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Abstract

3D-2D medical image matching is a crucial task in
image-guided surgery, image-guided radiation therapy and
minimally invasive surgery. The task relies on identifying
the correspondence between a 2D reference image and the
2D projection of the 3D target image. In this paper, we pro-
pose a novel image matching framework between 3D CT
projection and 2D X-ray image, tailored for vertebra im-
ages. The main idea is to learn a vertebra detector by means
of the deep neural network. The detected vertebra is repre-
sented by a bounding box in the 3D CT projection. Next, the
bounding box annotated by the doctor on the X-ray image is
matched to the corresponding box in the 3D projection. We
evaluate our proposed method on our own-collected 3D-2D
registration dataset. The experimental results show that our
framework outperforms the state-of-the-art neural network-
based keypoint matching methods.

1. Introduction
Computer vision and Multimedia technologies are mak-

ing significant impact on medical imaging fields. In this
work, our target is to adopt the state-of-the-art object de-
tection techniques to address one of the inportant medical
imaging issues, i.e., 3D-2D registration. 3D-2D registra-
tion is pivotal for the image-guided surgery, image-guided
radiation therapy (IGRT) and other image-guided medical
tasks [19]. During an image-guided surgery, doctors need
to compare the images taken before the surgery with the one
acquired during the surgery [7]. The image taken before the
surgery, such as CT and MRI, is often of good quality. Dur-
ing the surgery, extra images such as X-ray will be taken.
Since the images need to be compared with what are taken
at a different time and by different devices, registration be-
tween them is necessary.

The most common strategy for 3D-2D registration is to
get the 2D projection of 3D images first. Then the problem
is formulated as 2D image registration [19]. To find the best

projection, some prior knowledge about the relationship be-
tween coordinate systems of different imaging devices is
needed. The main challenges of 3D-2D registration are: (1)
in some cases, prior knowledge of projection parameters is
unavailable and projection parameter estimation itself is a
difficult problem. (2) There are some artificial implanted
items present in images taken during and after the surgery,
which does not exist in the pre-interventional 3D image.
Current mutual information based registration approaches
cannot compute a global mapping from one image to an-
other without initial pose estimation. Motivated by the cur-
rent advancements of deep learning techniques in computer
vision, we alternatively provide a more promising frame-
work to tackle such a challenging issue. Concretely, we
propose a detection-based, end-to-end multimodal 3D CT-
X-ray vertebra matching system under the following two
assumptions: (1) the best 3D-2D projection parameter is
given. (2) a bounding box which contains a vertebra from
X-ray is given by a doctor who wants to know the corre-
sponding region in CT projection.

The first step of our proposed method is building a deep
detector for vertebra detection in 3D CT projection image.
Recently, deep-learning based object detection method has
achieved great success in medical image analysis [16]. We
choose the state-of-the-art faster region proposal network
(Faster-RCNN) [21] as our detection framework. To the
best of our knowledge, this is the first attempt to use deep
detector in 3D/2D matching task. Although the size of our
dataset is limited, the object patterns are also limited, which
enables us to train a good detector. With vertebra local-
ized in CT projection image, the next step would be find
a matching between the bounding box given by doctor and
one of these vertebra bounding boxes provided by the de-
tector. Since vertebra can be considered as rigid, we use
Generalized Hough Transform (GHT) [1], which is widely
used in detecting arbitrary shapes given a good binary tem-
plate. The idea is detecting the edge of the vertebra from
X-ray image, which would be the template for matching
and performing Generalized Hough Transform to store the



Figure 1. The framework of this work. The input is a pre-operation 3D CT volume. With projection and
enhancement the 3D CT volume is transformed into a 2D CT projection image. Deep neural network
based vertebra detection is performed on this 2D projection. On the other side, the doctor will pick
a region of interest from the post-operation 2D X-ray image that contains one vertebra. Generalized
Hough based matching is performed betweens detected candidate regions from 2D CT projection
and the region of interset from 2D X-ray image.

shape information in a R-table. Then we can compare the
R-table with every possible bounding box and find the best
match. Here the position information is used for reducing
the search range. Since images from multi-modality might
vary in scale and rotation, we implement a modified GHT
algorithm with scale transformation, rotation and transla-
tion. To the best of our knowledge, this is the first work to
formulate 3D-2D registration as a region-to-region match-
ing problem.

The main contributions of our method are as follows:
(1) We propose a novel framework for end-to-end multi-
modal vertebra matching. (2) We introduce deep learning
based detector to improve the performance of matching.
(3) We propose a modified Digitally Reconstructed Radiog-
raphy (DRR) generation algorithm with data augmentation
for better detection. (4) We introduce Generalized Hough
Transform for the multimodal image matching task.

The rest of this paper is organized as follows. Related
work is reviewed in Section 2, including 3D-2D image reg-
istration, deep-learning based object detection and general-
ized Hough Transform. In Section 3 there is detailed de-
scription of our proposed method, including modified DRR
generation, Faster-RCNN detection with data augmentation
and GHT matching. Experiments and results are presented
in Section 4. Section 5 gives the conclusion and discusses

the future work.

2 Related Work
2.1 3D-2D Image Registration

The main goal of 3D-2D image registration is to find the
correspondences between the 3D images and 2D ones. Im-
age registration finds its crucial applications in various com-
puter vision tasks include low-levels ones like image rectifi-
cation [34] and super-resolution [17], as well as higher-level
ones like detection [29, 32] and tracking [18, 31, 33, 11].
Since 3D and 2D data differs in the dimension , dimen-
sional correspondence should be built before the alignment
process, i.e., the data to be registered should have the same
dimension. Obviously, there are two directions, from 3D
data to 2D or from 2D to 3D. Three strategies have been
proposed to achieve this dimensional correspondence, i.e.,
projection, back-projection and reconstruction [19].

By projection, a series of 2D images are produced with
different projection parameters, and the problem is now a
2D-2D image registration problem. Projection parameters
can be determined once the best 2D match pairs are find.
The projected 2D images are called DRR, which will be
discussed in the following subsection. By back-projection,
imaginary virtual ray is projected to the ray source us-
ing a back-projection matrix, and the comparison is in



3D space. By reconstruction method, multiple 2D intra-
interventional images are used to reconstruct the 3D object.
Basically, three main registration methods have been ex-
plored in 3D-2D registration: feature-based, intensity-based
and gradient-based.

2.2 Digitally Reconstructed Radiography genera-
tion

Digitally Reconstructed Radiography, or DRR, has been
studied for decades. It is the X-ray like image projected
from the 3D CT data, which is widely used in projection
strategy of 3D CT and 2D X-ray registration. One fast ray-
tracing algorithm is proposed by Siddon in 1985 [26]. In-
stead of voxel-wisely computing intersections between each
ray and voxels, this algorithm considers voxel planes as
equally spaced and computes the intersections incremen-
tally, which yielded a significant speedup. Following Sid-
don’s work, some improved versions of the ray-tracking al-
gorithms are proposed [10] [8]. These algorithms improved
Siddon’s method by avoiding unnecessary array index cal-
culation. In this paper, we employ a similar ray-tracing
method to DRR calculation.

2.3 Deep Network for Object Detection

With the development of modern deep convolution neu-
ral network, some object detectors [6, 21, 4, 5, 30, 14, 15, 9]
show dramatic improvements in accuracy compared with
early methods based on hand-engineered features. The R-
CNN method adopted selective search to obtained object
region proposals[28] and trained CNNs to classify the pro-
posal regions into object categories or background. And
Faster-RCNN utilized Region Proposal Network instead of
selective search to generate object region proposals faster
and more accurately. The whole architecture can be trained
end-to-end.

There are some attempts on vertebra localization with
deep neural network[25][13]. However, there is no attempt
to formalize it as a object detection problem.

2.4 Generalized Hough Transform

Generalized Hough Transform (GHT) is a useful method
for template matching[1]. The main idea is that given a tem-
plate image, the gradients of the edge map can be found and
saved in a R-table. When matching, every possible position
in the image is evaluated using the R-table. For every possi-
ble position, a matching score will be computed by voting.
The more points fall in the shape, higher the matching score
will be. However, the original GHT cannot deal with the
variants in scale and rotation but only find the shape in the
image which is strictly identical to the template. Besides,
previous methods[27][12] only use GHT for general verte-
bra detection and matching. In those methods, the vertebra
template comes from a modal which is an average of many
patients.

(a) raw DRR (b) remove heart

Figure 2. Enhancement of DRR image. Fig-
ure(a) shows the raw DRR image that comes
from direct projection of 3D image. Figure(b)
shows the enhanced DRR image with slice-
level enhancement

3 Proposed Methods
The pipeline of our framework is shown in figure 1. The

input is a pre-operation 3D CT volume. With projection
and enhancement the 3D CT volume is transformed into a
2D CT projection image. Deep neural network based ver-
tebra detection is performed on this 2D projection. On the
other side, the doctor will pick a region of interest from the
post-operation 2D X-ray image that contains one vertebra.
Generalized Hough based matching is performed between
detected candidate regions from 2D CT projection and the
region of interest from 2D X-ray image. The following parts
of this section will introduce the 3 major parts: Enhance-
ment and generation of DRR image, vertebra Detection in
3D CT Projection, region to region matching with General-
ized Hough Transform.

3.1 Enhanced DRR Generation
The enhancement includes semi-automatic segmentation

of the heart and histogram adjustment. Removal of heart is
necessary since vertebra, the target to be detected, is par-
tially blocked by heart. We project the CT volume in the
direction orthogonal to sagittal plane. In the resulted 2D
projection image, we draw a curve to separate the heart and
spine. According to the 2D curve in sagittal plane, heart can
be removed in CT volume.

To generate high-quality DRR for registration, we en-
hance CT slices by histogram equalization before DRR gen-
eration. First, CT volume values are clipped such that HU
values are in the range [-1024, 500]. Then piecewise his-
togram equalization is employed to enhance each CT slice.
Since most vertebra voxels are in a particular range of grey
levels, we enhance vertebra regions by mapping the range
to a wider one. In our experiments, we map [80, 300] to
[-800, 400]. Histogram equalization can be described as a



Figure 3. Linear mapping function of piece-
wise histogram equalization. Unit: HU

mapping function as shown in Figure 3. In our experiments,
k1 = 80, k2 = 300, k′1 = −800, k′2 = 400 (Unit: HU).

To calculate DRR of a CT image, we make use of a
fast ray-tracing algorithm implemented in Plastimatch[24].
We simulate the chest X-ray imaging process and generate
DRRs in the directions of the axial plane. The projection
angles are equally spaced by 6 degrees. Thus, a total num-
ber of 60 simulated chest X-ray images are created. Figure
2 shows the importance of enhancement.

3.2 Vertebra Detection in 3D CT Projection

We adapt the state-of-the-art faster-rcnn object detection
model to detect the vertebra in our task. Since our dataset is
relatively small, we perform the data augmentation to make
the model more robust and prevent overfit. Then a modified
contextual faster-rcnn is used to detect the vertebra in the
image.

3.2.1 Data Augmentation

Since our dataset is small, the data augmentation is neces-
sary. Generally, data augmentation contains image rotation,
translation, center-crop, etc. It is widely used in many deep
learning based medical image analysis tasks[22][23]. In our
task, there is some noise after the semi-auto segmentation
of the CT projection and we sample random Gamma trans-
form and spatial Gaussian-distributed noise, then we add the
sampled transform and noise to image. With these data aug-
mentation methods, we can generate any number of training
samples.

3.2.2 Contextual Faster-RCNN

In order to achieve the region-based matching, we need to
detect each vertebra from the original image firstly. Since
each vertebra looks very similar, it’s difficult to just use
a small bounding box as a input to train a detector. We
proposed the contextual Faster-RCNN introduced by [3].

(a) (b) (c)

Figure 4. Example results of detection. Each
bounding box is a candidate region to be
matched with 2D X-ray region

(a) Proposed methods (b) keypoint match results

Figure 5. Comparison of matching results.
Figure(a) shows the overlapped(matched) im-
ages from proposed method. Figure(b)
shows the results of keypoint match method

Specifically, we used two branch network based on Faster-
RCNN: the first branch is the normal Faster-RCNN, and for
the other branch, we enlarged the object region proposal ob-
tained by first branch and used this as new region proposal
to do the bounding box regression and classification. By
doing this, the model will receive more background infor-
mation, like costae and achieve better detection results.

3.3 Region to Region Matching

After the detection process, now we have 1 bounding box
that contains at least 1 complete vertebra given by doctor
and several candidates bounding boxes given by the detec-
tor. This is a 1 vs N matching problem. Since the number
of candidates is very limited, we choose brute force match
strategy. For every candidate vertebra, looping over a range
of scale and a range of rotation degree, find the rotation de-
gree and scale factor that maximize the matching score in
GHT. Then find the best candidates by compare matching
score between different candidates.



direct GHT Proposed
Matching accuracy 0.865 0.912

Table 1. compare of direct GHT and detect-
GHT. Direct GHT is matching two images di-
rectly.

4 Experiments and Results
4.1 Dataset

We use our 3D-2D matching data for training and testing.
Our dataset is about image-guided heart surgery, in which
the main focus is the area near the heart. Therefore, the rigid
vertebra near the heart is a good landmark. Raw data is a
private and cleaned dataset collected from our partner hos-
pital. The dataset contains 12 3D CT scans with around 300
slices each. The resolution of each CT slice is 512×512.
The ground truth annotation comes from experienced doc-
tors. For every 3D CT data, we have corresponding 2D X-
ray images available. Though the dataset is private, we are
considering refine the dataset and releasing it to public.

4.2 Training of deep neural nets based detector

We train our model on mxnet [2], K40 GPU for 200
epochs. The performance is MAP 0.9090@0.5. The model
we use is Contextual Faster-RCNN which is introduced in
the related work. Mean Average Precision(mAP) is the most
popular metric in the object detection. Some examples of
detection results are shown in figure 4.

4.3 Results and Evaluations

In 3D-2D registration area, to the best of our knowl-
edge, there is still no public dataset, so we mainly compare
the results with our own dataset. We use 2 baselines, one
is the state-of-the-art deep learning based keypoint match
method [20] and another is directly applying the GHT with-
out detection.

The best metric for 3D-2D registration is Target Regis-
tration Error (TRE)[19], which is used to compare differ-
ence between the error between computed transform and
ground truth transform. In our dataset, ground truth trans-
form is unavailable, so we simply use matching accuracy as
our metric. Matching accuracy is the ratio between correct
matched examples and the number of all examples.

Surprisingly, the state-of-art key points method does not
work here, there are rarely matched keypoints, which is
shown in figure 5. We also tried other methods popular in
3D-2D matching such as mutual information, which did not
produce good results. The main reason is probably that the
illumination changes greatly between these multimodal im-
ages and both keypoint-based and intensity-based methods

are not rubost to such changes. However, since the vertebra
can be viewed as rigid, the shape of the vertebra does not
change much in different modalities. Our proposed method
is faster and more accurate than the direct GHT, since the
match is restricted to limited numbers of bounding boxes.
Table 1 shows the results of direct GHT and GHT with de-
tection. The search area is reduced and the result is more
robust to noise.

5 Conclusion and Future Work

In this paper, we propose a new framework for 3D
CT/2D X-ray image matching. We introduce the deep learn-
ing based detection methods to detect the vertebra. Com-
bined with the Generalized Hough Transform, we can re-
duce the computation time and improve the matching ac-
curacy. The state-of-art keypoint based matching methods
seems does not work in our task. Compared with the direct
GHT method, our method is faster and more accurate.

Possible future work includes: (1) Combine the projec-
tion parameter searching to make a end to end system. (2)
Using deep learning to predict the scale and rotation param-
eter.
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