Bayesian treatment is usually associated with high-quality predictions and uncertainties, the practical reality has been the opposite, with unstable training, poor predictive power, and subpar calibration. Building upon recent work on reparametrizations of neural networks, we propose a simple variational family that considers two independent linear subspaces of the parameter space. These represent functional changes inside and outside the support of training data. This allows us to build a fully-correlated approximate posterior reflecting the overparametrization that tunes easy-to-interpret hyperparameters. We develop scalable numerical routines that maximize the associated evidence lower bound (ELBO) and sample from the approximate posterior. Empirically, we observe state-of-the-art performance across tasks, models, and datasets compared to a wide array of baseline methods. Our results show that approximate Bayesian inference applied to deep neural networks is far from a lost cause when constructing inference mechanisms that reflect the geometry of reparametrizations.

1 The troubles of the overparametrized Bayesian

Bayesian inference provides an attractive framework for learning from data, marginalizing a data-dependent likelihood with a data-independent prior leads to a combined probability measure that can be used for learning. For most model classes, the marginalization is intractable, and we resort to approximate methods of integration. While this has shown itself to be a very successful approach, overparametrized models have subtle characteristics that lead to significant challenges in practice.

Specifically, overparametrizations lead to a many-to-one relationship where several parameter configurations describe the same function. Dinh et al. (2017) exemplify that the neural network $f(x) = w_1 \text{ReLU}(w_2 x)$ can be reparametrized as $f(x) = {}^{w_1/\gamma} \text{ReLU}(\gamma w_2 x)$ for any $\gamma \neq 0$, implying that the weights (w_1, w_2) and $({}^{w_1/\gamma}, \gamma w_2)$ yield *identical functions*. Thus, despite having two trainable parameters, the neural network only has one degree of freedom. Making matters worse, the discrepancy between the number of parameters and degrees of freedom generally grows with the model size. If the marginalization can be performed analytically, the resulting measure will reflect this structure; however, if we need to resort to approximate methods, we need to carefully design our approximation so that the correct geometry of the problem can be parametrized. If not, the resulting object will not be a valid probability measure over the space of functions and application of this

object will lead to pathological solutions where the same function has different densities dependent on its parametrization (Watanabe, 2009).

In recent work, Roy et al. (2024) showed that the parameters describing the same function are continuously connected sets in the weight space. This has damaging effects as traditional posterior approximations like Laplace approximations (MacKay, 1992) or mean-field approximations (Blundell et al., 2015) cannot accurately reflect the reparametrizations, which lead to the disappointing performance of approximate Bayesian inference in these types of models.

In this paper, we study variational inference applied to overparametrized deep neural networks. We propose an approach that takes the intractable posterior and factorizes it into two orthogonal parts, a data-dependent and a data-independent measure. These can, intuitively, be seen as modeling uncertainties on the training data in one subspace and elsewhere in the other. Importantly, this leads to an easy-to-interpret structure analogous to the likelihood and the prior that lead to the posterior in the first place. Despite having an interpretable and simple decomposition, our approach is fundamentally fully correlated and captures dependencies between all model parameters, addressing the pathological behavior of previous methods. This introduces a computational challenge, which we address through a stochastic extension of the alternating projections algorithm that was recently proposed for *post hoc* posterior approximation (Miani et al., 2025). The result is a scalable, architecture-agnostic approach to Bayesian training of deep neural networks that achieves state-of-the-art performance on a wide array of contemporary models and datasets. The both code for reproducing our experiments¹ and an easy-to-use library² are available online.

2 Background and related work

The aspiration of Bayesian deep learning is to combine the predictive advantages of deep neural networks with the theoretical justifications of the Bayesian framework, hoping to achieve the benefit of both. While the individual layers in a neural network are simple mathematical objects, the compositional structure of the layers renders posterior inference analytically intractable for any interesting model. There has been a range of different approaches to recover posterior estimates of the neural network weights (Hernandez-Lobato and Adams, 2015; Hron et al., 2018; Li et al., 2015; MacKay, 1995), but often the benefits have failed to materialise, some even restricting the Bayesian treatment to a subset of parameters (Zhao et al., 2024). Rather, it is common to experience either *over- or underfitting* (Daxberger et al., 2021; Kristiadi et al., 2022; Wenzel et al., 2020; Zhang et al., 2024), and most Bayesian training schemes are reported to be brittle (Warburg et al., 2023). Success in achieving the promises of a Bayesian treatment of deep neural networks has been so elusive that it raises the question if there is something inherent in their structure that renders it numb to a Bayesian approach (Sharma et al., 2023).

Singular learning theory (Watanabe, 2009) argues that the troubling structure comes from overparametrizations, where a single function can be described in more than one way. While mathematically elegant, the algebraic geometric approach has been difficult to turn into computational practice. Instead, Roy et al. (2024) framed the problem in terms of differential geometry by studying how the geometry of the function space embeds itself into the parameter space. From this, the authors were able to characterize the manifold of reparametrizations in a manner that lends itself to computation. Specifically, the manifold can be characterized locally by the kernel³ of the Fisher–Rao metric over the network parameters θ (Amari, 2016),

$$\mathcal{F}_\theta = \mathbb{E}_{\mathbf{y} \sim p_\theta(\mathbf{y}|\mathbf{x})} \left[\frac{\partial \log p_\theta(\mathbf{y}|\mathbf{x})}{\partial \theta} \frac{\partial \log p_\theta(\mathbf{y}|\mathbf{x})}{\partial \theta}^\top \right] \in \mathbb{R}^{D \times D}. \quad (1)$$

Here $\log p_\theta(\mathbf{y}|\mathbf{x})$ is the log-likelihood of the data parametrized by $\theta \in \mathbb{R}^D$. The kernel of this matrix infinitesimally gives directions in weight space where $\log p_\theta(\mathbf{y}|\mathbf{x})$ is constant for all observations in the support of the data. This provides a characterization of why Bayesian learning has not succeeded, showing that for deep learning to harvest the benefit of a Bayesian treatment, the geometrical structure needs to be reflected in the approximate posterior. For a detailed discussion, we refer to (Kunstner et al., 2019; Miani et al., 2025).

¹<https://github.com/eugene/viking-paper-experiments>

²<https://github.com/fadel/viking>

³Throughout the paper, *kernel* refers to the *null space* of a matrix, while *image* is its orthogonal complement.

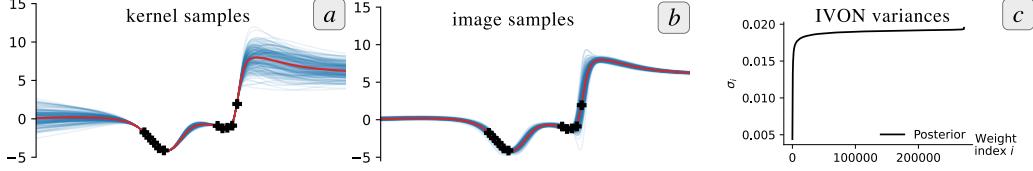


Figure 1: Panels *a* and *b* show isotropic Gaussian samples that have been projected onto the *kernel* and *image* of the empirical Fisher–Rao metric associated with a neural network trained on the shown data. The kernel samples retain the predictions of the neural network, while the image samples do not. Panel *c* shows the learned weight-variances of IVON trained on CIFAR-10. These variances are near-identical across weights, suggesting that an isotropic approximate posterior has been learned.

Miani et al. (2025) take steps towards integrating knowledge of overparametrization into a *post-hoc* approximate posterior. They note that the kernel of per-datum loss-Jacobian, which is closely related to the Fisher–Rao metric (1), consists of functions with identical training loss. Assuming noise-free data, they restrict the approximate posterior to only have probability mass in this kernel, resulting in a posterior approximation from which all samples have the same loss (see Figure 1a,b).

Variational inference (Blei et al., 2017) has shown itself to be an efficient and robust approach to approximate Bayesian inference and has been applied in several different ways to deep neural networks. Existing variational approximations predominantly use Gaussian variational distributions $p(\boldsymbol{\theta}|\mathbf{x}) \approx \mathcal{N}(\boldsymbol{\theta}|\hat{\boldsymbol{\theta}}, \boldsymbol{\Sigma})$, see, e.g., (Blundell et al., 2015; Shen et al., 2024), where $\hat{\boldsymbol{\theta}}$ and $\boldsymbol{\Sigma}$ are the variational parameters learned. To ensure that the approximation is tractable, the covariance $\boldsymbol{\Sigma}$ is commonly given a diagonal or block-diagonal structure, i.e., a *mean field* approximation (Daxberger et al., 2021). Current state-of-the-art in this direction appears to be *IVON* (Shen et al., 2024), which develops a Newton-like optimization scheme for the *evidence lower bound (ELBO)* associated with the mean field approximation. In our experience, IVON tends to learn near-identical variances for all network weights (Figure 1c), suggesting that the posterior approximation is inaccurate. Further, mean field approximations tend to be brittle and sensitive to the choice of hyperparameters. One hypothesis for this behavior is that the independence assumptions of mean field cause instabilities in overparametrized models, where parameters, by construction, are highly correlated. In this work, we want to build a full variational inference method that respects the geometry induced by the overparametrization characterized by Roy et al. (2024). To achieve this, we split the parameter space into the kernel and image of the Fisher–Rao metric, considering these independent.

The numerical computations associated with non-trivial covariance structures can be daunting. The first challenge is that for large neural networks, the covariance matrix cannot be stored in memory as its size grows quadratically with the number of network parameters. One remedy is to note that some matrices, e.g., the Fisher–Rao metric (1) and the generalized Gauss–Newton matrix (Daxberger et al., 2021), are functions of the training data. This implies that vector products of such matrices can be implemented without instantiation — a so-called *matrix-free* approach. This allows for working with non-trivial covariances at the cost of a higher compute budget, see, e.g., (Miani et al., 2024, 2025; Roy et al., 2024) for examples.

3 VIKING: Variational Inference with Kernel- and Image-spaces of numerical Gauss–Newton matrices

We next build a variational training loop designed with overparametrization in mind. We start from the ever-present prior $p(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}|\mathbf{0}, \alpha^{-1}\mathbb{I})$ over parameters $\boldsymbol{\theta} \in \mathbb{R}^D$, with precision $\alpha \in \mathbb{R}$. As motivated earlier, we choose a variational family $q(\boldsymbol{\theta})$ that is linked to the kernel of an empirical estimate of the Fisher–Rao (FR) metric at $\hat{\boldsymbol{\theta}}$, denoted $\ker(\mathcal{F}_{\hat{\boldsymbol{\theta}}}) \subset \mathbb{R}^D$. Specifically,

$$q(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}|\hat{\boldsymbol{\theta}}, \boldsymbol{\Sigma}_{\hat{\boldsymbol{\theta}}}), \quad \boldsymbol{\Sigma}_{\hat{\boldsymbol{\theta}}} = \sigma_{\text{ker}}^2 \mathbf{U}_{\hat{\boldsymbol{\theta}}} \mathbf{U}_{\hat{\boldsymbol{\theta}}}^\top + \sigma_{\text{im}}^2 (\mathbb{I} - \mathbf{U}_{\hat{\boldsymbol{\theta}}} \mathbf{U}_{\hat{\boldsymbol{\theta}}}^\top). \quad (2)$$

Here, $\mathbf{U}_{\hat{\boldsymbol{\theta}}} \in \mathbb{R}^{D \times R}$ is a R -dimensional basis of the kernel, such that $\mathbf{U}_{\hat{\boldsymbol{\theta}}} \mathbf{U}_{\hat{\boldsymbol{\theta}}}^\top$ is a projection matrix that maps parameter vectors in \mathbb{R}^D to the linear subspace $\ker(\mathcal{F}_{\hat{\boldsymbol{\theta}}})$. In other words, for any $\mathbf{v} \in \mathbb{R}^D$ we have $\mathbf{U}_{\hat{\boldsymbol{\theta}}} \mathbf{U}_{\hat{\boldsymbol{\theta}}}^\top \mathbf{v} \in \ker(\mathcal{F}_{\hat{\boldsymbol{\theta}}})$, wherein the model’s loss is unchanged at the data used to estimate the FR.

Algorithm 1: The VIKING algorithm

Input: Initial values of $(\hat{\theta}, \sigma_{\text{ker}}, \sigma_{\text{im}})$, dataset with B mini-batches
Output: Optimized values of $(\hat{\theta}, \sigma_{\text{ker}}, \sigma_{\text{im}})$, representing $q(\theta)$ (Equation 2)

```

1 for each epoch do
2   for each Monte Carlo sample  $s = 1$  to  $S$  do
3     Take  $\epsilon^{(s,0)} \sim \mathcal{N}(\mathbf{0}, \mathbb{I})$ 
4     for each mini-batch  $t = 1$  to  $B$  do
5       Compute  $\epsilon^{(s,t)}$  from  $\epsilon^{(s,t-1)}$  (Equation 14)            $\triangleright$  Alternating projections
6        $\epsilon_{\text{ker}}^{(s,0)} \leftarrow \epsilon^{(s,B)}$ 
7     for each mini-batch  $t = 1$  to  $B$  do
8       for each Monte Carlo sample  $s = 1$  to  $S$  do
9         Compute  $\epsilon_{\text{ker}}^{(s,t)}$  from  $\epsilon_{\text{ker}}^{(s,t-1)}$  (Equation 18)
10         $\epsilon_{\text{im}}^{(s,t)} \leftarrow \epsilon^{(s,0)} - \epsilon_{\text{ker}}^{(s,t)}$ 
11         $\theta^{(s)} \leftarrow \hat{\theta} + \sigma_{\text{ker}} \epsilon_{\text{ker}}^{(s,t)} + \sigma_{\text{im}} \epsilon_{\text{im}}^{(s,t)}$             $\triangleright$  A sample from  $q(\theta)$ 
12       $\hat{\theta}, \sigma_{\text{ker}}, \sigma_{\text{im}} \leftarrow$  Gradient step on  $\mathcal{L}(\hat{\theta}, \sigma_{\text{ker}}, \sigma_{\text{im}})$  using  $\{\theta^{(s)}\}_{s=1}^S$  (Equation 3)

```

This proposed approximate posterior is perhaps the simplest possible choice that is adapted to overparametrized models: it has one scalar parameter, $\sigma_{\text{im}}^2 \in \mathbb{R}_+$, that influences the predictive uncertainty on the training data, and another scalar parameter $\sigma_{\text{ker}}^2 \in \mathbb{R}_+$ that reflects uncertainty elsewhere. Arguably, it is overly simplistic to calibrate a neural network through two scalars, but we will see that it is surprisingly competitive, suggesting that explicitly reflecting overparametrization is important in Bayesian approximations.

3.1 The VIKING ELBO

To estimate $q(\theta)$, we maximize the usual (variational) lower bound \mathcal{L} of the likelihood $p(\mathbf{y}|\theta, \mathbf{x})$

$$\mathcal{L}(\hat{\theta}, \sigma_{\text{ker}}, \sigma_{\text{im}}) = \mathbb{E}_{\theta \sim q} [\log p(\mathbf{y}|\theta, \mathbf{x})] - \text{KL}(q(\theta) \| p(\theta)), \quad (3)$$

where KL denotes the Kullback-Leibler divergence. We call the result *Variational Inference with Kernel- and Image-spaces of numerical Gauss–Newton matrices (VIKING)*. The overall algorithmic steps involved in our method are summarized in Algorithm 1. We refer to the two terms of the ELBO as the *reconstruction term* and the *KL term*, respectively, and discuss their evaluation in what follows.

The reconstruction term. Assume access to an algorithm to approximate products between the projection matrix $\mathbf{U}_{\hat{\theta}} \mathbf{U}_{\hat{\theta}}^\top$ and any vector $\mathbf{v} \in \mathbb{R}^D$. For $s = 1, \dots, S$, we can then estimate of the reconstruction term as

$$\epsilon^{(s)} \sim \mathcal{N}(0, \mathbb{I}) \quad \in \mathbb{R}^D, \quad (4)$$

$$(\text{projection onto kernel space}) \quad \epsilon_{\text{ker}}^{(s)} = \mathbf{U}_{\hat{\theta}} \mathbf{U}_{\hat{\theta}}^\top \epsilon^{(s)} \quad \in \mathbb{R}^D, \quad (5)$$

$$(\text{image space is orthogonal}) \quad \epsilon_{\text{im}}^{(s)} = (\mathbb{I} - \mathbf{U}_{\hat{\theta}} \mathbf{U}_{\hat{\theta}}^\top) \epsilon^{(s)} = \epsilon^{(s)} - \epsilon_{\text{ker}}^{(s)} \quad \in \mathbb{R}^D, \quad (6)$$

$$\theta^{(s)} = \hat{\theta} + \sigma_{\text{ker}} \epsilon_{\text{ker}}^{(s)} + \sigma_{\text{im}} \epsilon_{\text{im}}^{(s)} \quad \in \mathbb{R}^D, \quad (7)$$

$$\mathbb{E}_{\theta \sim q} [\log p(\mathbf{y}|\theta, \mathbf{x})] \approx \frac{1}{S} \sum_{s=1}^S \log p(\mathbf{y}|\theta^{(s)}, \mathbf{x}) \quad \in \mathbb{R} . \quad (8)$$

Here, Equation 5 requires careful computation, to be addressed later. Once $\epsilon_{\text{ker}}^{(s)}$ is computed, obtaining a sample $\theta^{(s)}$ from the approximate posterior is trivial.

The KL term. Since we have both a Gaussian prior and a Gaussian approximate posterior, we can evaluate the KL term in closed form with

$$\text{KL}(q(\theta) \| p(\theta)) = \frac{1}{2} \left(\alpha \text{Tr}(\Sigma_{\hat{\theta}}) - D + \alpha \|\hat{\theta}\|^2 - D \log(\alpha) - \log \det(\Sigma_{\hat{\theta}}) \right). \quad (9)$$

Recall the construction of $\Sigma_{\hat{\theta}}$ from Equation 2. Since $\Sigma_{\hat{\theta}}$ is a sum of scaled projection matrices, it has R eigenvalues equal to σ_{ker}^2 and $D-R$ eigenvalues equal to σ_{im}^2 . We can, thus, evaluate

$$\text{Tr}(\Sigma_{\hat{\theta}}) = \sigma_{\text{ker}}^2 R + \sigma_{\text{im}}^2 (D-R), \text{ and} \quad (10)$$

$$\log \det(\Sigma_{\hat{\theta}}) = 2R \log(\sigma_{\text{ker}}) + 2(D-R) \log(\sigma_{\text{im}}), \quad (11)$$

requiring only an estimate of the kernel dimension R to evaluate the full KL term in closed form.

To estimate R , we note that $\mathbf{U}_{\hat{\theta}} \mathbf{U}_{\hat{\theta}}^\top$ is a projection matrix, i.e., it has R eigenvalues that are 1 while the remaining are 0. Consequently,

$$R = \text{Tr}(\mathbf{U}_{\hat{\theta}} \mathbf{U}_{\hat{\theta}}^\top) \approx \frac{1}{S} \sum_{s=1}^S \boldsymbol{\epsilon}^{(s)^\top} \widehat{\mathbf{U}_{\hat{\theta}} \mathbf{U}_{\hat{\theta}}^\top \boldsymbol{\epsilon}^{(s)}} = \frac{1}{S} \sum_{s=1}^S \boldsymbol{\epsilon}^{(s)^\top} \boldsymbol{\epsilon}_{\text{ker}}^{(s)}, \quad (12)$$

where the approximation is Hutchinson's trace estimator (Hutchinson, 1989). Note that we may reuse $\boldsymbol{\epsilon}_{\text{ker}}^{(s)}$ (Equation 5) from the reconstruction term.

3.2 Kernel projections

At first glance, the ELBO terms (Equations 8 and 9) seem straightforward. The practical difficulty lies in projecting onto $\text{ker}(\mathcal{F}_{\hat{\theta}})$ as per Equation 5. One noticeable challenge is $\mathbf{U}_{\hat{\theta}} \mathbf{U}_{\hat{\theta}}^\top$ having $D \times D$ entries, where D is the number of model parameters. With many modern models having millions or billions of parameters, it is not possible to instantiate this matrix, and we resort to matrix-free algorithms.

We start by defining the matrix containing a stack of *per-datum* loss gradients,

$$\mathbf{J}_{\hat{\theta}} = \begin{bmatrix} \nabla_{\hat{\theta}} \log p_{\hat{\theta}}(\mathbf{y}_1 | \mathbf{x}_1) \\ \vdots \\ \nabla_{\hat{\theta}} \log p_{\hat{\theta}}(\mathbf{y}_N | \mathbf{x}_N) \end{bmatrix} \in \mathbb{R}^{N \times D}. \quad (13)$$

This matrix is chosen such that the kernel of $\mathbf{J}_{\hat{\theta}}^\top \mathbf{J}_{\hat{\theta}}$ estimates the kernel of the Fisher–Rao metric, $\text{ker}(\mathcal{F}_{\hat{\theta}})$ (Equation 1), as is common practice in Bayesian deep learning (Miani et al., 2025). For a deeper discussion of the implications of this choice, we refer to Kunstner et al. (2019). Projecting onto the kernel of $\mathbf{J}_{\hat{\theta}}^\top \mathbf{J}_{\hat{\theta}}$ can then be written as a least-squares problem over $\mathbf{J}_{\hat{\theta}}$,

$$\boldsymbol{\epsilon}_{\text{ker}}^{(s)} = \mathbf{U}_{\hat{\theta}} \mathbf{U}_{\hat{\theta}}^\top \boldsymbol{\epsilon}^{(s)} = \arg \min_{\mathbf{u}} \left\{ \|\mathbf{u} - \boldsymbol{\epsilon}^{(s)}\|^2 \text{ subject to } \mathbf{J}_{\hat{\theta}} \mathbf{u} = \mathbf{0} \right\}. \quad (14)$$

Using Lagrange multipliers, we can rewrite the loss in Equation 14 as

$$\ell(\mathbf{u}, \boldsymbol{\lambda}) = \frac{1}{2} \|\mathbf{u} - \boldsymbol{\epsilon}^{(s)}\|_2^2 + \boldsymbol{\lambda}^\top \mathbf{J}_{\hat{\theta}} \mathbf{u},$$

with minima $\boldsymbol{\epsilon}_{\text{ker}}^{(s)}$ and $\boldsymbol{\lambda}^*$ that satisfy

$$\begin{bmatrix} \mathbb{I} & \mathbf{J}_{\hat{\theta}}^\top \\ \mathbf{J}_{\hat{\theta}} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{\epsilon}_{\text{ker}}^{(s)} \\ \boldsymbol{\lambda}^* \end{bmatrix} = \begin{bmatrix} \boldsymbol{\epsilon}^{(s)} \\ 0 \end{bmatrix}; \quad (15)$$

more explicitly, the optimal solution is

$$\boldsymbol{\epsilon}_{\text{ker}}^{(s)} = \boldsymbol{\epsilon}^{(s)} - \mathbf{J}_{\hat{\theta}}^\top \boldsymbol{\lambda}^*, \quad \boldsymbol{\lambda}^* = (\mathbf{J}_{\hat{\theta}} \mathbf{J}_{\hat{\theta}}^\top)^{-1} \mathbf{J}_{\hat{\theta}} \boldsymbol{\epsilon}^{(s)} \quad (16)$$

The numerical bottleneck of the projection is thus inverting the matrix $\mathbf{J}_{\hat{\theta}} \mathbf{J}_{\hat{\theta}}^\top$. We never invert this matrix explicitly, but instead solve the linear system $\mathbf{J}_{\hat{\theta}} \mathbf{J}_{\hat{\theta}}^\top \boldsymbol{\xi} = \mathbf{J}_{\hat{\theta}} \boldsymbol{\epsilon}^{(s)}$ with the conjugate gradients algorithm (Hestenes et al., 1952). The conjugate gradients algorithm is a matrix-free method, which means that we never materialize the system matrix, and instead, require only matrix–vector products and vector–matrix products, which are accessible with automatic differentiation (since the system matrix consists of stacks per-data gradients).

Importantly, conjugate-gradient solves can be numerically brittle as they rely on well-conditioned systems. This frequently leads to inaccurate projections, in the sense that $\boldsymbol{\epsilon}_{\text{ker}}^{(s)}$ and $\boldsymbol{\epsilon}_{\text{im}}^{(s)}$ are not orthogonal, even if they should. The solution to this problem is to either precondition the linear system or to improve the numerical robustness of the conjugate gradients method with reorthogonalization – we found the latter to perform well, thus, all experiments use conjugate gradients with full reorthogonalization (Gratton et al., 2021); see also Maddox et al. (2022).

3.3 Stochastic alternating projections

The projection algorithm performs most of the computation that eventually gets us samples from the approximate posterior $q(\theta)$. Unfortunately, following Equation 16 to project onto the FR kernel requires working with $\mathbf{J}_\theta \mathbf{J}_\theta^\top$, a $N \times N$ matrix. Recently, Miani et al. (2025) proposed a scalable mini-batched algorithm for projecting onto matrix kernels, based on von Neumann’s alternating projections (1949). In our setting, this algorithm would iteratively project onto the kernel of batched FR estimates,

$$\epsilon \mapsto \mathbf{U}_{\hat{\theta}}^{(t)} \mathbf{U}_{\hat{\theta}}^{(t)\top} \epsilon, \quad (17)$$

where ϵ is the vector to be projected and $\mathbf{U}_{\hat{\theta}}^{(t)} \mathbf{U}_{\hat{\theta}}^{(t)\top}$ is the kernel-projection of the t^{th} batch. This process can be shown to converge onto the kernel of the complete-data FR (Miani et al., 2025).

Unfortunately, the alternating projections algorithm still requires one or more passes through the entire dataset to project a single vector. As we require a sample from the approximate posterior in every optimization step, alternating projections is inapplicable to mini-batched ELBO optimization.

The fundamental issue is that in each ELBO optimization step, we change the approximate posterior mean $\hat{\theta}$, such that the FR and its kernel also change. A naive procedure would draw an initial sample $\epsilon^{(0)} \sim \mathcal{N}(\mathbf{0}, \mathbb{I})$, and repeatedly project this onto mini-batch FR kernels throughout ELBO optimization, hoping that the posterior mean changes sufficiently slowly to maintain the properties of kernel samples. Empirically, we have not found this to be the case.

With this in mind, we propose a stochastic extension of the alternating projections algorithm suitable for mini-batched ELBO optimization. Let $\epsilon^{(t)}$ denote a sample in the FR kernel associated with the posterior mean at step t (e.g., one parameter update step). We then update the sample as

$$\epsilon^{(t)} = \mathbf{U}_{\hat{\theta}}^{(t)} \mathbf{U}_{\hat{\theta}}^{(t)\top} \left(\sqrt{\gamma} \epsilon^{(t-1)} + \sqrt{1-\gamma} \eta^{(t)} \right), \quad \eta^{(t)} \sim \mathcal{N}(0, \mathbb{I}), \quad (18)$$

where the hyperparameter $\gamma \in [0, 1]$ controls the noise of this stochastic alternating projection. For $\gamma = 1$, we recover the above naive approach that disregards the change in kernel, while for $\gamma = 0$ we merely project onto the kernel of the current batched FR estimate. In-between values implement a soft “sliding window” along the history of projections, where previous projection information is preserved and then eventually forgotten after a certain number of steps.

What is the effect of additional noise? Empirically, we find the stochastic extension essential to training models successfully. In Figure 2, we show the accuracy curves over training of a small CNN classifier on Fashion MNIST, with dashed horizontal lines indicating performance on test data. The experiment evaluates values of γ : no noise ($\gamma = 1.0$), only noise ($\gamma = 0.0$), and an in-between choice ($\gamma = 0.5$), as per Equation 18. The model without noise quickly achieves the highest training accuracy, but its dependency on the projected samples, which change only once per epoch, leads to a poorer approximate posterior and generalization.

3.4 Post-hoc variational inference or full model fitting?

Given the computational effort to evaluate and run the ELBO, it is important to question whether this could be avoided entirely. One possibility is to start from a well-performing model, and only use the ELBO to tune the variational parameters σ_{ker} and σ_{im} , i.e., post-hoc variational inference with a fixed model. This can be efficiently implemented as we only need to project one set of samples, which can be reused throughout optimization. With the same experimental setting from before, Figure 3 shows the behavior of such a training procedure. Interestingly, post-hoc tuning is not *per se* problematic and indeed leads to a well-performing model. However, the figure shows that optimizing the variational mean with the ELBO improves upon the post-hoc approach.

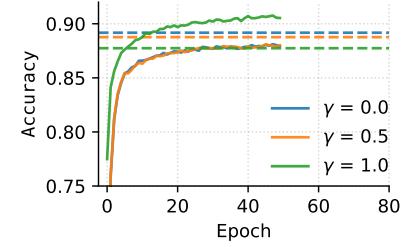


Figure 2: Performance of γ values.

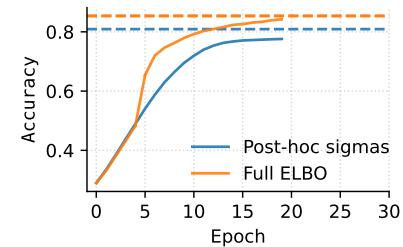


Figure 3: Post-hoc tuning $\sigma_{\text{ker}}, \sigma_{\text{im}}$. The figure shows that optimizing the variational mean with the ELBO improves upon the post-hoc approach.

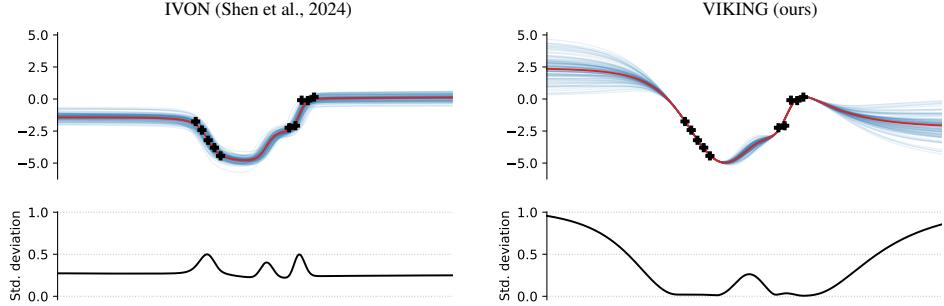


Figure 5: A toy regression example on a sinusoid curve with 10 data points. *Top*: The curves show the training points in black, with the mean fit as a red line and 100 posterior predictive samples as blue lines. *Bottom*: The standard deviation of the predictions over each point in the horizontal axis.

Warming up as a shortcut. As observed, we can still obtain a well-behaved model from the post-hoc tuning procedure. Naturally, this informally suggests another way to save computational effort, resources, and time: “warming up” the model, first with regular maximum likelihood estimation (or through a pretrained model), and then continuing with ELBO optimization.

We test this hypothesis experimentally, comparing a model trained from scratch using our ELBO and one that starts with a model first fitted using maximum likelihood (Figure 4). Our findings are twofold: (i) warmup using maximum likelihood is an effective way to quickstart the ELBO learning process with the ELBO; (ii) there is a sweet spot where full convergence of a model on maximum likelihood can lead to the ELBO optimization getting stuck. We conjecture that this behavior is due to the sharpness of some minima, which negatively affects the evaluation of the expectation term, as it attempts to sample regions of the weight space around the current model weights, which could have drastically different performance, negatively affecting optimization.

4 Experiments

We evaluate VIKING against popular Bayesian deep learning methods using standard benchmarks for Bayesian deep learning. Aiming to maintain consistency and simplify comparisons, we adopt the loss-Jacobian (see Section 3.2) when using our proposed variational family. Further details on models, hyperparameters used, and training procedures are in Section C.

Toy (sinusoid) regression. We first illustrate posterior samples in a 1D regression in Figure 5. We train the same model with both IVON (Shen et al., 2024) and VIKING. While IVON obtains a good model fit, its posterior samples are uninformative with respect to uncertainties. On the other hand, VIKING shows higher variance close to the boundary of data and beyond, where the model should be less confident.

Image classification. Using standard benchmarks, we evaluate our method against the *maximum a posteriori* (MAP) estimate, the (loss-projected) post-hoc method from Miani et al. (2025), IVON (Shen et al., 2024), SWAG (Maddox et al., 2019), and a last-layer Laplace approximation. On MNIST (LeCun et al., 2010) and Fashion MNIST (Xiao et al., 2017), we train a LeNet (LeCun et al., 1989) model, while on SVHN (Netzer et al., 2011) and CIFAR-10 (Krizhevsky and Hinton, 2009) we use a small ResNet (He et al., 2016). The models are compared using accuracy, negative log-likelihood (NLL), expected calibration error (ECE), and maximum calibration error (MCE) (Naeini et al., 2015).

The results in Table 1 show that our ELBO generalize better in most cases, which we hypothesize is due to the interaction between evaluations of the expectation term which constantly “explores” the weight space around the current mode through the sampling mechanism, whereas the kernel and image variances that allow this exploration are kept in check by the KL term. On calibration metrics, our method is particularly effective against the baselines on the SVHN and CIFAR-10 datasets, where

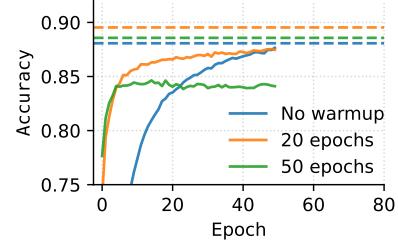


Figure 4: Warmup by pretraining.

Table 1: Experimental results over three runs (mean and standard deviation) on in-distribution test data. MAP is a point (model) estimate. VIKING and the post-hoc method from Miani et al. (2025) use the loss-projected variant.

		Accuracy \uparrow	Conf. \uparrow	NLL \downarrow	ECE \downarrow	MCE \downarrow
MNIST	MAP	0.986 \pm 0.001	0.996 \pm 0.000	0.070 \pm 0.005	0.247 \pm 0.011	0.861 \pm 0.045
	VIKING (ours)	0.991 \pm 0.001	0.992 \pm 0.000	0.055 \pm 0.003	0.096 \pm 0.004	0.690 \pm 0.102
	Miani et al. (2025)	0.949 \pm 0.000	0.813 \pm 0.018	1.225 \pm 0.099	0.666 \pm 0.007	0.894 \pm 0.011
	IVON	0.989 \pm 0.001	0.990 \pm 0.001	0.043 \pm 0.002	0.077 \pm 0.005	0.651 \pm 0.042
	SWAG	0.982 \pm 0.000	0.982 \pm 0.001	0.064 \pm 0.006	0.788 \pm 0.005	0.906 \pm 0.013
	Last Layer LA	0.975 \pm 0.002	0.977 \pm 0.002	0.090 \pm 0.005	0.784 \pm 0.007	0.887 \pm 0.008
Fashion MNIST	MAP	0.883 \pm 0.002	0.942 \pm 0.003	0.410 \pm 0.010	0.153 \pm 0.008	0.590 \pm 0.141
	VIKING (ours)	0.900 \pm 0.001	0.928 \pm 0.001	0.332 \pm 0.003	0.075 \pm 0.002	0.611 \pm 0.160
	Miani et al. (2025)	0.871 \pm 0.006	0.744 \pm 0.031	1.529 \pm 0.371	0.617 \pm 0.025	0.901 \pm 0.013
	IVON	0.897 \pm 0.004	0.926 \pm 0.001	0.335 \pm 0.011	0.073 \pm 0.005	0.683 \pm 0.024
	SWAG	0.898 \pm 0.001	0.931 \pm 0.006	0.327 \pm 0.001	0.725 \pm 0.003	0.907 \pm 0.003
	Last Layer LA	0.896 \pm 0.002	0.931 \pm 0.005	0.339 \pm 0.011	0.727 \pm 0.004	0.902 \pm 0.004
SVHN	MAP	0.947 \pm 0.004	0.963 \pm 0.004	0.201 \pm 0.014	0.055 \pm 0.010	0.608 \pm 0.228
	VIKING (ours)	0.960 \pm 0.001	0.964 \pm 0.001	0.177 \pm 0.002	0.028 \pm 0.002	0.308 \pm 0.024
	Miani et al. (2025)	0.949 \pm 0.003	0.948 \pm 0.005	0.191 \pm 0.007	0.734 \pm 0.017	0.880 \pm 0.012
	IVON	0.943 \pm 0.002	0.888 \pm 0.007	0.302 \pm 0.016	0.082 \pm 0.004	0.492 \pm 0.248
	SWAG	0.947 \pm 0.004	0.897 \pm 0.007	0.217 \pm 0.014	0.745 \pm 0.007	0.874 \pm 0.003
	Last Layer LA	0.946 \pm 0.001	0.943 \pm 0.005	0.197 \pm 0.009	0.740 \pm 0.007	0.899 \pm 0.009
CIFAR-10	MAP	0.824 \pm 0.012	0.869 \pm 0.003	0.536 \pm 0.055	0.075 \pm 0.012	0.619 \pm 0.243
	VIKING (ours)	0.877 \pm 0.004	0.893 \pm 0.003	0.407 \pm 0.010	0.041 \pm 0.004	0.331 \pm 0.094
	Miani et al. (2025)	0.855 \pm 0.002	0.701 \pm 0.013	2.643 \pm 0.205	0.559 \pm 0.006	0.802 \pm 0.005
	IVON	0.835 \pm 0.017	0.763 \pm 0.005	0.817 \pm 0.075	0.086 \pm 0.014	0.436 \pm 0.244
	SWAG	0.865 \pm 0.029	0.914 \pm 0.035	0.445 \pm 0.063	0.694 \pm 0.018	0.881 \pm 0.005
	Last Layer LA	0.894 \pm 0.001	0.944 \pm 0.001	0.406 \pm 0.005	0.704 \pm 0.000	0.880 \pm 0.007
Imagenette	MAP	0.852 \pm 0.002	0.883 \pm 0.007	0.481 \pm 0.009	0.084 \pm 0.010	0.717 \pm 0.082
	VIKING (ours)	0.887 \pm 0.003	0.906 \pm 0.002	0.403 \pm 0.010	0.077 \pm 0.001	0.612 \pm 0.162
	IVON	0.876 \pm 0.023	0.849 \pm 0.013	0.656 \pm 0.136	0.069 \pm 0.011	0.464 \pm 0.230

the overparametrization of the model (around 220k parameters) is more prominent. Additional results including deep ensembles and SGLD (Welling and Teh, 2011) are in Section A.

Does it scale to larger models? To evaluate the scalability of our approach, we also train a ResNet34 (21.7 million parameters) on Imagenette (Howard, 2019) using VIKING and IVON. We predominantly aim to demonstrate that VIKING scales to contemporary models despite learning a fully correlated covariance. The results show a superior performance of our ELBO-trained model, but inferior calibration metrics compared to IVON (Table 1).

Out-of-distribution detection. Next, we evaluate VIKING in out-of-distribution (OOD) detection tasks. We use the maximum variance of the softmax probabilities across output dimensions as an OOD score for both IVON and VIKING. In addition to the datasets from before, we use EMNIST and CIFAR-100 as OOD data. For ease of comparison, our experimental setup replicates that of Miani et al. (2025), so we additionally use their reported numbers for the other baselines as well.

Table 2 summarizes the obtained results. At a glance, VIKING performs on par with the best models, sometimes overperforming the other baselines by a big margin (e.g., MNIST \rightarrow FMNIST and KMNIST) and other times being a close second. Overall, this further confirms the empirical performance of our variational family and ELBO optimization in obtaining robust models.

Generative modelling. Finally, we demonstrate our approach applied to generative modelling. We train a variational autoencoder (VAE, Kingma and Welling (2013)) until convergence. From that starting point, we further refine the decoder’s 1.6 million parameters using both IVON and VIKING. We draw 32 samples from each of the resulting approximate decoder posteriors, which we use to both reconstruct images and measure uncertainties.

Figure 6 displays the reconstructed samples and the variance across the posterior samples per reconstructed image. Overall, both posteriors qualitatively recover well-performing models. The methods discern themselves more prominently upon inspection of the variances across the reconstructions of

Table 2: Area under ROC (\uparrow) performance on out-of-distribution detection. VIKING and the post-hoc method from Miani et al. (2025) use the loss-projected variant.

In-dist.	MNIST			FMNIST		
Out-of-dist.	FMNIST	KMNIST	EMNIST	MNIST	KMNIST	EMNIST
MAP	0.928 \pm 0.015	0.934 \pm 0.004	0.890 \pm 0.002	0.728 \pm 0.048	0.791 \pm 0.014	0.659 \pm 0.035
VIKING (ours)	0.972 \pm 0.003	0.965 \pm 0.002	0.913 \pm 0.006	0.898 \pm 0.025	0.926 \pm 0.002	0.830 \pm 0.020
Miani et al. (2025)	0.899 \pm 0.011	0.856 \pm 0.002	0.893 \pm 0.006	0.914 \pm 0.035	0.907 \pm 0.026	0.928 \pm 0.007
IVON	0.948 \pm 0.004	0.945 \pm 0.007	0.918 \pm 0.008	0.801 \pm 0.020	0.867 \pm 0.005	0.739 \pm 0.025
SWAG	0.917 \pm 0.024	0.861 \pm 0.032	0.916 \pm 0.010	0.685 \pm 0.014	0.655 \pm 0.015	0.751 \pm 0.032
Last Layer LA	0.793 \pm 0.215	0.759 \pm 0.166	0.782 \pm 0.182	0.768 \pm 0.001	0.699 \pm 0.020	0.824 \pm 0.016

In-dist.	SVHN		CIFAR-10	
Out-of-dist.	CIFAR-10	CIFAR-100	SVHN	CIFAR-100
MAP	0.946 \pm 0.006	0.941 \pm 0.007	0.831 \pm 0.019	0.778 \pm 0.013
VIKING (ours)	0.947 \pm 0.002	0.943 \pm 0.002	0.827 \pm 0.007	0.805 \pm 0.003
Miani et al. (2025)	0.966 \pm 0.009	0.960 \pm 0.006	0.863 \pm 0.008	0.800 \pm 0.013
IVON	0.822 \pm 0.014	0.826 \pm 0.009	0.648 \pm 0.019	0.714 \pm 0.012
SWAG	0.777 \pm 0.029	0.787 \pm 0.027	0.798 \pm 0.040	0.782 \pm 0.042
Last Layer LA	0.914 \pm 0.005	0.908 \pm 0.005	0.811 \pm 0.024	0.801 \pm 0.026

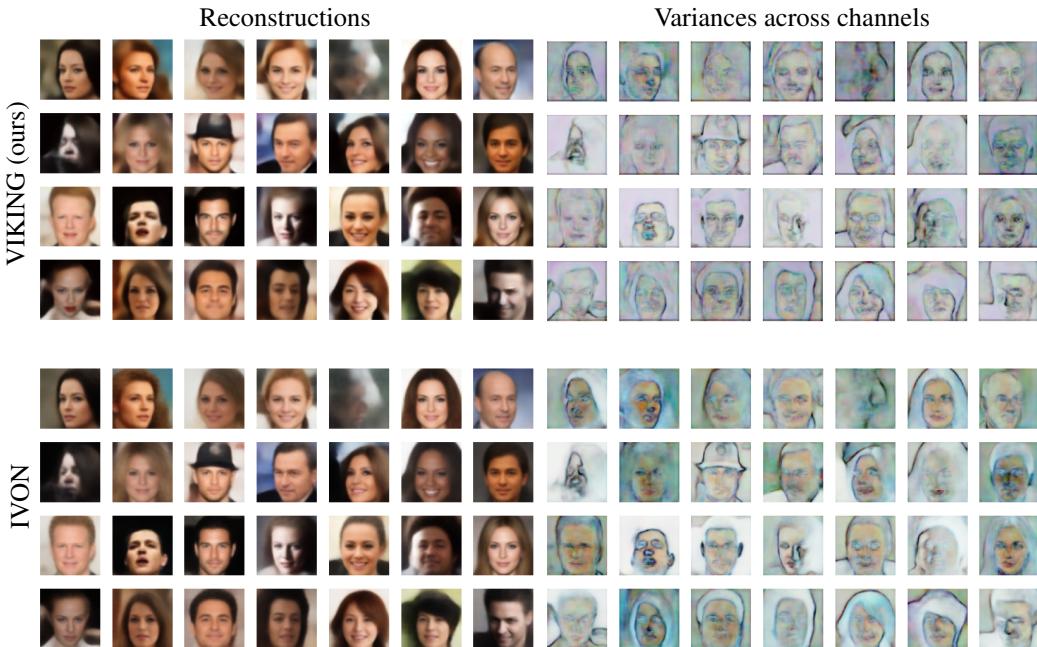


Figure 6: Reconstructed samples taken from the latent space prior of variational autoencoders trained with IVON and VIKING. Using 32 posterior samples, the posterior variances compare key semantic features, such as contours between foreground and background, and eyes.

the different posterior samples. Notably, IVON tends to capture variance across all features of the image, including the background. VIKING focuses the variance on facial features and outline instead, showing a disregard for the less-relevant aspects of the data.

To assess the model uncertainties, we compute the median value of the standard deviations per pixel produced by each of the 16k generated samples and summarize their distribution in Figure 7. Our in-distribution samples come from a standard Gaussian sample, whereas out-of-distribution samples come from a Gaussian with twice the variance. The uncertainties produced by VIKING show well-separated distributions clearly detecting OOD samples, while IVON does not.

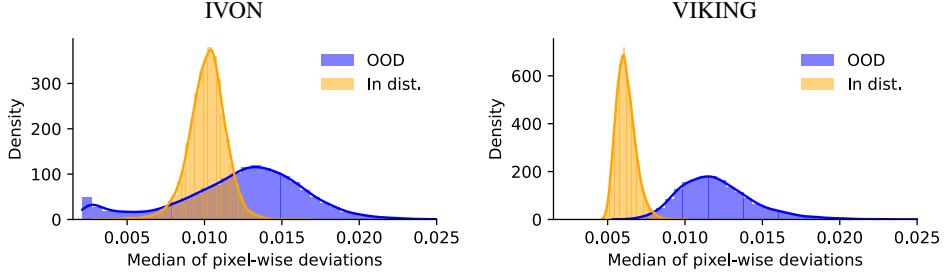


Figure 7: Histograms of uncertainties on 16K in- and out-of-distribution latent samples according to IVON and VIKING. Uncertainties are computed as median of pixel-wise standard deviations computed by decoding the latent sample using 32 posterior model samples.

5 Discussion

This paper introduces a variational family (‘VIKING’) that explicitly takes model overparametrization into account. This is achieved through a decomposition of the Fisher–Rao metric into parameter subspaces that capture directions in which the per-training data loss remains unchanged and directions in which this loss changes. Intuitively, uncertainty along these directions can be interpreted as uncertainty over the training data and general model uncertainty. This is similar to the conventional splits into aleatoric and epistemic uncertainty commonly found, e.g., in Gaussian processes (GPs, Rasmussen and Williams 2006). The parameters we estimate, thus, come with a degree of interpretability.

Scaling VIKING to large models is, however, not straightforward, as the approximate posterior correlates all parameters, yet we cannot afford to instantiate the covariance matrix due to excessive memory costs. We have developed a stochastic extension to von Neumann’s (1949) alternating projections algorithm that scales to large models through a matrix-free implementation. The approach readily applies to large contemporary models including a ResNet with 21.7 million parameters and a generative model with 1.6 million parameters.

Empirically, our results show that VIKING tends to be *consistently* as good as or better than current state-of-the-art methods. This lends credibility to the hypothesis that overparametrization should be explicitly taken into account when designing approximate posteriors.

The key limitation is the additional computational overhead incurred by the projection algorithm. Standard gradient descent requires a single backward pass for one gradient update, while VIKING requires the number of CG iterations backward passes per sample. In practice, we train with one Monte Carlo sample and only need a few CG iterations, so the additional cost is manageable. Using more sophisticated linear algebra and custom gradients, significantly more efficient and numerically accurate least squares solvers can be employed (Roy et al., 2025), overcoming some of the time-efficiency and numerical issues in our approach.

Acknowledgments

The authors thank Sebastian Mair for his comments on early drafts. This work was supported by the Danish Data Science Academy, which is funded by the Novo Nordisk Foundation (NNF21SA0069429); by research grant 42062 from VILLUM FONDEN; by the Novo Nordisk Foundation through the *Center for Basic Machine Learning Research in Life Science* (NNF20OC0062606); by the European Research Council (ERC) under the European Union’s Horizon programme (grant agreement 101125993); and by the Horizon-EU EIC Pathfinder Open program to *i-RASE*: Intelligent Radiation Sensor Readout System, with reference number: *HE EIC - i-RASE – 101130550*.

References

Shun-ichi Amari. *Information Geometry and Its Applications*. Springer Tokyo, 1 edition, 2016.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe and. Variational inference: A review for statisticians. *Journal of the American Statistical Association*, 112(518):859–877, 2017. doi: 10.1080/01621459.2017.1285773.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural networks. In *International Conference on Machine Learning*, pages 1613–1622. PMLR, 2015.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig. Laplace redux-effortless bayesian deep learning. *Advances in Neural Information Processing Systems*, 34:20089–20103, 2021.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep nets. In *International Conference on Machine Learning*, pages 1019–1028. PMLR, 2017.

Serge Gratton, Ehouarn Simon, David Titley-Peloquin, and Philippe L Toint. Minimizing convex quadratics with variable precision conjugate gradients. *Numerical Linear Algebra with Applications*, 28(1):e2337, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 770–778, 2016.

Jose Miguel Hernandez-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning of bayesian neural networks. In Francis Bach and David Blei, editors, *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pages 1861–1869, Lille, France, 07–09 Jul 2015. PMLR.

Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear systems. *Journal of research of the National Bureau of Standards*, 49(6):409–436, 1952.

Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from ImageNet, March 2019. URL <https://github.com/fastai/imagenette>.

Jiri Hron, Alex Matthews, and Zoubin Ghahramani. Variational Bayesian dropout: pitfalls and fixes. In Jennifer Dy and Andreas Krause, editors, *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pages 2019–2028. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/hron18a.html>.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. *Communications in Statistics-Simulation and Computation*, 18(3):1059–1076, 1989.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What are bayesian neural network posteriors really like? In *International conference on machine learning*, pages 4629–4640. PMLR, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being a bit frequentist improves bayesian neural networks. In *International Conference on Artificial Intelligence and Statistics*, pages 529–545. PMLR, 2022.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report, Department of Computer Science, University of Toronto, 2009.

Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical fisher approximation. *CoRR*, abs/1905.12558, 2019. URL <http://arxiv.org/abs/1905.12558>.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. *Neural Computation*, 1(4):541–551, 1989. doi: 10.1162/neco.1989.1.4.541.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs [Online]*. Available: <http://yann.lecun.com/exdb/mnist>, 2, 2010.

Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. Stochastic expectation propagation. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc., 2015.

David JC MacKay. A practical bayesian framework for backpropagation networks. *Neural computation*, 4(3):448–472, 1992.

David JC MacKay. Probable networks and plausible predictions-a review of practical bayesian methods for supervised neural networks. *Network: computation in neural systems*, 6(3):469, 1995.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson. A simple baseline for bayesian uncertainty in deep learning. *Advances in neural information processing systems*, 32, 2019.

Wesley J Maddox, Andres Potapcynski, and Andrew Gordon Wilson. Low-precision arithmetic for fast gaussian processes. In *Uncertainty in Artificial Intelligence*, pages 1306–1316. PMLR, 2022.

Marco Miani, Lorenzo Beretta, and Søren Hauberg. Sketched Lanczos uncertainty score: a low-memory summary of the Fisher information. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomeczak, and C. Zhang, editors, *Advances in Neural Information Processing Systems*, volume 37, pages 23123–23154. Curran Associates, Inc., 2024.

Marco Miani, Hritik Roy, and Søren Hauberg. Bayes without underfitting: Fully correlated deep learning posteriors via alternating projections. In *International Conference on Artificial Intelligence and Statistics*, pages 2062–2070. PMLR, 2025.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated probabilities using bayesian binning. *Proceedings of the AAAI Conference on Artificial Intelligence*, 29(1), 2015.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural images with unsupervised feature learning. In *NIPS Workshop on Deep Learning and Unsupervised Feature Learning*, 2011.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts. *Distill*, 2016. doi: 10.23915/distill.00003. URL <http://distill.pub/2016/deconv-checkerboard>.

Carl Edward Rasmussen and Christopher KI Williams. *Gaussian processes for machine learning*, volume 2. MIT press Cambridge, MA, 2006.

Hritik Roy, Marco Miani, Carl Henrik Ek, Philipp Hennig, Marvin Pförtner, Lukas Tatzel, and Søren Hauberg. Reparameterization invariance in approximate bayesian inference. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=204Y0rDHny>.

Hritik Roy, Søren Hauberg, and Nicholas Krämer. Matrix-free least squares solvers: Values, gradients, and what to do with them. *arXiv preprint arXiv:2510.19634*, 2025.

Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do Bayesian Neural Networks Need To Be Fully Stochastic? In *International Conference on Artificial Intelligence and Statistics (AISTATS, notable paper award)*, 2023.

Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Clement Bazan, Rio Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, et al. Variational learning is effective for large deep networks. *arXiv preprint arXiv:2402.17641*, 2024.

John von Neumann. On rings of operators. reduction theory. *Annals of Mathematics*, 50(2):401–485, 1949.

Frederik Warburg, Marco Miani, Silas Brack, and Søren Hauberg. Bayesian metric learning for uncertainty quantification in image retrieval. In *Neural Information Processing Systems (NeurIPS)*, 2023.

Sumio Watanabe. *Algebraic geometry and statistical learning theory*, volume 25. Cambridge university press, 2009.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In *Proceedings of the 28th international conference on machine learning (ICML-11)*, pages 681–688, 2011.

Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh Tran, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes posterior in deep neural networks really? *arXiv preprint arXiv:2002.02405*, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *CoRR*, abs/1708.07747, 2017.

Yijie Zhang, Yi-Shan Wu, Luis A. Ortega, and Andres R Masegosa. The cold posterior effect indicates underfitting, and cold posteriors represent a fully bayesian method to mitigate it. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=GZ0RXGxHHT>.

Zheng Zhao, Sebastian Mair, Thomas B Schön, and Jens Sjölund. On feynman-kac training of partial bayesian neural networks. In *International Conference on Artificial Intelligence and Statistics*, pages 3223–3231. PMLR, 2024.

Table 3: Experimental results over three runs (mean and standard deviation) on in-distribution test data. MAP is a point (model) estimate. VIKING and the post-hoc method from Miani et al. (2025) use the loss-projected variant. Ensemble is over five models.

		Accuracy \uparrow	Conf. \uparrow	NLL \downarrow	ECE \downarrow	MCE \downarrow
MNIST	MAP	0.986 \pm 0.001	0.996 \pm 0.000	0.070 \pm 0.005	0.247 \pm 0.011	0.861 \pm 0.045
	VIKING (ours)	0.991 \pm 0.001	0.992 \pm 0.000	0.055 \pm 0.003	0.096 \pm 0.004	0.690 \pm 0.102
	Miani et al. (2025)	0.949 \pm 0.000	0.813 \pm 0.018	1.225 \pm 0.099	0.666 \pm 0.007	0.894 \pm 0.011
	IVON	0.989 \pm 0.001	0.990 \pm 0.001	0.043 \pm 0.002	0.077 \pm 0.005	0.651 \pm 0.042
	SGLD	0.990 \pm 0.000	0.975 \pm 0.001	0.062 \pm 0.002	0.067 \pm 0.002	0.684 \pm 0.054
	SWAG	0.982 \pm 0.000	0.982 \pm 0.001	0.064 \pm 0.006	0.788 \pm 0.005	0.906 \pm 0.013
	Last Layer LA	0.975 \pm 0.002	0.977 \pm 0.002	0.090 \pm 0.005	0.784 \pm 0.007	0.887 \pm 0.008
Fashion MNIST	Ensemble	0.992	0.989	0.078	0.116	0.675
	MAP	0.883 \pm 0.002	0.942 \pm 0.003	0.410 \pm 0.010	0.153 \pm 0.008	0.590 \pm 0.141
	VIKING (ours)	0.900 \pm 0.001	0.928 \pm 0.001	0.332 \pm 0.003	0.075 \pm 0.002	0.611 \pm 0.160
	Miani et al. (2025)	0.871 \pm 0.006	0.744 \pm 0.031	1.529 \pm 0.371	0.617 \pm 0.025	0.901 \pm 0.013
	IVON	0.897 \pm 0.004	0.926 \pm 0.001	0.335 \pm 0.011	0.073 \pm 0.005	0.683 \pm 0.024
	SGLD	0.899 \pm 0.001	0.899 \pm 0.001	0.316 \pm 0.003	0.026 \pm 0.004	0.734 \pm 0.019
	SWAG	0.898 \pm 0.001	0.931 \pm 0.006	0.327 \pm 0.001	0.725 \pm 0.003	0.907 \pm 0.003
SVHN	Last Layer LA	0.896 \pm 0.002	0.931 \pm 0.005	0.339 \pm 0.011	0.727 \pm 0.004	0.902 \pm 0.004
	Ensemble	0.910	0.913	0.670	0.052	0.793
	MAP	0.947 \pm 0.004	0.963 \pm 0.004	0.201 \pm 0.014	0.055 \pm 0.010	0.608 \pm 0.228
	VIKING (ours)	0.960 \pm 0.001	0.964 \pm 0.001	0.177 \pm 0.002	0.028 \pm 0.002	0.308 \pm 0.024
	Miani et al. (2025)	0.949 \pm 0.003	0.948 \pm 0.005	0.191 \pm 0.007	0.734 \pm 0.017	0.880 \pm 0.012
	IVON	0.943 \pm 0.002	0.888 \pm 0.007	0.302 \pm 0.016	0.082 \pm 0.004	0.492 \pm 0.248
	SGLD	0.698 \pm 0.103	0.378 \pm 0.027	1.935 \pm 0.070	0.321 \pm 0.128	0.605 \pm 0.181
CIFAR-10	SWAG	0.947 \pm 0.004	0.897 \pm 0.007	0.217 \pm 0.014	0.745 \pm 0.007	0.874 \pm 0.003
	Last Layer LA	0.946 \pm 0.001	0.943 \pm 0.005	0.197 \pm 0.009	0.740 \pm 0.007	0.899 \pm 0.009
	Ensemble	0.965	0.955	0.231	0.051	0.769
	MAP	0.824 \pm 0.012	0.869 \pm 0.003	0.536 \pm 0.055	0.075 \pm 0.012	0.619 \pm 0.243
	VIKING (ours)	0.877 \pm 0.004	0.893 \pm 0.003	0.407 \pm 0.010	0.041 \pm 0.004	0.331 \pm 0.094
	Miani et al. (2025)	0.855 \pm 0.002	0.701 \pm 0.013	2.643 \pm 0.205	0.559 \pm 0.006	0.802 \pm 0.005
	IVON	0.835 \pm 0.017	0.763 \pm 0.005	0.817 \pm 0.075	0.086 \pm 0.014	0.436 \pm 0.244
Imagenette	SGLD	0.495 \pm 0.030	0.345 \pm 0.020	2.409 \pm 0.135	0.153 \pm 0.039	0.375 \pm 0.073
	SWAG	0.865 \pm 0.029	0.914 \pm 0.035	0.445 \pm 0.063	0.694 \pm 0.018	0.881 \pm 0.005
	Last Layer LA	0.894 \pm 0.001	0.944 \pm 0.001	0.406 \pm 0.005	0.704 \pm 0.000	0.880 \pm 0.007
	Ensemble	0.919	0.891	0.486	0.064	0.780
	MAP	0.852 \pm 0.002	0.883 \pm 0.007	0.481 \pm 0.009	0.084 \pm 0.010	0.717 \pm 0.082
	VIKING (ours)	0.887 \pm 0.003	0.906 \pm 0.002	0.403 \pm 0.010	0.077 \pm 0.001	0.612 \pm 0.162
	IVON	0.876 \pm 0.023	0.849 \pm 0.013	0.656 \pm 0.136	0.069 \pm 0.011	0.464 \pm 0.230

A Additional experimental results

In Table 3 we detail the same experiments from the main paper, but with two additional baselines. The first is a simple deep ensemble, where five copies of the model are trained independently and their predictions are averaged. Here, the best-performing MAP model hyperparameters from the existing experiments are used to train the models again using additional seeds to build the ensemble.

The second is Stochastic Gradient Langevin Dynamics (SGLD, Welling and Teh, 2011), which is implemented in JAX using code provided by Izmailov et al. (2021). The hyperparameters are optimized using a grid search with a similar budget we use for VIKING, using experimental evidence by Izmailov et al. (2021) as a guideline. When collecting posterior samples from SGLD, we allowed for a burn-in period of 50 epochs, then collected each posterior sample after additional 50 epochs are done, totalling 300 epochs, which approximately corresponds to 50 epochs of ELBO training with VIKING.

These baselines are included as additional evidence that, given similar compute budgets, VIKING outperforms classical approaches such as SGLD and deep ensembles in calibration metrics, while still achieving competitive performance. Notably, deep ensembles achieve the best predictive performance, but that is not reflected in the calibration metrics. SGLD, on the other hand, struggled in the harder datasets with bigger models (SVHN, CIFAR-10), showing that the compute budget available is probably not enough, needing either a significantly larger number of training steps to converge or hyperparameter tuning. When it does properly converge, such as on Fashion MNIST and MNIST, its performance is not far behind the state of the art.

B Additional methodological details

Here we expand on the rationale and discussion present in the main paper. Our aim is to address potential questions, issues, and minor challenges pertaining the formulation and use of our variational family. For notational simplicity, we omit the dependence on θ in the analysis below where convenient.

B.1 Is the rank R differentiable?

We know that the derivative of the rank R with respect to $\hat{\theta}$ is either zero or undefined, as R is integer-valued and bound to be piecewise-constant. Its importance in optimizing the KL (Kullback-Leibler divergence) term is clearer by first assuming that $\partial R / \partial \hat{\theta} = 0$. Then,

$$\begin{aligned} \frac{\partial \text{KL}}{\partial \hat{\theta}} &= \frac{\partial}{\partial \hat{\theta}} \left\{ \frac{1}{2} \left(\alpha \text{Tr}(\Sigma) - D + \alpha \|\hat{\theta}\|^2 - D \log(\alpha) - \log \det(\Sigma) \right) \right\} \\ &= \frac{\partial}{\partial \hat{\theta}} \left\{ \frac{1}{2} \left(\alpha(\sigma_{\text{ker}}^2 R + \sigma_{\text{im}}^2 (D-R)) + \alpha \|\hat{\theta}\|^2 - 2R \log(\sigma_{\text{ker}}) - 2(D-R) \log(\sigma_{\text{im}}) \right) \right\} \\ &= \frac{\partial}{\partial \hat{\theta}} \left\{ \frac{\alpha}{2} \|\hat{\theta}\|^2 \right\}. \end{aligned} \tag{19}$$

Under this assumption, the KL term reduces to a more usual ℓ_2 regularization. In practice, since the estimated R is not an integer, this assumption does not become problematic. In our implementation, we stop the gradients of the computed R to ensure this.

B.2 Understanding the KL term in isolation

Let us consider the kernel component of the posterior in isolation and the KL term of the ELBO \mathcal{L} (Equation 3) separately to interpret what signal might exist in that term and why that can influence our hyperparameter choices.

Suppose our posterior covariance is given by $\Sigma_q \in \mathbb{R}^{D \times D}$ and our prior covariance is given by $\Sigma_p \in \mathbb{R}^{D \times D}$. Due to the restrictions to the subspace, we can write $\Sigma_q = \mathbf{U} \Lambda \mathbf{U}^\top$ and $\Sigma_p = \alpha^{-1} \mathbb{I}$. We want to find the Λ that minimizes the KL term. We can write the terms that depend only on Σ_q as

$$\text{KL} = \text{Tr}(\Sigma_p^{-1} \Sigma_q) - \log |\Sigma_p^{-1} \Sigma_q|.$$

Note that

$$\begin{aligned} \Sigma_p^{-1} \Sigma_q &= (\alpha^{-1} \mathbb{I})^{-1} \mathbf{U} \Lambda \mathbf{U}^\top \\ &= \mathbf{U}(\alpha \Lambda) \mathbf{U}^\top, \end{aligned}$$

implying the eigenvalues of $\Sigma_p^{-1} \Sigma_q$ are given by $\alpha \Lambda$, yielding

$$\text{Tr}(\mathbf{U}(\alpha \Lambda) \mathbf{U}^\top) = \sum_{i=1}^D \alpha \lambda_i, \quad \text{and} \quad \log |\mathbf{U}(\alpha \Lambda) \mathbf{U}^\top| = \sum_{i=1}^D \log(\alpha \lambda_i).$$

For all $i = 1, \dots, D$, $\lambda_i = \alpha^{-1}$ minimizes $f(\alpha \lambda_i) = \alpha \lambda_i - \log(\alpha \lambda_i)$. The covariance that minimizes the KL divergence is thus

$$\Sigma = \alpha^{-1} \mathbf{U} \mathbf{U}^\top. \tag{20}$$

Since our posterior is $\Sigma_q := \sigma_{\text{ker}}^2 \mathbf{U} \mathbf{U}^\top + \sigma_{\text{im}}^2 (\mathbb{I} - \mathbf{U} \mathbf{U}^\top)$, we optimize α and σ_{ker}^2 jointly by always ensuring $\alpha^{-1} = \sigma_{\text{ker}}^2 \Leftrightarrow \alpha = 1/\sigma_{\text{ker}}^2$.

C Experimental details

For reproduction purposes, we detail each experiment (in order of appearance in the main paper). Note that the code implementing VIKING and for reproducing the experiments is publicly available⁴.

⁴<https://github.com/eugene/viking-paper-experiments>

We start with a few general experimental and implementation details used across the experiments. All optimization steps were done using the Adam optimizer. In what follows, we address specific components of the optimization that are shared across all experiments, unless otherwise noted.

Variational parameters σ_{ker} and σ_{im} . In all experiments, the variational parameter σ_{ker} is tied to the prior precision α , such that $\alpha = 1/\sigma_{\text{ker}}^2$ is always true (for the reasoning, see Equation 20, in Section B) and use $\log \alpha$ as an optimization variable. Furthermore, we observe that the posterior samples used to evaluate the expectation term of the ELBO can be quite sensitive to larger values of σ_{im} , especially since only the kernel part of the projection is guaranteed to not deviate arbitrarily from the MAP predictions. For this reason, we always initialize this variational parameter such that $\log \sigma_{\text{im}} = -2$ to prevent it from having a large influence in the posterior samples in the beginning, resulting in more stable optimization.

Practical optimization with the KL term. Experimentally, we find that the ELBO as formulated can be quite often dominated by the KL term during optimization. This is mostly exacerbated when the number of model parameters grows. For this reason, in all experiments, we follow common procedure and instead optimize

$$\mathcal{L}(\hat{\boldsymbol{\theta}}, \sigma_{\text{ker}}, \sigma_{\text{im}}) = \mathbb{E}_{\boldsymbol{\theta} \sim q}[\log p(\mathbf{y}|\boldsymbol{\theta}, \mathbf{x})] - \beta \text{KL}(q(\boldsymbol{\theta})\|p(\boldsymbol{\theta})), \quad (21)$$

where $0 < \beta < 1$ (fixed) controls the relative strength of the KL term.

Reorthogonalized conjugate gradients (CG). As discussed in Section 3.2, we use a variant of conjugate gradients that improves numerical stability by reorthogonalizing the basis vectors at every iteration. Aiming for a good trade off between numerical robustness and performance, we use 10 iterations in all CG solves.

Posterior sampling. For computing the expectation term of the ELBO during training (either while optimizing just sigmas or the full model as well), we use a single sample from our posterior, that is, $S = 1$. Empirically, we observe little gain over using multiple samples and this can be compensated by training for longer, with the benefit of accelerating alternating projections and reducing memory usage significantly. When evaluating on validation and test sets, we draw 20 posterior samples.

C.1 Architectures and data preprocessing

Unless otherwise noted, all data is standardized, that is, every data point is first subtracted by the mean of training data and the result is divided by the standard deviation of training data, both computed across dimensions. Naturally, this is performed also for the validation and test sets. On MNIST and Fashion MNIST, we train a LeNet; on SVHN and CIFAR-10, we train a small ResNet.

LeNet architecture. Composed of two 5×5 convolution layers with 6 and 16 channels, respectively, each followed by 2×2 max-pooling with stride 2, then three fully-connected layers with 128 and 80 units, with the last one being the number of classes as units; all layers have hyperbolic tangent activation functions. The total number of parameters is 44,426.

ResNet architecture (small variant). Composed of $(3, 3, 3)$ residual blocks of channel sizes 16, 32, and 64, respectively; all layers have ReLU activation functions. The total number of parameters is 272,378.

C.2 Ablation experiments (Section 3)

This section details the experiments illustrated by Figures 2 to 4 in the main paper.

Stochastic alternating projections. For each $\gamma = 0.0, 0.5$, and 1.0 , we train the LeNet model specified above on the Fashion MNIST dataset. Table 4 details the other hyperparameters used.

Post-hoc variational inference of σ_{ker} and σ_{im} . Since we assess the need for a full model ELBO optimization versus only post-hoc tuning of the variational parameters, we need to start from a reasonably-performing model. In both settings, we thus begin with training the model using maximum

Table 4: Experiments evaluating γ (Section 3.3).

Hyperparam.	Value
β	10^{-4}
Batch size	32
Init. log α	4
Train. epochs	50
Learn. rate	10^{-3}

Table 5: Post-hoc $\sigma_{\text{ker}}, \sigma_{\text{im}}$ experiments (Section 3.4).

Hyperparam.	Value
β	10^{-4}
γ	0.5
Batch size	32
Init. log α	4
Warmup epochs	20
Learn. rate	10^{-4}

Table 6: Warmup experiments (Section 3.4).

Hyperparam.	Value
β	10^{-4}
γ	0.5
Batch size	32
Init. log α	4
Learn. rate (MLE)	10^{-4}
# epochs (ELBO)	50
Learn. rate (ELBO)	10^{-4}

likelihood for 20 epochs, with the same batch size as later, but a learning rate of 10^{-5} instead to prevent an early overfitting. Following that, the post-hoc setting optimizes the variational parameters (σ_{ker} and σ_{im}) for 20 epochs. In the other setting, in order to draw a better parallel and more clearly highlight the benefits of full model optimization using our ELBO, we tune only the sigmas for 5 epochs. For those epochs, the performance is thus comparable. We then continue with 15 more epochs where the model is also trained, for a total of also 20 epochs. Table 5 shows the values of all other hyperparameters used.

Warming up as a shortcut. The only change across different runs is the number of epochs the model was trained with maximum likelihood at the start (warmup): 0, 20, or 50. Table 6 contains the values of the other hyperparameters.

C.3 Main experiments

The experiments in Section 4 require further details for full reproducibility, given below.

C.4 Toy (sinusoid) regression

In these experiments, we train a neural network with three fully-connected layers, two with 10 units and one with a single output unit. The training data consists of 10 samples from the sinusoid $y = 5 \sin(10x) + z$, where $x \in [0.35, 0.65]$, $z \sim \mathcal{N}(0, s)$, and $s \in [10^{-3}, 1]$, from which 20 consecutive points in specified range of x are drawn, but only the first and last five are used, introducing the visible gap. The VIKING experiment uses the model Jacobian (not loss Jacobian as every other experiment) and a linearized predictive⁵ to highlight the properties of guaranteed zero variance in the predictions when projecting onto the kernel of the GGN of the model on training data. The model is trained for 2,000 epochs with a learning rate of 10^{-2} and adaptive gradient clipping of rate 10^{-1} , using 100 posterior samples at each step. The $\log \alpha$ prior ($\log \sigma_{\text{ker}} = -1/2 \log \alpha$, kept tied as described earlier) is initialized with zero. For IVON, we train the same model for 5,000 epochs with the same learning rate, using 5 posterior samples at each training step. The ESS hyperparameter is set to 10 (number of data points) and HESS-INIT is set to 15. The plots in Figure 5 depict the predictions of 100 posterior samples.

C.5 Image classification

Grid search. On MNIST, Fashion MNIST, SVHN, and CIFAR-10, both VIKING and IVON were subjected to a grid search. On VIKING, the grid search is over batch size (16 or 32), number of warmup epochs (Section 3.4; 20 or 50), learning rate (10^{-3} or 10^{-4}), β ($10^{-4}, 10^{-5}$, or 10^{-6}), and γ (0.2, 0.5, or 0.8). For IVON, the grid search is over batch size (16, 32, or 128), number of epochs (50 or 100), and learning rate (10^{-3} or 10^{-4}). Table 7 breaks down the best hyperparameters per method and dataset.

⁵With $\theta \sim q(\theta)$ denoting a posterior sample, instead of making predictions as $\mathbf{y} = f_{\theta}(\mathbf{x})$, we linearize the model around $\hat{\theta}$ as $\mathbf{y} = f_{\hat{\theta}}(\mathbf{x}) + J_{\hat{\theta}}(\mathbf{x})(\theta - \hat{\theta})$.

Table 7: Hyperparameters broken down per dataset. ‘‘MC samples’’ indicates the number of posterior samples used for training.

	MNIST	F-MNIST	SVHN	CIFAR-10
VIKING	Batch size	32	16	32
	Warmup epochs	50	20	50
	Learning rate	10^{-4}	10^{-4}	10^{-4}
	β	10^{-5}	10^{-5}	10^{-6}
	γ	0.8	0.2	0.8
	MC samples		1	
	Warmup learning rate			10^{-3}
	Initial log α			4.0
IVON	Initial log σ_{im}			-2.0
	$\sigma_{\text{ker}}, \sigma_{\text{im}}$ tuning		5 epochs	
	ELBO optimization		50 epochs	
	Batch size	16	16	16
IVON	Epochs	100	100	100
	Learning rate	10^{-3}	10^{-3}	10^{-3}
	MC samples		5	
	ESS		Number of data points	
	HESSINIT		1.0	

Table 8: Hyperparameters for the ResNet-34 experiment on Imagenette. ‘‘MC samples’’ indicates the number of posterior samples used for training. In VIKING, epochs and learning rates are split between warmup and ELBO, respectively.

	VIKING	IVON
Batch size	128	128
Epochs (warmup, ELBO)	100, 50	150
Learning rate	$5 \cdot 10^{-2}, 10^{-3}$	10^{-1}
β	10^{-7}	N/A
γ	0.2	N/A
MC samples	1	5

Large models. In this experiment, we investigate the applicability of VIKING when training a ResNet-34, whose number of parameters is 21,797,672 and compare it against IVON. Due to a limited compute budget with larger models, we do not perform an extensive grid search. Table 8 summarizes all hyperparameters, organized per method.

C.6 Generative modelling

Model architecture. *Encoder:* with five 4×4 convolutional layers, the first two with 128 channels, followed by the next three with 256 channels, with the first and last having a stride of one and the others a stride of two; two fully-connected layers, one with 256 units and the second with 64 units (latent dimensions) for the VAE approximate posterior mean and 64 for the VAE approximate posterior variance. *Decoder:* two fully-connected layers, one with 256 units and one with 16384 units; five 4×4 resize convolutional layers (Odena et al., 2016), with the same stride configuration as the encoder, but with 256, 128, 64, and 32 channels, respectively. All layers in the encoder and decoder have an ELU activation function. Total number of parameters: 6.5 million.

Maximum likelihood training. We train for 500 epochs with a maximum learning rate of 10^{-3} and batch size 256 on raw data without augmentation. Furthermore, we used the Adamax optimizer and scheduled a 1000-step (updates) linear warmup to the maximum learning rate and then exponentially decayed it.

VIKING finetuning. From the maximum likelihood checkpoint, we train for 10 VIKING epochs using 8 posterior samples, $\gamma = 0.5$, $\beta = 10^{-8}$, batch size 8, learning rate 10^{-4} and adaptive gradient clipping at 0.1. The value of $\log \alpha$ is 7.0 and $\log \sigma_{\text{im}}$ is -5.0 .

IVON finetuning. From the maximum likelihood checkpoint, we train for 20 IVON epochs using 5 Monte Carlo samples, using a batch size of 256 and a learning rate of 10^{-5} .

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The abstract predominantly discuss the problem and our methodology all of which are appropriate. In terms of performance claims, our approach is generally on par or better than baselines as reported in the experiments.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: The last section of the paper has an explicitly annotated section concerning limitations.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not contain theorems.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To the best of our ability, we provide model and training details (predominantly in the supplements). We will further release code for full reproducibility.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: We use standard benchmark data that is openly accessible.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: The supplementary material provides these details. We will further release code for full transparency.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: All quantitative experiments provide error bars to the extend possible. Some experiments are designed to convey intuitions; these do not provide error bars.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: **[Yes]**

Justification: The supplementary material provides these details; All experiments are carried out on conventional hardware (x86 architecture, NVIDIA GPU's).

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: **[Yes]**

Justification: The paper develops new methodology.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: **[No]**

Justification: The paper is about improving general Bayesian model fitting. The method we propose has the same positive (as well as negative potential) as other machine learning technologies.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Datasets are cited.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [No]

Justification: No assets are introduced.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Such topics are not in scope for this paper.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.