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Abstract

Fitting Gaussian Processes (GPs) provides interpretable aleatoric uncertainty quan-
tification for estimation of spatio-temporal fields. Spatio-temporal deep learning
models, while scalable, typically assume a simplistic independent covariance
matrix for the response, failing to capture the underlying correlation structure.
However, spatio-temporal GPs suffer from issues of scalability and various forms
of approximation bias resulting from restrictive assumptions of the covariance
kernel function. We propose STACI, a novel framework consisting of a variational
Bayesian neural network approximation of non-stationary spatio-temporal GP
along with a novel spatio-temporal conformal inference algorithm. STACI is highly
scalable, taking advantage of GPU training capabilities for neural network models,
and provides statistically valid prediction intervals for uncertainty quantification.
STACI outperforms competing GPs and deep methods in accurately approximating
spatio-temporal processes and we show it easily scales to datasets with millions of
observations.

1 Introduction

Accurate estimation of spatio-temporal (ST) fields is a complex task that has relevance in a wide
variety of domains [1; 2]. These domains range from, but are not limited to medical imaging[3; 4],
remote sensing [5; 6], climate modeling [7; 8] and video quality [9]. Analysis of ST data is difficult as
there are often obstructions in the field causing missing data, the surface is rarely smooth across both
space and time, and the volume of data requires efficient estimators to be used. These issues have
resulted in the need of flexible models providing both accurate prediction of surfaces and uncertainty
quantification (UQ) providing interpretability of results.

Gaussian Process (GP) regression is heavily used in spatio-temporal statistics [10; 11; 12]. GPs
provide both a flexible predictive surface and precise UQ. Unfortunately, it is not scalable, with the
computational cost of likelihood evaluation being cubic in number of locations. Sparse GPs [13; 14]
trained from a subset of inducing points, spectral GPs [15] that project the GP into a low-rank spectral
domain, and nearest neighbor methods [16; 17] that assume a local dependent structure are three
popular classes of approximate GPs that reduce this cost. In much of the approximate STGP literature,
the covariance kernel is assumed to have some known stationary and separable form to maintain
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computational tractability [18; 19; 20]. However, this assumption is often simplistic and fails to hold
in complex fields, such as environmental data [21; 22; 23]. Non-stationary ST kernels have been
derived, but they can be difficult to compute and can still be mis-specified, requiring more general
approaches to modeling non-stationarity [24; 1; 25; 26; 27].

Deep learning methods have risen in popularity, providing scalable and flexible estimation of ST
surfaces [28; 29; 30]. Implicit neural representations (INRs) are a class of neural network architectures
specifically developed to accurately model the non-linear surface of coordinate-based fields. They
typically use periodic activation functions in a multilayer perceptron (MLP) architecture to map
spatial (R2) or ST coordinates (R3) to the corresponding complex signal domain [31; 32; 33; 34; 30].
However while they are unparalleled in estimation flexibility, they are deterministic functions that do
not inherently provide UQ and can overfit to the observed data.

Deep GP models attempt to bridge the gap between neural network flexibility and the interpretability
of regular GP models with easily computable measures of variance and subsequent prediction
intervals [35; 36]. The covariance kernel is modeled as the output of another GP, and this can be
done to an arbitrary depth to approximate any non-stationary kernel. However, similar to regular
GPs, there is a trade-off of scalability as even a few layers can create computational bottlenecks.
Recently, [37] developed a highly scalable variant of a ST deep GP, projecting separate spatial and
temporal GP layers into the spectral domain before concatenating into one unified prediction output.
They approximate the spectral process using a probabilistic Bayesian neural network trained using
backpropagation, making it highly scalable. However, as this is a deep GP, the covariance parameters
lose interpretability as they are used in multiple GP layers. This approximation is most similar to our
work that we will now introduce.

The drawback to these approximations is the potential loss of nominal coverage of prediction intervals
as the variance estimate is no longer exact. Conformal inference [38; 39; 40] is a model-free approach
to calculating valid prediction intervals that achieve frequentist coverage probability by assuming
exchangeability of the data. Recent advancements in spatial conformal prediction [41; 42] motivate
our extension to the ST setting, guaranteeing validity of our method prediction intervals.

We propose the STACI algorithm1: a two-stage approach consisting of combining a Bayesian neural
network approximation of a spectral non-stationary STGP with a ST conformal inference algorithm
providing valid prediction intervals for accurate UQ. STACI provides:

1. Scalable, flexible interpolation for datasets with millions of ST locations.
2. Ability to both directly compute the underlying correlation structure and interpret estimated

covariance parameters, allowing for prior choices to be user-friendly, with the ability to use
informative priors if desired.

3. Adaptable prediction interval lengths, clearly showing areas of high and low uncertainty
while maintaining desired coverage properties and reducing the impact of both spectral and
neural network approximations on UQ accuracy.

2 Preliminaries

Problem Statement. Assume the ST process Y (s, t), indexed by location s ∈ [0, 1]2 and time t > 0,
can be decomposed as

Y (s, t) = µ(s, t) + Z(s, t) + ϵ(s, t) (1)

for mean function µ, mean-zero GP Z and noise ϵ(s, t) iid∼ N (0, τ2). A common model [e.g., 10; 43]
for the covariance of Z is the stationary Matérn function

Cov[Z(s, t), Z(s′, t′)] = σ2 2
1−ν

Γ(ν)

(√
2νd
)ν

Kν

(√
2νd
)
, (2)

for d2 = ||s − s′||2/ρ2s + (t − t′)2/ρ2t and Bessel function Kν . The covariance is defined by
the variance σ2, spatial range ρs, temporal range ρt and smoothness parameter ν. For simplicity,
assume the observed data has already been centered and scaled with the mean and variance estimated
separately.

1Code and data: https://github.com/bf5124/STACI
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Challenges. Applying this GP framework (1)-(2) directly to large, complex real-world ST datasets
faces several significant hurdles:

1. Computational Scalability: Exact GP inference requires operations on the N × N co-
variance matrix (where N is the number of observations), entailing O(N3) computational
complexity and O(N2) memory requirements. This quickly becomes prohibitive for datasets
with thousands, let alone millions, of points [12].

2. Non-stationarity: The stationarity assumption, implying a covariance structure dependent
only on ST lag (hs, ht), is often unrealistic. Environmental heterogeneities, varying physical
dynamics, or boundary effects can cause the dependence structure (e.g., correlation range,
variance) to change across space and time [44; 11].

3. UQ: While various approximation techniques are employed to address scalability (C1)
and non-stationarity (C2), these approximations often break the theoretical guarantees of
the exact GP model. Consequently, the resulting predictive uncertainties (e.g., variances,
prediction intervals) may lack statistical validity, potentially failing to achieve the desired
nominal coverage probability [10; 38].

Spectral Methods for C1. To overcome the computational bottleneck (C1), a prominent class
of methods leverages the spectral representation of stationary GPs [10; 12]. Bochner’s theorem
guarantees that any stationary covariance function C(hs, ht) = Cov[Z(s, t), Z(s+ hs, t+ ht)] is the
Fourier transform of a spectral measure. For the Matérn and many other processes, this measure has a
density σ2f(ω), where f(ω) is the normalized spectral density (

∫
f(ω)dω = 1) and σ2 = C(0, 0) is

the process variance. The covariance is recovered from the spectral density via the Wiener-Khinchin
theorem:

C(hs, ht) = σ2

∫
R3

cos(ωT
s hs + ωtht)f(ω) dω, (3)

where ω = (ωs, ωt) represents the ST frequencies. The spectral density f(ω) corresponding to the
Matérn covariance (2) is known to have the form of a multivariate Student’s t-distribution [10]. This
spectral view motivates computationally efficient approximations based on sampling frequencies ω
from f(ω), as detailed next. This spectral view motivates computationally efficient approximations
using J random basis functions [45], such as Bayesian Random Fourier Features (BRFF) [46]. The
GP, Z. is approximated as:

ZJ(s, t) ≈
J∑

j=1

[
cos(ωT

s,js + ωt,jt)aj + sin(ωT
s,js + ωt,jt)bj

]
. (4)

In the fully Bayesian BRFF approach, both frequencies and amplitudes are treated as random
variables. Priors are chosen such that the resulting process ZJ approximates Z: frequencies are
sampled (ωs,j , ωt,j)

iid∼ f(ω) (the Matérn spectral density), and amplitudes are aj , bj
iid∼ N (0, σ2/J).

Miller and Reich [46] demonstrated the computational efficiency and predictive performance of this
using a fully Bayesian approach in a spatial setting. However, their approach is unable to scale to
large numbers of spatial, or ST observations, requiring a more computationally efficient method of
utilizing the BRFF approximation.

Dimension Expansion for C2. To relax the often unrealistic stationarity assumption, dimension
expansion methods propose that a non-stationary process Z(s, t) can be viewed as stationary in
an augmented space [s, t,L(s, t)] [47; 44]. Here, L(s, t) = [L1(s, t), ..., Lp(s, t)] is a mapping to a
p-dimensional latent space, representing unobserved factors (e.g., local environmental conditions,
dynamic regimes) that modulate the covariance structure. Given L, stationarity is recovered, and
a stationary kernel like Matérn (2) can be used with a modified distance incorporating the latent
variables:

d2 = ||s − s′||2/ρ2s + (t− t)2/ρ2t +

p∑
j=1

[L(s, t)− L(s′, t′)]2/ρ2j . (5)

The latent dimension p and the processes L(s, t) themselves are typically unknown and must be
inferred from the data, adding complexity to the modeling task.

Conformal Inference for C3. Addressing the challenge of obtaining statistically valid uncertainty
estimates, especially when using approximations for scalability or non-stationarity, can be achieved
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using conformal inference [38; 48]. Consider observations W1, . . . ,Wn, where each Wi = (Yi,Xi)
consists of a response Yi ∈ R and covariates Xi ∈ Rd. The core assumption of conformal inference
is that the sequence W1, . . . ,Wn,Wn+1 (including a new, unseen test point) is exchangeable,
meaning their joint distribution is invariant under permutation. Conformal inference operates using
a non-conformity measure ∆, where δi = ∆(Wi,W−i) quantifies how dissimilar Wi is from the
set W−i = {W1, . . . ,Wn+1} \ {Wi}. The specific function ∆ is user-defined; common choices
involve residuals from a fitted model (e.g., ∆(Wi,W−i) = |Yi − µ̂−i(Xi)|, where µ̂−i is fitted
on W−i). To construct a prediction interval for Yn+1 given Xn+1 and training data {Wi}ni=1,
conformal considers hypothetical values y for Yn+1. For each y, it computes the non-conformity
score δi(y) = ∆(Wi,W−i). The plausibility of y is measured by its conformal p-value:

p(y) =
1

n+ 1

(
n+1∑
i=1

1{δi ≥ δn+1}

)
, (6)

where δi for i ≤ n are typically computed using leave-one-out retraining or, more efficiently, using
residuals on a held-out calibration set (split conformal inference). The 100(1 − α)% prediction
interval for Yn+1 comprises all values y deemed sufficiently plausible:

Γα
n+1 = {y ∈ R : p(y) > α}. (7)

Under only the exchangeability assumption, this interval guarantees P (Yn+1 ∈ Γα
n+1) ≥ 1 − α

[38]. While spatial variants of conformal inference have been developed [41; 42], it has not yet been
well explored in the ST setting. The challenges remaining in C1, C2 and C3 motivate our STACI
methodology outlined in Figure 1.

3 Methodology

Figure 1: STACI algorithm pipeline. Data from coordinates across space and time are first fed into
our approximate spatio-temporal GP architecture and trained using SVGD. A conformal inference
step is then fit to provide customized prediction intervals for valid uncertainty quantification.

3.1 Bayesian Neural Network Architecture

The greatest drawbacks to the BRFF approximation in (4) are its reliance on assuming a stationary GP
kernel, as well as limited scalability stemming from using full MCMC samplers for the frequencies
and covariance parameters.

To resolve the first issue, we model Z in (1) using the non-stationary dimension-expansion covariance
function in (5). Given latent field L, the spectral approximation is

Z(s, t) =
J∑

j=1

cos
[
ωT

s,js + ωt,jt+ ωT
L,jL(s, t)

]
aj + sin

[
ωT

s,js + ωt,jt+ ωT
L,jL(s, t)

]
bj , (8)

with frequencies ωj = (ωT
s,j , ωt,j ,ω

T
L,j). To approximate a Matérn covariance, we model the fre-

quencies with a multivariate t distribution with ν degrees of freedom, location zero, and diagonal
scale matrix D with diagonal elements {ρs, ρs, ρt, ρl,1, ..., ρl,J}, i.e., ωj

iid∼ MV Tν(0, D). The am-

plitudes are modeled as aj , bj
iid∼ Normal(0, σ2/J). For computational simplicity and identifiability

concerns, we set ρl,1 = ... = ρl,J = ρl. Extending [46] to the nonstationary spatiotemporal case,
the following theorem justifies the spectral approximation to the covariance function. The proof is
included in Appendix A.1.
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Theorem 1 The prior mean of the spatiotemporal covariance function of the discrete process in
(8) equals the Matérn correlation with distance defined as in (5) for all J , and the point-wise prior
variance decreases at rate J .

Latent field L is modeled by an INR with three dimensional input, (s, t), and p−dimensional output,
L1(s, t), ..., Lp(s, t). This neural network model for the latent space provides both flexibility and
computational scalability for estimating the nonstationary covariance function.

We note that the form of (1), (8) closely resembles a single hidden layer MLP where the first layer
is passed through cosine and sine transforms with the bias terms removed and the hidden layer
dimension is J . Turning this into a Bayesian MLP with priors set to the aforementioned distributions
related to (8), this is exactly the form of the BRFF. We then utilize a skip connection, appending the
original location set s and times t to L(s, t) resulting in the final architecture to estimate Z(s, t). We
place relatively uninformative priors on the covariance parameters and utilize the Stein variational
gradient descent (SVGD) algorithm developed by [49] to efficiently train our model and obtain
variational posterior distributions.

3.1.1 Posterior Estimation

We use the SVGD variational inference (VI) framework to approximate the posterior distributions
of our neural network model. For some parameter set θ = {θ1, ..., θp} ∈ Rp and data Y, VI
approximates a target posterior, p(θ|Y) = p̃(θ|Y), using a simpler distribution q(θ), found in a
predefined family Q = {q(θ)} by minimizing the KL divergence

q∗(θ) = arg minq∈Q{KL(q||p)Eq[log q(θ)]− Eq[log p̃(θ|Y)]}. (9)

Here, p̃(θ|Y) is the un-normalized posterior distribution. VI turns posterior estimation into an
optimization problem, allowing for greater scalability than sampling-based methods of posterior
estimation [50; 51; 52]. However, there can be a trade-off in approximation accuracy. For example,
pre-specifying the variational family can result in under-estimation of the posterior variance [52].

SVGD is a VI algorithm that does not require specifying a variational posterior a priori, making it
a more generalized approach. For our parameter set θ = {θ1, ..., θp}, SVGD initializes a set of M
independent particles (copies), {θ} = θ1, ...,θM , that will be trained to approximate the posterior
distribution through minimizing the KL divergence between these copies and the target posterior.
Given data Y, priors π(θ1), ..., π(θp), joint prior π(θ) =

∏p
i=1 π(θi), joint likelihood L(Y|θ) and

kernel function κ(., .), for each θi ∈ {θ}, the update at iteration ℓ with step-size ϵℓ is

θℓ+1
i = θℓ

i + ϵℓϕ(θ
ℓ
i), (10)

with smooth optimal perturbation

ϕ(θℓ
i) =

1

M

M∑
j=1

{κ(θℓ
j ,θ

ℓ
i)∇θℓ

j

(log π(θℓ
j) + logL(Y|θℓ

j)) +∇θℓ

j

κ(θℓ
j ,θ

ℓ
i)}. (11)

As M → ∞, the distribution of {θ} approaches the variational posterior q(θ). In (11), the first
term draws particles towards high probability areas of posterior p(θ|Y) while the second term is a
repulsive force that discourages particles from grouping in local modes of the posterior.

3.1.2 Neural Network Uncertainty Quantification

Using the SVGD training method gives M trained neural networks f(.,θ1), ..., f(.,θM ) =
f1(.), ...., fM (.). Thus for observation i, the MAP estimate of Y (si, ti) is

E[Y (si, ti)] = E[Z(si, ti) + ϵ(si, ti)] =
1

M

M∑
j=1

fj(xi) (12)

with marginal variance

V [Y (si, ti)] = V [Z(si, ti) + ϵ(si, ti)] = E[Z(si, ti)2]− E[Z(si, ti)]2 + τ2. (13)
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We use the MAP estimate from the trained neural networks, τ̂2, to estimate the nugget effect. The
nugget variance is the random/measurement error term—the aleatoric uncertainty. Given desired
type-1 error α, letting the mean estimate (12) be Ŷi and variance (3.1.2) be σ̂2

i , we are able to
construct 100(1− α)% coverage level credible interval (CI):

Ci = (Li, Ui) = Ŷi ± Φ(1−α)/2σ̂i, (14)

where Φ(1−α)/2 is the value of the standard normal cumulative distribution function (CDF) at the
(1− α)/2 percentile. However, to this point, we have made multiple approximations. First, is the
approximation of the full STGP process with our trained Bayesian neural network. Second, is the
approximation of the aleatoric nugget variance, τ2. Thus, our estimated CI cannot be considered
statistically valid and we could have over/under estimation of the true variance. The second conformal
inference part of STACI serves to correct this issue.

3.2 Spatio-temporal Conformal Prediction

We extend the local spatial conformal prediction algorithm of [41] to a ST setting to provide valid
prediction intervals for our approximate GP model. To simplify notation, for observation i denote
the response as Yi = Y (si, ti), the coordinates as Xi = (si, ti) and the pair as Wi = (Yi,Xi). The
Bayesian computations in the previous section provide fitted values Ŷi and working standard errors
σ̂i. As the data is non-stationary over space and time, it is unreasonable to assume exchangeability
between all n observations as in Section 2. Thus, the first step is to identify a local set of D
approximately exchangeable neighbors across space and time. The neighbors for prediction site Xn+1

are selected as the D closest training observations based on squared distance

[||si − sn+1||/ρ̂s]2 + [|ti − tn+1|/ρ̂t]2 , (15)

where the estimates of spatial and temporal range, ρ̂s and ρ̂t, are given by the neural network in
the first step of STACI. We denote the indices of K neighbors and the prediction location n+ 1 as
Nn+1 ⊂ {1, ..., n+ 1}.

If we provisionally set Yn+1 = yn+1 and use discrepancy measure δj = |yj − Ŷj |/σ̂j , the plausibility
is

p(yn+1) =
1

K + 1

∑
j∈Nn+1

1{δj ≥ δn+1}. (16)

To identify the prediction interval, we search over the range of Yi among the D neighbors and take
the interval as the set of yn+1 with plausibility at least α. Combining Sections 3.1 and 3.2, the full
STACI algorithm provides a scalable non-stationary STGP approximation with valid 100(1− α)%
prediction intervals during ST interpolation.

4 Application

4.1 Setup

4.1.1 Data Description

We evaluate STACI’s performance on two ST datasets: one synthetic and one real. The first synthetic
dataset is simulated mean sea surface height (MSS) data of the Arctic sea [37] based on historical
satellite data from 3 different tracks. The data spans 10 days from March 1st to March 10th 2020
and has 1,158,505 total datapoints. The second real dataset is Aerosol Optical Depth (AOD) data
captured using the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra
satellite [53]. The data is spread on a 1400× 720 grid spanning the Earth’s surface and we use daily
data from March 2025, equating to 3,189,641 total observations.

The MSS dataset is randomly split into a 80% train, 10% validation, 10% test split. As most
observations are seen on each day, this setting tests ST interpolation with small artifacts such as
cloud cover creating patches of missing data. For the AOD dataset, we sample 10% of observations
randomly per day to comprise the training set. The validation set is all observations over the first 6
days while the test set is all observations on the 20th day. This mimics a task of full reconstruction
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over a field when there are limited sensors providing the ground truth data. We note that even the full
AOD field is sparse, adding further difficulty to the reconstruction task. For both datasets, the spatial
coordinates are scaled to a [0, 1]× [0, 1] grid and the response is normalized to the training set mean
and standard deviation.

4.1.2 Model Settings

We test STACI with 3 different state-of-the-art INR architectures to estimate the latent space: Residual
Multilayer Perceptron (ResMLP) [34], Fourier Feature Network with Positional encoding (FFNP)
and FFN with Gaussian encoding (FFNG) [32]. Each INR backbone has 5 layers with a layer width
of 1,024. We set J = 5,000 for the final hidden layer width of STACI, representing the number of
random fourier features. We then use M = 10 network copies to train using SVGD for the initial
Bayesian UQ. Finally, we determine D through cross validation on a random subset of 100 training
locations for the number of neighbors to use for conformal inference.

As we are an approximate GP, we compare our algorithm to state-of-the-art scalable GP methods
that provide UQ. The first method is sparse variational GP (SVGP) from [14], representing a case
of using an approximate stationary GP. The second method is doubly stochastic deep GP from [35],
representing an alternate method of estimating a non-stationary GP. The third method is GPSat from
[27], modeling the full non-stationary field as a mixture of local, stationary GPs. The final method
is deep random features (DRF) from [37], representing a similar algorithm of turning the spectral
representation of a GP into a Bayesian deep neural network. SVGP and DeepGP are trained through
variational inference, while DRF is trained through Bayesian optimization. DeepGP is set with 4 total
layers with layer width 9 and trained with 10 models. GPSat is initialized with 1,225 expert locations
across the spatio-temporal domain. DRF is set with 5 hidden layers of width 1,024 and bottleneck
layers of width 128 and trained with 10 models. All models are trained on NVIDIA A-100 GPUs for
15 epochs (optimization iterations for DRF) with batch size 1,024. Conformal prediction interval
calculation is parallelized over 4 NVIDIA A-100 GPUs.

4.1.3 Performance Metrics

We measure the performance of the algorithms in terms of both estimation and UQ quality on the
test set of both datasets. For estimation quality, we use root mean square error (RMSE), negative
Gaussian log likelihood (NLL). For UQ quality, we use the continuous ranked probability score
(CRPS) metric and provide coverage of prediction intervals, interval score and interval width based
on α = 0.05. Finally, we track time per training epoch to compare computational efficiency. The
time for DRF is the time for one optimization iteration. Note that GPSat time is the total time to fit
across all expert locations. We provide both Bayesian and conformal UQ performance for STACI.
The conformal time represents time needed for the entire conformal step. For RMSE, NLL, CRPS,
interval score and interval width, a lower value is better. For coverage, the value closest to 0.95 is
deemed the best as estimators providing both over-coverage and under-coverage are considered to be
inefficient.

4.2 Main Results

Table 1 shows results for the MSS dataset. We see that STACI with the FFNP latent model has the
lowest RMSE and NLL, indicating accurate estimation of the surface. We also see this the lowest
interval score and interval width of the non-conformal methods while maintaining desired coverage.
The conformal interval score is at at worst half that of its competitors, while also being under half as
wide as most others. This indicates the individualized interval widths provide much more efficient
UQ while achieving the desired coverage level. Total fit time for conformal is also manageable,
taking under 8 minutes for the FFN latent models and around 10 minutes for the ResMLP model. We
see that SVGP performs much worse than its counterparts in this setting, showcasing the need for
inclusion of non-stationarity. GPSat provides comparable estimation metrics to STACI, however the
total runtime is over 3 times longer.

Table 2 shows results for AOD dataset. STACI with the FFNP latent model again has the lowest test
set RMSE and interval UQ metrics. The conformal addition lowered the interval score by over half,
showing the efficiency of this UQ method despite the difficult training and data setting. GPSat had
better NLL and near-identical CRPS, albeit again with higher runtime. We note that Deep RF had
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Table 1: Comparisons on the MSS dataset. Best performances are highlighted in bold and
underlining for top and second-best methods, respectively.

Model RMSE NLL CRPS Coverage Interval Score Interval Width Time (s)

STACI-ResMLP (Bayes) 0.422 -0.363 0.221 0.948 2.509 1.683 132

STACI-ResMLP (Conf.) NA NA NA 0.958 0.514 0.500 652

STACI-FFNP (Bayes) 0.161 -1.331 0.086 0.951 0.923 0.663 116

STACI-FFNP (Conf.) NA NA NA 0.958 0.514 0.500 446

STACI-FFNG (Bayes) 0.247 -0.907 0.129 0.948 1.458 0.992 105

STACI-FFNG (Conf.) NA NA NA 0.958 0.514 0.500 431

Deep RF 0.203 -1.112 0.106 0.970 1.172 0.941 83

Deep GP 0.277 -0.782 0.145 0.957 1.633 1.171 138

GPSat 0.200 -1.188 0.102 0.974 1.140 0.939 7020

SVGP 0.447 -0.304 0.236 0.951 2.571 1.844 39

difficulties with this high data sparsity setting and required fixing the nugget variance parameter to
achieve convergence.

Table 2: Comparisons on the AOD dataset. Best performances are highlighted in bold and
underlining for top and second-best methods, respectively.

Model RMSE NLL CRPS Coverage Interval Score Interval Width Time (s)

STACI-ResMLP (Bayes) 0.720 0.361 0.400 0.916 5.506 2.656 48

STACI-ResMLP (Conf.) NA NA NA 0.948 1.850 1.555 598

STACI-FFNP (Bayes) 0.560 0.042 0.295 0.944 3.944 2.148 39

STACI-FFNP (Conf.) NA NA NA 0.948 1.850 1.555 410

STACI-FFNG (Bayes) 0.675 0.275 0.372 0.929 5.098 2.542 48

STACI-FFNG (Conf.) NA NA NA 0.948 1.850 1.555 391

Deep RF 0.733 0.175 0.452 0.954 5.433 2.264 103

Deep GP 0.633 0.191 0.356 0.941 4.781 2.788 70

GPSat 0.653 -0.064 0.287 0.958 3.476 2.272 2745

SVGP 0.690 0.276 0.395 0.956 5.150 3.237 20

The difference in prediction quality and UQ between the models can be visualized in Figure 2. The
first row of Figure 2 represents the ground truth AOD values and the predicted means from the STACI
Bayesian and conformal variants as well as the competitor models. The color scheme for this row
goes from blue (lower values of opacity) to red (higher values of opacity). The second row represents
the widths of the prediction intervals from each of the methods assuming a desired 95% coverage.
The darker purple represents narrower widths that moves lighter into yellow which represents the
wider. Comparing to the ground truth, we see STACI is able to capture more of the high pollution
area than the competitors in mean surface prediction. Meanwhile, for the interval width representing
UQ, we see that the conformal variant of STACI is the only one that has highly varied interval widths,
while the UQ from most other methods is fairly stagnant in the middle of purple and yellow. The UQ
benefit of GPSat is shown here where the local GPs provide personalized UQ similar to the conformal
variant of STACI. The high variance areas from conformal and GPSat also correspond to areas with
deep red high spikes in pollution which is commonly smoothed over in these classes of models.
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Ground Truth STACI-B STACI-C DRF DeepGP GPSat SVGP

Figure 2: Predicted AOD surface values. Top row: predicted surface. Red indicates higher AOD
values.; Bottom row: interval widths for Bayesian and conformal (STACI-C) uncertainty on AOD
data. Darker shades denote narrower intervals.

4.3 Ablation Studies

Here, we perform two ablation studies for the AOD dataset to quantify model robustness. The first
ablation study is impact of latent model dimension size on estimation error. The second ablation is
impact of sampling percentage in training set construction on estimation error.

Ablation Study: Latent dimension
Figure 3a shows how the RMSE of each latent model varies as we change the latent dimension
size from [32, 64, 128, 256]. We see that the two FFN models are fairly stable at around 0.58 for
positional encoding and around 0.67 for Gaussian encoding. ResMLP error sees a noticeable decrease
increasing from latent dimension 128 to 256. This indicates the FFN latent model results are stable to
choice of latent dimension and the reported results are optimal.

Ablation Study: Sampling Percentage
Figure 3b shows how the RMSE of each approximate GP model varies as we change the training
set sampling percentage at each time-step from [5%, 10%, 25%]. For STACI, we use the FFNP
latent model. We see generally a decrease in estimation error with greater sampling percentage.
Interestingly, DRF error rises slightly at the highest sampling percentage, but remains below the 5%
case. We speculate this is due to fixing the noise parameter during Bayesian optimization. STACI
still achieves the lowest error across settings.

(a) RMSE vs. latent dimension size for FFNP, FFNG,
and ResMLP.

(b) RMSE vs. train set sampling percentage for STACI,
DRF, DeepGP, and SVGP.

Figure 3: Ablation Studies for STACI
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5 Conclusion

In this work, we introduce the STACI algorithm, an approximate STGP combining high scalability
and prediction accuracy with valid UQ. Compared to other deep and neural network based models,
STACI is able to provide interpretable covariance parameters from simpler stationary kernels using
the latent dimension expansion, along with the ability to recover the data ST correlation structure.
A limitation of the approach is the computational expense in both speed and space of the SVGD
training algorithm with larger numbers of models. With smaller model number, we are not able to
fully explore the posterior space, and may converge to suboptimal estimates. This impacts the strong
assumption of exchangeability of selected neighbors is impacted by our STACI’s ability to accurately
estimate the relevant covariance parameters. Additionally, the conformal algorithm as constructed is
fairly simplistic, assigning equal importance to each selected neighbor. This can be optimized further
with weighting proportional to ST distance. Nevertheless, STACI provides scalable aleatoric UQ and
can be used in a variety of ST interpolation tasks.

One possible alternative direction is to use data-driven basis functions, such as the leading terms in
a Karhunen-Loève expansion, as opposed to trigonometric functions in the output layer. We also
believe that there are multiple possible extensions to non-Gaussian data. For example, adding a link
function, or slightly changing the likelihood, should extend to distributions such as Bernoulli, or
Poisson to model spatio-temporal correlated binary and count data. We also believe an extension to
model spatial point processes is a feasible adaptation of the model. Following the work of [54], the
Poisson process intensity function can be modeled as the square of a GP. This would allow continued
utilization of both random Fourier features and our introduced approximation for efficient likelihood
computation. These extensions would allow STACI to reach a wider audience and cover additional
types of data.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We show through two different real spatio-temporal datasets and settings that
STACI provides lower prediction error and more accurate and interpretable uncertainty
quantification. We include relevant theoretical outcomes in the paper and proofs are included
in the Appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention potential limitations of this work in the conclusion of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Assumptions and proofs of theorems are included in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Full data description with how the training details apply to real scenarios are
provided in the text. Train/test details along with model hyperparameters are included in
both the main text and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is included in the supplement of the material with relevant scripts to
recreate results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Data description with train/test split details are given in the text and further
details are given in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Coverage properties of the estimator are included in the results section of the
paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: GPUs used are mentioned in the main text and further details are given in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Method is created for the scalable spatio-temporal and uncertainty quan-
tification research community in general. It can provide positives such as higher climate
prediction accuracy, better MRI reconstruction and provide the ability to quantify uncertainty
in noisy spatio-temporal fields. The method is not directly tied to any negative applications
as far as the authors are aware.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Comparison works are properly cited in the main text and further details are
provided in the appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18



• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Details of dataset, code and model are included in the Appendix.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM does not impact core methodology, scientific rigorousness, or originality
of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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