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Abstract

Recent Convolutional Neural Networks (CNNs) have achieved significant success
by stacking multiple convolutional blocks, named procedures in this paper, to
extract semantic features. However, they use the same procedure sequence for all
inputs, regardless of the intermediate features. This paper proffers a simple yet
effective idea of constructing parallel procedures and assigning similar intermedi-
ate features to the same specialized procedures in a divide-and-conquer fashion.
It relieves each procedure’s learning difficulty and thus leads to superior perfor-
mance. Specifically, we propose a routing-by-memory mechanism for existing
CNN architectures. In each stage of the network, we introduce parallel Procedural
Units (PUs). A PU consists of a memory head and a procedure. The memory
head maintains a summary of a type of features. For an intermediate feature, we
search its closest memory and forward it to the corresponding procedure in both
training and testing. In this way, different procedures are tailored to different
features and therefore tackle them better. Networks with the proposed mechanism
can be trained efficiently using a four-step training strategy. Experimental results
show that our method improves VGGNet, ResNet, and EfficientNet’s accuracies
on Tiny ImageNet, ImageNet, and CIFAR-100 benchmarks with a negligible extra
computational cost.

1 Introduction

Human memory is often understood as an informational processing system. It plays an essential role
in human intelligence and comprises short-term memory and long-term memory, inspiring many
well-known machine learning models, such as Recurrent Neural Networks (RNN), Long Short-Term
Memory (LSTM) [14], and Neural Turing Machine (NTM) [11]. Episodic memories, a type of long-
term memory, are the collection of past personal experiences. They can be retrieved and exploited by
the brain when tackling problems that have been encountered before. Different memories activate
different neurons in the brain, directing us to perform specific procedures that we have done before.
Inspired by this observation, we introduce the routing-by-memory mechanism to the neural network.
It uses memory (a summary of seen features) to guide networks to process different features with
different procedures in a divide-and-conquer manner, easing the difficulty of learning and achieving
better performance. This paper applies the mechanism to the feature extraction in CNNs and refers to
networks employing it as Routing-by-Memory Networks (RMNs). In the following, we will introduce
conventional CNNs and our RMN.

Recent Convolutional Neural Networks (CNNs) achieve state-of-the-art results on computer vision
tasks by stacking convolutional blocks (e.g., residual block [13], inception block [33], and Dense
block [17]), named procedures in this paper, to extract semantic features. However, they use the same
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Figure 1: (a) Conventional feed-forward network. It processes the features by stacked procedures. (b)
Our proposed Routing by Memory Network (RMN). It employs parallel procedures (i.e., multi-branch
network) and processes features in a divide-and-conquer manner. Different procedures are tailored
to different types of features. R is a routing function, and we use the nearest neighbor algorithm
for it. m, P , and θ denote the memory, procedure architecture, and the parameters of the procedure,
respectively. Memory indicates which type of features the corresponding procedure can handle.
Given a feature that a previous stage yields, it searches its most similar memory and forwards the
feature to the corresponding procedure. For example, m1,0, m1,1, and m1,2 represent scenery, food,
and animal, respectively. Given a lion’s features, R will forward them to the third procedure.

stacked blocks to process all intermediate features, despite large variances of those features. Since
similar intermediate features can be processed in the same way, we propose a simple yet effective
idea of introducing parallel procedures (i.e., multi-branch CNN) and assigning similar intermediate
features to the same specialized procedures (i.e., the same branch). It is a divide-and-conquer
structure, seeing Figure 1 for an illustration. In this way, we can improve the model capacity and
performance while not increasing the computational cost since we forward an intermediate feature to
only one procedure.

In our RMN, we introduce a simple yet effective mechanism, routing by memory. Briefly, we
introduce the Procedural Unit (PU) to process features (see Figure 1 and Figure 2 for illustrations).
It consists of a memory (a summary/representative feature) with a procedure (some convolutional
blocks). We use the memory to identify which type of features the corresponding procedure is
expected to handle. Specifically, we split the network into different stages by downsampling layers.
There are multiple PUs in each stage. All procedures within a stage use the same architecture but
different parameters. In a stage, given an intermediate feature produced from the previous stage, we
will search its nearest memory and forward it to the corresponding procedure. In this way, different
PUs are specialized to handle different types of features. Besides, in the procedures, we introduce
a routing-dependent Squeeze-and-Excite (SE)-like feature attention module, dubbed Conditional
Attention (CA), to improve the performance further.

How to initialize and update memory and procedures is the main challenge when training our RMN.
We propose an easy-to-implement training strategy that includes four training steps: stem network
training, procedure cloning, memory initialization, and routing-based training. In the stem network
training step, we train a conventional CNN (e.g., ResNet and EfficentNet) as a stem network. Then
in the procedure cloning step, we generate multiple procedures (i.e., multi-branch CNN) in each
stage of the network by cloning all learned procedures a preset number of times. In the memory
initialization step, we first extract intermediate features for all stages of the network. Then we use
representative features as initialized memory. This paper clusters features in each stage of the network
and uses cluster centers as representative features. Finally, we continue the network training in the
routing-based training step, which is similar to the first step, but the data flow inside the network is
decided by routing results. In this step, the memory is updated in a moving average fashion while
other components are updated by the original optimization method used in the first stage. The overall
training strategy is plug-and-play to existing CNNs’ training strategies.
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This paper takes VGGNet, ResNet, and EfficientNet as backbones to train our proposed RMN.
According to the experimental results, RMN significantly improves original models’ results on some
benchmarks while not increasing the computational cost. We summarize our contributions as follows:

• We propose a novel divide-and-conquer mechanism called routing by memory, which
constructs a multi-branch CNN and assigns similar features to the same specialized branch.
It can lead to better performance while not increasing the computational cost.

• The proposed mechanism is plug-and-play to existing CNN architectures by virtue of a
proposed effective four-step training strategy.

• We apply our mechanism to VGGNet, ResNet, and EfficientNet and achieve significant
improvements in the accuracies on Tiny ImageNet, Imagenet, and CIFAR-100 benchmarks.

2 Related Work

2.1 Convolutional Neural Network Architecture

In 2012, AlexNet [23] outperforms handcrafted features engineering by a large margin in the
ImageNet image classification competition. It combines feature extraction and classification in a deep
CNN model to extract discriminative semantic features. After that, CNNs gradually dominate most
computer vision tasks, such as image classification, object detection, and semantic segmentation.
Classic CNN architecture (e.g., AlexNet [23], ZFNet [41], and VGGNet [32]) extract features by
stacking convolutional layers. In 2016, ResNet [13], the most successful CNN architecture in recent
years, proposed to train very deep CNNs using skip connections and stacked residual blocks. After
that, more and more efficient and effective stacked block-based CNNs (e.g., MobileNet[15], SENet
[16], and EfficientNet [34]) were proposed. However, they use the same block sequence for all inputs
in feature extraction, regardless of the intermediate features. This paper introduces the plug-and-play
routing-by-memory mechanism to existing CNN architectures. It uses memory to guide different
blocks to tackle different features in a divide-and-conquer fashion, which boosts the accuracy while
not increasing the computational cost.

2.2 Conditional Computation

Conditional computation [3] refers to activating only some of the modules in a network in an input-
dependent fashion. Recent researches have introduced it to CNNs in order to accelerate network
inference. AIG [36], BlockDrop [39], and SkipNet [37] propose to learn the subset of blocks needed
to process a given input. Since easy examples may not require deep layers’ features to make the
classification, SACT [9], Inside Cascaded CNN, [42] and Dynamic Routing [26] propose to do
input-dependent early stopping at the stage of network inference. Routing Convolutional Network
(RCN) [20] introduces a routing network that can perform anytime recognition. These methods aim
to reduce the models’ computational costs while maintaining comparable accuracies.

2.3 Mixture of Experts

Mixture of Experts (MoE) ([19], [21]) was proposed three decades ago. It is related to conditional
computation and introduces multiple experts (learners) to divide the problem space into homogeneous
regions. Given an input, MoE often uses a routing module to select the corresponding experts in a
hard or soft selection fashion. In the deep learning era, sparsely-gated mixture-of-experts layer [31]
first introduces MoE to LSTM for language modeling. Lately, Switch Transformer [8] introduces
MoE to Transformer [35] to train a trillion parameter model and achieves great success in natural
language processing. As for computer vision, there are two categories of MOE, dynamic parameter
and dynamic architecture, which are compatible. Dynamic parameter methods [40, 5, 6] learn
input-dependent convolutional kernels’ parameters using parameters generation networks. Dynamic
architecture methods employ multiple sub-networks and build a dynamic computational graph by
decision networks. NOEF [1] and HydraNets [27] divide the class label space and assign different sets
of class labels to different sub-networks for handling. DeepMoE [38] proposes to increase the kernels
and select each layer’s features’ channels by a decision network. Runtime Routing [28] proposes to
learn an RNN-based decision network by reinforcement learning for multi-path networks. Akin to
the Runtime Routing, DRNet [4] uses a small CNN as the decision network. Dynamic Routing [25],
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Figure 2: An illustration of ResNet-18 and ResNet-18-based 2-way RMN. We divide the network into
three phases: (preliminary) feature extraction, feature processing, and classification. In the feature
processing phase, we split the network into four stages by downsampling layers. RMN introduces the
routing-by-memory mechanism to each stage. It uses memory to guide forwarding different features
to their corresponding specialized procedures. Different colors denote different stages. Different
shades of color represent different kinds of features, memories, and procedures within a stage.

Routing Networks [29], ExperGate [2], and HardMoE [12] extend MoE to semantic segmentation,
multi-task learning, weakly-supervised learning, and lifelong learning, respectively. These decision
networks increase the training difficulty and bring extra computations. Besides, some of them require
modifying relevant gradient descent algorithms or employing reinforcement learning to train the
decision networks.

Our RMN solves routing in a new perspective, routing by memory, rather than designing complicated
decision networks to decide the routing path. It is more straightforward and elegant. Besides, since
the routing is based on non-parametric nearest memory search, RMN is lightweight, easy to train,
and requires no modification in the back-propagation rule.

3 Routing by Memory Network

This section elaborates on the architecture and training strategy of our proposed RMN.

3.1 Network Architecture

Our RMN is built by integrating the routing-by-memory mechanism into an existing CNN architecture.
In this paper, we describe our methods with the task of image classification. According to the
functions, we treat the processing of a common CNN as three separated phases: (preliminary)
feature extraction, feature processing, and final classification. Our RMN enhances the intermediate
features in the feature processing phase by incorporating the routing-by-memory mechanism. In the
following sections, we take ResNet-18 [13] as an example backbone to present how to integrate the
routing-by-memory mechanism into a conventional CNN(see Figure 2).

3.1.1 ResNet

In this section, we elaborate on the ResNet-18. Given an input image X , in the first (preliminary)
feature extraction phase, its feature maps f0 are generated by a series of operations P0 consisting of
convolution, pooling, and batch normalization, which can be formulated as follows:

f0 = P0(X , θ0), (1)

where θ0 denotes the learnable parameters in P . Low-level features such as edges and corners are
represented in these preliminary feature maps.

In the feature processing phase, multiple residual blocks are utilized to process the feature map f0 for
extracting features in higher semantic levels. We group the blocks into different stages according
to their output feature maps’ dimensions and resolutions (i.e., divide the stages by down-sampling
operations). For example, as shown in Figure 2, we divide blocks into four stages by grouping
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two adjacent blocks as their feature maps’ shapes are the same. We represent the operations (i.e.,
convolution blocks) in the ith stage as Pi with its parameters θi. The feature maps yielded from the
ith stage are fi. Specifically, we formulate the processing of the ith stage as follows:

fi = Pi(fi−1, θi), i = 1, 2, 3, 4. (2)

The ResNet ends with a global average pooling layer and a 1000-way (the number of classes, 1000 in
ImageNet) fully-connected layer with an argmax (softmax in the training phase) function. They are
used to classify one given image in the classification phase. We formulate this phase as follows:

Y = argmax
c∈[0,1,...,C−1]

(GAP(f4)W
⊤
c + b), (3)

where GAP refers to the global average pooling in the classification phase. W and b are learnable
weights and biases of the fully-connected layer (i.e., classifier), respectively. c is the class index, and
C is the total number of classes. Y denotes the output class label.

3.1.2 ResNet-Based RMN

In this section, we take the ResNet-18 as a backbone network to introduce our RMN. In the Resnet-
18-based RMN, we propose Procedural Units (PU) in the feature processing phase. There are multiple
PUs in each stage, and we use the term N -way RMN to represent how many PUs per stage in our
RMN. All PUs within a stage share the same architecture but learn different parameters due to the
routing mechanism. Each PU consists of two modules, including memory and procedure. The
memory is a representative feature that is learned from features by a moving average fashion in the
training phase (see Section 3.2 for details). We use global average pooling for memory to reduce the
storage cost. In the ith stage, given the feature fi−1 and memories mi = [mi,0,mi,1, ...,mi,N−1],
we first do the routing R by nearest neighbor searching as follows:

R(mi, fi−1) = argmin
j∈[0,1,...,N−1]

(D(mi,j ,GAP(fi−1))), (4)

where mi,j denotes the jth PU’s memory in the ith stage. To reduce the storage cost, we apply global
average pooling GAP to fi−1 before routing. D refers to a distance measurement metric, and we use
Euclidean distance in this paper. Since D is non-parametric and fast to compute, the computational
cost of routing is negligible and can be omitted.

After the routing, we forward the features to the corresponding procedures. A procedure consists of
residual blocks and an optional Conditional Attention (CA) module. The CA module is an optional
module introduced to improve the accuracy further by a little additional computational cost. Without
the CA module, RMN re-formulates the ith stage of the feature processing phase as follows:

fi = Pi(fi−1, θi,R(mi,fi−1)), i = 1, 2, 3, 4, (5)
where θi,0, θi,1, ..., θi,N−1 refers to N sets of parameters for Pi.

Figure 3: An illustration of Conditional Atten-
tion (CA) module. The CA is a routing-dependent
Squeeze-and-Excitation (SE)-like module.

We then introduce the CA module. The same
channels of features produced from different
procedural units may represent different seman-
tic meanings. For example, the first convolution
kernel of a procedure may focus on animals’
fur. However, the first convolution kernel of an-
other procedure may focus on furniture’s texture.
The inconsistent semantic meaning of different
features increases the learning difficultly. In-
spired by the position-coding in ViT [7], we in-
troduce the CA module to do routing-dependent
channel-wise attention to the features, relieving
the inconsistency adaptively. The CA module
consists of a conditional input, a routing result,
and a Squeeze-and-Excitation (SE) module [16]
(see Figure 3 for an illustration of the CA module). Specifically, it first computes the scalars
s = [s1, s2, ..., sK ] that has the same number of channels as fi = [fi1 , fi2 , ..., fiK ]. This operation
can be formulated as:

s = Excite(Concat(Squeeze(fi),R(mi, fi−1))), (6)

5



where Squeeze denotes using a global average pooling followed with a fully-connected layer to
squeeze the feature dimension. Excite denotes using a fully-connected layer and a Sigmoid function
to expand the feature dimension and compute attention values. Concat denotes channel-wise
concatenation operation. It can also use different coding methods for the routing results, such as
one-hot coding, which sometimes makes the training more stable. Please note that all CA modules
share parameters within a stage.

Then we scale the features fi according to the scalar vector s by channel-wise multiplication (we use
∗ to represent it). The CA module can be formulated as follows:

CA(fi) = s ∗ fi. (7)

In summary, when using the CA module, RMN re-formulates the ith stage of the feature processing
phase as follows:

fi = s ∗ Pi(fi−1, θi,R(mi,fi−1)), i = 1, 2, 3, 4. (8)

3.2 Training Strategy

In this section, we take the ResNet-18-based RMN as an example to introduce the four-step training
strategy. Unlike the conventional training pipeline, after a few training epochs, we insert two steps
to expand procedures and initialize memories. In the last step, we update memories in a moving
average fashion. The training strategy is plug-and-play to existing CNNs’ training approach since it
can follow standard gradient descent algorithms in optimization.

3.2.1 Stem Network Training

In the first step, we aim to train a conventional CNN (e.g., VGG, ResNet, and EfficientNet), named
stem network in this paper, to extract reasonable features for memory initialization. Specifically, in
this step, we train the standard ResNet-18 for a few epochs and will resume the training in the fourth
step. If using CA modules, we use random routing results r ∼ U(1, N) for each CA module, where
U denotes the discrete uniform distribution.

3.2.2 Procedure Cloning

We clone the procedures in the second step. Specifically, we clone the parameters of all procedures
by N times (i.e., assign θi to θi,0,θi,1,...,θi,N−1). In this way, we can build N branch procedural units
in each stage of the feature processing phase. Please note that we also clone the optimizer state of the
gradient in this step to maintain the training’s consistency in the fourth phase.

3.2.3 Memory Initialization

We initialize the memories using representative features. In this paper, we compute the representative
features by cluster analysis. Specifically, in the ith stage of the feature processing phase, we extract
each training sample’s fi. Then we apply the Euclidean distance-based K-means clustering algorithm
to obtain N clusters. Finally, we initialize each memory in mi+1 by each cluster’ center. In this way,
different memories can dominate different kinds of features.

3.2.4 Routing-Based Training

In this step, we resume the model training. Inspired by the update of mean value in Batch Normal-
ization (BN) [18], we update the memory in a moving-average fashion. Specifically, in a training
iteration and in the ith feature processing stage, given H samples that are routed to the jth PU, we
have their features as f1

i , ..., f
H
i . We update the memory as follows:

mi,j := αmi,j + (1− α)

∑H
h=1 GAP(fh

i )

H
, (9)

where α is a hyper-parameter and denotes the momentum.

In this step, the computational graph (i.e., data flow) is dynamic due to the routing mechanism. But,
the routing-by-memory mechanism uses the non-parametric nearest neighbor algorithm to select the
procedures, and the memory is updated in a moving-average fashion. Thus, we can use the original
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stochastic gradient descent algorithm with a softmax cross-entropy loss function to train our RMN as
the original ResNet-18. We also let each routing operation have a 0.05 probability of doing random
routing, which can train procedures more stable.

4 Experiments

In this section, we will first introduce our experimental setup. Then we present ablation experiments
on our proposed main components and hyper-parameters. Finally, we show our results on some
image classification benchmarks.

4.1 Experimental Setup

In this section, we first introduce the datasets we used. Then we introduce the network architectures.
Finally, we present the training details of our RMN.

4.1.1 Datasets

In this paper, we take three image classification benchmarks, Tiny ImageNet [24], ImageNet 2012
[30], and CIFAR-100 [22] to evaluate our method. ImageNet 2012 consists of 1.2M training images
and 50,000 validation images for 1000 classes. Tiny ImageNet is a subset of ImageNet. It consists of
200 classes, and each class has 500 training images and 50 validation images. CIFAR-100 consists
of 100 classes, and each class has 500 training images and 100 validation images. We use Tiny
ImageNet for ablation experiments in Section 4.2. In Section 4.3, we show our results on all three
benchmarks.

4.1.2 Network Architectures

Our RMN can be applied to most existing CNNs architectures, and we take some widely-used
architectures, i.e., VGG, ResNet, and EfficientNet, in our experiments. In the ablation experiments,
we take ResNet-18 as the backbone network to train our RMN. In the section of evaluations on all
benchmarks, we present the results of using all architectures. For VGG-16, we split the network by
pooling layers to different stages and build the PUs. We also use batch normalization for VGG-16.
Since the image resolutions of Tiny ImageNet and CIFAR-100 are 64× 64, and 32× 32, respectively,
we drop the first two down-sampling operations for ResNet and EfficientNet when training on these
two benchmarks. For VGGNet, we drop the first two down-sampling operations on Tiny ImageNet
but keep them on CIFAR-100. For the ImageNet, we use the resolution of 224× 224.

4.1.3 Training Details

Learning rate. We first follow the warmup strategy [10] to increase the learning rate from 1e-5 to
0.48 in the first five epochs. Then we use the cosine learning rate strategy for the rest of the epochs,
and we decrease the learning rate to 1e-5 at the final epoch.

The number of training epochs. For CIFAR-100 and Tiny ImageNet, the total numbers of training
epochs for VGG-16, ResNet-18, ResNet-50, and EfficientNet-B0 are 120, 120, 200, and 300,
respectively. For ImageNet, we use 160, 160, 220, and 400 epochs for them, respectively.

The number of PUs. In this paper, N denotes the number of PUs per feature processing stage.
Increasing N can improve the model capacity but brings in more parameters. Seeing Section 4.2 for
the ablation experiments on N . We set N = 8 for the accuracy and cost trade-off in other experiments.
Please also note that, compared with memory consumption on feature extraction, the parameters
consume little memory (less than 1% overall consumption when doing inference on ImageNet with
batch size 100). Hence, the extra GPU memory consumption by our method is negligible. Besides,
extra parameters bring an extra storage cost. But storage is abundant in real-world applications since
disks are cheap.

Batch Size. We use batch size 256 for all baselines. For our RMN, in each feature processing stage,
there are multiple PUs, and different features from the same batch are fed to different PUs. So, the
batch size of each PU is much smaller than the total batch size, and accordingly, we have to enlarge
the batch size to train our RMN. Simply, we multiply the original batch size (256) by N/2 though the
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Figure 4: Experimental results on Tiny ImageNet. The blue dashed line denotes the baseline ResNet-
18 with CA modules (without conditional routing inputs). (a) More PUs bring higher accuracy, and
the accuracy got converged on 8 PUs, so we set it to 8 in other experiments. (b) Since RMN assigns
different samples to different PUs, it requires a large batch size to maintain the training stability. We
set it to 1024 in other experiments. (c) Higher momentum makes the memory updating smoother and
more stable and leads to better results.

numbers of data instances among different PUs are imbalanced, which means that we use N = 8 and
batch size 1024 in this paper. Please see Section 4.2 for the ablation experiment of batch size.

Momentum in Memory Updating. The momentum α is a hyper-parameter used to make the memory
updating smooth and stable. However, too high momentum will make the memory out of date, while
too small momentum leads the memory updating unstable. We set it to 0.9 in our paper. Please see
Section 4.2 for its ablation experiment.

Others. Regarding other training details, we use stochastic gradient descent with momentum 0.9
and weight decay 1e-5 for ResNet and VGGNet. We use the RMSProp optimizer for EfficientNet.
We use Synchronized Batch Normalization (SyncBN) supported by the Nvidia APEX library. For
CA modules, we use the reduction ratio of 16. For data augmentation, we use random augmentation
introduced in the ResNet [13] paper. We use 8×V100 (32GB memory version) with PyTorch.

4.2 Ablation and Hyper-Parameters Experiments

4.2.1 Number of PUs

The key component in our RMN is the PU. So N , the number of PUs, is a critical hyper-parameter.
Increasing the number of PUs will improve the model’s capacity and lead to higher accuracy. From
Figure 4 (1), we can see that the accuracy increased along with larger N and got converged when
N = 8. However, larger N increases the number of parameters and requires a larger batch size (batch
size= 256×N/2). We make an accuracy and cost trade-off and set N to 8 in other experiments.

4.2.2 Batch Size

Our RMN introduces multiple branches with different PUs in the network, and the examples are
assigned to the different branches. So, RMN requires a larger batch size than conventional CNNs.
According to the results in Figure 4 (b), too small batch sizes (128 or 256) lead to even lower accuracy
than the baseline, which is because the memory updating and routing are unstable. Thus, network
training becomes more difficult. Moreover, with the 128 batch size, we found about 40% PUs died
after 50 training epochs, which means that these PUs’ memories are far from the distribution of
the current features, and thus no data can be assigned to these PUs. We consider that the small
number of data instances assigned to the PUs will make the memory updating unstable and draw
the corresponding memory features to the outliers. Too large batch size (2048) also leads to not
good results. Simply, we multiply the original batch size (256) by N/2 though the numbers of data
instances among different PUs are imbalanced, which means that we set the batch size to 1024 in
other experiments.

We also increased the batch size to 1024 for baselines and reported the results for fair comparisons.
We find that there is clear overfitting using batch size 1024 for the baselines, especially for ResNet-50
and EfficientNet-B0. These results are lower than the results of our method. Due to the limited pages,
please see the results on our supplemental material.
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4.2.3 Momentum in Memory Updating

We use the moving average to update the memories. Thus the momentum α is a key hyper-parameter.
Too small α will lead the memories to change quickly. The higher α is, the more stable and smoother
the memory updating becomes, while too large α causes a very slow updating. According to Figure 4
(c), we set α to 0.9 in other experiments.

4.2.4 Conditional Attention

Model CA Acc. #Params #FLOPs

RMN (ResNet-18) 64.3% 89.4M 2.25B
RMN (ResNet-18) ✓ 66.5% 89.5M 2.26B

Table 1: Ablations of the CA module on Tiny ImageNet.

The Conditional Attention (CA) module is a SE-
like modules to further improve accuracy by in-
troducing a little extra cost. According to the
results in Table 1, it improves the ResNet-18’s
accuracy by 2.2% on Tiny ImageNet.

4.3 Evaluation on Benchmarks

Model Acc. #Params #FLOPs

VGG-16 [32] 63.16% 135.0M 14.10B
ResNet-18 [13] 61.78% 11.3M 2.25B
ResNet-50 [13] 67.28% 23.9M 5.25B
EfficientNet-B0 [34] 67.14% 4.3M 0.47B

RMN (VGG-16) 66.57% 237.8M 14.11B
RMN (ResNet-18) 66.53% 89.5M 2.26B
RMN (ResNet-50) 69.93% 189.1M 5.26B
RMN (EfficientNet-B0) 68.85% 32.5M 0.47B

Table 2: Evaluation on Tiny-ImageNet. Ten runs average
results (skip when occurring PU death).

We evaluate our methods on three image clas-
sification benchmarks: Tiny ImageNet, Ima-
geNet, and CIFAR-100. According to the eval-
uation results (Table 2) on Tiny ImageNet, our
RMN significantly improves the accuracy while
not increasing the computational cost. Besides,
the improvements for VGGNet and ResNet are
much more significant than EfficientNet. It is
because EfficientNet’s architecture is already
well-designed, compact, and contains SE mod-
ules. Thus, our method may bring some redun-
dancies, but it still improves the accuracy by
1.8%. Seeing from the results (Table 3) on the more challenging benchmark, ImageNet, our method
still performs well. Moreover, using our RMN, ResNet-50 can outperform EfficientNet-B0. For the
CIFAR-100 benchmark, although the image resolution is small (32× 32) our method can still gain
considerable improvements. Moreover, ResNet-18-based RMN achieves impressive accuracy and
even outperforms the original ResNet-50.

Model Acc. #Params #FLOPs

VGG-16 [32] 72.92% 138.3M 15.51B
ResNet-18 [13] 70.72% 11.7M 1.81B
ResNet-50 [13] 76.08% 25.6M 4.11B
EfficientNet-B0 [34] 76.46% 5.3M 0.39B

RMN (VGG-16) 76.16% 241.1M 15.52B
RMN (ResNet-18) 73.74% 89.9M 1.82B
RMN (ResNet-50) 78.31% 190.7M 4.12B
RMN (EfficientNet-B0) 78.08% 33.5M 0.40B

Table 3: Evaluation on ImageNet. Three runs average
results (skip when occurring PU death).

Model Acc. #Params #FLOPs

VGG-16 [32] 73.16% 33.8M 0.43B
ResNet-18[13] 75.62% 11.2M 0.56B
ResNet-50[13] 77.53% 23.7M 1.31B
EfficientNet-B0[34] 78.04% 4.2M 0.12B

RMN (VGG-16) 75.74% 136.8M 0.45B
RMN (ResNet-18) 77.94% 88.4M 0.57B
RMN (ResNet-50) 79.06% 184.6M 1.32B
RMN (EfficientNet-B0) 78.88% 32.4M 0.12B

Table 4: Evaluation on CIFAR-100. Ten runs average
results (skip when occurring PU death).

4.4 Comparisons with Related Work

RNR [28] and DeepMOE [38] are the two most related works. Our motivations and methods are
different, and we discuss and make comparisons in this subsection.

RNR learns an RNN-based routing network by reinforcement learning to dynamically select experts.
It trains the routing network and the backbone network alternately. DeepMOE learns a CNN-based
decision network to activate specific layers in the backbone network dynamically. Unlike these
methods, our RMN solves routing in a new perspective, routing by memory, rather than introducing
complicated routing networks. It is more straightforward and elegant. Besides, since the routing is
based on non-parametric nearest memory search, RMN is lightweight, easy to train, and requires no
modification in the back-propagation rule. Here we make the experimental comparisons with RNR.

For RNR, we follow its codes to align our baselines’ training details and then retrain our RMN
on CIFAR-100. Based on ResNet-18 backbone, our RMN (N = 4, without CA) achieves 78.96%
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accuracy while costs 14.2ms per image (using Xeon 8255C CPU), which is superior to RNR’s
(#branch=4) results-78.42% accuracy with 59.8ms.

For DeepMOE, we make comparisons on respective baselines. DeepMOE improves ResNet-50’s
accuracy on ImageNet from 76.15% to 77.12%, while our RMN improves ResNet-50 from 76.08%
to 77.78% (N = 8, without CA). Besides, our RMN is more efficient since it does not introduce extra
decision networks.

5 Conclusion

In this paper, we proposed a specific mechanism, routing by memory, for conventional feed-forward
networks. We integrated it with the existing CNN architectures and built the Routing by Memory
Network (RMN). Specifically, it introduces the Procedural Unit (PU) to the CNNs, which consists of
a memory (a representative feature) with a procedure (some convolutional blocks). We employed
memories to forward different features to their expert PUs. Networks with the proposed mechanism
can be trained efficiently using a four-step training strategy. According to the results on Tiny ImageNet,
ImageNet, and CIFAR-100, our RMN significantly improves VGG-16, ResNet-18, ResNet-50, and
EfficientNet-B0 while not increasing the computational cost.

6 Limitation Analysis

The main limitations of our method are extra parameters, larger training batch sizes, unstable training,
and parallel inference efficiency.

First, since our method clones the experts multiple times, it introduces extra parameters and consumes
additional memory and storage. But, as we discuss in Section 4.1.3, the model parameters consume
little memory. Besides, in many real-world scenarios, the model storage cost is negligible. In other
words, our method can trade redundant memory and storage for accuracy improvement.

Second, since our network is multi-branch, each branch (expert) requires enough training samples in
each training iteration. Thus, our method requires a larger training batch size (4× for 8-way RMN).
But V100 (32GB) is enough to train most existing CNN models. Besides, some techniques can use
larger batch sizes in limited memory, such as gradient accumulation, memory-saving CNN training
framework (e.g., MXNet), and dynamic memory allocation.

Third, the model training is unstable since some PUs may die, especially when using not good training
hyper-parameters. If some PUs die, the accuracy will usually be lower than that of the baseline.

Finally, since the data flow in our method is multi-path, its parallel inference efficiency is lower than
that of the baseline when inference batch size is greater than one.

Last but not least, our rule of assigning similar features to the same expert is a mixed blessing. It is
explainable, non-parametric, and fast. But compared with parametric routing, our rule may impede
the model itself from achieving better results.
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