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ABSTRACT

Practising and honing skills forms a fundamental component of how humans learn,
yet artificial agents are rarely specifically trained to perform them. Instead, they
are usually trained end-to-end, with the hope being that useful skills will be im-
plicitly learned in order to maximise discounted return of some extrinsic reward
function. In this paper, we investigate how skills can be incorporated into the
training of reinforcement learning (RL) agents in complex environments with
large state-action spaces and sparse rewards. To this end, we created SkillHack, a
benchmark of tasks and associated skills based on the game of NetHack. We eval-
uate a number of baselines on this benchmark, as well as our own novel skill-based
method Hierarchical Kickstarting (HKS), which is shown to outperform all other
evaluated methods. Our experiments show that learning with a prior knowledge
of useful skills can significantly improve the performance of agents on complex
problems. We ultimately argue that utilising predefined skills provides a useful in-
ductive bias for RL problems, especially those with large state-action spaces and
sparse rewards.

1 INTRODUCTION

The acquisition and execution of skills form a fundamental component of how humans learn. Con-
sider learning to play the game of football. Rather than learning by simply playing successive
matches, large parts of training would be commonly devoted to developing specific skills, such
as passing, shooting, footwork, and general fitness. Since humans seem to benefit from explicitly
breaking down a complex task into constituent skills, we hypothesise that reinforcement learning
(RL) agents can benefit from doing the same.

Most existing methods that incorporate some form of skill-based learning do so by learning the skills
during training, simultaneously with the policy that makes use of these skills (Bacon et al., 2016;
Frans et al., 2017; Vezhnevets et al., 2017). These two layers of learning often result in instability,
although recent approaches have shown success in limiting this (Nachum et al., 2018; Levy et al.,
2019).

In this work, we consider only the problem of learning with the aid of predefined skills. We as-
sume access to a set of expert policies, one for each skill we have defined. These experts could be
obtained automatically by performing some search for diverse policies (Lehman & Stanley, 2008;
Eysenbach et al., 2018; Parker-Holder et al., 2020), be hand coded with some heuristic policy, or be
trained with RL on a set of skill-specific environments to a level that is deemed sufficient. While the
methods used in this paper could also work with a hand coded heuristic policy, we chose the option
of producing a set of skill acquisition environments. We believe this allows the benchmark to be
useful for a much wider variety of skill transfer methods, namely those that require training on the
skill domains and not just access to expert policies, for instance (Rusu et al., 2016; Parisotto et al.,
2016).
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The manifestation of this is SkillHack1, a new benchmark for skill-based learning using the Mini-
Hack (Samvelyan et al., 2021) framework. The benchmark consists of 8 unique task environments,
each of which has an associated set of skill acquisition environments for mastering the individual
skills necessary for completing each task. The tasks are designed to be of a difficulty such that not
utilising the relevant skill environments makes them very hard to solve. Completing the suite of
tasks requires a broad range of skills in the NetHack environment (Kuttler et al., 2020) including
navigation, combat and manipulation of in-game items. The large space of items, as well as actions
for manipulating them, results in a state-action space that is difficult to explore under a random ex-
ploration regime. The large number of unique and diverse skills in the game of NetHack, combined
with its speed and ease of use, make SkillHack a convenient benchmark for studying policy transfer
in RL, as well as problems such as continual learning and unsupervised RL.

Figure 1: SEA MONSTERS task. The agent must reach the staircase on the opposite bank without
dying to the monsters in the lake. To do this it must use of the powerful suit of armour that has
spawned on the near bank. The agent can most easily learn to complete this task by transferring
knowledge gained from its 4 associated skill environments.

(a) TakeOff skill environment. The
agent must take off the clothes it starts
with by pressing Shift + t .

(b) PickUp skill environment. The
agent must navigate to the item and pick
it up with , .

(c) Wear skill environment. The agent
must press Shift + w and then select
the item of clothing that is in its inven-
tory.

(d) NavigateWater skill environ-
ment. The agent must reach the stair-
case, receiving a reward penalty every
time it tries to walk into the water. Note
that the agent can move diagonally.

Figure 2: Skill environments for the skills associated with the SEA MONSTERS task.

To evaluate SkillHack, we propose Hierarchical Kickstarting (HKS), a new policy transfer approach
which distills knowledge acquired from expert policies trained on the skill acquisition environments.
We refer to these expert policies as teachers. HKS learns a policy-over-teachers πH , which outputs
a weighting for each teacher at every timestep. These are then used to calculate a weighted average
of the action distribution of the teachers. The agent policy π then incurs a loss proportional to the

1Code available at https://github.com/skillhack-env/skillhack
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divergence of its own action distribution from this weighted average. This incentivises the agent
to behave more similarly to highly weighted teachers, potentially accelerating learning by nudging
the agent to behave more similarly to a useful policy. Simultaneously, the policy-over-teachers is
incentivised to pick teachers that match the agent. After a burn-in time, these two networks should
be in sync, with the policy-over-teachers recommending useful teachers based on the current state of
the agent, while the agent behaves similarly to the chosen teachers. This method can be considered
as a more generalised version of Kickstarting (Schmitt et al., 2018), where we add the network πH

so that different skills can be prioritised for knowledge transfer at different points within an episode.

We perform an empirical evaluation of HKS as well as several baselines across all SkillHack envi-
ronments. Our results show that learning with a prior knowledge of useful skills can significantly
improve performance of agents on complex problems. We demonstrate that while HKS outperforms
other baselines on the overall suite of SkillHack tasks, there is still significant room for methods to
improve.

In summary, this paper makes the following contributions: (i) we present SkillHack, a new bench-
mark for skill transfer in RL, (ii) we propose HKS, a new method for policy transfer based on skill
specific expert policies, (iii) we provide an evaluation and discussion of HKS and 3 other baseline
methods on the SkillHack benchmark.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We use the standard formalism of Markov Decision Process (MDP) defined as a tuple M =
⟨S,A, T ,R, γ⟩ representing state space S, action space A, transition probability T : S × A −→
P(S), reward function R : S × A −→ R, and discount factor γ. The agent chooses actions accord-
ing to a stochastic policy π : S −→ P(S) in order to maximise expected episodic reward, defined
as E

[∑T
t=0 γ

trt

]
where T is the final timestep and rt is reward at timestep t. The value function

of policy π is defined as vπ(s) = Eπ

[∑T
t=0 γ

trt|st = s
]
. Model-free approaches to RL aim to

learn the optimal policy without explicitly learning the dynamics of the environment. Actor-critic
algorithms (Konda & Tsitsiklis, 2000) make use of both a policy (actor) for control and an estimated
value function (critic) for updating the policy of the agent.

2.2 POLICY TRANSFER

Training RL agents from scratch can often be prohibitively expensive and time-consuming, while
making use of existing knowledge can improve sample efficiency and training speed. Policy trans-
fer approaches aim to assist the learning process of the agent by utilizing pretrained policies on
related tasks. We refer to the policy designed for the target task MT as the student, which can
leverage knowledge from teacher policies πE1 , πE2 , . . . , πEK

trained on a set of source domains
M1,M2, . . . ,MK , respectively.

The Options Framework One way to perform policy transfer is to use the framework of options
(Sutton et al., 1999) representing temporally-extended actions that can span multiple timesteps. An
option ω is a 3-tuple ⟨I, π, β⟩ representing the states the option can be initiated from, the option
policy and the option termination function. In a given state s, a policy-over-options selects an option
πω for which s ∈ Iω . Control over actions is then ceded to this option for a number of timesteps.
Once the termination condition βω is stochastically met, the option finishes and cedes control back
to the policy-over-options, which then selects a new option to execute.

Kickstarting RL Kickstarting (Schmitt et al., 2018) is a policy transfer method that uses one
or more expert teachers to guide a student policy. Multi-teacher Kickstarting works by adding an
auxiliary loss to the student during training, defined as lkick = H(

∑
k λkπk(·|st) ∥ π(·|st)), where

H(· ∥ ·) is cross-entropy, πk are the teacher policies, π is the student policy and λk are the per-
teacher Kickstarting coefficients. This means that the agent not only optimises for extrinsic reward,
but is also incentivised to behave similarly to the teachers. The λk can be varied over training (al-
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though remain constant within an episode) either with Population-Based Training (Jaderberg et al.,
2017) or with a manual schedule.

NetHack & MiniHack The NetHack Learning Environment (Kuttler et al., 2020) is an RL envi-
ronment based off the classic game of NetHack. NetHack is a dungeon crawler game, notorious for
its difficulty, where the player must work their way through dozens of procedurally generated levels,
with hundreds of unique enemies and objects. The game is turn based and stochastic, with a large
action space. MiniHack (Samvelyan et al., 2021) is an extension of the NetHack Learning environ-
ment that allows for customisation of levels, rewards and termination conditions, while retaining
access to the full set of entities and environment dynamics from NetHack.

Table 1: Summary of SkillHack tasks. Different styles are used to differentiate TASKS, Skills
and Items/Entities.

Task Description
BATTLE PickUp a randomly placed Sword, Wield the Sword and finally

Fight and kill a Monster.

PREPARE FOR BATTLE PickUp a ration of Food and a piece of Armour. Wear the Armour
and Eat the Food.

TARGET PRACTICE Either a set of Daggers or a Wand of Death will spawn on the
floor. PickUp the item and either ZapWandOfDeath or Throw the
Daggers in order to kill the Minotaur.

MEDUSA PickUp and then PutOn the Towel that is placed in your start-
ing room, thus blindfolding yourself. Open the door to the second
room where Medusa is caged, but can still instantly kill you with
her deadly gaze should you enter with your vision intact. You must
NavigateBlind in this second room in order to find the stairway out.

SEA MONSTERS TakeOff your starting Armour and then PickUp and Wear the strong
suit of Armour that spawns on the near bank of the lake. Whilst wearing
this Armour you can NavigateWater across the bridge without dy-
ing to the Piranhas. Make it to the other side and reach the staircase
to complete the task.

FROZEN LAVA CROSS Either a Wand of Cold or a Frost Horn will spawn on the near
side of a river of lava. PickUp the item and then create a bridge across
the lava with either ZapWandOfCold or by ApplyFrostHorn. Fi-
nally, NavigateLava across your newly made bridge to reach the stair-
case on the other side.

IDENTIFY MIMIC Mimics are monsters that can camouflage themselves. This task gen-
erates 3 Statues, 2 of which are real and one of which is actually
a Mimic that you must safely identify. To do this you can PickUp
a stack of Daggers and Throw them at the Statues. Hitting the
Mimic will reveal it and complete the task. Alternatively you can
NavigateLavaToAmulet by following the bridge across the lava
lake and then PickUp and PutOn the Amulet of ESP which will
reveal the Mimic. Revealing the Mimic in an unsafe way, for instance
by walking into it, will cause you to fail the task.

A LOCKED DOOR PickUp the Skeleton Key and use it to unlock the Door, before
proceeding to NavigateLava to the exit.

3 SKILLHACK: A BENCHMARK FOR SKILL TRANSFER

To serve as a benchmark for skill transfer we developed SkillHack: a set of MiniHack environments
containing 8 procedurally generated task environments and 16 skill acquisition environments. The
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task environments are designed to be tricky to solve with vanilla RL, due to the large state-action
space and sparse rewards. For this reason, each task environment has an associated set of relevant
skill environments. By transferring knowledge gained from solving these skill environments, the
task environment will become easier to solve.

Each task environment is set up such that the agent receives a +1 reward for successfully completing
the task and a −1 reward for failing the task and/or dying. The skill environments are set up with
bespoke rewards to encourage an RL agent to learn the skill quickly and in a generalised manner.

A motivating example is the SEA MONSTERS task (Figure 1). In this task, the agent is faced with
a narrow, procedurally generated bridge over a monster infested lake, with the goal to reach the
staircase on the opposite bank. If the agent simply walks over the bridge, it will be killed by one
of the monsters before it reaches the other side. However, on the near side of the lake a powerful
piece of armour will be randomly generated and placed on the floor. The agent must Take Off
the clothes it starts off wearing, Pick Up and then Wear the armour, before finally Navigating
Water to reach the staircase on the other side of the lake.

The four skills associated with the task each have their own respective environments (Figure 2), in
which skill-specific teacher agents can learn expert policies. The environments are all procedurally
generated, with distractions in the form of random terrain and entities, in order to prevent overfitting
(Cobbe et al., 2020). As well as providing reward and termination when the skill is successfully
performed, a constant negative reward is applied every timestep in order to encourage the agent to
perform the skill as fast as possible.

It should be noted that these task and skill acquisition environments only form a fraction of the pos-
sible behaviours in NetHack. However, the primary aim of SkillHack is not necessarily to directly
lead to a more competent NetHack agent, but to facilitate research into skill transfer.

The full list of tasks is summarised in Table 1. More information on the skill acquisition and task
environments can be found in appendices C and D respectively.

4 HIERARCHICAL KICKSTARTING

In this section, we propose Hierarchical Kickstarting (HKS), a new approach for policy transfer
that combines the strengths of two other policy transfer approaches: Kickstarting and the Options
Framework.

To perform policy transfer from multiple teachers, HKS utilises a hierarchical policy network πH

which at every timestep weights the relevance of each teacher πk based on the current state. Rather
than ceding control to one of the teacher policies πk as in the Options Framework, this weighting
is used to calculate a weighted average of the teacher action distributions. We then formulate an
additional loss, proportional to the cross-entropy of this weighted average with the agent action
distribution. The policy-over-teachers πH therefore does not directly affect the action selection but
only the loss incurred by the agent. As a result, the student π is optimised to behave similarly to the
average of the teachers πk as weighted by πH , as well as maximising external rewards. Conversely,
πH is optimised to choose teachers that match the behaviour of π, forming a cyclic relationship
between the two levels of policies.

The additional auxiliary loss of the student policy in HKS is computed as follows:

lHKS = λH

(∑
k

πH(k|st)πk(·|st)

∥∥∥∥∥ π(·|st)

)
(1)

HKS can be seen as a combination of Kickstarting and the Options Framework. It generalises
Kickstarting by using a hierarchical policy-over-teachers which adjusts how much to kickstart from
each teacher at each timestep, rather than distilling a fixed amount from each teacher. Since skills
often have to be performed sequentially to complete a task, it is common for only a single skill to be
immediately relevant at a given point in time, making this a useful ability.

Furthermore, HKS also addresses the weakness of the Options Framework. Pretrained options are
effective when the transition dynamics and initial state distribution of the MDP of the target domain
matches those used during the training of the option. However, skill-level options can be highly

5



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

unstable when executed directly on a target task which is meaningfully different from the skill
environment encountered during the training.

5 EXPERIMENTAL SETUP

All experiments are run with the IMPALA (Espeholt et al., 2018) framework, using the open-source
TorchBeast implementation (Küttler et al., 2019). The agent architecture is an adapted version of
the one used in (Kuttler et al., 2020) and (Samvelyan et al., 2021).

The inputs to the network include the full matrix of glyphs that serve as the main screen of the game,
along with an encoding of the most recently received in-game message (“You hit the orc!”), the
players inventory and a set of relevant statistics (health, armour level, etc.). The network uses CNNs
for the spatial inputs, as well as LSTM units to incorporate memory. The action space consists of 32
actions (16 movement actions and 16 command actions). For the full action space see Appendix A
and for a full listing of hyperparameters see Appendix F. For more detail on the observation space
and network architecture see (Kuttler et al., 2020) and (Samvelyan et al., 2021).

An expert teacher policy is produced via vanilla RL for each of the 16 skill environments. The results
of training the experts can be seen in Appendix E. We train vanilla RL, the Options Framework,
Kickstarting and HKS on all 8 tasks for 2 × 108 timesteps, repeated over at least 3 random seeds.
For the 3 skill-based methods, only teachers relevant to the target task are used.

5.1 BASELINES

Options Framework We use the pretrained experts as options with frozen weights, while training
a policy-over-options network to direct them. The option networks have no LSTM units and take
only the instantaneous observation as input. We consider a degenerate form of the Options Frame-
work where options can be initialised from any state and always terminate in one step Iω = S,
β(·)ω = 1.

Kickstarting For the Kickstarting agent, we use the experts as teachers and similarly remove the
LSTMs. We keep all λk equal and therefore refer to them all as λ = λk. The schedule for λ was
manually set to start at λ = 10 and linearly decay to λ = 1 after 107 timesteps. Retaining a small
Kickstarting coefficient was found to increase the stability of the method, whereas if λ was allowed
to decay to 0 there would be occasional massive drops in performance (Appendix B).

Hierarchical Kickstarting The LSTM removal and λ schedule are the same as for Kickstarting.
The policy-over-teachers was implemented as an extra head on the student network in the form
of an additional single fully connected layer with softmax activations. Preliminary testing of the
method found that it would often quickly get stuck in local minima where the policy-over-teachers
would always weight the same teacher very highly, resulting in poor performance. To mitigate
this, an additional loss was added proportional to the negative entropy of the policy-over-teachers
lE = −κH(πH). This encourages the policy-over-teachers to give a more uniform distribution,
preventing it from falling into the described local minima. The coefficient κ was set with a manual
schedule, starting at κ = 20 and linearly decaying to κ = 0 after 2× 107 timesteps.

6 RESULTS AND DISCUSSION

6.1 RESULTS

Figure 3: Mean success rate of baselines across
all SkillHack tasks. The shaded area denotes 1
standard error.

Figure 3 plots the success rate of the 4 methods
averaged over all 8 of the SkillHack tasks. The
complete lack of progress by vanilla RL, in con-
trast to the progress by the 3 skill-based meth-
ods, shows that the SkillHack tasks are suitably
designed to be a useful benchmark for policy
transfer. HKS performs best in terms of final
performance, achieving 56% success rate, as
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Figure 4: Success rate for all methods on the 8 SkillHack tasks, averaged over the repeats of each
experiment. The shaded area denotes 1 standard error.

opposed to 41% and 32% for Kickstarting and the Options Framework, respectively. It does however
take marginally longer than the other methods to converge. HKS overtakes the Options Framework
and Kickstarting in success rate at around 2 × 107 and 3 × 107 timesteps respectively. For a fair
comparison against HKS, the Kickstarting score was increased by around 2%, for reasons discussed
in Appendix B.

Figure 4 splits out the results for each of the SkillHack tasks, painting a more nuanced picture of the
results. There are some environments where only a subset of the skill-based methods managed to
achieve any significant performance, namely A LOCKED DOOR (HKS), TARGET PRACTICE (Op-
tions Framework) and MEDUSA (Kickstarting & HKS). In terms of the final success rate, HKS
always at least equals Kickstarting, although notably loses to the Options Framework on TARGET
PRACTICE. Interestingly, the only two tasks where the Options Framework outperforms Kickstart-
ing (TARGET PRACTICE & FROZEN LAVA CROSS) are the only two tasks that cannot always be
solved using the same method for each episode. Both tasks need to be solved differently depending
on a random object spawned at the start of the episode (See Table 1). The SEA MONSTERS task was
the only one to remain unsolved by all 4 methods, making it a good candidate for future research
into skill-based methods.

6.2 QUALITATIVE ANALYSIS OF HKS

In order to further scrutinise HKS, we can observe how the distributions of the policy-over-teachers
change during an episode for the converged policies (Figure 5). Note again that the policy-over-
teachers does not affect the agents choice of action, but due to the system of losses implemented in
HKS, it can be used to identify which skills the agent is prioritising at each timestep.

Sequential Skill Selection All the given tasks can be solved by executing a set of skills in sequence,
so we would expect to see the policy-over-teachers reflect this by prioritising each skill as it becomes
relevant. This behaviour is indeed observed and is most clearly seen in PREPARE FOR BATTLE, A
LOCKED DOOR and FROZEN LAVA CROSS, while being somewhat present in BATTLE. The more
interesting cases are when this behaviour does not occur.

IDENTIFY MIMIC: A Missing Skill While the policy-over-teachers for IDENTIFY MIMIC seems to
display the expected behaviour by successively prioritising different skills, on closer inspection the
chosen skills do not match the task description. Specifically, the agent prioritises the PutOn skill
for the first 20 timesteps, long before it reaches the Amulet of ESP and has any need to PutOn
anything. These first 20 timesteps are the time when the agent is navigating past the statues in order
to make it to the lava bridge (See Figure 8d). It would appear that the agent is effectively missing
a skill NavigatePastStatues and in order to minimise the HKS loss, the policy-over-teachers
prioritises the existing skill that is most similar to the missing one. This could imply the need for a
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Figure 5: Distribution of policy-over-teachers for converged HKS policies over the span of a single
episode. Results are each taken from a single successful run, smoothed with a rolling average of 6
timesteps. Note that the sampled FROZEN LAVA CROSS had a Frost Horn spawn. Only the 6
environments in which HKS converged on are shown.

‘free-pass’ skill that reduces the HKS loss the more weighting is given to it. This would allow the
agent to fill in the gaps between its existing skillsClearly some mitigation would have to be in place
to prevent the agent from always choosing this skill and reducing the HKS loss to 0.

MEDUSA: A Useless Skill MEDUSA also exhibits the use of an ill-fitting skill to take the place of
a missing skill, although in this case the missing skill NavBlind does exist. The reason why the
policy-over-teachers has learned to never give significant weighting to NavBlind is not immedi-
ately obvious, as the final part of MEDUSA involves searching for the stairway while blindfolded.
Furthermore, the agent did solve the environment in the expected way and did not find some unex-
pected alternate solution. Upon further investigation, we found that NavBlind does not properly
correspond to the MEDUSA task. Specifically, the blindness applied in NavBlind uses a Potion
of Blindness, which has different mechanics to blindfolding via PuttingOn a Towel,2 cor-
responding to a different input observation. This domain shift made NavBlind a useless skill and
HKS correspondingly learned to disregard it.3

7 RELATED WORK

Policy Transfer Policy transfer is defined as the paradigm where the learning process of an agent is
supplemented by utilizing pretrained policies on related tasks. It is a paradigm that becomes more
prevalent as environments develop larger state-action spaces, sparser rewards and more open-ended
sets of possible behaviours. Knowledge distillation is a popular technique in supervised learning
that ensembles knowledge from many teacher models into a student model (Hinton et al., 2015).
Recent work in RL has used the distillation of policies to transfer knowledge from teacher policies
to the student. (Rusu et al., 2016) propose policy distillation where the student policy is trained by
minimising the divergence between the action distributions of the teacher and student policies over
the trajectories sampled via the teacher policies. (Czarnecki et al., 2019) performs policy distillation
using the trajectories that are sampled with the student policy, rather than teachers’. Another ob-
jective for policy transfer is minimising the cross-entropy between the teacher and student policies,
as is done in Kickstarting RL (Schmitt et al., 2018). The Actor-Mimic algorithm (Parisotto et al.,
2016) takes a slightly different approach to Kickstarting. First, the student is pretrained to master
all the skill environments, but with the coefficient governing this loss function held constant. The

2https://nethackwiki.com/wiki/Blindness
3A fixed version of this skill is available in the GitHub repository. The authors decided to retain the broken

version in this paper as an illustrative point.
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resultant weights are used to initialise a network that then trains on the target environment, without
any supervision from the teachers. A different perspective for achieving transfer is maximising the
probability that the student and teacher policies will visit the same trajectories. An example of such
an approach is Distral (Teh et al., 2017) where a central ”distilled” policy is shared across many
tasks in order to capture common behaviour. Each teacher is trained in separation to solve its own
task while being constrained to stay close to the shared policy.

Hierarchical Reinforcement Learning While we choose to use the Options Framework as a base-
line and as a building block of HKS, many other HRL approaches have been developed throughout
the years, such as Feudal Networks (Dayan & Hinton, 1992; Vezhnevets et al., 2017), Hierarchical
Deep Q-Networks (Kulkarni et al., 2016) and Data-Efficient HRL (Nachum et al., 2018).

Benchmarks We consider a range of RL benchmarks and their viability to the problem of skill
transfer. Classic environments such as those in OpenAI gym (Brockman et al., 2016) are too sim-
ple to be broken down into constituent skills. Common video game environments such as Atari
(Bellemare et al., 2013), DeepMind Lab (Beattie et al., 2016) and ViZDoom (Kempka et al., 2016)
are complex enough for skill-based learning to be warranted, but much of the focus of learning in
these environments must be put towards interpreting the high dimensional pixel input. The CORA
benchmark (Powers et al., 2021) for continual learning proposes schedules of environments which
are each shown to the agent for some large number of iterations, with one of the primary goals being
to forward transfer knowledge from previously seen environments to new ones.

The MineRL (Guss et al., 2021) benchmark challenges the RL agent to mine a diamond in the pop-
ular video game Minecraft. Using vanilla RL to do this would be intractable, so the benchmark
comes with a dataset of over 60 million state-action tuples of recorded human demonstrations. It
should be noted that while similar to the use of expert teachers in SkillHack, new samples cannot
be dynamically generated from the teachers, meaning this dataset could not be used by any of the
methods we investigate. The OBTAINDIAMOND task set out by this benchmark can be broken down
into a large graph of dependent skills (GatherWood, CreateWoodPickaxe, MineStone, ...)
and the benchmark provides 6 additional environments for completing chosen subsets of these skills.
However, even these smaller tasks are highly complex and training will inevitably still lean heavily
on the provided expert human trajectories. This makes MineRL moreso a challenge in imitation
learning and interpreting the high dimensional pixel input, although with a more fine-grained break-
down of skill environments it could become an interesting benchmark for combining skill transfer
and imitation learning.

Crafter (Hafner, 2022) is a 2D open world survival game, with similar game dynamics to Minecraft
but with a lower dimensional input space and faster runtime. The paper formulates a taxonomy of 22
achievements and their dependencies on each other. By interpreting achievements with dependencies
as tasks and achievements with no dependencies as skills, Crafter could be phrased as a skill transfer
benchmark. However, the vast majority of the tasks would only have 1 associated skill and many
skills would have no associated task.

8 CONCLUSION

This paper presents SkillHack: a NetHack-based benchmark for skill transfer in RL. SkillHack
features 16 skill environments for acquiring knowledge necessary to solve 8 target problems, all
of which have been shown to be intractable for vanilla RL. Our experimental results show that the
SkillHack tasks form a difficult and varied suite of challenges, with methods performing markedly
differently across the range of tasks. We also propose Hierarchical Kickstarting (HKS): a new
method for skill transfer that combines Kickstarting and the Options Framework. Evaluating HKS
on SkillHack shows that it improves the final performance on the overall benchmark by 15% over
the next best baseline (Kickstarting).

We hope that SkillHack can serve as a useful benchmark in the community for evaluating skill
transfer and that HKS can find applications where traditional RL methods struggle. We are open
sourcing both the SkillHack benchmark and the HKS method and look forward to contributions
from the community.

9



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

REFERENCES

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. CoRR,
abs/1609.05140, 2016. URL http://arxiv.org/abs/1609.05140.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
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Name Key
PickUp ,

PutOn Shift + p

Zap z

TakeOff Shift + t

Wear Shift + w

Throw t

Escape Esc

Eat e

Apply a

Wield w

Quaff q

Gold $

Inv1 f

Inv2 g

Inv3 h

Table 2: Command Actions

A ACTION SPACE

NetHack takes ASCII characters as its inputs. These can be modified with certain keys like Ctrl

and Shift . We use a reduced action space of size 32, only allowing actions that have been deemed
relevant for completing the benchmark. This includes 16 movement actions consisting of the 4
cardinal directions, the 4 diagonal directions each with a single and long movement option. The
remaining actions are summarised in Table 2.

B KICKSTARTING COEFFICIENT DISCUSSION

The Kickstarting coefficient λ was set with a manual schedule defined in Section 5.1. Notably, we
never let the coefficient drop to 0, but instead specify a minimum value of 0.1, meaning that the
Kickstarting loss is always present. The reason for this was twofold. Firstly, we saw that large
spikes in performance would often occur after the coefficient had reached its minimum value of 0.1.
Therefore, keeping a small minimum allowed Kickstarting and HKS to work without going through
the lengthy process of tuning the schedule for each environment. Secondly, when the coefficient was
allowed to drop to 0, we would see infrequent massive drops in performance with both Kickstarting
and HKS (Around 1 in 2 runs would at some point lose around half of their performance after
converging). The reason for this is not entirely clear, but is an area of current investigation.

This artificial minimum on the coefficient effectively imposes a cap on the performance of Kick-
starting, as it is always slightly being optimised away from following extrinsic reward. HKS is not
as susceptible to this effect, as the policy-over-teachers can converge such that the weighted average
of teacher action distributions closely matches that which would maximise extrinsic reward anyway.
This can be seen in the plot of model performances (Figure 4) for the tasks BATTLE, PREPARE FOR
BATTLE and IDENTIFY MIMIC. In all of these tasks, HKS converges to a slightly higher success
rate than Kickstarting. To account for this discrepancy, we take the average percentage difference in
the final performances of Kickstarting and HKS on these three tasks, which works out to be 2.2%.
The final performance for Kickstarting averaged over all tasks is 39.9%. We therefore increase this
value by 2.2% giving us 40.8%, giving us a fairer comparison against HKS.

C SKILL LISTING

The list of skills is shown in Table 3. Each skill has an environment where it is learned in isolation,
shown in Figures 6 and 7. It should be noted that many of the environments visually look the same.
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Name Description
ApplyFrostHorn Use a frost horn to freeze some lava.
Eat Eat an apple.
Fight Hit a monster.
NavigateBlind Reach the staircase while blinded.
NavigateLava Reach the staircase past random lava patches.
NavigateLavaToAmulet Reach an amulet past random lava patches.
NavigateWater Reach the staircase past random water patches.
PickUp Pick up a random item.
PutOn Put on an amulet or towel.
TakeOff Take off clothes.
Throw Throw daggers at a statue or at a monster.
Unlock Use a key to unlock a locked door.
Wear Wear a robe.
Wield Wield a sword.
ZapCold Use a wand of cold to freeze lava.
ZapWoD Use a wand of death to kill a monster.

Table 3: Skills contained in the benchmark.

This is because many environments focus on manipulating items in the players inventory, with the
rest of the world only serving as a distraction which the agent must learn to reliably ignore.

D TASK LISTING

The task descriptions can be found in Table 1. The environments are shown in Figures 8 and 9.

E FURTHER RESULTS

The experts were all trained on the skill acquisition environments for 7.5 × 107 timesteps. The
results are shown in Figure 10.

F HYPERPARAMETERS

The hyperparameters for the IMPALA agent are summarised in Table 4.
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(a) ApplyFrostHorn (b) Eat

(c) Fight (d) NavigateBlind

(e) NavigateLava

(f) NavigateLavaToAmulet

(g) NavigateWater (h) PickUp

(i) PutOn (j) TakeOff

Figure 6: Skill environments.
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(a) Throw (b) Unlock

(c) Wear (d) Wield

(e) ZapWandOfCold (f) ZapWandOfDeath

Figure 7: Skill environments (continued).
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(a) FROZEN LAVA CROSS (b) BATTLE

(c) MEDUSA

(d) IDENTIFY MIMIC

(e) SEA MONSTERS

Figure 8: Task environments.
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(a) PREPARE FOR BATTLE

(b) A LOCKED DOOR

(c) TARGET PRACTICE

Figure 9: Task environments (continued).

17



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Figure 10: Success rate for training skill experts on the 16 skill acquisition environments

Name Value
Training Settings
num actors 256
batch size 32
unroll length 80

Model Settings
hidden dim 256
embedding dim 64
glyph type all cat
equalize input dim false
layers 5
crop model cnn
crop dim 9
use index select true
max learner queue size 1024

Loss Settings
entropy cost 0.001
baseline cost 0.5
discounting 0.999
reward clipping none
normalize reward true

Name Value
Optimizer Settings
learning rate 0.0002
grad norm clipping 40

Intrinsic Reward Settings
int.twoheaded true
int.input full
int.intrinsic weight 0.1
int.discounting 0.99
int.baseline cost 0.5
int.episodic true
int.reward clipping none
int.normalize reward true

Table 4: Hyperparameters of the IMPALA agent.
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