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Abstract

The ability to compare and align related datasets living in heterogeneous spaces1

plays an increasingly important role in machine learning. The Gromov-Wasserstein2

(GW) formalism can help tackle this problem. Its main goal is to seek an assign-3

ment (more generally a coupling matrix) that can register points across otherwise4

incomparable datasets. As a non-convex and quadratic generalization of optimal5

transport (OT), GW is NP-hard. Yet, heuristics are known to work reasonably6

well in practice, the state of the art approach being to solve a sequence of nested7

regularized OT problems. While popular, that heuristic remains too costly to scale,8

with cubic complexity in the number of samples n. We show in this paper how a9

recent variant of the Sinkhorn algorithm can substantially speed up the resolution of10

GW. That variant restricts the set of admissible couplings to those admitting a low11

rank factorization as the product of two sub-couplings. By updating alternatively12

each sub-coupling, our algorithm computes a stationary point of the problem in13

quadratic time with respect to the number of samples. When cost matrices have14

themselves low rank, our algorithm has time complexity O(n). We demonstrate15

the efficiency of our method on simulated and real data.16

1 Introduction17

The ever increasing interest for Gromov-Wasserstein... Several problems in machine learning18

involve comparing families of points that live in heterogeneous spaces. This situation arises typically19

when realigning two distinct sets of feature representations obtained from the similar source. Recent20

applications to single-cell genomics [15] and NLP [12, 1] provide two cases in point: Thousands21

of cells taken from the same tissue are split in two groups, each group is processed with a different22

experimental protocol, resulting in two distinct sets of heterogeneous feature vectors; Thousands of23

word embeddings for two languages are learned independently. In both cases, one expects to find24

a meaningful way to register points across sets living in heteregeneous spaces, since they contain25

similar overall information. That realignment is usually carried out using the Gromov-Wasserstein26

(GW) machinery proposed by Mémoli [26] and Sturm [36], which seeks a relaxed assignment matrix27

that is as “close” to an isometry as possible, using a quadratic score to quantify that closeness. GW28

has a lot of practical appeal: It has been used in supervised learning [41], generative modeling [7],29

domain adaptation [9], structured prediction [37], quantum chemistry [27] and alignment layers [17].30

... despite its cubic cost. Because it is an NP-hard problem, these applications rely on approximating31

GW, typically by solving a sequence of OT problems using entropic regularization. This heuristic is32

efficient yet costly, since it requires O(n3) operations to register two sets of n samples, a price that is33

paid when re-instantiating each OT problem. Our goal is to reduce substantially that complexity by34

exploiting low-factorization of both parameters (data) and variable (relaxed assignment) matrices in35

the GW problem, while maintaining state of the art performance in applications.36
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Wasserstein: from cubic to linear complexity. A comparatively simpler problem is the registration37

of two populations embedded in the same space. This corresponds to the classic optimal transport38

(OT) problem, which has received considerable attention in ML [28]. OT has found applications39

in computer vision [29], NLP [24], single cell tracking [33] or multi-task regression in neuro-40

imaging [22]. While the OT problem is originally cast as a linear program, with a O(n3 log(n)) cost,41

many of these works rely on solving instead a penalized OT problem using Sinkhorn’s algorithm [34,42

13]. In its most naive implementation, the Sinkhorn has quadratic complexity [2]. Recent works43

achieve O(n) complexity by targeting the matrix-vector updates in Sinkhorn’s algorithm using44

low-rank approximations of the data kernel matrix [4, 3, 31]. This idea can be further improved by45

imposing the low-rank constraint on the optimization variables of the original OT problem [19], to46

modify Sinkorn’s steps by enforcing a low rank factorization of the coupling variable [32].47

Gromov-Wasserstein: from NP-hard to linear approximations. The GW problem replaces48

the linear objective function in OT by a non-convex quadratic objective. Much like OT is a re-49

laxation of the optimal assignment problem, GW can be seen as a relaxation of the quadratic50

assignment problem (QAP). Both GW and QAP are NP-hard to solve [8]. In practice, iteratively51

minimizing a linearization of that quadratic objective using Sinkhorn works surprisingly well [20, 35].52

Figure 1: Top row: we compute the GW
coupling between two curves in 2D and
3D, with n = m = 10000 points. These
points are endowed with the squared L2
distance. Bottom row: coupling obtained
with the SoTA entropic approach [20,
27], compared with our linear method
with rank r = 10. See Appendix D.1 for
more details.

This method corresponds to a mirror-descent scheme [27],53

and in the special case of Euclidean distance matrices, the54

loss is concave and it can be also interpreted as a bi-linear55

relaxation [23]. In the most general case, this results in an56

O(n4) algorithm (the objective is a quadratic function of a57

n⇥n relaxed assignment matrix), that is reduced to O(n3)58

when using separable losses [27], a price that remains too59

high for several ML applications. It is possible to replace60

the GW distance by cheaper yet only distantly related prox-61

ies, such as lower bounds based on OT [26] (see also [30])62

or sliced projections [38]. Whether GW can be efficiently63

sped up remains an open question. We propose in this64

work a novel approach that leverages, as done recently for65

OT, low-rank methods. A very recent line of works attacks66

this problem by quantizing first the two input spaces to67

solve a GW problem of reduced size, thus effectively pro-68

ducing an ad-hoc low-rank coupling [11]. A nice feature69

of this approach is that it maintains the triangular inequal-70

ity and provides a valid upper-bound on the GW distance.71

Related approaches which also approximate GW distance72

using clustering methods (possibly in a recursive way)73

are [6] and [40]. We take in this paper a direct approach:74

instead of separating clustering and GW resolution in 275

independent steps, we propose do address them simulta-76

neously: our method seeks the least-costly (in GW sense)77

coupling with a low rank constraint, as illustrated in Fig. 1.78

Contributions We introduce the low-rank-GW problem, by imposing a low rank constraint on79

feasible couplings. This method works hand-in-hand with entropic regularization and leads to a80

Sinkhorn-like algorithm. Because of its exclusive reliance on matrix-vector products, the method81

streams well on GPUs. This method can also leverage low-rank factorizations of the input data82

matrices to further reduce the complexity of each iteration to reach linear time. Numerical evaluations83

on simulated and real datasets show that this low-rank approximation maintains the favorable84

property of entropic-regularized GW (namely its ability to compute “good” local minima) for a linear85

computational price, thus paving the way for larger scale uses of GW in ML.86

2 Background on the Gromov-Wasserstein Framework87

Comparing measured metric spaces. Let (X , dX ) and (Y, dY) be two metric spaces, and µ and88

⌫ two discrete probability measures on X and Y , respectively. We write µ :=
Pn

i=1 ai�xi and89

⌫ :=
Pm

i=j bj�yj where n,m � 1, a, b are two histograms in the probability simplicies �n,�m of90

respective size n and m, and (x1, . . . , xn), (y1, . . . , ym) are two families in X and Y . For q � 1,91
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let us also denote A := (dqX (xi, xi0))1i,i0n 2 Rn⇥n and B := (dqY(xj , xj0))1i,i0m 2 Rm⇥m92

two pairwise cost matrices between the points in the respective supports of µ and ⌫. The Gromov-93

Wasserstein (GW) discrepancy between two discrete metric measure spaces (µ, dX ) and (⌫, dY) is94

the solution of the following non-convex quadratic problem, instantiated here for simplicity as a95

function of (a,A) and (b, B), which contain all the information that is needed:96

GW((a,A), (b, B)) = min
P2⇧a,b

EA,B(P ), where ⇧a,b := {P 2 Rn⇥m
+ |P1m = a, PT1n = b}, (1)

and the energy EA,B is a quadratic function parameterized by a loss L : R⇥ R! R:97

EA,B(P ) :=
X

i,j,i0,j0

L(Ai,i0 , Bj,j0)Pi,jPi0,j0 . (2)

A typical choice of the loss is the Lp distance L(a, b) = |a � b|p with p � 1. In that case, [26]98

proves that GW1/p defines a distance on the space of metric measure spaces quotiented by measure-99

preserving isometries. When p = 2, as we consider from now on, the GW objective can be evaluated100

efficiently using the marginal constraints imposed on P , as follows [27]:101

EA,B(P ) = hA�2a, ai+ hB�2b, bi � 2hAPB,P i . (3)

Indeed, (3) can be computed efficiently in O(n2m + nm2) operations, using only matrix/matrix102

multiplications, instead of the O(n2m2) complexity of the naive evaluation of (2).103

Entropic Gromov-Wasserstein. The original GW problem (1) can be regularized using an entropic104

term [20, 35, 27], leading to the following problem:105

GW"((a,A), (b, B)) = min
P2⇧a,b

EA,B(P )� "H(P ) , (4)

where H(P ) := �
P

i,j Pi,j(log(Pi,j) � 1) is the entropy of P . By applying a Mirror106

Descent (MD) scheme with respect to the KL divergence and by choosing the step-size to107

be � = 1/", Peyré et al. [27] provide a simple algorithm which consists in solving a se-108

quence of regularized OT problem as presented in Algorithm 1. Indeed, each KL pro-109

jection in Algorithm 1 can be computed efficiently thanks to the Sinkhorn algorithm [13].110

Algorithm 1 Entropic-GW
Inputs: A,B, a, b, "
P = abT nm

for ` = 0, . . . do
C  �4APB nm(n+m)

K"  exp(�C/") nm

P  argmin
P2⇧(a,b)

KL(P,K") O(nm)

end
Result: EA,B(P ) nm(n+m)

111

Computational complexity. Given a cost matrix C, the112

KL projection of K" onto the polytope ⇧(a, b), where113

KL(P,Q) = hP, log(P/Q)�1i, is carried out in the inner114

loop of Algo. 1 using the Sinkhorn algorithm, through115

matrix-vector products. This quadratic complexity (in116

red) is dominated by the cost of updating matrix C at each117

iteration in Algorithm 1, which requires O(n2m+ nm2)118

algebraic operations (cubic, in violet). As noted above,119

evaluating the objective EA,B(P ) has the same order. In120

the following we show that by considering a low rank121

exact decomposition (or approximation) of the distance122

matrices, the cubic cost of reupdating C and subsequently123

evaluating EA,B can be brought down to quadratic.124

3 Exploiting a Low-Rank Factorization for Cost Matrices125

Exact factorization of cost matrices. In this section we consider the case where the cost matrices126

A and B admit a low-rank factorization. More precisely, we make the following assumption.127

Assumption 1. Assume that A and B admit a low-rank factorization, that is there exists A1, A2 2128

Rn⇥d and B1, B2 2 Rm⇥d0
such that A = A1AT

2 and B = B1BT
2 , where d⌧ n, d0 ⌧ m.129

A case in point is when both A and B are squared Euclidean distance matrices, with a sample size130

that is larger than ambient dimension. This case is highly relevant, covering many applications of OT131

to ML. The d⌧ n assumption is also likely to hold for most applications, since cases where d� n132

are known to pose challenges to the estimation of OT [16, 39]. Writing X = [x1, . . . , xn] 2 Rd⇥n, if133
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A =
⇥
kxi � xjk

2
2

⇤
i,j

, then one has, writing z = (X�2)T1d 2 Rn that A = z1T
n + 1nzT � 2XTX.134

Therefore by denoting A1 = [z,1n,�
p
2XT ] 2 Rn⇥(d+2) and A2 = [1n, z,

p
2XT ] 2 Rn⇥(d+2)135

we obtain the factorization above.136

Under Assumption 1, the complexity of Algo. 1 is downgraded to quadratic in sample size: the two137

operations that make Algo. 1 cubic lie in the updates of the cost and the computation of the objective.138

Observe that for any given P 2 Rn⇥m, one can compute at each iteration139

C = �4A1A
T
2 PB1B

T
2

in nm(d + d0) + dd0(n + m) algebraic operations. Moreover thanks to the reformulation of140

EA,B(P ) given in (3), one can compute it in quadratic time as well. Indeed writing G1 :=141

AT
1 PB2 and G2 := AT

2 PB1, both in Rd⇥d0
, one has hAPB,P i = 1T

d (G1 � G2)1d0 . Com-142

puting G1, G2 given P requires only 2(nmd + mdd0), and computing their dot product adds143

dd0 algebraic operations. The overall complexity to compute EA,B(P ) is O(nmd + mdd0).144

Algorithm 2 Quadratic Entropic-GW
Inputs: A1, A2, B1, B2, a, b, "
P = abT nm

for ` = 0, . . . do
G2  AT

2 PB1 nmd + mdd’

C  �4A1G2BT
2 nmd’ + ndd’

K"  exp(�C/") nm

P  argmin
P2⇧(a,b)

KL(P,K") O(nm)

end
c1  hA�2a, ai+ hB�2b, bi O(nm)
G2  AT

2 PB1 nmd + mdd’

G1  AT
1 PB2 nmd + mdd’

c2  �21T
d (G1 �G2)1d0 O(dd’)

EA,B(P ) c1 + c2
Return: EA,B(P )

145

General distance matrices. When the original146

cost matrices A, are not low-rank but describe147

distances, we propose to use a recent body of148

work that output their low-rank approximation149

in linear time [5, 21]. These algorithms produce,150

for any distance matrix D 2 Rn⇥m and � > 0,151

matrices D1 2 Rn⇥d, D2 2 Rm⇥d in O((m +152

n)poly( d� )) algebraic operations such that with153

probability at least 0.99 one has154

kD �D1D
T
2 k

2
F  kD � Cdk

2
F + �kDk2F

where Cd denotes the best rank-d approximation155

to D. We fall back on this approach to obtain a156

low-rank factorization of a distance matrix in lin-157

ear time whenever needed, aware that this incurs158

an additional approximation. See Appendix B159

for more details.160

4 Imposing a Low Nonnegative Low-Rank for the Coupling161

In this section, we shift our attention to a different opportunity for speed-ups, without assuming that162

Assumption 1 holds: we regularize the GW problem problem by decomposing the coupling as a163

product of two low-rank couplings, in the footsteps of [18, 32], using the following definition:164

Definition 1. Given M 2 Rn⇥m, the nonnegative (NN) rank of M is the smallest number of165

nonnegative rank-one matrices into which the matrix can be decomposed additively:166

rk+(M) := min

(
q|M =

qX

i=1

Ri, 8i, rk(Ri) = 1, Ri � 0

)
.

Following [18, 32], we propose to constrain GW, enforcing a rank r on the coupling:167

GW-LR(r)((a,A), (b, B)) := min
P2⇧a,b(r)

EA,B(P ), where ⇧a,b(r) := {P 2 ⇧a,b, rk+(P )  r} . (5)

Note that the minimum is always attained as ⇧a,b(r) is compact and the objective is continuous.168

In [32], the authors show that one can parameterize any coupling in ⇧a,b(r) as a product of two169

low-rank couplings linked by a common marginal. For any g 2 �⇤
r , the interior of �r, writing170

⇧a,g,b :=
n
P 2 Rn⇥m

+ , P = Q diag(1/g)RT , Q 2 ⇧a,g, and R 2 ⇧b,g

o
.

one has that
S

g2�⇤
r
⇧a,g,b = ⇧a,b(r). Therefore GW-LR introduced in (5) can be reformulated as171

the following optimization problem172

GW-LR(r)((a,A), (b, B)) = min
(Q,R,g)2C(a,b,r)

EA,B(Q diag(1/g)RT ) (6)
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where C(a, b, r) := C1(a, b, r) \ C2(r), with173

C1(a, b, r) :=
n
(Q,R, g) 2 Rn⇥r

+ ⇥ Rm⇥r
+ ⇥ (R⇤

+)
r s.t. Q1r = a,R1r = b

o
,

C2(r) :=
n
(Q,R, g) 2 Rn⇥r

+ ⇥ Rm⇥r
+ ⇥ Rr

+ s.t. QT1n = RT1m = g
o
.

Stabilization of the Method. [32] propose to stabilize the objective defined in (6) by adding to the174

constraints a lower bound ↵ on the weight vector g such that g � ↵ coordinate-wise. Indeed, as175

a solution of (6) must satisfies g > 0 coordinate-wise, then for ↵ sufficiently small, the solution176

of the same problem where one adds the constraint g � ↵ will remain the same. Therefore let us177

introduce our new set of constraints C(a, b, r,↵) := C1(a, b, r,↵) \ C2(r) where C1(a, b, r,↵) :=178

C1(a, b, r) \ {(Q,R, g) | g � ↵}. Another way to stabilize the method is by considering a double179

regularization scheme as proposed in [32] where in addition of constraining the nonnegative rank180

of the coupling, we regularize the objective by adding an entropic term in (Q,R, g), which is to be181

understood as that of the values of the three respective entropies evaluated for each term.182

GW-LR(r)
",↵((a,A), (b, B)) := min

(Q,R,g)2C(a,b,r,↵)
EA,B(Q diag(1/g)RT )� "H((Q,R, g)) . (7)

Mirror Descent Scheme. As in [27], we propose to use a MD scheme with respect to the KL183

divergence to approximate GW-LR(r)
",↵ in (7). More precisely, for any " � 0, the MD scheme leads184

for all k � 0 to the following updates which require solving a convex barycenter problem per step:185

(Qk+1, Rk+1, gk+1) := argmin
⇣2C(a,b,r,↵)

KL(⇣,Kk) (8)

where (Q0, R0, g0) 2 C(a, b, r) is an initial point such that Q0 > 0 and R0 > 0,186

Pk := Qk diag(1/gk)RT
k , Kk := (K(1)

k ,K(2)
k ,K(3)

k ), K(1)
k := exp(4�APkBRk diag(1/gk) �187

(�" � 1) log(Qk)), K(2)
k := exp(4�BPT

k DQk diag(1/gk) � (�" � 1) log(Rk)), K(3)
k :=188

exp(�4�!k/g2k � (�" � 1) log(gk)) with [!k]i := [QT
kAPkBRk]i,i for all i 2 {1, . . . , r} and189

� is a positive step size. Solving (8) can be done efficiently thanks to the Dykstra’s Algorithm as190

showed in [32]. See Appendix C for more details.191

Initialization. To initialize our algorithm, we adapt the First Lower Bound of [26] to our case of192

interest. More precisely, we show the following Proposition. See appendix A for the proof.193

Proposition 1. Let us denote x̃ = A�2a 2 Rn, ỹ = B�2b 2 Rm and C̃ = (|x̃i � ỹj |2)i,j 2 Rn⇥m.194

Then for all " � 0 and r � 1 we have,195

GW-LR(r)((a,A), (b, B)) � min
(Q,R,g)2C(a,b,r,↵)

hC̃, Q diag(1/g)RT
i � "H((Q,R, g)) . (9)

Note that the RHS of the inequality (9) is exactly the problem studied in [32] for which an algorithm196

was proposed. Therefore to initialize our algorithm, we propose to use their approach. Note that here197

the cost C̃ is the squared Euclidean distance between two families {x̃1, . . . , x̃n} and {ỹ1, . . . , ỹm}198

in 1-D which admits a low-rank factorization. Therefore we can apply the linear-time version of the199

algorithm presented in [32] to compute the solution. Algorithm 3 summarizes our approach, where200

D(·) denotes the operator extracting the diagonal of a square matrix.201

Computational Cost. Computing the initialization goes through the computations of x̃ and ỹ which202

requires O(n2 + m2) algebraic operations. Moreover, applying the algorithm proposed in [32]203

when the underlying cost is the squared Euclidean distances between two families in 1-D needs204

only O((n +m)r) algebraic operations. Solving the barycenter problem as defined in (8) can be205

done efficiently thanks to Dykstra’s Algorithm. Indeed in [32, Algorithm 2] the authors show that206

given (K(1)
k ,K(2)

k ,K(3)
k ), each iteration of their algorithm requires only O((n + m)r) algebraic207

operations since it involves only matrix/vector multiplications. However computing the kernel208

matrices (K(1)
k ,K(2)

k ,K(3)
k ) at each iteration of Algorithm 3 requires a quadratic complexity with209

respect to the number of samples. Overall the proposed algorithm, while faster than the cubic210

implementation proposed in [27], still needs O((n2+m2)r) operations per iteration. In the following211

we will see that by combining both nonnegative low-rank constraints on the coupling and low-rank212

approximations of the distance matrices, we can obtain a linear time algorithm with respect to the213

number of samples which computes an approximation of the GW distance.214
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Algorithm 3 Low-Rank GW, GW-LR(r)
",↵((a,A), (b, B))

Inputs: A,B, a, b, r, ",↵
x̃ A�2a, ỹ  B�2b O(m2 + n2)  Step (?)
z1  x̃�2, z2  ỹ�2

O(m+ n)
C̃1  [z1,1n,�

p
2x̃], C̃2  [1m, z2,

p
2ỹ]T O(n+ m)

(Q,R, g) argmin
(Q,R,g)2C(a,b,r,↵)

hC̃1C̃2, Q diag(1/g)RT
i � "H((Q,R, g)) O((n+ m)r)

for k = 1, . . . do
C1  �AQ diag(1/g), C2  RTB O((n2 + m2)r)  Step (??)
K(1)

 exp(4�C1C2R diag(1/g)� (�"� 1) log(Q)) O((m+ n)r2)
K(2)

 exp(4�CT
2 C

T
1 Q diag(1/g)� (�"� 1) log(R)) O((m+ n)r2)

!  D(QTC1C2R), K(3)
 exp(�4�!/g2 � (�"� 1) log(g)) O(nr2)

Q,R, g  argmin
⇣2C(a,b,r,↵)

KL(⇣, (K(1),K(2),K(3))) O((m+ n)r)

end
c1  hx̃, ai+ hỹ, bi n+ m
C1  �AQ diag(1/g), C2  RTB O((n2 + m2)r)  Step (??)
G C2R, G C1G, G QTG diag(1/g) O((m+ n)r2)
c2  �2Tr(G) r
E  c1 + c2
Return: E

Convergence of the mirror descent. Even if the objective (7) is not convex in (Q,R, g), we obtain215

the non-asymptotic stationary convergence of the MD algorithm in this setting. For that purpose216

we consider the same convergence criterion as the one proposed in [32] to obtain non-asymptotic217

stationary convergence of the MD scheme defined as218

�",↵(⇠, �) :=
1

�2
(KL(⇠,G",↵(⇠, �)) + KL(G",↵(⇠, �), ⇠))

where G",↵(⇠, �) := argmin⇣2C(a,b,r,↵){hrEA,B(⇠), ⇣i +
1
� KL(⇣, ⇠)}. For any 1/r � ↵ > 0, we219

show in the following proposition the non-asymptotic stationary convergence of the MD scheme220

applied to the problem (7). See Appendix A for the proof.221

Proposition 2. Let " � 0, 1
r � ↵ > 0 and N � 1. By denoting L",↵ := 27(kAk2kBk2/↵4 + ")222

and by considering a constant stepsize in the MD scheme (8) � = 1
2L",↵

, we obtain that223

min
1kN

�",↵((Qk, Rk, gk), �) 
4L",↵D0

N
.

where D0 := EA,B(Q0 diag(1/g0RT
0 )�GW-LR(r)((a,A), (b, B)) is the distance of the initial value224

to the optimal one.225

Recall that for ↵ sufficiently small, we have GW-LR(r)
",↵((a,A), (b, B)) = GW-LR(r)

" ((a,A), (b, B)).226

Thus Proposition 2 show that our algorithm reach a stationary point of (7). In particular, if " = 0, the227

proposed algorithm converges towards a stationary point of (5).228

5 Double Low-rank Approach for Linear Time GW229

Almost all operations in Algorithm 3 are linear time, except for the three updates highlighted in230

red, involving C1 and C2, and the computations of x̃ = A�2a and ỹ = B�2b as they still require a231

quadratic number of algebraic operations. When adding Assumption 1 from §3 to the rank constrained232

approach from §4, we notice that the strengths of both approaches can work hand in hand, both in233

easier initial evaluations of x̃, ỹ, but, most importantly, at each new recomputation of a factorized234

linearization of the quadratic objective:235

Linear time outer norms. Because A admits a low-rank factorization, one can obtain a low-rank
factorization for A�2. Indeed, remark that for x, y 2 Rd, hx, yi2 =

Pd
i,j=1 xixjyiyj . Therefore
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by studying the rows of matrices A1 := [a(1)1 ; ...; a(1)n ] and A2 := [a(2)1 ; ...; a(2)n ], if one writes
 (x) := Vect(xxT ) 2 Rd2

where Vect(·) is the vectorization operation, we obtain that

A�2 = Ã1Ã2
T

where Ã1 = [ (a(1)1 ), . . . , (a(1)n )]T , Ã2 = [ (a(2)1 ), . . . , (a(2)n )]T .

In Algorithm 3, the line “Step (?)” can thus be replaced by x̃ Ã1Ã2
T
a and ỹ  B̃1B̃2

T
b Note236

that computing Ã1 given A1 requires only O(nd2) operations, so that this alternate code only takes237

O(nd2) +O(m(d0)2) operations.238

Linear time linearization of the GW objective. The linearization step, the critical step in Algo.1239

that consists in updating C at each iteration, consumes a substantial portion of the computational240

budget of GW. Introducing the low-rank Sinkhorn approach makes this step quadratic in Algo.3; the241

complexity of that step is also quadratic using the low-rank assumption on costs A and B, in Algo.2.242

There is therefore an opportunity to marry both to speed-up that important step. We argue that this is243

indeed what happens, in the sense that combining the two yields indeed linear time complexities in244

sample sizes, by replacing in Algorithm 3, the lines “Step (??)” by245

C1  �A1A
T
2 Q diag(1/g) and C2  RTB2B

T
1 .

Note that this speed-up would not be achieved using other approaches that output a low rank246

approximation of the transport plan [4, 3, 31]. The crucial obstacle to using these methods here is that247

the cost matrix C in GW is “synthetic“, in the sense that it is the output of a matrix product APB248

involving the very last transport P . This stands in stark contrast with the requirements in [4, 3, 31]249

that the kernel matrix corresponding to K" = e�C/" admits favorable properties, such as being p.s.d250

or admitting an explicit (random or not) finite dimensional feature approximation. Since C changes251

at each iteration in Algo.1, they are not directly applicable.252

Combining the results in §4 with those from §B results in updates for C1 and C2 that only require253

O(nrd) and O(mrd0) operations.254

Linear time GW. Finally all the quadratic operations appearing in Algorithm (3) can be replaced255

by linear counterparts. The iterations that have not been modified had an overall complexity of256

O(mr(r + d0) + nr(r + d)) at each iteration. The initialization and linearization steps can now be257

performed in linear time, with respective complexity of respectively O(n(r + d2) +m((d0)2 + r))258

and O((nr(r + d) +mr(r + d0)).259

6 Experiments260

Our goal in this section is to demonstrate that, for a far smaller computational budget, the GW-LR261

approach is competitive with the direct entropic approach on datasets that are either synthesized262

to exhibit local clusters, or directly validated on a real high-dimensional dataset as well. Because263

both approaches have different hyperparameters, our goal is to stick to a realistic evaluation that264

stresses both optimality of solutions as a function of computational effort, as well as performance265

in real life applications. We start by investigating the sensitivity of hyperparamaters " and � on our266

method. Since GW is not convex, these may interact in unexpected ways. Experiments were run on a267

personal MacBook Pro 2019 laptop. We reused code from github.com/meyerscetbon/LOT, and268

downloaded genomics data from github.com/rsinghlab/SCOT.269

Benchmarks. We consider three synthetic problems and one real world problem to evaluate time-270

accuracy trade-offs, and also compare the couplings obtained by our method and that of the entropic271

version [27]. More precisely, we compare the quadratic approach in GW-LR computed with272

algorithm (3) (and its linear time counterpat, Lin GW-LR as presented in §5), with Entropic-273

GW, the cubic implementation of [27] (as well as its quadratic counterpart, Quad Entropic-GW274

presented in Algo. 2). For GW-LR and Lin GW-LR, and in all experiments, we set the lower bound275

on entries of g to ↵ = 10�10.276

Initialization To initialize all algorithms with a common strategy, we adapted the first lower bound277

of [26, Def. 6.1] to the entropic case. In all experiments showing time-accuracy tradeoffs, we choose278

to use number of operations to provide platform independent quantities. Accuracy is measured279

by evaluating the ground-truth energy E,B (even in scenarios when the method uses a low rank280

approximation for A,B at optimization time).281
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Figure 3: The number of cluster in each distribution is 10 and the number of samples is n = m = 5000.
The ground cost is the Euclidean distance. As we can evaluate the distance between two arbitrary
points, we can obtain in linear-time an efficient approximation of the distance matrices A and B as
presented in 3. The rank of their factorizations is fixed to be d = d0 = 100. GW-LR and Entropic-
GW corresponds to the case where the full matrices A and B are considered while Lin GW-LR
and Quad Entropic-GW take as inputs the low-rank approximations of the distance matrices. We
plot the time-accuracy tradeoff for multiple choices of � and rank r defined as a fraction of n.
For Entropic-GW and Quad Entropic-GW, we set " = 1/� as proposed in [27]. Recall that for
low-rank methods, we set " = 0.

Figure 2: In this experiment, we consider two
mixtures of (2 and 3) Gaussians in respec-
tively 5-D and 10-D, sampled as discrete mea-
sures with n = m = 5000 points, see more
details on setup in Appendix D.2. The ground
cost is the squared Euclidean distance, which
provides an exact low-rank factorization of
the cost as presented in § 3. Results on speed
(in Appendix) are therefore obtained using
Lin GW-LR. The nonnegative rank of the
coupling is set to r = 50 = n/100. We plot
the GW loss obtained by Lin GW-LR when
varying ✏ for multiple choices of �. Both size
and color have been used to quantify visually
the value of the loss at that parameter pair. Oc-
casional inversions are due to the nonconvex
nature of the GW problem.

Sensitivity to � and " Here we aim at showing the282

dependence in both � and " of our proposed method.283

In Figure 2, we compare the GW loss obtained by our284

algorithm when varying " and � on two mixtures. We285

show that when " = 0, the proposed method manage286

to consistently obtain small GW loss whatever � is.287

By allowing " > 0, the algorithm is able to reach even288

smaller GW loss, however, the choice of " depends289

highly on �. Therefore in the following experiments,290

we fix " = 0 for our method. We also show the291

dependence in � and " of our method in other settings292

and observe similar behaviors. See Appendix D.2 for293

more details.294

Remark 1. As shown in Figure 8 in Appendix D.2,295

allowing " > 0 may also increase the speed of con-296

vergence of the algorithm. However choosing well "297

for a given � must be done carefully and we prefer in298

the following experiments to present the performance299

of our method in the simplest setting where " = 0.300

Synthetic low-rank problem In this experiment301

we aim at comparing the time-accuracy tradeoff of302

the different methods when the underlying distribu-303

tions has a low-rank structure. For that purpose, we304

consider two distributions in respectively 10-D and305

15-D, where the support of each distributions is the306

concatenation of clusters of points, and where the eu-307

clidean distance between the centroids of the clusters308

is bigger than a threshold �. Here we set � = 10.309

Both distributions are uniform, have the same number310

of clusters and the same number of points in each cluster. Some illustrations of the simulated data311

is provided in Appendix D.3. In Figure 3, when the underlying cost is the (not squared) Euclidean312

distance, our methods manage to consistently obtain similar accuracy that the ones obtained by313

entropic methods, with very low rank r = n/500, while being orders of magnitude faster. In Figure 4,314

we also compare the time-accuracy tradeoffs in the more favorable case where the underlying cost315

is the squared Euclidean distance and obtain similar results. We also show more experiments for316

different number of clusters in Appendix D.3, leading to similar conclusions.317
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Figure 4: The number of clusters in each distribution is 5 and the number of samples considered here
is n = m = 10000. The ground cost is the squared Euclidean distance. We compare Lin GW-LR
and Quad Entropic-GW as we have an exact factorization of the matrices A and B. We plot the
time-accuracy tradeoff when varying � for multiple choices of r. For Quad Entropic-GW, we set
" = 1/� and for Lin GW-LR we set " = 0.

Figure 5: We plot, for each cells of the SNAREseq dataset, the FOSCTTM ranked in the increasing
order for both GW-LR and Entropic-GW.

Figure 6: Plot of the time-accuracy tradeoff when varying � for multiple choices of rank r on the
SNAREseq dataset. For Entropic-GW we set " = 1/�, for GW-LR, we set " = 0.

Experiments on Single Cell Genomics Data. We reproduce the single-cell alignment experiment318

introduced in [14]. The dataset consists in single-cell multi-omics data generated by co-assays. In319

that setup, the ground truth one–to-one correspondence information between cells is known, and can320

therefore be used to benchmark GW strategies. The dataset considered is the SNAREseq [10], with321

n = m = 1047. We apply the exact same pre-processing steps as proposed in [14] by computing322

intra-domain distance matrices A and B with a k-NN graphs based on correlations, to compute323

shortest path distance matrices. Note that in that case, one cannot obtain directly in linear time a324

low-rank factorization of A and B using [5, 21], since the shortest path distances need to be computed325

first. Therefore we only consider the quadratic GW-LR and the cubic Entropic-GW. In Figure 6,326

we compare the alignment performance through the “fraction of samples closer than the true match”327

(FOSCTTM) introduced in [25]. We see that both algorithm obtain similar performance. However, in328

Figure 5, we show that whatever the � chosen, GW-LR reaches better accuracy while being order of329

magnitude faster than Entropic-GW for a very small rank r = 10.330

Conclusion. While the factorization introduced in [32] held the promise to speed up classic OT, we331

have shown in this work that it delivers an even larger impact when applied to the GW problem:332

Indeed, the combination of low-rank Sinkhorn factorization with-low rank cost matrices is the only333

one, to our knowledge, that ensures that the linearization step of the GW objective can be carried out334

with a linear complexity, throughout outer iterations. This linear complexity is comparable to that of335

the most recent OT solvers, yet still retains the appealing properties of the Entropic approach, such as336

stability and convergence to meaningful solutions.337
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