
Under review as submission to TMLR

LRVS-Fashion: Extending Visual Search with Referring In-
structions

Anonymous authors
Paper under double-blind review

Abstract

This paper introduces a new challenge for image similarity search in the context of fashion,
addressing the inherent ambiguity in this domain stemming from complex images. We present
Referred Visual Search (RVS), a task allowing users to define more precisely the desired
similarity, following recent interest in the industry. We release a new large public dataset,
LRVS-Fashion, consisting of 272k fashion products with 842k images extracted from fashion
catalogs, designed explicitly for this task. However, unlike traditional visual search methods
in the industry, we demonstrate that superior performance can be achieved by bypassing
explicit object detection and adopting weakly-supervised conditional contrastive learning on
image tuples. Our method is lightweight and demonstrates robustness, reaching Recall at
one superior to strong detection-based baselines against 2M distractors.1

1 Introduction

Image embeddings generated by deep neural networks play a crucial role in a wide range of computer vision
tasks. Image retrieval has gained substantial prominence, leading to the development of dedicated vector
database systems (Johnson et al., 2019). These systems facilitate efficient retrieval by comparing embedding
values and identifying the most similar images within the database.

Image similarity search in the context of fashion presents a unique challenge due to the inherently ill-founded
nature of the problem. The primary issue arises from the fact that two images can be considered similar
in various ways, leading to ambiguity in defining a single similarity metric. For instance, two images of
clothing items may be deemed similar based on their color, pattern, style, or even the model pictured. This
multifaceted nature of similarity in fashion images complicates the task of developing a universally applicable
similarity search algorithm, as it must account for the various ways in which images can be related.

An intuitive approach is to request users furnish supplementary information delineating their interests, such
as providing an image of an individual and denoting interest in the hat (see Figure 1). Numerous industry
leaders including Google, Amazon, and Pinterest have adopted this tactic, however academic discourse on
potential alternative methodologies for this task remains scarce as the domain lacks dedicated datasets. For
convenience, we propose terming this task Referred Visual Search (RVS), as it is likely to garner attention
from the computer vision community due to the utility for product search in extensive catalogs.

In practice, object selection in complex scenes is classically tackled using object detection and crops (Jing
et al., 2015; Hu et al., 2018; Ge et al., 2019; Shiau et al., 2020). Some recent approaches use categorical
attributes (Dong et al., 2021) or text instead (Das et al., 2022), and automatically crop the image based on
learned attention to input attributes. It is also possible to ask the user to perform the crop himself, yet in all
the situations the performance of the retrieval will be sensitive to this extraction step making it costly to
build a generic retrieval tool. Recently, Jiao et al. (2023) went a step further, incorporating prior knowledge
about the taxonomy of fashion attributes and classes without using crops. They use a multi-granularity loss
and two sub-networks to learn attribute and class-specific representations, resulting in improved robustness
for fashion retrieval, yet without providing any code.

1The dataset is available at <anonymized>
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Figure 1: Overview of the Referred Visual Search task. Given a query image and conditioning information,
the goal is to retrieve a target instance from a large gallery. Note that a query is made of an image and an
additional text or category, precising what aspect of the image is relevant.

In this work, we seek to support these efforts by providing a dataset dedicated to RVS. We extracted a subset
of LAION 5B (Schuhmann et al., 2022) focused on pairs of images sharing a labeled similarity in the domain
of fashion, and propose a method to eliminate the need for explicit detection or segmentation, while still
producing similarities in the embedding space specific to the conditioning. We think that such end-to-end
approach has the potential to be more generalizable and robust, whereas localization-dependent approaches
hinge on multi-stage processing heuristics specific to the dataset.

This paper presents two contributions to the emerging field of Referred Visual Search, aiming at defining
image similarity based on conditioning information.

X The introduction of a new dataset, referred to as LRVS-Fashion, which is derived from the LAION-5B
dataset and comprises 272k fashion products with nearly 842k images. This dataset features a test set
with an addition of more than 2M distractors, enabling the evaluation of method robustness in relation
to gallery size. The dataset’s pairs and additional metadata are designed to necessitate the extraction
of particular features from complex images.

X An efficient method for learning to extract referred embeddings using weakly-supervised training.
Our approach demonstrates superior accuracy against a strong detection-based baseline and existing
published work. Furthermore, our method exhibits robustness against a large number of distractors,
maintaining high R@1 even when increasing the number of distractors to 2M.

2 Related Work

Retrieval Datasets. Standard datasets in metric learning literature consider that the images are object-
centric, and focus on single salient objects (Wah et al., 2011; Krause et al., 2013; Song et al., 2016). In the
fashion domain there exist multiple datasets dedicated to product retrieval, with paired images depicting
the same product and additional labeled attributes. A recurrent focus of such datasets is cross-domain
retrieval, where the goal is to retrieve images of a given product taken in different situations, for example
consumer-to-shop (Liu et al., 2012; Wang et al., 2016; Liu et al., 2016; Ge et al., 2019), or studio-to-shop
(Liu et al., 2016; Lasserre et al., 2018). The domain gap is in itself a challenge, with issues stemming from
irregular lighting, occlusions, viewpoints, or distracting backgrounds. However, the query domain (consumer
images for example) often contains scenes with multiple objects, making queries ambiguous. This issue has
been circumvented with the use of object detectors and landmarks detectors (Kiapour et al., 2015; Huang
et al., 2015; Liu et al., 2016; Ge et al., 2019). Other popular fashion datasets such as FashionIQ (Wu et al.,
2021) focus on retrieving an edited version of a product following user instructions, yet they suffer from
subjective target labeling (Baldrati et al., 2023). Some datasets are not accessible anymore (Kiapour et al.,
2015; Liu et al., 2016; Wang et al., 2016).

With more than 272k distinct training product identities captured in multi-instance scenes, our new dataset
proposes an exact instance matching task similar to the private Zalando dataset (Lasserre et al., 2018), while
being larger than existing fashion retrieval datasets and publicly available. We also create an opportunity for
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new multi-modal approaches, with captions referring to the product of interest in each complex image, and
for robustness to gallery size with 2M added distractors at test time.

Instance Retrieval. In the last decade, content-based image retrieval has changed because of the arrival
of deep learning, which replaced many handcrafted heuristics (keypoint extraction, descriptors, geometric
matching, re-ranking. . . ) (Dubey, 2022). In the industry this technology has been of interest to retail
companies and search engines to develop visual search solutions, with new challenges stemming from the large
scale of such databases. Initially using generic pretrained backbones to extract embeddings with minimal
retraining (Yang et al., 2017), methods have evolved toward domain-specific embeddings supervised by
semantic labels, and then multi-task domain-specific embeddings, leveraging additional product information
(Zhai et al., 2019; Bell et al., 2020; Tran et al., 2019). The latest developments in the field incorporate
multi-modal features for text-image matching (Zhan et al., 2021; Yu et al., 2022; Zheng et al., 2023), with
specific vision-language pretext tasks.

However, these methods often consider that the query image is unambiguous, and often rely on a region
proposal system to crop the initial image (Jing et al., 2015; Zhang et al., 2018; Hu et al., 2018; Shiau et al.,
2020; Bell et al., 2020; Du et al., 2022). In our work, we bypass this step and propose an end-to-end framework,
leveraging the Transformer architecture to implicitly perform this detection step conditionally to the referring
information.

Referring Tasks. Referring tasks are popular in vision-language processing, in particular Referring
Expression Comprehension and Segmentation where a sentence designates an object in a scene, that the
network has to localize. For the comprehension task (similar to open-vocabulary object detection) the goal is
to output a bounding box (Luo et al., 2020; Zeng et al., 2022a;b; Liu et al., 2023). The segmentation task
aims at producing an instance mask for images (Zhang et al., 2017; Luo et al., 2020; Huang et al., 2020; Ding
et al., 2021; Kirillov et al., 2023) and recently videos (Wu et al., 2022; Botach et al., 2022). In this paper,
we propose a referring expression task, where the goal is to embed the designated object of interest into a
representation that can be used for retrieval. We explore the use of Grounding DINO (Liu et al., 2023) and
Segment Anything (Kirillov et al., 2023) to create a strong baseline on our task.

Conditional Similarity. Conditional similarity search has been studied through the retrieval process and
the embedding process. On one hand, for the retrieval process, Hamilton et al. (2021) propose to use a
dynamically pruned random projection tree. On the other hand, first steps in conditional visual similarity
learning focused on attribute-specific retrieval, explicitly defining different similarity spaces depending on
labeled attributes, either with a mask (Veit et al., 2017) or different projection heads (Mu & Guttag, 2022).
In the fashion domain, ASEN (Ma et al., 2020) uses spatial and channel attention to an attribute embedding
to extract specific features in a global branch. Dong et al. (2021) and Das et al. (2022) build upon this model
and add a local branch working on an attention-based crop. Recently, Jiao et al. (2023) incorporated prior
knowledge about fashion taxonomy in this process to create class-conditional embeddings based on known
fine-grained attributes, using multiple attribute-conditional attention modules. In our work, we use Vision
Transformers (Dosovitskiy et al., 2021) to implicitly pool features depending on the conditioning information,
without relying on explicit ROI cropping or labeled fine-grained attributes.

Recently, Vaze et al. (2023) proposed a zero-shot benchmark to study general Conditional Image Simi-
larity (CIS) through four evaluation datasets, each exploring one combination of “Focus”/“Change” an
“Attribute”/“Object”. Their unnamed “Focus an Object” task closely aligns with our proposed RVS, yet it is
evaluated with a gallery size of only 15 images whereas our benchmark scales to a significantly larger and
more realistic setup. Conversely, “Change an Attribute” or “Change an Object”, corresponds to Composed
Image Retrieval (CIR) (Vo et al., 2019) another conditional retrieval task popular in fashion, that uses a
text prompt as an image editing instruction. A common approach involves using a combiner network on
the image and text embeddings (Lee et al., 2021; Chen et al., 2022; Baldrati et al., 2022), while more recent
work leverages textual inversion and text encoders to address zero-shot CIR by combining coarse concepts
(Baldrati et al., 2023; Gu et al., 2024a; Agnolucci et al., 2024; Karthik et al., 2024). In a different domain,
Asai et al. (2022) tackle a conditional document retrieval task, where the user intent is made explicit by
concatenating instructions to the query documents.
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Figure 2: Overview of the data collection. a) Selection of a subset of domains belonging to known fashion
retailers. b) Extraction of product identifiers in the URLs using domain-specific regular expressions. c)
Generation of synthetic metadata for the products (categories, captions, ...) using both pretrained and
finetuned models. d) Deduplication of the images, and assignment to subsets.

3 Dataset

Metric learning methods work by extracting features that pull together images labeled as similar (Dubey,
2022). In our case, we wanted to create a dataset where this embedding has to focus on a specific object in a
scene to succeed. We found such images in fashion, thanks to a standard practice in this field consisting in
taking pictures of the products alone on neutral backgrounds, and worn by models in scenes involving other
clothing items (see Figure 3).

We created LAION-RVS-Fashion (abbreviated LRVS-F) from LAION-5B by collecting images of products
isolated and in context, which we respectively call simple and complex. We grouped them using extracted
product identifiers. We also gathered and created a set of metadata to be used as referring information,
namely LAION captions, generated captions, and generated item categories. The process is depicted Figure 2,
presented in Section 3.1 with additional details in Appendix A.2.

3.1 Construction

Image Collection. The URLs in LRVS-F are a subset of LAION-5B, curated from content delivery
networks of fashion brands and retailers. By analyzing the URL structures we identified product identifiers,
which we extracted with regular expressions to recreate groups of images depicting the same product. URLs
without distinct identifiers or group membership were retained as distractors.

Annotations. We generated synthetic labels for the image complexity, the category of the product, and
added new captions to replace the noisy LAION alt-texts. For the complexity labels, we employed active
learning to incrementally train a classifier to discern between isolated objects on neutral backdrops and
photoshoot scenes. The product categories were formed by aggregating various fine-grained apparel items
into 10 coarse groupings. This categorization followed the same active learning protocol. Furthermore, the
original LAION captions exhibited excessive noise, including partial translations or raw product identifiers.
Therefore, we utilized BLIP-2 (Li et al., 2023) to generate new captions by briefly describing the simple
images. These will be used as referring expressions by the text-based models.

Dataset Split. We grouped together images associated to the same product identifier and dropped the
groups that did not have at least a simple and a complex image. We manually selected 400 of them for the
validation set, and 2,000 for the test set. The distractors are all the images downloaded previously that were
labeled as "simple" but not used in product groups. This notably includes images for which it was impossible
to extract any product identifier.

Dataset Cleaning. In order to mitigate false negatives in our results, we utilized Locality Sensitive Hashing
and OpenCLIP ViT-B/16 embeddings to eliminate duplicates. Specifically, we removed duplicates between
the test targets and test distractors, as well as between the validation targets and validation distractors.
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{
 Images:

 Category: Lower Body 
 LAION Alt Text: Michael Kors 'Samantha' skinny trousers
 Caption: A women's beige trousers 
}

{
 Images:

 Category: Bags 
 LAION Alt Text: BARK - striped tote 7
 Caption: A handbag with navy stripes
}

Figure 3: Samples from LRVS-F. Each product is represented on at least a simple and a complex image, and
is associated with a category. The simple images are also described by captions from LAION and BLIP2.
Please refer to Appendix A.1 for more samples.

Throughout our experiments, we did not observe any false negatives in the results. However, there remains a
small quantity of near-duplicates among the distractor images.

3.2 Composition

In total, we extracted 272,451 products for training, represented in 841,718 images. This represents 581,526
potential simple/complex positive pairs. We additionally extracted 400 products (800 images) to create
a validation set, and 2,000 products (4,000 images) for a test set. We added 99,541 simple images in the
validation gallery as distractors, and 2,000,014 in the test gallery.

We randomly sampled images and manually verified the quality of the labels. For the complexity labels, we
measured an empirical error rate of 1/1000 on the training set and 3/1000 for the distractors. For the product
categories, we measured a global empirical error rate of 1%, with confusions mostly arising from semantically
similar categories and images where object scale was ambiguous in isolated settings (e.g. long shirt vs. short
dress, wristband vs. hairband). The BLIP2 captions we provided exhibit good quality, increasing the mean
CLIP similarity with the image by +7.4%. However, as synthetic captions, they are not perfect and may
contain occasional hallucinations.

Please refer to Appendix A.3 for metadata details, Section 7 for considerations regarding privacy and biases
and Appendix C for the datasheet (Gebru et al., 2021).

3.3 Benchmark

We define a benchmark on LRVS-F to evaluate different methods on a held-out test set with a large number
of distractors. The test set contains 2,000 unseen products, and up to 2M distractors. Each product in the
set is represented by a pair of images - a simple one and a complex one. The objective of the retrieval task is
to retrieve the simple image of each product from among a vast number of distractors and other simple test
images, given the complex image and conditioning information.

For this dataset, we choose to frame the benchmark as an asymmetric task : the representation of simple
images (the gallery) should not be computed conditionally. This choice is motivated by three reasons. First,
when using precise free-form conditioning (such as LAION texts, which contain hashed product identifiers and
product names) a symmetric encoding would enable a retrieval based solely on this information, completely
disregarding the image query. Second, for discrete (categorical) conditioning it allows the presence of items of
unknown category in the gallery, which is a situation that may occur in distractors. Third, these images only
depict a single object, thus making referring information unnecessary. A similar setting is used by Asai et al.
(2022).
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Figure 4: Overview of our method on LRVS-F. For each element in a batch, we embed the scene conditionally
and the isolated item unconditionally. We optimize an InfoNCE loss over the cosine similarity matrix. ⊕
denotes concatenation to the patch sequence.

The main metric is Recall at 1 (R@1) with 2M added distractors, as it is the most challenging and realistic
setting. We report R@1 for other gallery sizes to evaluate the robustness of the methods, along with categorical
accuracy at 1 (Cat@1) as a sanity check. These metrics can also be evaluated with respect to the object
category or its visibility. We propose such analysis in Appendix B.2. Additionally, we provide a list of subsets
sampled with replacement to be used for boostrapped estimation of confidence intervals on the metrics.
We created 10 subsets of 1000 test products, and 10 subsets of 10K, 100K and 1M distractors. We also
propose a validation set of 400 products with nearly 100K other distractors to monitor the training and for
hyperparameter search.

4 Conditional Embedding

Task Formulation. Let xq be a query image containing several objects of interest (e.g., a person wearing
many different clothes and items), and cq the associated referring information that provides cues about what
aspect of xq is relevant for the query (e.g., a text describing which garment is of interest, or directly the class
of the garment of interest). Similarly, let xt be a target image, described by the latent information ct. The
probability of xt to be relevant for the query xq is given by the conditional probability P (xt, ct|xq, cq). When
working with categories for cq and ct, a filtering strategy consists in assuming independence between the
images and their category,

P (xt, ct|xq, cq) = P (xt|xq)P (ct|cq) , (1)

and further assuming that categories are uncorrelated (i.e., P (ct|cq) = δcq=ct
with δ the Dirac distribution).

In this work, we remove those assumptions and instead assume that P (xt, ct|xq, cq) can be directly inferred
by a deep neural network model. More specifically, we propose to learn a flexible embedding function φ such
that

〈φ(xq, cq), φ(xt, ct)〉 ∝ P (xt, ct|xq, cq) . (2)

Our approach offers a significant advantage by allowing the flexibility to change the conditioning information
(cq) at query time, resulting in a different representation that focuses on different aspects of the image. It
is also weakly supervised in the sense that the referring information cq is not required to provide localized
information about the content of interest (like a bounding box) and can be as imprecise as a free-form text,
as shown in Figure 1.
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Method: We implement φ by modifying the Vision Transformer (ViT) architecture (Dosovitskiy et al.,
2021). The conditioning is an additional input token with an associated learnable positional encoding,
concatenated to the sequence of image patches. The content of this token can either be learned directly (e.g.
for discrete categorical conditioning), or be generated by another network (e.g. for textual conditioning).
At the end of the network, we linearly project the [CLS] token to map the features to a metric space. We
experimented with concatenating at different layers in the transformer, and found that concatenating before
the first layer is the most sensible choice (see Appendix B.1).

We train the network with the InfoNCE loss (Sohn, 2016; Oord et al., 2018), following CLIP (Radford et al.,
2021), which we detail in this paragraph. However, we hypothesize that even though our method relies on
a contrastive loss, it does not explicitly require a specific formulation of it. We choose the InfoNCE loss
because of its popularity and scalability. During training, given a batch of N pairs of images and conditioning
((xA

i , c
A
i ); (xB

i , c
B
i ))i=1..N , we compute their conditional embeddings (zA

i , z
B
i )i=1..N with z = φ(x, c) ∈ Rd.

We compute a similarity matrix S where Sij = s(zA
i , z

B
j ), with s the cosine similarity. We then optimize the

similarity of the correct pair with a cross-entropy loss, effectively considering the N − 1 other products in the
batch as negatives:

l(S) = − 1
N

N∑
i=1

log exp(Siiτ)∑N
j=1 exp(Sijτ)

, (3)

with τ a learned temperature parameter, and the final loss is L = l(S)/2 + l(S>)/2. Please refer to Figure 4
for an overview of the method. The τ parameter is used to follow the initial formulation of CLIP (Radford
et al., 2021) and is optimized by gradient during the training. At test time, we use FAISS (Johnson et al.,
2019) to create a unique index for the entire gallery and perform fast similarity search on GPUs.

5 Experiments

We compare our method to various baselines on LRVS-F, using both category- and caption-based settings.
We report implementation details before analyzing the results.

5.1 Implementation details

All our models take as input images of size 224× 224, and output an embedding vector of 512 dimensions.
We use CLIP weights as initialization, and then train our models for 30 epochs with AdamW (Loshchilov &
Hutter, 2019) and a maximum learning rate of 10−5 determined by a learning rate range test (Smith, 2017).
To avoid distorting pretrained features (Kumar et al., 2022), we start by only training the final projection
and new input embeddings (conditioning and positional) for a single epoch, with a linear warm-up schedule.
We then train all parameters for the rest of the epochs with a cosine schedule.

We pad the images to a square with white pixels, before resizing the largest side to 224 pixels. During
training, we apply random horizontal flip, and random resized crops covering at least 80% of the image area.
We evaluate the recall of the model on the validation set at each epoch, and report test metrics (recall and
categorical accuracy) for the best performing validation checkpoint.

We used mixed precision and sharded loss to run our experiments on multiple GPUs. B/32 models were
trained for 6 hours on 2 V100 GPUs, with a total batch size of 360. B/16 were trained for 9 hours on 12
V100, with a batch size of 420. Batch sizes were chosen to maximize GPU memory use.

5.2 Results

Zero-shot Models. We evaluate pretrained models on LRVS-F without fine-tuning to assess the zero-shot
performance of existing methods. A CLIP ViT-B/16 yields 8.9%R@1 with 2M distractors, when combining
image and caption features. See Appendix B.1 for more details on CLIP features fusion. We experiment with
using a large multimodal model (LMM), MiniCPM-V (Yao et al., 2024), using the hidden state of the last
token or a global average pooling as the embedding, for multiple layers. The best result, 9.2%R@1, is obtained
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Table 1: Comparisons of results on LRVS-F for localization-based models. For 10K, 100K and 1M distractors,
we report bootstrapped means and standards deviations estimated from 10 randomly sampled sets. We
observe superior performances from the caption-based models, due to the precision of the caption which leads
to better detections.

Distractors → +10K +100K +1M +2M
Condi. Preprocessing Embedding %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1

Category

Gr. DINO-T + SAM-B CLIP ViT-B/32 16.9 ±1.45 67.4 ±1.70 8.9 ±0.79 65.6 ±1.93 4.4 ±0.44 64.5 ±1.48 2.9 64.0
Gr DINO-T + SAM-B ViT-B/32 83.0 ±1.06 94.6 ±0.75 69.4 ±1.36 92.0 ±0.67 53.1 ±1.63 90.0 ±0.77 46.4 89.2

Gr. DINO-T ViT-B/32 88.7 ±0.74 96.4 ±0.55 77.0 ±1.79 94.3 ±0.82 62.8 ±1.92 92.2 ±1.26 56.0 91.8
Gr. DINO-B ViT-B/16 89.9 ±0.87 96.2 ±0.77 80.8 ±1.35 94.5 ±0.73 68.8 ±2.17 93.2 ±0.90 62.9 92.5

Caption

Gr. DINO-T + SAM-B CLIP ViT-B/32 27.3 ±1.29 72.9 ±1.68 16.3 ±0.86 71.1 ±1.17 9.1 ±0.73 70.1 ±1.56 6.2 69.8
Gr. DINO-T + SAM-B ViT-B/32 83.5 ±1.56 94.6 ±0.39 72.2 ±1.59 93.0 ±0.42 56.5 ±1.61 90.9 ±0.74 50.8 90.2

Gr. DINO-T ViT-B/32 89.7 ±0.76 96.7 ±0.74 79.0 ±0.82 95.1 ±0.74 65.4 ±2.03 93.1 ±1.14 59.0 92.0
Gr. DINO-B ViT-B/16 91.6 ±0.77 97.6 ±0.31 83.6 ±0.93 96.1 ±0.60 73.6 ±1.49 94.7 ±0.64 67.8 94.3

Table 2: Comparisons of results on LRVS-F for unconditional, category-based and caption-based models. For
10K, 100K and 1M distractors, we report bootstrapped means and standards deviations from 10 randomly
sampled sets. Our CondViT-B/16 outperforms other methods for both groups.

Distractors → +10K +100K +1M +2M
Model %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1
Zero-Shot Models
SEARLE-XL Baldrati et al. (2023) 41.8 ±1.30 95.3 ±0.89 20.2 ±1.03 93.6 ±1.16 8.4 ±0.61 93.1 ±0.82 5.8 93.0
CompoDiff Gu et al. (2024b) 37.1 ±2.21 84.3 ±1.24 21.0 ±1.83 83.3 ±1.14 10.4 ±1.49 82.5 ±1.32 7.0 81.8
MagicLens CLIP-L Zhang et al. (2024) 52.2 ±2.33 97.7 ±0.67 27.9 ±1.65 95.9 ±0.53 12.1 ±1.20 95.5 ±0.77 7.5 95.1
CIReVL Karthik et al. (2024) 46.1 ±1.81 92.8 ±0.94 25.5 ±1.61 91.1 ±1.31 12.2 ±1.22 90.2 ±0.96 8.6 90.1
CLIP ViT-B/16 (Radford et al., 2021) 47.1 ±1.49 96.0 ±0.93 26.4 ±1.42 95.0 ±0.34 13.0 ±1.04 93.7 ±1.19 8.9 93.0
MiniCPM-V 2.6 Yao et al. (2024) 33.3 ±1.23 66.0 ±2.76 20.1 ±1.14 62.1 ±1.72 11.9 ±0.92 60.2 ±1.73 9.2 60.5
FAME-ViL (Han et al., 2023) 47.3 ±1.30 91.4 ±1.38 24.8 ±1.04 88.7 ±1.17 12.2 ±1.27 86.8 ±0.85 9.3 86.5
Unconditional Models
ViT-B/32 85.6 ±1.08 93.7 ±0.31 73.4 ±1.35 90.9 ±0.78 58.5 ±1.37 87.8 ±0.86 51.7 86.9
ViT-B/16 88.4 ±0.88 94.8 ±0.52 79.0 ±1.02 92.3 ±0.73 66.1 ±1.21 90.2 ±0.92 59.4 88.8
Detection-based Models
Gr. DINO-B + ViT-B/16 91.6 ±0.77 97.6 ±0.31 83.6 ±0.93 96.1 ±0.60 73.6 ±1.49 94.7 ±0.64 67.8 94.3
Categorical Models
ASENg (Dong et al., 2021) 63.1 ±1.50 76.3 ±1.26 46.1 ±1.21 68.5 ±0.84 29.8 ±1.86 62.9 ±1.27 24.1 62.0
ViT-B/32 + Filt. 88.9 ±1.01 — 76.8 ±1.24 — 62.0 ±1.31 — 55.1 —
CondViT-B/32 - Category (ours) 90.9 ±0.98 99.2 ±0.31 80.2 ±1.55 98.8 ±0.39 65.8 ±1.42 98.4 ±0.65 59.0 98.0
ViT-B/16 + Filt. 90.9 ±0.88 — 81.9 ±0.87 — 68.9 ±1.11 — 62.4 —
CondViT-B/16 - Category (ours) 93.3 ±1.04 99.5 ±0.25 85.6 ±1.06 99.2 ±0.35 74.2 ±1.82 99.0 ±0.42 68.4 98.8
Textual Models
CoSMo (Lee et al., 2021) 88.3 ±1.30 97.6 ±0.45 76.1 ±1.85 96.0 ±0.32 59.1 ±1.42 94.7 ±0.40 52.1 94.8
CLIP4CIR (Baldrati et al., 2022) 92.9 ±0.64 99.0 ±0.33 81.9 ±1.63 98.1 ±0.68 66.9 ±2.05 96.5 ±0.67 59.1 95.5
CondViT-B/32 - Caption (ours) 92.7 ±0.77 99.1 ±0.30 82.8 ±1.22 98.7 ±0.40 68.4 ±1.50 98.1 ±0.43 62.1 98.0
CondViT-B/16 - Caption (ours) 94.2 ±0.90 99.4 ±0.37 86.4 ±1.13 98.9 ±0.49 74.6 ±1.65 98.4 ±0.58 69.3 98.2

using global average pooling on the last layer, underscoring the need for further research into optimizing
LMM embeddings for challenging retrieval tasks. MagicLens (Zhang et al., 2024) is a generalist CIS method
trained on 36.7M triplets, achieving SOTA zero-shot results on the GeneCIS benchmark (Vaze et al., 2023).
It reaches 52.2%R@1 with 10K distractors but drops to 7.5%R@1 with 2M distractors, highlighting the
significant challenge posed by our large gallery.

Given the apparent similarity between the tasks, we also evaluate zero-shot and training-free CIR methods:
SEARLE-XL (Baldrati et al., 2023) which uses textual inversion, CompoDiff (Gu et al., 2024b) which uses
latent diffusion, and CIReVL (Karthik et al., 2024) which uses pretrained LLMs. All three show similar
trends: high categorical accuracy and moderate recall with 10K distractors, which drops below 10% when
evaluated against 2M distractors. These results suggest that while such methods effectively combine high-level
concepts in language space, they lack the fine-grained visual representations needed to distinguish hard
negatives. Finally, we evaluate FAME-ViL (Han et al., 2023), a model pretrained on various fashion-related
tasks, including CIR. Please refer to Table 2 for the complete results. Overall, our benchmark presents a
substantial challenge for all zero-shot methods, including state-of-the-art CIS and CIR approaches.
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Figure 5: R@1 with respect to number of added distractors, evaluated on the entire test set. Please refer to
Tables 1 and 2 for bootstrapped metrics and confidence intervals. Our categorical CondViT-B/16 reaches the
performances of the best caption-based models, while using a sparser conditioning.

Detection-based Baseline. We leverage the recent Grounding DINO (Liu et al., 2023) and Segment
Anything (Kirillov et al., 2023) to create a baseline approach based on object detection and segmentation. In
this setting, we feed the model the query image and conditioning information, which can be either the name
of the category or a caption. Subsequently, we use the output crops or masks to train a ViT following the
aforementioned procedure. Please refer to Table 1 for the results.

Initial experiments conducted with pretrained CLIP features showed a slight preference toward segmenting the
object. However, training the image encoder revealed that superior performances can be attained by training
the network on crops. Our supposition is that segmentation errors lead to definitive loss of information,
whereas the network’s capacity is sufficient for it to learn to disregard irrelevant information and recover
from a badly cropped image.

Overall, using Grounding DINO makes for a strong baseline. However, it is worth highlighting that the
inherent imprecision of category names frequently results in overly large bounding boxes, which in turn limits
the performances of the models. Indeed, adding more information into the dataset such as bounding boxes
with precise categories would help, yet this would compromise the scalability of the model as such data is
costly to obtain. Conversely, the more precise boxes produced by the caption-based model reach 67.8%R@1
against 2M distractors.

Categorical Conditioning. We compare our method with categorical detection-based approaches, and
unconditional ViTs finetuned on our dataset. To account for the extra conditioning information used in our
method, we evaluated the latter on filtered indexes, with only products belonging to the correct category. We
did not try to predict the item of interest from the input picture, and instead consider it as a part of the
query. We also report unfiltered metrics for reference. Results are in Table 2.

Training the ViTs on our dataset greatly improves their performances, both in terms of R@1 and categorical
accuracy. Filtering the gallery brings a modest mean gain of 2− 4%R@1 across all quantities of distractors
(Table 2), reaching 62.4%R@1 for 2M distractors with a ViT-B/16 architecture. In practice, this approach is
impractical as it necessitates computing and storing an index for each category to guarantee a consistent
quantity of retrieved items. Moreover, a qualitative evaluation of the filtered results reveals undesirable
behaviors. When filtering on a category divergent from the network’s intrinsic focus, we observe the results
displaying colors and textures associated with the automatically focused object rather than the requested one.

We also compare with ASEN (Dong et al., 2021) trained on our dataset using the authors’ released code.
This conditional architecture uses a global and a local branch with conditional spatial attention modules,
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Upper Body Head Bags

Outwear Lower Body Upper Body

“Long dress” “Sandals” “Ankle boots”

“Her blouse” “Same shorts” “Puffer vest”

Figure 6: Qualitative results for our categorical (first 2 rows) and textual (last 2 rows) CondViT-B/16. We
use free-form textual queries instead of BLIP2 captions to illustrate realistic user behavior, and retrieve top-K
items from the whole test gallery. See Figures 15 and 16 in the Appendix for more qualitative results.

respectively based on ResNet50 and ResNet34 backbones, with explicit ROI cropping. However in our
experiments the performances decrease with the addition of the local branch in the second training stage,
even after tuning the hyperparameters. We report results for the global branch.

We train our CondViT using the categories provided in our dataset, learning an embedding vector for
each of the 10 clothing categories. For the i-th product in the batch, we randomly select in the associated
data a simple image xs and its category cs, and a complex image xc. We then compute their embeddings
zA

i = φ(xc, cs), zB
i = φ(xs). We also experimented with symmetric conditioning, using a learned token for the

gallery side (see Appendix B.1).

Our categorical CondViT-B/16, with 68.4%R@1 against 2M distractors significantly outperforms all other
category-based approaches (see Figure 5, left) and maintains a higher categorical accuracy. Furthermore,
it performs similarly to the detection-based method conditioned on richer captions, while requiring easy-
to-acquire coarse categories. It does so without making any assumption on the semantic nature of these
categories, and adding only a few embedding weights (7.7K parameters) to the network, against 233M
parameters for Grounding DINO-B. We confirm in Appendix B.4 that its attention is localized on different
objects depending on the conditioning.

Textual Conditioning. To further validate our approach, we replaced the categorical conditioning with
referring expressions, using our generated BLIP2 captions embedded by a Sentence T5-XL model (Ni et al.,
2022). We chose this model because it embeds the sentences in a 768-dimensional vector, allowing us to
simply replace the categorical token. We pre-computed the caption embeddings, and randomly used one of
them instead of the product category at training time. At test time, we used the first caption.

In Table 2, we observe a gain of 3.1%R@1 for the CondViT-B/32 architecture, and 0.9%R@1 for CondViT-
B/16, compared to categorical conditioning against 2M distractors, most likely due to the additional details
in the conditioning sentences. When faced with users, this method allows for more natural querying, with
free-form referring expressions. See Figure 6 for qualitative results.
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We compare these models with CIR methods: CoSMo (Lee et al., 2021) and CLIP4CIR (Baldrati et al., 2022).
Both use a compositor network to fuse features extracted from the image and accompanying text. CoSMo
reaches performances similar to an unconditional ViT-B/32, while CLIP4CIR performs similarly to our
textual CondViT-B/32. Conversely, our model is not better on CIR tasks like FashionIQ (see Appendix B.3).
We hypothesize that for our conditional feature extraction task, early conditioning is more effective than
modifying embeddings through a compositor at the network’s end. As the RVS task differs from CIR, despite
both utilizing identical inputs, this was anticipated. Our CondViT-B/16 model significantly outperforms
all other models and achieves results comparable to our caption-based approach using Grounding DINO-B
(see Figure 5, right). Importantly, it accomplishes this without the need for explicit detection steps or
dataset-specific preprocessing, and we observe that our models achieve a categorical accuracy of 98% against
2M distractors, surpassing the accuracy of the best corresponding detection-based model of 94.3%.

6 Conclusion & Limitations

We studied an approach to image similarity in fashion called Referred Visual Search (RVS), which introduces
two significant contributions. Firstly, we introduced the LAION-RVS-Fashion dataset, comprising 272K
fashion products and 842K images. Secondly, we proposed a simple weakly-supervised learning method
for extracting referred embeddings. Our approach outperforms strong detection-based baselines. These
contributions offer valuable resources and techniques for advancing image retrieval systems in the fashion
industry and beyond.

However, one limitation of our approach is that modifying the text description to refer to something not
present or not easily identifiable in the image, mimicking CIR, does not work effectively. For instance, if
the image shows a person carrying a green handbag, a refined search with "red handbag" as a condition
would only retrieve a green handbag (see Appendix B.5 for examples of such failures), and the system may
also ignore the conditioning if the desired item is small (see Appendix B.2 for an analysis). Additionally,
extending the approach to more verticals would be relevant.

7 Ethics and Reproducibility Statements

Harmful and Private Content. Our dataset is a subset of the publicly released LAION 5B dataset,
enriched with synthetic metadatas (categories, captions, product identifiers). However, our process began by
curating a subset of domains, focusing exclusively on domains affiliated with well-known fashion retailers and
URLs containing product identifiers. As such, these images come from large commercial fashion catalogs. Our
dataset contains images that appear in online fashion catalogs and does not contain harmful or disturbing
images. Most of the images are pictures of isolated attire on neutral backgrounds. Images depicting people
are all extracted from professional photoshoots, with all the ethical and legal considerations that are common
practices in the fashion retail industry.

We release our dataset for research use only, as a benchmark for RVS — a task with no existing public data,
limiting reproducibility. This is an object-centric instance retrieval task that aims to control more precisely
the content of image embeddings. On this dataset, to optimize the performances, embeddings should only
contain information regarding the referred garment, rather than the model wearing it.

Dataset Biases. Our dataset lacks metadata for a comprehensive exploration of bias across gender and
ethnicity. However, based on an inspection of a random sample of 1000 images, we estimate that roughly 2/3
of the individuals manifest discernible feminine physical attributes or attire.

Among the cohort of 22 fashion retailers featured in our dataset, 14 are from the European Union, 7 are from
the United States, and the remaining one is from Russia. Thereby, even though these retailers export and sell
clothing across the world, our dataset reproduces the biases of European and American fashion industries
with respect to models’ ethnicity and gender.

Reproducibility. We release the assets and tools that we created:
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• Full Dataset: <anonymized>

• Test set: <anonymized>

• Training Code: <anonymized>

• Evaluation Code: <anonymized>

• Categorical Model: <anonymized>

• Textual Model: <anonymized>

• Leaderboard: <anonymized>

• Demo: <anonymized>

The dataset is hosted by Huggingface, using the widely used parquet format, and released under the CC-BY-
NC-4.0 license, for research use only. The images can easily be downloaded using tools like img2dataset.
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Appendix

A Dataset

A.1 Samples

Images
Category Head Head

LAION BULLDOG HAT - Bonnet - black Topshop - PLEATED [...] - Haaraccessoire - blue
BLIP2 a black beanie with a stuffed bulldog embroidered on it an image of a headband with blue color

Images
Category Outwear Outwear

LAION Linen trench coat Unisex Iconic Raincoat Smoking blue
BLIP2 the long coat has been made of blue wool with black detailing children’s rain jacket - navy

Images
Category Bags Bags

LAION POPO 22L BACKPACK - Rucksack - vivid purple Burberry small Banner tote
BLIP2 the purple and blue backpack with straps and compartments the burberry small leather bag is brown and leather

Images
Category Lower Body Lower Body

LAION Y-3 panelled track pants flared suede trousers
BLIP2 a black sweat jogger pant with pockets stella pants - dark suede

Images
Category Upper Body Feet

LAION DRY TEE TRAIL - Print T-shirt - black yellow spikaqueen 100 fluorescent leather pumps
BLIP2 nike trail t-shirt in black with the red logo neon green patent leather heels with studs

Images
Category Upper Body Neck

LAION adidas Performance - T-shirt print - tech olive - 4 Codello - STRIPE SCARF - Huivi - light rose
BLIP2 a adidas 3 stripe green t - shirt a scarf with multi coloured stripes

Figure 7: Additional samples from LRVS-F.
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A.2 Construction

Image Collection: The raw data of LRVS-F are collected from a list of fashion brands and retailers whose
content delivery network domains were found in LAION 5B. We used the automatically translated versions
of LAION 2B MULTI and LAION 1B NOLANG to get english captions for all the products. This represents
around 8M initial images.

We analyzed the format of the URLs for each domain, and extracted image and product identifiers using
regular expressions when possible. We removed duplicates at this step using these identifiers, and put aside
images without clear identifiers to be filtered and used as distractors later.

Image Annotation: The additional metadata that we provide were generated using deep learning models.
We generated indicators of the image complexity, classified the products in 11 categories, and added new
image captions.

First, we used a model to classify the complexity of the images, trained with active learning. We started by
automatically labeling a pool of images using information found in the URLs, before manually filtering the
initial data, and splitting between training and validation. Then, we computed and stored the pre-projection
representations extracted by OpenCLIP B16 for each image, and trained a 2-layers MLP to predict the
category. After training, we randomly sampled 1000 unlabeled images and annotated the 100 with the highest
prediction entropy, before splitting them between training and validation data. We repeated these 2 steps
until reaching over 99% accuracy and labeled the entire dataset using this model.

We used a second model to automatically assign categories to the simple images. LAION captions are noisy,
so instead of using them we used BLIP2 FlanT5-XL (Li et al., 2023) to answer the question “In one word,
what is this object?”. We gathered all the nouns from the answers, using POS tagging when the generated
answer was longer, and grouped them in 11 categories (10 for clothing, 1 for non-clothing). We automatically
created an initial pool of labeled data, which we manually filtered, before applying the same active learning
process as above. We then annotated all the simple images with this model. Please refer to Appendix A.3 for
the list of categories and their composition.

Finally, we automatically added new descriptions to the simple images, because the quality of some LAION
texts was low. For example, we found partially translated sentences, or product identifiers. We generated 10
captions for each image using BLIP2 FlanT5-XL with nucleus sampling, and kept the two with largest CLIP
similarity.

Dataset Split: We grouped together images associated to the same product identifier and dropped the
groups that did not have at least a simple and a complex image. We manually selected 400 of them for the
validation set, and 2,000 for the test set. The distractors are all the images downloaded previously that were
labeled as “simple” but not used in product groups. This notably includes images for which it was impossible
to extract any product identifier.

Finally, we used Locality Sensitive Hashing (LSH) with perceptual hash, and OpenCLIP B/16 embeddings to
remove duplicates. We created FAISS indexes based respectively on hamming distance and cosine similarity,
automatically removing samples with extremely high similarity. We manually inspected samples near the
threshold. We used this process on complex images from the training set to remove products duplicates, on
train and test sets to reduce evaluation bias, and on gallery images and distractors for both the validation
and test sets.

Table 3: Count of simple images (isolated items) across the dataset splits. Some training products are
depicted in multiple simple images, hence the total higher than the number of unique identities.

Upper Body Lower Body Whole Body Outwear Bags Feet Neck Head Hands Waist NonClothing Total
Train 92 410 75 485 48 446 45 867 26 062 4 224 3 217 1 100 190 184 - 297 185
Val 80 80 80 80 60 6 6 4 2 2 - 400
Test 400 400 400 400 300 30 30 20 10 10 - 2 000

Val. Dist. 19 582 13 488 8 645 6 833 10 274 22 321 2 470 6 003 2 866 1 016 6 043 99 541
Test Dist. 395 806 272 718 172 385 136 062 203 390 448 703 50 881 121 094 57 271 19 853 121 851 2 000 014
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A.3 Composition

We classified LRVS-F products into 11 distinct categories. Among these categories, 10 are specifically related
to clothing items, which are organized based on their approximate location on the body. Additionally, there
is one non-clothing category included to describe some distractors. Table 3 provides information regarding
the counts of products within each category, as well as the data split. For a more detailed understanding of
the clothing categories, Table 4 presents examples of fine-grained clothing items that are typically associated
with each category.

Each product in our dataset is associated with at least one simple image and one complex image. In Figure 8,
we depict the distribution of simple and complex images for each product. Remarkably, we observe that the
majority of products, accounting for 90% of the dataset, possess a single simple image and up to four complex
images.

We use the learned embedding space of our CondViT-L/14 (see Appendix B.1) to evaluate the amount of
hard negatives in the test distractors set. For this model, the mean Top-1 similarity over the test set is 0.78.
We estimate that items with similarity above 0.68 are very hard negatives (same category, similar colors,
shapes, patterns, etc). Using this threshold, the mean number of very hard negatives per test query is 100.

Table 4: Example of sub-categories.

Category Composition
Upper Body T-shirts, Shirts, Crop Tops, Jumper, Sweater . . .
Lower Body Shorts, Pants, Leggings, Skirts . . .
Whole Body Dress, Gown, Suits, Rompers . . .

Outwear Coat, Jacket . . .
Bags Handbags, Backpack, Luggage . . .
Feet Shoes, Boots, Socks . . .

Neck Scarves, Necklace . . .
Head Hat, Cap, Glasses, Sunglasses, Earrings . . .

Hands Gloves, Rings, Wristbands. . .
Waist Belts
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Figure 8: Distribution of Simple and Complex images across products. 90% of the products have 1 simple
image and up to 4 complex images.
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B Model

B.1 Ablation Studies

Insertion Depth. We study the impact of the insertion depth of our additional conditioning token by
training a series of CondViT-B/32, concatenating the conditioning token before different encoder blocks for
each one of them.

Figure 9 indicates that early concatenation of the conditioning token is preferable, as we observed a decrease
in recall for deep insertion (specifically, layers 10-12). However, there was no statistically significant difference
in performance between layers 1-8. Consequently, we decided to concatenate the token at the very beginning
of the model. We hypothesize that the presence of residual connections in our network enables it to disregard
the conditioning token until it reaches the optimal layer. The choice of this layer may depend on factors such
as the size of the ViT model and the characteristics of the dataset being used.

1 2 3 4 5 6 7 8 9 10 11 12

Insertion depth

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

R
@

1

CondViT-B/32

ViT-B/32 + Filt.

Figure 9: R@1 on the test set with respect to the insertion depth of the conditioning token. Error bars
represent the bootstrapped estimation of the standard deviation across 10 splits. Late insertion degrades
performance, but no significant difference can be seen among the first layers.

Asymetric Conditioning. We experiment with using conditioning for the simple images too, using a
single learned “empty” token for all the simple images. We denote this token c∅. Then for each simple image
xs we compute its embedding as φ(xs, c∅).

Results in Table 5 show that there is no really significant difference between both approaches, even though
CondViT-B/16 results are better without this additional token for large amounts of distractors (≥ 100K).
We choose to keep an asymmetric embedding process.

Table 5: Comparison of symmetric and asymmetric conditioning on LRVS-F test set. We report bootstrapped
mean and standard deviation on the test set. There is no significant difference between the configurations.
Bold results indicate a difference of more than 1%.

Distractors → +0 +10K +100K +1M +2M
Model %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1
CondViT-B/32 97.0 ±0.57 100 ±0.07 90.9 ±0.98 99.2 ±0.31 80.2 ±1.55 98.8 ±0.39 65.8 ±1.42 98.4 ±0.65 59.0 98.0
CondViT-B/32 + c∅ 96.8 ±0.94 100 ±0.10 91.1 ±1.04 99.3 ±0.24 79.9 ±1.35 99.0 ±0.21 66.0 ±1.36 98.3 ±0.46 59.6 98.2
CondViT-B/16 97.7 ±0.21 99.8 ±0.12 93.3 ±1.04 99.5 ±0.25 85.6 ±1.06 99.2 ±0.35 74.2 ±1.82 99.0 ±0.42 68.4 98.8
CondViT-B/16 + c∅ 97.8 ±0.32 99.9 ±0.11 93.2 ±0.79 99.5 ±0.16 84.4 ±1.16 99.0 ±0.29 72.5 ±1.88 98.8 ±0.42 66.5 98.0
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Table 6: Performance of our categorical CondViT with various backbone sizes. As expected, working on
smaller patches and adding parameters yields significant gains in R@1.

Distractors → +10K +100K +1M +2M
Model %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1
CondViT-B/32 - Category 90.9 ±0.98 99.2 ±0.31 80.2 ±1.55 98.8 ±0.39 65.8 ±1.42 98.4 ±0.65 59.0 98.0
CondViT-B/16 - Category 93.3 ±1.04 99.5 ±0.25 85.6 ±1.06 99.2 ±0.35 74.2 ±1.82 99.0 ±0.42 68.4 98.8
CondViT-L/14 - Category 96.8 ±0.41 99.8 ±0.18 92.1 ±0.83 99.6 ±0.29 84.1 ±1.57 99.3 ±0.32 79.7 99.2

Table 7: Performance of a CLIP-pretrained ViT-B/16. T → I denotes a text-to-image setting, using only
the conditioning caption to retrieve relevant images. I → I denotes an image-only setting, ignoring the
conditioning caption. (T + I)→ I and (T × I)→ I respectfully combines image and text similarities with a
sum and a product.

Distractors → +10K +100K +1M +2M
Model %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1 %R@1 %Cat@1
CLIP ViT-B/16 - T → I 35.2 ±1.97 94.4 ±0.63 15.9 ±1.42 93.4 ±1.07 5.8 ±0.69 93.1 ±0.78 3.9 92.7
CLIP ViT-B/16 - I → I 23.9 ±1.17 68.5 ±1.98 12.6 ±0.97 66.1 ±1.14 6.4 ±0.65 64.1 ±1.01 4.8 63.3
CLIP ViT-B/16 - (T × I)→ I 47.7 ±1.89 96.5 ±0.78 25.7 ±1.18 95.6 ±0.64 11.1 ±1.32 94.8 ±0.67 7.8 94.4
CLIP ViT-B/16 - (T + I)→ I 47.1 ±1.49 96.0 ±0.93 26.4 ±1.42 95.0 ±0.34 13.0 ±1.04 93.7 ±1.19 8.9 93.0

Backbone size We study the impact of the backbone selection in Table 6 by training our categorical
CondViT with 3 ViT sizes: the ViT-B/32 and ViT-B/16, which only differ by their patch size, and the larger
ViT-L/14. Overall, using smaller patches and adding parameters both yield substantial improvements at the
cost of higher computational requirements.

Combining CLIP features We explore various combinations of CLIP ViT-B/16 features in Table 7. In
an image-to-image setting, the model reaches 4.8%R@1 with 2M distractors, which estimates the proportion
of queries that are visually similar to the target item. We note that the Cat@1 is already of 63.3%. In a
text-to-image setting the categorical accuracy reaches 92.7%. While the recall in the low-distractor setting
is higher (hinting that a coarse description of the item is sufficient), it falls to 3.9% against 2M distractors.
Finally, the model reaches 8.9% when combining image and text similarities with a sum, maintaining a high
categorical accuracy.

B.2 Impact of item category and visibility

Providing additional results based on the visibility of objects in the query images is not straightforward, as
we lack labeled masks. Instead, we use open-vocabulary segmentation models (Grounding DINO + SAM)
to generate these masks. To improve the reliability of this analysis, we manually simplify the captions to
produce better masks and exclude images where no mask was generated (13 out of 2000). For clarity, we
restrict the models in this section to the best-performing ones.

As expected, certain categories like “Upper Body” and “Whole Body” exhibit higher mean visibility compared
to others like “Feet” or “Waist” (see Figure 10). The R@1 is significantly higher for larger objects (reaching
80%R@1 with our CondViT) and much lower for smaller objects (below 20%R@1). Notably, these smaller-
object categories also tend to be underrepresented in the training set and account for only a small portion of
the test queries, as shown in Table 3. Additionally, the number of distractors impacts performance, with the
“Feet” category having the most distractors.

We further group the mask areas into deciles and compute the mean R@1 for each group. Figure 11 shows
that our simple ConditionalViT demonstrates robustness to low visibility comparable to the detection-based
baseline, while the performance of models like CLIP4CIR and the unconditional ViT-B/16 deteriorates more
rapidly.
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Figure 10: Distribution of item mask area (left) and R@1 (right) for each category. Rare categories and
low-visibility categories are harder for all models.
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Figure 11: R@1 with respect to mask area. We bucketize the values using deciles and compute a mean R@1
for each bucket. We plot the results at the center of each bucket, and show the deciles boundaries on the x
axis. All models show poor performances on small objects. Our CondViT and the Grounding-DINO baseline
show similar robustness.

B.3 FashionIQ Results

To further study the relationship between RVS and CIR, we train our model on the FashionIQ dataset (Wu
et al., 2021) and compare it with CoSMo(Lee et al., 2021) and CLIP4CIR(Baldrati et al., 2022).

We initialize a CondViT-B/32 from a checkpoint trained on LRVSF with textual conditioning and fine-tune it
on FashionIQ. Because of the very limited size of the dataset (18K training triplets), we adopt the following
modifications:

• We add a trainable 2-layers MLP applied on the text embedding to account for the distribution shift
between the initial BLIP2 captions and FashionIQ’s annotations.

• We insert the conditioning token at layer 6, and only train subsequent layers.

• We evaluate a weight-space average of 5 runs.
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Table 8: Comparison of retrieval performance on FashionIQ across different clothing categories and methods.

Dress Shirt Toptee Average
Method R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 (R@10+R@50)/2

CoSMo 25.64 50.30 24.90 49.18 29.21 57.46 26.58 52.31 39.45
Ours 29.60 56.47 26.10 49.31 32.48 59.46 29.40 55.08 42.24
CLIP4CIR 33.81 59.40 39.99 60.45 41.41 65.37 38.32 61.74 50.03

We report usual metrics for this dataset in Table 8 R@10 and R@50 on the validation set for each clothing
category, and averages. As expected, the ranking of the methods on FashionIQ is different than that of
LRVSF which highlights how different the tasks are. Indeed, while our method tailored for referred visual
search performs best on LRVSF it achieves only 2nd place on FashionIQ among the methods tested in our
paper. Conversely, CLIP4CIR which achieves best on FashionIQ for which it was designed is only 3rd on
LRVSF, performing similarly to our smallest baseline. These results also hint that our method can be adapted
to more complex conditioning (ie textures, colors or shape modifications).

B.4 Attention Maps

We propose a visualization of the attention maps of our ViT-B/16, ASEN, and our categorical CondViT-B/16
in Figure 13. We compare attention in the last layer of the transformers with the Spatial Attention applied
at the end of ASEN’s global branch. We observe that the attention mechanism in the transformers exhibits a
notably sparse nature, selectively emphasizing specific objects within the input scene. Conversely, ASEN
demonstrates a comparatively less focused attention distribution. Surprisingly, the unconditional ViT model
exhibits a strong focus on a single object of the scene, while the attention of our CondViT dynamically
adjusts in response to the conditioning information.

Figure 12 shows the patch features extracted by our models with principal component analysis (PCA)
computed on all image tokens in the last layer of our CondViT-B/16 model across the test queries. Similarly
to Oquab et al. (2023), we find that applying a threshold on the first component enables effective separation
of the background from the foreground. Intriguingly, we observe that employing a higher threshold not only
accomplishes the aforementioned separation but also yields cleaner visualizations by isolating the conditionally
selected object. We also observe instances where the network encounters difficulties in detecting the referenced
object, resulting in a notable absence of tokens surpassing the established threshold.

Upper Body Lower Body Feet Whole Body Lower Body Bags

Upper Body Lower Body Bags Upper Body Lower Body Bags

Figure 12: Visualization of the thresholded first component of image tokens in our CondViT-B/16. This
component enables separation of the background, foreground, and focused object.
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ViT-B/16 ASEN Cat. CondViT-B/16

Upper Body Lower Body Bags Upper Body Lower Body Bags

Upper Body Lower Body Feet Upper Body Lower Body Feet

Upper Body Lower Body Feet Upper Body Lower Body Feet

Figure 13: Attention maps. For ViT-B/16 and CondViT-B/16, we display the maximum attention from the
CLS token to the image tokens across all heads in the last layer, and observe sparse maps. For ASEN, we
display the attention returned by the Spatial Attention module of the global branch, and observe more diffuse
maps. All maps are normalized to [0-1].

B.5 Textual Conditioning — Failure Cases

We present limitations of our textual CondViT-B/16 in Figure 14. Firstly, when faced with failure in
identifying the referenced object, our model resorts to selecting the salient object instead. Additionally, our
model ignores queries with color or texture modifications, returning objects as depicted in the query image.

“A red handbag” “A green stripped t-shirt”
(a) Top-3 retrieval for queries trying to modify color of an item. We find such modifications to be mostly ignored.

“Pants” “A scarf”
(b) Top-3 retrieval for missed queries. For hard queries, or queries about an item not represented in the picture we
find a tendency to default to the salient item in the image.

Figure 14: Retrieved items showing failure cases of our textual CondViT-B/16 for CIR-like queries. (a) shows
that the network disregards color clues. (b) shows that the network defaults to the salient item when the
query is too hard or not represented.
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B.6 Retrieval Examples

In this section, we show additional results for our categorical CondViT-B/16 and its textual variant trained
with BLIP2 (Li et al., 2023) captions. We use test query images and the full test gallery with 2M distractors
for the retrieval. Each query in the test set is exclusively associated with a single item. However, it should be
noted that the we do not necessarily query for this item, so the queried product might not be in the gallery.
Nevertheless, owing to the presence of 2M distractors, most queries can retrieve multiple viable candidates.

Figure 15 shows that our categorical CondViT is able to extract relevant features across a wide range of
clothing items, and propose a coherent retrieval especially for the main categories. There is still room for
improvement on images depicting rare training categories like Waist, Hands, Head or Neck, and rare poses.

Figure 16 presents improvements brought by textual conditioning captions over categorical conditioning.
Using text embeddings allows for more natural querying, thanks to the robustness of our model to irrelevant
words. However, this robustness comes at the cost of ignoring appearance modifications.

25



Under review as submission to TMLR

Lower Body Upper Body Bags

Lower Body Outwear Feet

Lower Body Upper Body Bags

Bags Head Feet

Outwear Upper Body Bags

Whole Body Bags Feet

Lower Body Bags Feet

Upper Body Waist Head

Neck Outwear Head

Upper Body Waist Whole Body

Figure 15: Qualitative results of our Conditional ViT-B/16 on LRVS-F test set.
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“Cap” “Jacket”
(a) Top-3 retrieval for normal user queries. Even though the BLIP2 captions were more detailed, using a single word
as a query produces the expected result.

“I want her t-shirt.” “I want the same skirt.”
(b) Top-3 retrieval for noisy user queries. Our model is robust to expression of user intent and can focus on the
designated object.

−→

“Pants” “Shorts”

−→

“Dress” “Skirt”
(c) Top-3 retrieval for queries with item modifications. In some circumstances, a textual query can influence the result
to slightly modify the type of retrieved items, e.g. exchanging shorts and pants or skirts and dresses.

“Sweater” “Jeans”

−→

“Pants” “White Pants”

(d) Top-3 retrieval for out-of-frame items. If the network fails, we find that precising the query can help.

Figure 16: Retrieved items for queries in LRVS-F test set with our textual CondViT-B/16. (a) shows results
for normal, concise use. (b) shows results with more verbose queries. (c) shows queries influencing the type
of results. (d) show results for out-of-frame items.
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C Datasheet

C.1 Motivations

Q1. For what purpose was the dataset created? Was there a specific task in mind? Was there a
specific gap that needed to be filled? Please provide a description.
This dataset has been created to provide public training data and a benchmark for the Referred
Visual Search (RVS) task, for research purposes. The task is new in academic research, and thereby
no other dataset existed to tackle it.

Q2. Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?
The dataset was created by <anonymized>, on behalf of <anonymized>.

Q3. Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.
<anonymized>.

Q4. Any other comments ?
No.

C.2 Composition

Q5. What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people
and interactions between them; nodes and edges)? Please provide a description.
Instances of this dataset are URLs from online catalogs of fashion retailers. The associated images
depict fashion products isolated and in context. Some products are associated with a synthetic
product identifier.

Q6. How many instances are there in total (of each type, if appropriate)?
In total, there are :

• 299,585 target simple images
• 486,995 complex images
• 59,938 partial complex images
• 2,099,555 additional simple images, not linked to any product, that serve as distractors.

Q7. Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is
the sample representative of the larger set (e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were withheld or
unavailable).
Our dataset is merely a small fashion subset of LAION-5B, which is itself a subset of the CommonCrawl
dataset. We only selected a small amount of retailers and brands, mostly with European and American
influence. As such, it is only a sample of fashion images, and is not representative of retailers and
brands from other geographical areas.

Q8. What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a description.
Instances of the dataset are URLs of images, accompanied by various metadatas. Among them, their
widths, heights, probabilities of containing a watermark, probabilities of being NSFW, associated
texts (translated to english when needed) and original languages all originate from the LAION-5B
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dataset, and we refer the reader to this dataset for additional information. They are not used in the
benchmark but we report them for ease of use and safety.
We added multiple synthetic labels to the images. First, a type, Complex when the image depicts a
scene, with a model, Simple when it is an isolated product. There also exist a Partial Complex
category, for scene images that are zoomed-in and do not contain the entire product. Second,
a product identifier, allowing to group images depicting the same product. Each simple target
image is further described by a category, following the taxonomy described in this paper, and 2
BLIP2-FlanT5XL captions.

Q9. Is there a label or target associated with each instance? If so, please provide a description.
We added categories and captions associated with each simple training image, but they are intended
to be used as inputs to the models. The product identifier could be seen as a target as we propose a
product retrieval task.

Q10. Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text.
Yes, complex images often depict multiple objects, but are linked with only one product in this
dataset. They are registered in online fashion catalogs with the intent to showcase a specific product,
and as such we were not able to extract more information.

Q11. Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.
Yes, we provide a synthetic product identifier for each image (exluding distractors), allowing to group
simple and complex images depicting the same product.

Q12. Are there recommended data splits (e.g., training, development/validation, testing)?
If so, please provide a description of these splits, explaining the rationale behind them.
Yes. We selected 400 products and 99,541 distractors to create a validation set. We also selected
2,000 products and 2,000,014 distractors to create a large test set. We selected the products so that
their category distribution roughly match their distribution in the training set.

Q13. Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide
a description.
We created most of the new labels synthetically, using classifiers and captioners, so they contain
some noise. However, by randomly sampling images and manually verifying their labels, we find an
empiric error rate of 1/1000 for training complex images, 0/1000 for training simple images, and
3/1000 for distractors. Regarding the categories, we find an empiric error rate of less than 1%, with
the confusions mostly stemming from semantically similar categories and images where object scale
was ambiguous in isolated settings (long shirt against short dress, wristband against hairband).
The BLIP2 captions that we provide are of good quality and increase the mean CLIP similarity with
the image of +7.4%. However, as synthetic captions, they are not perfect and sometimes contain
hallucinations.
There are some redundancies in the distractors sets.

Q14. Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are there
guarantees that they will exist, and remain constant, over time; b) are there official archival versions
of the complete dataset (i.e., including the external resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external
resources that might apply to a future user? Please provide descriptions of all external resources and
any restrictions associated with them, as well as links or other access points, as appropriate.
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No, the dataset relies on external links to the World Wide Web. We are unable to offer any guarantees
of the existence of the images over time. We do not own the rights of these images, and as such do
not provide any archival version of the complete dataset. These copyrights might contains restriction
about the images use. We encourage any user of the dataset to inquire about these copyrights.

Q15. Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the
content of individuals’ non-public communications)? If so, please provide a description.
No. This dataset only contains samples from online fashion catalogs, and as such does not contain
any confidential or personal data.

Q16. Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.
No. This dataset contains samples from online fashion catalogs, that result from professional
photoshoots with the objective to be as appealing a possible to a large amount of customers.

Q17. Does the dataset relate to people? If not, you may skip the remaining questions in this section.
Models are present in the complex images. However, the sole focus of our dataset is the fashion items
they are wearing, and most of the images are isolated objects. It does not contain any private or
personal information.

Q18. Does the dataset identify any subpopulation (e.g., by age, gender)? If so, please describe
how these subpopulations are identified and provide a description of their respective distributions
within the dataset.
No, the dataset does not contain any metadata allowing to identify any subpopulation.

Q19. Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? If so, please describe
how.
It might be possible to identify models using facial recognition, but it would require external data.

Q20. Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals racial or ethnic origins, sexual orientations, religious beliefs, polit-
ical opinions or union memberships, or locations; financial or health data; biometric
or genetic data; forms of government identification, such as social security numbers;
criminal history)? If so, please provide a description.
No.

Q21. Any other comments ?
No.

C.3 Collection Process

Q22. How was the data associated with each instance acquired? Was the data directly observ-
able (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or language)?
If data was reported by subjects or indirectly inferred/derived from other data, was the data vali-
dated/verified? If so, please describe how.
The initial data was acquired from LAION-5B, a subset of CommonCrawl. Please refer to their work
for details about this initial data acquisition. The additional labels were synthetically generated by
deep neural networks, based on manually annotated data, and a pretrained captioner.

Q23. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? How were these
mechanisms or procedures validated?
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We manually curated domains and manually designed regular expressions to extract product identifiers
from the URLs. The additional labels and captions are synthetic. We validated the quality of the
labels by measuring accuracy on random samples, and the captions with a CLIP similarity. Most of
the process was done on a single CPU node, with the exception of the deep learning models which
were run on two GPUs.

Q24. If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?
The dataset is a sample from LAION. The URLs were chosen based on a list of curated fashion
retailers domains, selected for the quality of their images and their use of simple and complex images
to showcase a product.

Q25. Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)?
The authors were the only persons involved in this data collection process.

Q26. Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the instances was
created.
The data was collected from LAION and annotated at the beginning of 2023. This timeframe does
not match the timeframe associated with the instances. The LAION-5B dataset has been created
between September 2021 and January 2022, based on CommonCrawl. CommonCrawl itself is a
collection of webpages started in 2008. However, it is impossible to know for certain how far the
data stretches, as the websites might include older pictures.

Q27. Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as well as a link
or other access point to any supporting documentation.
The dataset is currently under review.

Q28. Does the dataset relate to people? If not, you may skip the remaining questions in this section.
The dataset contains some images of fashion models, but it does not contain any personal data and
focuses on objects.

Q29. Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)?
No, we obtained it from LAION-5B.

Q30. Were the individuals in question notified about the data collection? If so, please describe
(or show with screenshots or other information) how notice was provided, and provide a link or other
access point to, or otherwise reproduce, the exact language of the notification itself.
Please refer to LAION-5B.

Q31. Did the individuals in question consent to the collection and use of their data? If so,
please describe (or show with screenshots or other information) how consent was requested and
provided, and provide a link or other access point to, or otherwise reproduce, the exact language to
which the individuals consented.
Please refer to LAION-5B.

Q32. If consent was obtained, were the consenting individuals provided with a mechanism
to revoke their consent in the future or for certain uses? If so, please provide a description,
as well as a link or other access point to the mechanism (if appropriate).
Please refer to LAION-5B.
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Q33. Has an analysis of the potential impact of the dataset and its use on data subjects
(e.g., a data protection impact analysis) been conducted? If so, please provide a description
of this analysis, including the outcomes, as well as a link or other access point to any supporting
documentation.
This dataset and LAION 5B have been filtered using CLIP-based models. They inherit various biases
contained in their original training set. Furthermore, the selected domains in this work only represent
European and American fashion brands, and do not provide a comprehensive view of worldwide
fashion.

Q34. Any other comments ?
No.

C.4 Preprocessing / Cleaning / Labeling

Q35. Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or buck-
eting, tokenization, part-of-speech tagging, SIFT feature extraction, removal of in-
stances, processing of missing values)? If so, please provide a description. If not, you may skip
the remainder of the questions in this section.
We started with a list of fashion domains with images of good quality, and extracted the corresponding
images from LAION. We then trained a first classifier with an active learning procedure to classify
the complexity of the obtained images. A second classifier was trained in the same way to classify
the categories of the simple images, and captions were added using BLIP2-FlanT5XL.
We extracted product identifiers from the URLs, and kept products that were represented at least in
a simple and a complex images. The discarded images, and those for which we couldn’t extract any
identifiers, are used as distractors.
We used LSH and KNN indices to remove duplicates among products, and between the products and
the distractors in the validation and test sets.
Please refer to Section. 3.1 and Appendix A.2 for additional details.

Q36. Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? If so, please provide a link or other access point to the
“raw” data.
The "raw" data is LAION-5B.

Q37. Is the software used to preprocess/clean/label the instances available? If so, please provide
a link or other access point.
No, apart from img2dataset that we used to download the images. Many critical parts in the process
were manually supervised, such as extracting product identifiers for each domain, labeling during the
active learning process, and checking the duplicates returned by the similarity search.

Q38. Any other comments ?
No.

C.5 Uses

Q39. Has the dataset been used for any tasks already? If so, please provide a description.
This is the first time that the LRVS-F dataset is used. We use it to study the Referred Visual Search
task. The goal of this task is to retrieve a specific object among a large database of distractors given
a complex image and additional referring information (category or text).

Q40. Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.
No.
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Q41. What (other) tasks could the dataset be used for?
The dataset could be used for other fashion-related tasks, like fashion generation or virtual try-on.

Q42. Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example, is there
anything that a future user might need to know to avoid uses that could result in unfair treatment of
individuals or groups (e.g., stereotyping, quality of service issues) or other undesirable harms (e.g.,
financial harms, legal risks) If so, please provide a description. Is there anything a future user could
do to mitigate these undesirable harms?
Our dataset only contains large European and American fashion retailers. As such, it does not reflect
the diversity of fashion cultures across the globe, and future users should not expect it to generalize
to other geographical areas or specific localities.

Q43. Are there tasks for which the dataset should not be used? If so, please provide a description.
This dataset is for research purpose only, and contains biases. We warn any user against using it
as-is outside of this context, and emphasize that results obtained on this dataset cannot be expected
to generalize to any culture without proper bias study.

Q44. Any other comments?
As the images still belong to their respective owner, we only release this dataset for research purpose.
We encourage anyone willing to use the images for commercial use to verify their copyright state
with their respective rightholders.
Furthermore, we encourage users to respect opt-out policies, through the use of dedicated tools like
img2dataset and SpawningAI.

C.6 Distribution

Q45. Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please provide
a description.
Yes, the dataset is open-source and freely accessible.

Q46. How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?
The dataset will be available as a collection of parquet files containing the necessary metadata. It
will have a DOI.

Q47. When will the dataset be distributed?
It is already available.

Q48. Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license and/or
ToU, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms
or ToU, as well as any fees associated with these restrictions.
We release our data under the CC-BY-NC-4.0 license.

Q49. Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other access
point to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with
these restrictions.
We only own the synthetic metadata that we release. The attributes of the dataset that originate
from LAION-5B belong to LAION and are distributed under a CC-BY 4.0 license. We do not own
the copyright of the images and original alt texts.
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Q50. Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other access
point to, or otherwise reproduce, any supporting documentation.
No.

Q51. Any other comments ?
No.

C.7 Maintenance

Q52. Who will be supporting/hosting/maintaining the dataset?
The dataset is hosted at <anonymized>.

Q53. How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
The owner of the dataset can be contacted by email at <anonymized> or through the dataset’s
HuggingFace space.

Q54. Is there an erratum? If so, please provide a link or other access point
There is no erratum as this is the initial release. If need be, we will update the dataset repository.

Q55. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? If so, please describe how often, by whom, and how updates will be communicated to
users (e.g., mailing list, GitHub)?
We do not plan to update the dataset, as it contains a benchmark and we want the results to stay
comparable across time.

Q56. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced.
The dataset does not relate to people. It does not contain personal or private information.

Q57. Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to users.
There is currently no older version of this dataset. If changes must be made, the updates will be
applied on the hosting page but history of changes will stay available.

Q58. If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide a description. Will these contributions be
validated/verified? If so, please describe how. If not, why not? Is there a process for communicat-
ing/distributing these contributions to other users? If so, please provide a description.
We do not plan on supporting extensions to this dataset as it is intended to be a benchmark and
results must stay comparable across time. However we do encourage the creation of similar datasets
across new verticals, to extend the field of Referred Visual Search.

Q59. Any other comments ?
No.
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