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ABSTRACT

Although visual language models (VLMs) have achieved remarkable success, ap-
plying them directly in federated learning (FL) faces key challenges: high commu-
nication/computation costs and poor generalization due to client data heterogene-
ity. To tackle these, we propose CauFed-CLIP, a novel Causal-based Federated
Contrastive Language-Image Pre-training model. Our model reduces overhead by
freezing the VLM backbone and training a lightweight causal module on clients.
To enhance generalization, our model employs a progressive causal mechanism.
It first disentangles observed features (x) into domain-invariant (s) and domain-
variant (z) representations, aided by global and local guidance to suppress their
spurious correlations. From this disentangled foundation, it then infers the un-
derlying causal “concept” (c)—a quasi-invariant latent variable that represents the
essence of a category and holds a weak causal link with the domain (z). Ulti-
mately, relying solely on this pure concept ‘c‘ for prediction allows the model
to transcend superficial statistics and grasp the core causal logic. Experiments
on six benchmarks across natural and medical domains show that CauFed-CLIP
consistently outperforms state-of-the-art FL methods, especially in cross-domain
generalization.

1 INTRODUCTION

In recent years, the success of Vision Language Models (VLMs) is driven by large-scale pretraining
on massive datasets (Xu et al., 2024). However, rising data privacy regulations increasingly chal-
lenge this centralized training paradigm (Bakare1 et al., 2024). FL emerges as a promising solution,
enabling collaborative model training without sharing raw data (McMahan et al., 2017). Neverthe-
less, applying large-scale VLMs within the resource-constrained setting of FL creates a direct con-
flict, presenting two critical bottlenecks (Kuang et al., 2024; Wu et al., 2025): 1) the computational
bottleneck: Client devices (e.g., smartphones) often lack the capacity for full VLMs training. 2)
the communication bottleneck: Exchanging the massive VLM parameters in each round consumes
prohibitive bandwidth, drastically slowing down training.

Collectively, these challenges severely hinder the deployment of VLMs in real-world federated set-
tings (Guo et al., 2023b; Saha et al., 2025a). To overcome these bottlenecks, a prevailing strategy
is to freeze the large VLM backbone as a universal feature extractor, while clients only train and
exchange lightweight task modules (Lu et al., 2023; Wu et al., 2025). Although this efficiency gain
makes the deployment of VLMs in FL feasible, a more fundamental challenge emerges: significant
domain shifts across clients (Chen et al., 2024; Bai et al., 2024). These discrepancies, originating
from diverse domains (e.g., photos, sketches, cartoons), cause even powerful VLMs to learn spuri-
ous, domain-specific correlations from the features they extract (Varma et al., 2024a; Ye et al., 2024;
Ma et al., 2025). The direct consequence is a severe degradation in generalization ability, caus-
ing the model to become “paranoid” and biased towards the domains seen during training. When
such a model is deployed on unseen clients, its performance plummets, often rendering it unusable.
Existing studies on domain generalization typically focus on improving model architectures (e.g.,
attention mechanisms) (Saha et al., 2025b; Wu et al., 2025; Ma et al., 2025) or introducing complex
regularizations (Li et al., 2020; Zhang et al., 2024a). Other approaches attempt to construct central-
ized proxy datasets, a strategy that fundamentally violates FL’s core principle of privacy preservation
(Kalra et al., 2023; Wang et al., 2023; Liu et al., 2024). We argue that these methods either fail to
address the root of the problem or do so at the cost of privacy. To truly overcome this fundamen-
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tal generalization crisis, models must transition from “pattern recognition” (learning “what”) to
“causal reasoning” (understanding “why”). Recent work has attempted to obtain invariant features
by erasing spurious ones through causal intervention (Li et al., 2025) or prompt fine-tuning (Gong
et al., 2024; Ma et al., 2025). However, their causal assumptions have limitations—they tend to treat
invariant and domain-specific features as independent, thus potentially overlooking the subtle causal
connections between them.

To this end, we innovatively introduce causal inference to FL and propose the CauFed-CLIP model.
Initially, a lightweight module disentangles observed features (x) into a domain-invariant represen-
tation (s) and a domain-variant representation (z). However, we find that the simple assumption
that only the invariant representation determines the label (i.e., s → y) is one-sided. For example,
a real-world “cow” differs from a cartoon “cow” in its core features because the “cartoon” domain
itself carries an “abstraction” causal effect. Conversely, when an animal is erased from a desert
background, people are more inclined to guess it was a “camel” than a “cow,” indicating a subtle
link between the domain and the concept. Inspired by these observations, we propose a more refined
causal structure: we hypothesize the existence of a pure “concept” (c) that is core-stable yet adap-
tively fine-tuned by the domain. This concept serves as the common root cause driving the invariant
representation (s), the variant representation (z), and the final label (y). More critically, we argue
that a weak causal relationship exists between this concept (c) and the domain environment (z). By
modeling and performing inference on this causal graph, our model can distill truly robust, essen-
tial features and focus on learning domain-general knowledge, thereby achieving excellent domain
generalization capabilities on unseen clients. The main contributions are:

1. We propose the CauFed-CLIP model, which addresses the two key challenges of effi-
ciency and generalization in federated VLMs within a unified framework. By adopting a
parameter-efficient strategy, the framework overcomes efficiency bottlenecks, and through
the introduction of a fine-grained causal model, it guides the learning of underlying causal
structures—fundamentally enhancing the model’s domain generalization capability.

2. We design an innovative prompt-guided mechanism that drives causal disentanglement
through efficient and interpretable semantic supervision. This mechanism leverages a
shared global prompt and privacy-preserving local prompts to create semantic “anchors,”
providing strong signals for learning causal representations.

3. We conducted comprehensive experiments on six domain generalization datasets. The re-
sults show that CauFed-CLIP significantly outperforms state-of-the-art (SOTA) methods in
terms of accuracy, communication efficiency, and domain generalization capability.

2 RELATED WORK

2.1 FEDERATED LEARNING

This graph depicts the causal relationships
between the observed variables ( , , in solid
circles) and the latent variables ( , , , in
dashed circles). A directed solid arrow ( )
represents a direct causal relationship, while
a directed dashed arrow ( ) denotes a
hypothesized weak causal link.

Figure 1: The proposed causal graph.

FL addresses data silo and privacy issues via distributed
collaborative training (McMahan et al., 2017), yet strug-
gles with client drift due to data heterogeneity (Xiao
et al., 2024). Common solutions include proximal reg-
ularization (Li et al., 2020), local batch normalization (Li
et al., 2021b), and contrastive or graph-based representa-
tion alignment (Li et al., 2021a; Xiao et al., 2024). How-
ever, these often fall short under significant domain or co-
variate shifts.

2.2 CLIP IN FL: FROM EFFICIENT FINE-TUNING
TO DOMAIN GENERALIZATION

Recent efforts integrate VLMs like CLIP into FL through parameter-efficient fine-tuning (PEFT)
to reduce computational costs, by learning only lightweight prompts or adapters locally (Pan et al.,
2024; Saha et al., 2025a; Chen et al., 2024; Guo et al., 2023a; Yang et al., 2023; Wu et al., 2025;
Shi et al., 2024). While improving efficiency, PEFT methods tend to learn spurious domain-specific
features, harming generalization (Varma et al., 2024b). Some works pursue invariant features via
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Figure 2: Causal-based Federated Contrastive Language-Image Pre-training (CauFed-CLIP) model.

test-time prompting (Ma et al., 2025) or causal learning (Chen et al., 2023; Zhang et al., 2025), but
often assume feature independence, overlooking their underlying causal relationships.

In contrast, our work is the first to introduce a more complete causal inference framework to fed-
erated VLMs. We advocate for modeling the deep causal structure behind the features, positing a
core hypothesis: a pure, domain-invariant “concept” acts as the common root cause for the observed
invariant features, variant features, and the final label. By performing inference on this causal graph
(Fig. 1), our model aims to transition from learning “superficial correlations” to understanding “deep
causality,” thereby fundamentally enhancing its domain generalization. For a more comprehensive
review of related work, see Appendix F.

3 METHOD

3.1 PROBLEM SETTING

We consider an FL setting with K clients {C1, . . . , CK}, each holding a local private dataset Dk =
{(xk,j , yk,j)}nk

j=1. The core challenge is data heterogeneity, where local data distributions differ
(P (Dk′) ̸= P (Dk) for k′ ̸= k). Each client’s dataset Dk is partitioned into training (Dtrain

k ),
validation (Dval

k ), and test (Dtest
k ) sets. The traditional FL objective is to learn a global model fθ(·)

that minimizes the average loss over the training clients’ test data:

min
θ

1

K

K∑
k=1

Lk(fθ;Dtest
k ), (1)

where Lk(fθ;Dtest
k ) = 1

|Dtest
k |

∑
(x,y)∈Dtest

k
ℓk(fθ(x), y) denotes the average loss on the test set of

client k, and ℓk is the client-specific loss function.

However, real-world deployment requires generalization to unseen clients, leading to the problem
of federated domain generalization. Our goal is to learn a model fθ that not only performs well
on the training clients but also generalizes effectively to M unseen clients, {CK+1, . . . , CK+M}.
The data Dm (m ∈ {K + 1, . . . ,K +M}) from unseen clients may exhibit significant distribution
shifts, such as domain shift (e.g., paintings vs. photos) or covariate shift (e.g., sunny vs. snowy
car images). Our goal is to minimize the model’s expected loss on unseen clients:

min
θ

1

M

K+M∑
m=K+1

Lm(fθ;Dm). (2)

3.2 FRAMEWORK OVERVIEW

3.2.1 CAUSAL FORMALISM.

To tackle FL’s data heterogeneity and domain shift, we build a structural causal model (SCM) (Fig.
1), modeling causal relationships between latent variables V := {c, s, z} and observable variables
(x, y) for robust cross-domain predictions. We define each variable in the graph as follows:

3
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• Observed Data (x): Raw image features extracted from the VLM on the client side.

• Task Label (y): The true label of the image.

• Domain-Variant Representation (z): A latent variable that captures domain-specific fea-
tures (e.g., lighting, background, style) and is the root cause of domain shift.

• Invariant Representation (s): A latent variable that represents the essential semantic fea-
tures of an object, independent of specific domains.

• Concept (c): A quasi-invariant latent variable that represents the essence of a category and
possesses domain-adaptivity.

Based on these definitions, we establish the following causal relationships (i.e., the directed edges
in the graph):

1. c→ y, c→ s: The pure invariant concept c is the common root cause of both the label y and the
invariant feature s. This establishes our core objective: to learn the causal predictor p(y|c), which is
inherently stable and invariant across all domains.

2. c 99K z: We hypothesize a weak causal link from the pure concept c to the domain-variant rep-
resentation z. This connection explains why the same concept (e.g., a “cow”) manifests differently
across domains (e.g., “real photo” vs. “cartoon”), acknowledging that concept and domain are not
entirely independent.

3. s→ x, z → x: The observed feature x is generated by both the invariant feature s and the domain-
variant feature z. As a collider node, x thus entangles task-relevant information (s) with domain-
specific noise (z), making the direct prediction p(y|x) unreliable and prone to poor generalization.

3.2.2 IDENTIFIABILITY ANALYSIS.

After constructing the causal graph, a central theoretical question arises: Can our target causal
relationship p(y|c) be uniquely identified from the observed data (x, y)? Since c, s, and z are latent
variables that cannot be directly observed, the identifiability argument hinges on the following core
assumptions:

1. Structural Correctness of the Causal Graph: We assume that the proposed causal graph (as
shown in Fig. 1) is correct, meaning it fully captures all causal relationships among the variables
x, y, c, s, and z, and that there are no unmeasured confounders.

2. Parametric Model Sufficiency: We assume our framework’s neural networks (Fig. 2) can
sufficiently approximate true data distributions like p(x|s, z, c) and p(y|c).
3. Causal Faithfulness: We assume that conditional independencies in the data arise solely from
the graph’s structure, not from coincidental cancellations of causal pathways.

Under these assumptions, the identifiability of our target, p(y|c), hinges on addressing a key back-
door path between the observed features x and the label y: y ← c 99K z → x. This path is “open”
because it introduces spurious, non-causal associations between x and y through the common cause
c and the mediator z. For example, this may lead the model to incorrectly associate domain-specific
features (such as the “cartoon style” represented by z) with the class label (e.g., “animal” represented
by y), which is the core of the domain shift problem.

According to Pearl’s Back-door Criterion, in order to block such confounding and identify the true
causal effect, we must condition on a set of variables that blocks all back-door paths (Pearl, 1995). In
our model, this critical back-door path can be blocked by conditioning on the latent domain-relevant
representation z.

Therefore, p(y|c) is theoretically identifiable, provided that our learning algorithm can effectively
infer and disentangle the latent variable z from the observed data x. This analysis provides the
theoretical foundation for our method, mandating that its success depends on this precise disentan-
glement capability.

4
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3.2.3 CAUSALLY-INFORMED REPRESENTATION LEARNING VIA PROMPT-GUIDED
VARIATIONAL INFERENCE.

Guided by our causal identifiability analysis, we design a learning framework to infer the latent
variables c, s, and z from the observed data x. As shown in Fig. 2, our framework innovatively
integrates the principles of variational inference (VI) with the power of VLM, supervised by a novel
prompt-guiding mechanism. CauFed-CLIP comprises the following key components:

1. CLIP Backbone: To ensure efficiency in the federated setting, we leverage a pretrained CLIP
model as a frozen feature extractor. Clients only train and communicate our lightweight causal
module, drastically reducing both computational and communication overhead.

2. Inference Network qϕ: This network disentangles the input image features x to infer the posterior
distribution of the latent variables, qϕ(c, s, z|x).
3. Prompt-Guiding Mechanism: We design a shared Global Prompt (G-Prompt) and a private
Local Prompt (L-Prompt) to generate semantic anchor vectors, vG and vL, which capture domain-
invariant and domain-specific semantics, respectively. As shown in Eq. (3), a symmetric contrastive
loss, (Lprompt), then enforces a strong alignment between these latent representations and their cor-
responding anchors (s towards vG and z towards vL). This targeted semantic supervision provides
a powerful and direct signal to drive the causal disentanglement.

ŷ = [0, 1, . . . , B − 1], I = sim(z, vL), T = sim(vL, z), Lprompt =
1

2
(ℓ(I, ŷ) + ℓ(T, ŷ)) , (3)

where B is the number of samples in a batch, sim(·, ·) denotes the scaled cosine similarity matrix,
and ℓ is the cross-entropy loss.

Variational Inference and Objective Function. Based on the causal identifiability analysis, our
goal is to learn a model that can uncover the latent variables c, s, z, and ultimately enable robust
causal prediction p(y|c). Theoretically, this can be achieved by maximizing the log-likelihood of
the observed data (x, y). However, this likelihood requires integrating over all unknown latent
variables, i.e.,

log p(x, y) = log

∫
p(x, y, c, s, z) dc ds dz (4)

Directly optimizing this objective is intractable due to the complexity of the latent space. To ad-
dress this, we adopt the method of VI. The core idea of VI is to introduce a parameterized and
tractable variational distribution qϕ(c, s, z|x, y) to approximate the true but intractable posterior
p(c, s, z|x, y). We then jointly optimize the generative model (parameterized by θ) and the infer-
ence network (parameterized by ϕ) by maximizing the Evidence Lower Bound (ELBO). The ELBO
can be written as:

L(θ, ϕ;x, y) = Eqϕ(c,s,z|x,y)

[
log

pθ(x, y, c, s, z)

qϕ(c, s, z|x)

]
(5)

A standard form of the ELBO is constructed based on the inference network qϕ(c, s, z|x, y). How-
ever, when predicting on new samples, the label y is unknown, and therefore the inference net-
work cannot take y as input. Instead, we must use an inference network that conditions only on
x, i.e., qϕ(c, s, z|x). To integrate this x-only inference network into the ELBO framework, we
need to transform the objective function accordingly. By applying Bayes’ rule:q(c, s, z|x, y) =
q(y|x,c,s,z)q(c,s,z|x)

q(y|x) and incorporating our causal assumption—that y is determined solely by c—we
derive an equivalent, optimizable objective function. Appendix C provides the full derivation.

L = Ep∗(x,y)

[
log qϕ(y|x)︸ ︷︷ ︸

(a)

+
1

qϕ(y|x)
Eqϕ(c,s,z|x)

[
pθ(y|c) log

pθ(c, s, z)pθ(x|s, z)
qϕ(c, s, z|x)

]
︸ ︷︷ ︸

(b)

]
(6)

Here, term (a), log qϕ(y|x), is a standard supervised prediction loss. Term (b) acts as a causal con-
sistency regularizer, ensuring the prediction from (a) aligns with our predefined causal generative
process, rather than relying on simple pattern matching. The core expectation within term (b) mea-
sures the alignment between our inference network qϕ and the generative model pθ. Given our
structured inference network, qϕ(c, s, z|x) = qϕ(s|x)qϕ(z|x)qϕ(c|s, z), this term can be expanded
as follows:

5
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Eqϕ(c,s,z|x)

[
log

pθ(c)pθ(s, z|c)pθ(x|s, z)
qϕ(s|x)qϕ(z|x)qϕ(c|s, z)

]
= Eqϕ(s|x)qϕ(z|x) [log pθ(x|s, z)]

−KL(qϕ(c|s, z)∥pθ(c))−KL(qϕ(s|x)∥pθ(s|c))−KL(qϕ(z|x)∥pθ(z|c))
(7)

In essence, this decomposition reveals two key components: a reconstruction term pθ(x|s, z) that
ensures fidelity to the input data, and KL divergence regularizers that promote a structured, disen-
tangled latent space. Thus, our full objective (Eq. 6) compels the model to marry accurate prediction
with adherence to the proposed causal structure.

4 EXPERIMENTS

This section presents our experimental setup and results. We first describe the datasets and baselines,
then show main results with comparisons to SOTA methods, demonstrating our model’s superiority.
Finally, ablation studies validate the contribution of each component in CauFed-CLIP. Further details
and code are in Appendix D.

4.1 DATASETS

We evaluate the model’s performance in domain generalization and robustness to covariate
shift across multiple challenging benchmarks. For domain generalization, we employ four clas-
sic datasets: PACS, which includes four distinct domains—Photo, Art Painting, Cartoon, and
Sketch—with 7 categories; OfficeHome, covering four domains—Art, Clipart, Product, and Real-
World—with 65 object classes; ModernOffice-31, an extended version of Office-31, comprising four
domains—Amazon, Webcam, DSLR, and Synthetic—with 31 categories; and Brain Tumor (BT), a
public medical imaging dataset containing four types of tumors, where different imaging devices or
patient cohorts can be treated as distinct domains. For covariate shift evaluation, we use CIFAR-10
and CIFAR-100 as in-distribution (IN) training and evaluation data, and further employ CIFAR-10-
C and CIFAR-100-C as out-of-distribution test sets. These two datasets are generated by applying
19 types of algorithmic corruptions to the original test sets to simulate real-world covariate shifts.
More details regarding the datasets and their splits can be found in Appendix C.

Table 1: Leave-Two-Domain-Out generalization accuracy (%) on PACS, reported as mean ± stan-
dard deviation over 3 independent runs on data partitioned by a Dirichlet distribution (source domain
standard deviation is detailed in Appendix D).

Source Target

Method S A Avg

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C P

FedCLIP 85.24 88.89 86.98 82.7 76.28 90.0 79.49 83.33 97.54 100.0 94.99±0.5 97.46±0.7 88.57
FedProx 92.46 86.67 90.31 87.62 91.79 89.46 83.67 87.31 84.62 88.79 91.46±1.2 92.19±1.4 88.86
FedAVG 90.93 89.45 92.92 87.36 93.08 87.93 86.45 89.92 84.36 90.08 91.56±1.0 92.96±1.2 89.75
MOON 91.69 83.89 93.44 88.39 92.44 88.69 80.89 90.44 85.39 89.44 91.20±1.6 92.46±0.1 89.03
FAACLIP 92.89 88.89 89.06 84.73 88.55 90.00 76.92 90.36 97.32 95.83 96.33±0.3 98.76±0.3 90.82
Ours 93.13 88.89 94.79 87.28 86.54 93.33 94.87 90.91 97.32 97.74 97.63±0.3 99.70±0.0 93.51

P S

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C A

FedCLIP 100.0 96.97 97.96 97.06 100.0 83.46 86.11 85.94 80.91 75.64 94.09±0.4 95.9±0.3 91.17
FedProx 98.68 96.88 93.64 93.04 97.91 85.55 87.06 85.64 85.04 86.93 83.28±0.8 85.50±0.6 89.93
FedAVG 98.68 96.88 93.64 92.06 95.00 84.10 86.93 84.96 84.06 87.03 80.14±1.0 82.76±0.3 88.86
MOON 100.0 96.88 93.64 93.04 95.00 87.00 86.33 85.64 85.04 87.00 82.21±0.2 85.01±0.4 89.73
FAACLIP 100.0 96.97 96.32 98.02 100.0 82.44 88.89 85.94 84.48 79.49 96.47±0.2 94.86±0.1 91.99
Ours 100.0 100.0 97.96 97.06 100.0 93.38 86.11 94.27 86.26 83.33 97.65±0.3 96.37±0.5 94.37

4.2 BASELINE METHODS

To validate the effectiveness of CauFed-CLIP in handling unseen domain and covariate shift data, we
compared it against a series of SOTA FL models. The selected baselines include the classic FedAvg
(McMahan et al., 2017); FedProx (Li et al., 2020) and MOON (Li et al., 2021a), which address data
heterogeneity; and FedLN (Wei et al., 2022) and FedIIR (Guo et al., 2023b), which target specific
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Table 2: Accuracy(%) on multiple unseen domains of the OfficeHome dataset. Bold means the best.

Method Source Target Avg Source Target Avg
A C R P A R C P

FedCLIP 75.62 77.06 87.79 88.56 82.26 75.21 88.28 65.50 88.80 79.45
FedProx 64.88 72.94 70.25 66.66 68.68 71.07 80.00 56.66 72.94 70.17
FedAVG 67.36 71.33 71.38 67.04 69.28 67.36 82.07 57.73 71.91 69.77
MOON 67.36 71.33 71.43 67.02 69.28 73.55 86.90 63.39 86.46 77.57
FAA-CLIP 75.21 77.06 87.54 88.06 81.97 74.79 88.51 65.64 88.51 79.36
Ours 77.27 80.28 87.87 89.49 83.73 76.01 88.51 67.11 89.22 80.21

C R A P Avg R P A C Avg

FedCLIP 76.83 89.43 77.30 88.76 83.08 88.97 91.65 77.67 66.27 81.14
FedProx 72.48 78.16 66.54 72.47 72.41 75.63 80.59 61.48 54.62 68.08
FedAVG 72.25 79.77 65.64 70.92 72.14 75.40 81.49 62.01 55.58 68.62
MOON 76.83 79.77 60.86 71.82 72.32 86.90 84.88 74.82 63.39 77.50
FAA-CLIP 76.38 89.43 77.54 88.51 82.97 88.18 91.20 77.50 66.21 80.77
Ours 78.90 88.74 77.96 89.24 83.71 88.97 92.10 78.17 67.56 81.90

Table 3: Accuracy(%) in the OfficeHome dataset.

Method Source Target Avg Source Target Avg
C P R A A P R C

FedCLIP 68.61 87.37 88.06 78.00 80.51 78.97 87.60 87.60 63.69 79.46
FedProx 64.38 79.14 78.76 65.60 71.97 73.81 80.38 80.48 57.64 73.08
FedAVG 64.38 79.14 78.76 65.60 71.97 73.81 80.38 80.48 57.64 73.08
MOON 69.87 78.02 79.56 65.60 73.26 70.93 80.38 80.83 52.94 71.27
PromptFL 82.75 92.13 87.73 71.88 83.62 78.75 92.71 87.27 66.66 81.35
FAA-CLIP 76.98 90.87 88.86 78.20 83.73 81.44 91.65 90.58 66.39 82.51
Ours 76.30 92.15 90.11 78.83 84.35 76.39 90.67 89.54 67.38 81.00

A C R P Avg A C P R Avg
FedCLIP 78.56 68.50 87.37 87.52 80.49 78.35 68.38 87.94 87.79 80.61
FedProx 69.07 66.21 77.79 71.64 71.18 70.93 68.73 77.73 75.42 73.20
FedAVG 69.07 66.21 77.79 71.64 71.18 70.93 68.73 77.73 75.42 73.20
MOON 71.55 67.70 79.33 71.21 72.45 67.42 69.30 76.32 75.81 72.21
PromptFL 77.71 80.79 88.31 85.19 83.00 77.50 83.22 90.97 85.48 84.29
FAA-CLIP 81.03 75.49 90.81 89.34 84.29 78.76 76.98 90.64 88.11 83.62
Ours 77.69 79.13 90.91 89.54 84.32 76.64 77.06 91.20 88.47 83.34

distribution shifts. Furthermore, we included recent methods that also leverage pre-trained models
like CLIP, such as FedCLIP (Lu et al., 2023), PromptFL (Guo et al., 2023a), FOOGD (Liao et al.,
2024), and FAA-CLIP (Wu et al., 2025).

4.3 EXPERIMENTAL RESULTS

4.3.1 PERFORMANCE EVALUATION UNDER DOMAIN SHIFT.

This part focuses on exploring the generalization capability of CauFed-CLIP when handling data
from different domains. We further divide the evaluation into two scenarios.

Multiple domains as unseen clients. Results for PACS. Table 1 presents a performance com-
parison of our method against several baselines using leave-two-domain-out cross-validation. The
experimental setup utilizes a Dirichlet distribution to simulate data heterogeneity among clients.
The results show that our method comprehensively outperforms all competing methods in terms of
overall performance. Specifically, our method achieves leading average accuracies of 93.51% and
94.37% in the two cross-validation scenarios. It also demonstrates superior generalization across
all unseen target domains, with the highest scores on each (e.g., 97.63%, 99.70%, 97.65%, and
96.37%).
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Figure 3: Test accuracy (ACC), balanced accuracy (BACC), and macro-F1 for each communication
round on the OfficeHome, with Real World (R) and Product (P) as source domains and Art (A) and
Clipart (C) as target domains.

Results for OfficeHome. The “leave-two-domains-out” cross-validation results in Table 2 strongly
confirm the overall superiority of our method. Across all domain split scenarios, our model not only
outperforms others on the unseen target domains, but also achieves the best average accuracy across
all domains. For example, in the first group of experiments, our average accuracy of 83.73% signifi-
cantly surpasses both FedAvg (69.28%) and FAA-CLIP (81.97%), demonstrating robust generaliza-
tion under complex domain shifts. Fig. 3 further illustrates this advantage. In the generalization task
from source domains (R, P) to target domains (A, C), our method (red curve) consistently and sig-
nificantly outperforms baselines across all key metrics (ACC, BACC, and F1) on the target domains,
while also maintaining highly competitive performance on the source domains. This indicates that
our model achieves strong generalization without sacrificing local performance.

Table 4: Robustness of methods on CIFAR-100-C (α = 0.1).
Corruption FedAvg FedLN FedIIR FedCLIP FOOGD FAACLIP Ours

None 51.67 52.48 51.63 52.87 53.84 51.09 62.55
Brightness 46.85 48.15 47.88 50.45 51.69 49.39 58.77
Fog 36.15 37.11 36.80 39.48 40.98 43.48 50.09
glass blur 20.96 27.32 19.67 37.92 27.44 33.75 35.38
Motion blur 32.95 35.09 33.34 38.07 39.68 32.33 45.08
Snow 35.09 38.60 35.69 39.40 40.64 36.56 47.97
Contrast 26.39 27.10 26.94 31.92 30.98 30.83 39.77
Frost 32.53 35.38 33.33 37.71 38.54 37.94 46.10
Impulse noise 22.99 24.26 21.84 29.16 26.24 28.13 35.37
Pixelate 34.41 36.11 33.31 40.76 42.52 37.08 46.34
Defocus blur 39.17 41.05 39.92 43.79 46.23 44.90 52.29
Compression 41.17 43.36 41.90 46.78 45.81 45.61 53.71
Transform 38.65 41.49 39.36 38.56 47.47 43.39 50.70
Gaussian noise 21.21 24.83 21.79 32.59 28.28 30.20 35.26
Shot noise 26.37 30.28 27.03 37.68 32.81 35.69 41.06
Zoom blur 33.82 36.51 34.75 37.28 41.62 36.96 47.69
Spatter 42.41 43.90 42.04 42.17 49.59 38.92 54.03
Gaussian blur 34.18 36.29 35.39 43.31 40.63 43.57 48.23
Saturate 38.59 39.43 38.92 39.90 44.87 36.69 51.35
Speckle 26.43 30.53 27.47 36.55 32.86 35.52 41.73

Avg 34.10 36.46 34.45 39.82 40.14 38.60 47.17

Single domain as unseen client. We employ a Leave-One-Domain-Out strategy on the challenging
Brain Tumor (Fig. 4) and OfficeHome (Table 3) datasets. In this setting, where each domain se-
quentially serves as an unseen test client, our method consistently outperforms all leading baselines
in both AUC and accuracy, demonstrating superior generalization to novel domains.

Performance Evaluation under Covariate Shift. We evaluate the model’s robustness to covari-
ate shift on CIFAR-100-C. As shown in Table 4, our method achieves the best clean accuracy
(62.55%) and consistently outperforms baselines across all corruptions,reaching an average accu-
racy of 47.17%. This demonstrates strong out-of-distribution generalization. Further experiments
on domain and covariate shifts are detailed in Appendix D.
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Figure 4: Comparison of ROC curves for different methods on the Brain Tumor (BT) dataset.

4.4 ABLATION STUDIES
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Figure 5: Ablation study on the choice
of VLM backbone. Performance com-
parison (BACC and F1-score) on seen
clients (Client0 to Client2) and the unseen
client (Clientunseen) using different Vision
Transformer (ViT) and ResNet (RN) mod-
els as the frozen feature extractor.

Analysis of backbone. We performed an ablation
study on the VLM backbone, testing various architec-
tures. The results in Fig. 5 reveal that performance
scales with the backbone’s strength. This is likely
because a more powerful feature extractor can pro-
vide higher-quality initial representations, containing
more distinct invariant and variant features with less
noise. This, in turn, provides a better foundation for
our causal module to perform effective disentangle-
ment and generalization.

Impact of K. Fig. 6 compares the BACC of different
algorithms on unseen domains with varying numbers
of clients (K=6, 10, and 20). As shown, our model
achieves the best results under all conditions, signifi-
cantly outperforming the others based on the average
of 3 independent runs.

Analysis of Performance under Data Heterogene-
ity and Covariate Shift. Fig. 7 shows the results
of our ablation study on the CIFAR-10. We simu-
lated varying degrees of data heterogeneity by adjust-
ing the parameter α and introduced brightness corruption (right) to simulate a covariate shift, which
was compared against a standard scenario (left). The results indicate that our method demonstrates a
consistent and significant advantage under all tested conditions. This finding proves that our model
possesses excellent robustness and performance stability when facing the dual challenges of data
heterogeneity and covariate shift. We provide additional ablation studies in Appendix E.
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Figure 6: Performance of various baselines
under different numbers of clients (K).
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Figure 7: Accuracy of various methods under covariate
shift scenario with different α.

5 CONCLUSION

In this paper, we proposed CauFed-CLIP, a novel FL framework designed to systematically address
the dual challenges of efficiency and domain generalization for Vision-Language Models. By inte-
grating a parameter-efficient strategy with a sophisticated causal disentanglement mechanism, our
model successfully learns robust, domain-invariant representations. Extensive experiments demon-
strated that CauFed-CLIP significantly outperforms existing SOTA methods, establishing a new and
promising direction for building reliable and scalable FL systems.
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A GENERAL STATEMENTS AND BROADER CONTEXT

A.1 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have included all necessary materials and code in the
appendix and supplementary materials. Complete theoretical derivations and proofs can be found in
Appendix B. The source code for our experiments is provided in the supplementary materials. For
further details regarding the experimental setup and hyperparameter configurations, please refer to
Appendix D and the documentation in the supplementary materials.

A.2 DECLARATION ON THE USE OF AI-ASSISTED TECHNOLOGIES

During the writing of this paper, we utilized the Gemini writing assistant to enhance the readability
and linguistic accuracy of the text. The tool was employed solely for grammatical improvements
and sentence restructuring to ensure clarity of expression. In accordance with the ICLR ethical
guidelines, all AI-generated suggestions were rigorously reviewed and edited by the authors, who
bear full responsibility for the scientific integrity and entire content of this publication.

B DERIVATION OF LEARNING OBJECTIVES

The objective of our causal model ‘p’ in the federated learning setting is to accurately capture the
true global data distribution p∗(x, y). This is achieved by maximizing the log-likelihood of the data,
Ep∗(x,y)[log p(x, y)].

However, the marginal log-likelihood log p(x, y) is intractable to compute directly, as it requires
integrating over all latent variables. To address this, we employ variational inference and instead
maximize the Evidence Lower Bound (ELBO), Lp,q , which is a lower bound on the log-likelihood
derived using Jensen’s inequality:

log p(x, y) = logEp(c,s,z) [p(x, y|c, s, z)]

= logEq(c,s,z|x,y)

[
p(c, s, z, x, y)

q(c, s, z|x, y)

]
≥ Eq(c,s,z|x,y)

[
log

p(c, s, z, x, y)

q(c, s, z|x, y)

]
≜ Lp,q(x, y)

(8)

Our goal is thus to maximize the expectation of this ELBO with respect to the true data distribution:
Ep∗(x,y)[Lp,q(x, y)].

To make this objective more practical and to explicitly isolate the predictive term for classification,
we rewrite the inference model q(s, z, c|x, y) using the identity q(s, z, c|x, y) = q(s,z,c,y|x)

q(y|x) , where
q(y|x) is the model’s predictive distribution for the label y.

By substituting this into the ELBO expectation, we can decompose the objective into more mean-
ingful components. Let d... = dsdzdcdxdy, then:
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Ep∗(x,y)[Lp,q(x, y)] =

∫
p∗(x, y)q(c, s, z|x, y) log p(s, z, c, x, y)

q(s, z, c|x, y)
d...

=

∫
p∗(x, y)

q(s, z, c, y|x)
q(y|x)

log
p(s, z, c, x, y)q(y|x)

q(s, z, c, y|x)
d...

=

∫
p∗(x, y)

q(s, z, c, y|x)
q(y|x)

log q(y|x)d...

+

∫
p∗(x, y)

q(s, z, c, y|x)
q(y|x)

log
p(s, z, c, x, y)

q(s, z, c, y|x)
d...

=

∫
p∗(x)

[
p∗(y|x)

∫
q(z, s, c, y|x)dzdsdc

q(y|x)
log q(y|x)dy

]
dx+∫

p∗(x)

[
p∗(y|x)
q(y|x)

∫
q(s, z, c, y|x) log p(s, z, c, x, y)

q(s, z, c, y|x)
dzdsdcdy

]
dx

=Ep∗(x)Ep∗(y|x)[log q(y|x)]

+ Ep∗(x)Eq(s,z,c,y|x)

[
p∗(y|x)
q(y|x)

log
p(s, z, c, x, y)

q(s, z, c, y|x)

]
︸ ︷︷ ︸

A

(9)

This decomposition yields two primary terms. The first term, Ep∗(x,y)[log q(y|x)], is the standard
cross-entropy loss for the classification task. The second term, which we denote as Term A, acts as
a regularizer that aligns our inference model q with the generative model p.

We can further simplify Term A. Based on our causal graph, we assume the factorization
q(s, z, c, y|x) = q(s, z|x)q(c|s, z)q(y|c) and p(s, z, c, x, y) = p(y|c)p(c)p(s, z|c)p(x|s, z). This
allows us to rewrite Term A as:

A =Ep∗(x)Eq(s,z,c,y|x)

[
p∗(y|x)
q(y|x)

log
p(s, z, c, x, y)

q(s, z, c, y|x)

]
=Ep∗(x)Eq(s,z,c,y|x)

[
p∗(y|x)
q(y|x)

log
p(y|c)p(c)p(s, z|c)p(x|s, z)
q(s, z|x)q(c|s, z)q(y|c)

]
=Ep∗(x)

[∫
q(s, z|x)q(c|s, z)q(y|c)p

∗(y|x)
q(y|x)

log
p(s, z, c, x)

q(s, z, c|x)
dsdzdcdy

]
=Ep∗(x)

[∫
p∗(y|x)
q(y|x)

(∫
q(s, z|x)q(c|s, z)q(y|c) log p(s, z, c, x)

q(s, z, c|x)
dsdzdc

)
dy

]
=Ep∗(x,y)

[
1

q(y|x)
Eq(s,z,c|x)

[
q(y|c) log p(s, z, c, x)

q(s, z, c|x)

]]
(10)

Putting it all together, and factorizing the generative model p according to our causal assumptions
as p(s, z, c, x) = p(c)p(s, z|c)p(x|s, z), we arrive at the final learning objective:

Ep∗(x)Ep∗(y|x)[log q(y|x)]

+ Ep∗(x,y)

[
1

q(y|x)
Eq(s,z,c|x)

[
q(y|c) log p(c)p(s, z|c)p(x|s, z)

q(s, z|x)q(c|s, z)

]]
(11)

This objective function is then optimized for each client and aggregated on the server as described
in the main text.

B.1 ANALYSIS AND INTERPRETATION OF TERM A IN THE OBJECTIVE FUNCTION

The second term in our overall learning objective (equation 11), denoted as Term A, is the key term
that ensures the consistency of our model’s causal structure:

A = Ep∗(x,y)

[
1

q(y|x)
Eq(s,z,c|x)

[
q(y|c) log p(c)p(s, z|c)p(x|s, z)

q(s, z|x)q(c|s, z)

]]
(12)
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To reveal the theoretical properties of this term during the model optimization process, we analyze
and transform it as follows:

A =Ep∗(x,y)

[
1

q(y|x)
Eq(s,z,c|x)

[
q(y|c) log p(c)p(s, z|c)p(x|s, z)

q(s, z|x)q(c|s, z)

]]
=Ep∗(x,y)

[
1

q(y|x)
Eq(s,z,c|x)

[
q(y|c)

(
log p(x|s, z) + log

p(s, z|c)
q(s, z|x)

+ log
p(c)

q(c|s, z)

)]]
=

∫
p∗(x)

p∗(y|x)
q(y|x)

q(s, z|x)q(c|s, z)q(y|c)(
log p(x|s, z) + log

p(s, z|c)
q(s, z|x)

+ log
p(c)

q(c|s, z)

)
dsdzdcdxdy

a
=

∫
p∗(x)q(s, z|x)q(c|s, z)q(y|c) log p(x|s, z)dsdzdcdxdy

+

∫
p∗(x)q(s, z|x)q(c|s, z)q(y|c) log p(s, z|c)

q(s, z|x)
dsdzdcdxdy

+

∫
p∗(x)q(s, z|x)q(c|s, z)q(y|c) log p(c)

q(c|s, z)
dsdzdcdxdy

=Ep∗(x)[Eq(s,z|x) log p(x|s, z)] + Eq(s,z|x) log
p(s, z|c)
q(s, z|x)

+ Eq(c|s,z) log
p(c)

q(c|s, z)

(13)

Step (a) above is based on Equation 11, where q(y|x) is optimized to approximate the true condi-
tional data distribution p∗(x, y).

Where,

Eq(s,z|x) log
p(s, z|c)
q(s, z|x)

= −DKL(q(s, z|x)||p(s, z|c))

and

Eq(c|s,z) log
p(c)

q(c|s, z)
= −DKL(q(c|s, z)||p(c))

Due to the non-negativity of the KL divergence (DKL(·||·) ≥ 0), therefore,

A = Ep∗(x)[Eq(s,z|x) log p(x|s, z)] + Eq(s,z|x) log
p(s, z|c)
q(s, z|x)

+ Eq(c|s,z) log
p(c)

q(c|s, z)
= Ep∗(x)[Eq(s,z|x) log p(x|s, z)]−DKL(q(s, z|x)||p(s, z|c))−DKL(q(c|s, z)||p(c))
≤ Ep∗(x)[Eq(s,z|x) log p(x|s, z)]
≤ Ep∗(x)[logEq(s,z|x)p(x|s, z)] ≤ Ep∗(x)[log p(x)]

(14)

This derivation explicitly shows that the objective of maximizing Term A is theoretically aligned
with the objective of maximizing the marginal log-likelihood of the data, log p(x), thus proving the
effectiveness of this regularization term.

C DATASET DETAILS

C.1 DATASETS

To comprehensively evaluate the performance of our model, we designed two core categories of
experiments: generalization to unseen domains and robustness to data shifts. To this end, we selected
a series of benchmark datasets covering both natural images and specialized medical images.

C.1.1 EVALUATION OF GENERALIZATION TO UNSEEN DOMAINS.

In this section, we aim to test the model’s performance when encountering data from entirely new
distributions (i.e., “unseen domains” or “unseen clients”). We selected the following four datasets,
which are widely used in domain generalization research.
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• PACS: This is a classic benchmark dataset for domain generalization in image classifica-
tion. It consists of four domains with distinct styles: Photo (P), Art Painting (A), Cartoon
(C), and Sketch (S). These four domains share the same 7 object categories. Due to the
significant visual style differences between the domains (i.e., a large domain gap), PACS
serves as an ideal choice for evaluating whether the knowledge learned from known do-
mains can be generalized to unknown styles.

• Office-Home: This is a larger-scale image classification benchmark designed for domain
adaptation and generalization tasks. It contains approximately 15,500 images covering 65
categories of everyday objects, distributed across four visually distinct domains: Artistic,
Clipart, Product, and Real-World. For each domain within this dataset, we strictly partition
the data into a 60% training set, a 20% validation set, and a 20% test set to ensure fairness
and consistency in our evaluation.

• Brain Tumor (BT): To extend our evaluation to the critical domain of medical imaging,
we adopted this public Kaggle dataset. The dataset consists of images based on brain mag-
netic resonance imaging scans, classified into four diagnostic categories: glioma tumor,
meningioma tumor, pituitary Tumor, and no Tumor. In this context, different hospitals,
scanning devices, or patient demographics can be considered as distinct ”domains,” mak-
ing it an excellent use case for testing the model’s generalization capabilities in realistic
medical environments.

• Modern-Office31: This is a refined variant of the classic Office-31 dataset, which increases
the complexity of the challenge by introducing synthetic data. This dataset focuses on 31
categories related to office supplies and includes four domains: Amazon images collected
from e-commerce websites, images captured by a low-resolution Webcam, images taken
with a high-resolution DSLR camera, and an algorithmically generated Synthetic image
domain. For data within each domain, we follow an 80% for training and 20% for testing
split.

C.2 SIMULATING REAL-WORLD NON-IID CLIENT DATA

To simulate the non-Independent and Identically Distributed (Non-IID) scenarios of real-world FL,
we partition the entire original training and testing datasets among all clients. The core of this data
partitioning strategy is the use of a Dirichlet distribution to control the data composition for each
client (Hsu et al., 2019).

Specifically, for each client k, we sample the proportion of samples for each class j, denoted as
pj,k, from a Dirichlet distribution: pj,k ∼ Dir(α). In this setup, the hyperparameter α precisely
controls the degree of data heterogeneity among clients. A smaller value of α results in stronger
data heterogeneity, meaning greater discrepancies in data distribution across clients. Conversely, a
larger α value leads to a more uniform data distribution.

In our specific experimental settings, we adopted the following strategies for different datasets:

• For the PACS dataset: This dataset comprises multiple domains, such as Art Painting,
Cartoon, Photo, and Sketch. We evenly distribute the data from each domain among 5
clients to simulate clients from distinct data sources. The remaining unseen domains are
held out to simulate “unseen clients” not encountered during the training process.

• For the CIFAR-10/100 datasets: We construct varying degrees of data heterogeneity by
setting different values for α. This allows for a comprehensive evaluation of the model’s
performance under different levels of Non-IID conditions.

D EXPERIMENTAL IMPLEMENTATION DETAILS

D.1 IMPLEMENTATION DETAILS

All our experiments were conducted under a unified federated learning framework. The global
training process consists of 50 communication rounds. In each round, clients perform local updates,
after which their model parameters are sent back to the server for aggregation. All experiments
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were implemented on an NVIDIA GeForce RTX 3090 GPU, with a software environment based on
PyTorch 2.1.2 and Python 3.10.

Configuration for Cross-Domain Generalization Experiments: When evaluating the model’s
performance on unseen domain clients (using datasets such as PACS and Office-Home), we em-
ployed a pre-trained ViT-B/32 model as the backbone for the image encoder. Throughout the train-
ing process, we froze the parameters of the CLIP encoder to fully leverage its powerful pre-trained
features. For the local training on clients, we used the Adam optimizer with hyperparameters set to
β1 = 0.9 and β2 = 0.98, and a weight decay of 0.02. The local learning rate was fixed at 5e − 5,
and each client performed 5 local epochs of training with a batch size of 32 in each communication
round.

Configuration for Covariate Shift Robustness Experiments: To assess the model’s capability
against covariate shift (i.e., on the CIFAR-10-C/100-C datasets), we selected a WideResNet ? as the
feature extraction model. During the local training phase on clients, we also set the number of local
training epochs to 5. Model optimization was carried out using the SGD optimizer. The learning
rate for both the feature encoding model and our proposed causal model was uniformly set to 0.001.

Table 5: Leave-Two-Domain-Out cross-validation accuracy (%) on the PACS based on a dirichlet
distribution. C1 − C5 and C6 − C10 are groups of clients from two different source domains.

Source Target

Method S A Avg

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C P

FedCLIP 85.24±2.0 88.89±3.9 86.98±0.7 82.70±1.8 76.28±0.9 90.00±0.4 79.49±3.6 83.33±2.1 97.54±0.6 100.0±0.1 94.99±0.5 97.46±0.7 88.57
FedProx 92.46±0.7 86.67±0.0 90.31±2.2 87.62±1.4 91.79±0.9 89.46±0.0 83.67±0.3 87.31±3.6 84.62±2.1 88.79±5.9 91.46±1.2 92.19±1.4 88.86
FedAvg 90.93±2.9 89.45±3.9 92.92±1.5 87.36±1.1 93.08±0.6 87.93±1.0 86.45±3.6 89.92±2.1 84.36±0.3 90.08±1.2 91.56±1.0 92.96±1.2 89.75
MOON 91.69±2.2 83.89±3.9 93.44±1.3 88.39±1.8 92.44±0.9 88.69±0.0 80.89±0.0 90.44±0.0 85.39±0.5 89.44±0.0 91.20±1.6 92.46±0.1 89.03
FAACLIP 92.89±1.2 88.89±3.9 89.06±2.2 84.73±2.9 88.55±0.0 90.0±0.0 76.92±0.0 90.36±3.2 97.32±0.6 95.83±2.9 96.33±0.3 98.76±0.3 90.82
Ours 93.13±1.2 88.89±3.9 94.79±1.5 87.28±2.5 86.54±1.6 93.33±4.7 94.87±3.6 90.91±2.1 97.32±0.0 97.74±0.0 97.63±0.3 99.70±0.0 93.51

P S

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C A

FedCLIP 100.0±0.0 96.97±0.5 97.96±1.0 97.06±1.4 100.0±0.0 83.46±1.6 86.11±3.9 85.94±5.3 80.91±1.1 75.64±0.9 94.09±0.4 95.9±0.3 91.17
FedProx 98.68±2.1 96.88±1.4 93.64±1.0 93.04±1.4 97.91±0.0 85.55±0.9 87.06±0.7 85.64±3.6 85.04±0.6 86.93±0.9 83.28±0.8 85.50±0.6 89.93
FedAvg 98.68±2.1 96.88±0.0 93.64±1.0 92.06±1.4 95.00±0.6 84.10±0.4 86.93±0.9 84.96±1.0 84.06±0.7 87.03±0.9 80.14±1.0 82.76±0.3 88.86
MOON 100.0±0.0 96.88±1.2 93.64±1.0 93.04±1.4 95.00±0.5 87.00±3.2 86.33±1.3 85.64±0.0 85.04±1.0 87.00±0.9 82.21±0.2 85.01±0.4 89.73
FAACLIP 100.0±0.0 96.97±0.0 96.32±1.0 98.02±1.4 100.0±0.0 82.44±4.7 88.89±3.9 85.94±2.9 84.48±2.9 79.49±3.6 96.47±0.2 94.86±0.1 91.99
Ours 100.0±0.0 100.0±0.0 97.96±0.0 97.06±0.9 100.0±0.0 93.38±2.9 86.11±3.9 94.27±1.5 86.26±1.6 83.33±2.4 97.65±0.3 96.37±0.5 94.37

c 0 c 1 c 2 c 3 c 4 c 5 c 6

Classes
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C2
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s

Per-client Class Distribution (C C )
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Per-client Class Distribution (C C )

Figure 8: An illustrative example of the simulated data distribution for the ”kite” class from the
PACS dataset across different clients. In the figure, C1 to C5 represent five clients, and c1 to c7
represent seven subclasses.

D.2 GENERALIZATION TO MULTIPLE UNSEEN DOMAINS (PACS)

Experimental Design: The experiment employs a rigorous Leave-Two-Domain-Out Cross-
validation methodology on the classic domain generalization benchmark, the PACS dataset. It sim-
ulates a non-IID federated learning environment where ten groups of clients (C1 to C10) source
their data from only two of the four PACS domains (typically Photo (P), Art Painting (A), Cartoon
(C), and Sketch (S)), designated as “Source Domains.” The data allocation follows a Dirichlet dis-
tribution to model the stylistic and content-based heterogeneity among clients. After training, the
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Figure 9: Performance Comparison of Federated Models Across Classes on ModernOffice31. Left:
Sketch and Art Painting as source domains, Cartoon and Photo as target. Right: Photo and Art
Painting as source domains, Cartoon and Photo as target.
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model’s performance is evaluated not only on the source domains but, more critically, on the two
entirely unseen ”Target Domains,” which directly measures its generalization capability.

Results Analysis: The table 5 is divided into two sections, each presenting the test results from a
different combination of source and target domains.

• Overall Performance: Looking at the final average accuracy (Avg) column, our model
(Ours) achieves the leading overall performance in both experimental setups. In the top
half of the table, our model reaches a mean accuracy of 93.51%, significantly outperform-
ing all baseline methods, such as the runner-up FAACLIP (90.82%) and the conventional
FedAvg (89.75%). Similarly, in the bottom half, our model once again takes the lead with
an accuracy of 94.37%, demonstrating its consistent superiority.

• Generalization Ability: The most critical metric in this experiment is the performance on
the Target domains. In this aspect, our model performs exceptionally well. For instance, in
the first experimental setup (top half), our model achieves impressive accuracies of 97.63%
and 99.70% on the two unseen domains, C and P, respectively. In the second setup (bottom
half), it also obtains high scores of 97.65% and 96.37% on the unseen C and A domains.
This provides strong evidence that our model can effectively learn generalizable features
from the source domains, rather than merely overfitting to their superficial statistical pat-
terns.

In summary, this experiment, conducted under the challenging “leave-two-domain-out” setting, sys-
tematically demonstrates the powerful generalization capability of our model. Compared to other
algorithms, our model is not only robust on the known source domains but, more importantly, can
more successfully transfer its knowledge to entirely new, unseen data distributions, showcasing ro-
bustness and high accuracy that far exceed existing methods.

Table 6: Leave-Two-Domain-Out generalization accuracy (%) on PACS.
Source Target

Method A C Avg

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P S

FedCLIP 98.66 92.31 100.0 100.0 97.87 100.0 84.62 90.91 96.64 87.5 98.34 84.19 94.28
FedAVG 97.32 92.31 100.0 100.0 95.74 90.0 84.62 81.82 95.97 100.0 97.66 82.61 93.17
FAACLIP 97.32 92.31 100.0 100.0 94.01 90.0 84.62 90.91 96.64 100.0 98.70 85.31 94.15
Ours 97.32 92.31 100.0 100.0 97.87 90.0 84.62 95.45 97.32 100.0 99.64 86.43 95.08

C P

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 S A

FedCLIP 97.99 92.31 100.0 100.0 95.74 95.65 100.0 97.96 97.06 100.0 83.79 96.19 96.39
FedAVG 98.66 92.31 100.0 100.0 96.14 91.65 83.34 97.96 97.06 100.0 81.64 92.99 94.31
FAACLIP 96.64 92.31 100.0 100.0 94.01 95.84 100.0 97.96 97.06 100.0 83.45 94.75 96.00
Ours 96.64 92.31 100.0 100.0 97.87 95.65 100.0 97.96 97.06 100.0 85.53 96.90 96.66

C S

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P A

FedCLIP 97.32 92.31 100.0 100.0 96.14 92.95 83.33 95.31 92.37 86.54 98.40 95.14 94.15
FedAVG 97.32 92.31 100.0 100.0 95.74 80.92 83.33 85.94 79.39 76.92 97.66 94.91 90.36
FAACLIP 96.64 92.31 100.0 100.0 96.14 92.95 83.33 96.88 93.13 86.54 98.76 95.34 94.33
Ours 97.99 92.31 100.0 100.0 97.87 93.13 83.33 95.31 86.26 82.69 99.70 96.48 93.76

The experiment in Table 6 involves three cross-domain scenarios: using art (A) and cartoon (C) as
source domains with photo (P) and sketch (S) as target domains; using C and P as source domains
with S and A as target domains; and using C and S as source domains with P and A as target domains.
Each method was trained on 10 clients (C1 − C10) and evaluated separately on the target domains.

The results demonstrate that the proposed method (Ours) achieves the best performance on the
target domains: in the first scenario, it reaches 99.64% on domain P and 86.43% on domain S; in
the second scenario, it achieves 85.53% on domain S and 96.90% on domain A; and in the third
scenario, it attains 99.70% on domain P and 96.48% on domain A. These values are the highest
among all compared methods, highlighting its exceptional cross-domain generalization capability.
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Figure 10: Performance Comparison of Federated Models Across Classes on ModernOffice31. Left:
Photo and Sketch as source domains, Cartoon and Art Painting as target. Right: Cartoon and Art
Painting as source domains, Photo and Sketch as target.
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Figure 11: Performance Comparison of Federated Models Across Classes on ModernOffice31. Left:
Cartoon and Sketch as source domains, Photo and Art Painting as target. Right: Cartoon and Photo
as source domains, Sketch and Art Painting as target.
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D.3 GENERALIZATION TO MULTIPLE UNSEEN DOMAINS (MODERNOFFICE31)

This set of experiments (as shown in Figures 9, 10, and 11) evaluates the domain generalization
capability of our model using a Leave-Two-Domain-Out cross-validation protocol. The experiments
were conducted on the ModernOffice31 dataset, which contains four domains (Sketch, Art Paint-
ing, Cartoon, and Photo). In each round of testing, the model is trained using data from only two
domains as the Source, and then its performance is evaluated on the other two completely unseen
domains as the Target. By rotating through different combinations of source and target domains, this
experimental setup comprehensively examines the ability of each algorithm to learn generalizable
knowledge from limited and biased data.

Analysis of Results on Unseen Domains: When focusing on the model’s performance on the Target
Domains, a clear and significant advantage of our model can be observed across three key metrics:
Accuracy (ACC), Balanced Accuracy (BACC), and F1 Score.

1. Accuracy Comparison (Bar Charts): In the bar chart section of each figure, the bars
corresponding to the “Target” domains clearly display how each model performs after being
introduced to a new environment. In almost all test configurations (e.g., Cartoon and Photo
as target domains in the left panel of Figure 9, and Sketch and Art Painting as targets in
the right panel of Figure 11), the dark green bar representing our model is consistently the
highest among the target domains. This visually indicates that our model can maintain the
highest classification accuracy when faced with unseen data distributions.

2. Cross-Domain Performance Trend (BACC Line Charts): The line charts in the middle
vividly reveal the performance degradation of each model when transitioning from source
to target domains, measured by BACC. BACC effectively evaluates model performance, es-
pecially under class imbalance. Most baseline methods, particularly FedAvg and FedProx,
exhibit a sharp drop in their BACC curves upon entering the target domains, showing that
their generalization ability is fragile against domain shifts and potential class imbalances.
In contrast, while our model’s curve also shows a slight decline, it consistently remains
above all other curves, and its rate of decline is comparatively gentler. This demonstrates
that our model possesses stronger robustness against domain shifts, with minimal perfor-
mance loss.

3. F1 Score Comparison (Heatmaps): The heatmaps at the bottom provide the most granular
performance measurement. Observing the columns corresponding to the target domains,
the cells in the row for our model are consistently the darkest in color, representing the
highest values. For example, in the right panel of Figure 10, when Photo and Sketch are the
target domains, our model achieves F1 scores of 0.67 and 0.87, respectively, significantly
outperforming all other methods. This indicates that our model is more reliable.

In summary, this comprehensive experiment, conducted under the highly challenging ”leave-two-
domain-out” setting, provides powerful evidence of our model’s superior domain generalization
capability. Compared to other algorithms, when transitioning from two source domains to two
entirely new, unseen target domains, our model demonstrates a consistent and significant lead across
all key performance metrics. This proves its ability to more effectively learn core features that are
generalizable and independent of any specific domain.

D.4 GENERALIZATION TO A SINGLE UNSEEN DOMAIN

Table 7 presents a comparative experiment conducted on the domain generalization dataset, Mod-
ernOffice31. This experiment follows the Leave-One-Domain-Out cross-validation protocol. The
ModernOffice31 dataset comprises four distinct domains. In each round of the experiment, three
of these domains are selected as “Source Domains for training, while the remaining one is used
as a completely unseen “Target Domain for testing. This process is repeated four times, ensuring
that each domain serves as the target domain once, thereby comprehensively evaluating the ability of
each model (including our model “Ours” and six other baseline methods like FedCLIP and FedProx)
to learn from multi-source data and generalize to unknown environments.

The four sections of the table correspond to the results of the four cross-validation rounds, with the
data clearly demonstrating the superiority of our model.
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Method Source Target Avg
A D S W

FedCLIP 91.82 94.94 65.00 88.42 85.04
FedProx 82.41 81.82 74.03 79.49 79.43
FedAVG 59.07 69.38 59.67 64.53 63.16
MOON 84.01 81.82 74.68 83.14 80.91
PromptFL 90.05 78.79 79.52 68.23 79.15
FAA-CLIP 95.38 98.99 82.74 91.95 92.26
Ours 95.55 95.92 85.42 91.06 91.99

D S W A

FedCLIP 95.95 65.32 88.05 90.06 84.84
FedProx 89.90 59.52 90.57 66.88 76.71
FedAVG 88.89 49.19 91.19 42.81 68.02
MOON 95.96 65.81 91.19 66.92 79.97
FAA-CLIP 100.0 80.32 94.34 92.19 91.71
Ours 97.96 78.71 94.54 92.51 90.93

S W A D

FedCLIP 64.67 86.16 91.82 89.15 82.95
FedProx 73.55 90.57 81.53 89.36 83.75
FedAVG 76.94 93.08 82.59 92.17 86.19
MOON 75.00 92.45 87.39 85.74 85.14
PromptFL 79.68 77.99 90.41 67.71 78.95
FAA-CLIP 81.93 93.71 95.38 95.98 91.75
Ours 84.84 92.28 95.73 96.58 92.36

W A D S

FedCLIP 87.42 91.47 95.95 54.77 82.40
FedProx 91.82 81.17 89.90 46.45 77.33
FedAVG 95.60 80.46 97.98 45.87 79.97
MOON 94.34 82.06 89.90 54.77 80.27
PromptFL 81.76 88.45 85.86 32.49 72.14
FAA-CLIP 96.23 94.85 98.99 57.10 86.79
Ours 96.21 94.65 95.92 56.82 85.90

Table 7: Accuracy(%) in the ModernOffice31 dataset. Bold means the best.

• Overall Performance: Based on the final average accuracy (Avg), our model performs
best in the vast majority of cases. Across the four experimental configurations, our model
achieved the highest overall average score in three of them, with figures of 91.99%, 90.93%,
and 92.36%, respectively. This indicates that our model can maintain top-tier and robust
overall performance regardless of the source and target domain combination.

• Generalization to Target Domain: The most critical metric for measuring domain general-
ization capability is the accuracy on the unseen “Target Domain”. Our model also shows
outstanding performance in this regard. For instance, in the third section of the experiment,
when the unseen domain “D” was the target, our model achieved the highest accuracy of
96.58%. In the first section, although FAA-CLIP held a slight advantage on the target
domain W, our model surpassed it in overall average score, proving its stronger holistic
robustness.

This experiment systematically demonstrates the powerful domain generalization capabilities of our
model. Compared to other algorithms, our model not only learns effectively from multiple known
source domains but, more importantly, can efficiently transfer this learned knowledge and apply it to
entirely new, unseen data distributions, consistently maintaining top-level prediction accuracy and
stability in varying test environments.
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Figure 12: An illustrative example of the simulated data distribution for the “kite” class from the
CIFAR100 dataset across different clients. In the figure, C1 to C10 represent ten clients, and c0 to
c100 represent classes.

Corruption Type FedAvg FedLN FedIIR FedCLIP FOOGD FAA-CLIP Ours
None 68.03 75.24 68.26 72.92 75.09 81.26 86.83
Brightness 65.73 71.77 66.12 69.04 73.71 80.39 85.00
Fog 53.89 60.82 54.85 62.68 60.96 69.70 73.79
Frosted glass blur 43.13 42.33 44.53 68.86 45.80 68.77 77.19
Motion blur 41.30 52.65 44.23 68.96 51.05 69.36 77.69
Snow 54.80 60.55 55.52 67.97 61.90 71.60 80.19
Contrast 41.25 45.02 41.35 56.31 49.14 58.51 68.41
Frost 56.21 58.22 55.91 64.63 63.84 69.24 78.00
Impulse noise 49.32 50.52 48.45 67.47 52.33 67.82 74.51
Pixelate 56.88 62.00 59.10 70.70 64.37 79.21 80.05
Defocus blur 52.37 61.08 52.72 69.93 58.66 74.40 80.47
Jpeg compression 61.56 68.61 60.46 70.78 66.55 78.46 84.36
Elastic transform 52.12 61.29 53.21 68.99 59.18 73.87 81.97
Gaussian Noise 48.66 50.25 49.15 69.20 53.92 69.77 71.03
Shot noise 52.73 54.55 53.09 69.59 58.31 70.53 78.37
Zoom blur 45.15 54.88 46.57 68.29 52.97 68.71 78.35
Spatter 62.18 67.33 60.97 69.47 65.31 78.73 83.22
Gaussian blur 46.86 55.64 47.51 68.99 53.26 70.38 71.03
Saturate 63.62 71.76 63.32 68.33 71.98 80.36 84.73
Speckle noise 52.25 54.30 53.20 69.81 57.72 70.35 77.92
Avg. 53.40 58.94 53.93 68.15 59.8 72.57 78.66

Table 8: Generalization Performance of Federated Learning Methods on CIFAR-10-C (Trained on
CIFAR-10 with α = 0.1)– Vertical Comparison

D.5 PERFORMANCE EVALUATION UNDER COVARIATE SHIFT

The experimental results in Table 8 clearly demonstrate the exceptional robustness of the “Ours”
method within a federated learning environment. The data shows that for all 19 corruption types
listed, as well as for the original, uncorrupted test set, the classification accuracy of the “Ours”
method is significantly superior to the other six comparative methods, with a particularly pronounced
performance advantage on corruption types such as “JPEG Compression,” “Saturate,” and “Spatter.”
This is further substantiated by the final average performance (Avg.). The “Ours” method achieved a
high average accuracy of 78.66%, far surpassing the runner-up, FAA-CLIP (72.57%), and marking
a massive improvement of over 25 percentage points compared to the classic baseline algorithm,
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Figure 13: Model Performance on CIFAR-10-C and CIFAR-100-C.

FedAvg (53.4%). These figures provide compelling evidence that the proposed method not only
excels under ideal conditions but also displays powerful generalization capabilities and stability
when confronted with various simulated real-world data corruptions, highlighting its significant
potential for practical applications.

Figure 13 presents a detailed performance comparison of our model (Ours) against six baseline algo-
rithms on the CIFAR-10-C and CIFAR-100-C datasets. The reported Mean Accuracy is the average
performance across various types of data corruptions (e.g., blur, noise, weather effects), which pro-
vides a comprehensive evaluation of each model’s robustness. The results clearly indicate that our
model achieves the best performance on both datasets. Specifically, on CIFAR-10-C, our model
reached a mean accuracy of 78.2%, significantly outperforming the next-best model, FAA-CLIP
(72.1%). On the more challenging CIFAR-100-C dataset, which features more classes, our model
also ranked first with an accuracy of 46.4%, further widening the performance gap with the second-
place FAA-CLIP (37.9%). This data provides strong evidence that, compared to existing methods,
our model possesses superior generalization ability and robustness when faced with unknown distri-
bution shifts and data corruptions.

Figure 12 shows the per-client class distribution on the CIFAR-100 dataset with a Dirichlet distri-
bution parameter of α = 0.1. The left subfigure illustrates a smooth distribution, while the right
subfigure presents a sparse one, revealing significant differences in class distributions across clients
under the Non-IID setting.

E ABLATION STUDIES

To further investigate the performance and stability of our proposed model under different client
scales, we conducted an ablation study where the total number of clients, K, was set to 6, 10, and
20, respectively. We compared our method with a series of baseline models: FAACLIP, FedAvg,
FedCLIP, FedProx, and MOON. The experimental results are shown in Figure 14, where the left
plot displays the mean accuracy (ACC, Mean ± Std) on the target domain, and the right plot shows
the mean AUC values.

As can be clearly seen from both plots, our method (red line/bar) consistently and significantly
outperforms all baseline models across all settings of client numbers. Our model achieves the highest
performance in terms of both ACC and AUC metrics. More importantly, as shown in the left plot,
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Figure 14: Impact of the Number of Clients (K) on Model Performance.

the performance curve of our model is very flat, and the standard deviation range (red shaded area)
is extremely narrow, indicating that its performance is minimally affected by the variation in the
number of clients, demonstrating high stability.

FedCLIP and FAACLIP are the next-best performing methods, yet their accuracy and AUC values
still show a clear gap compared to our model. Methods such as FedAvg, FedProx, and MOON
exhibit relatively poor performance. This ablation study strongly demonstrates that our proposed
method surpasses existing mainstream approaches in terms of performance.

F RELATED WORK

F.1 FEDERATED LEARNING

FL aims to solve data silo and privacy issues through distributed collaborative training (McMahan
et al., 2017), but its core challenge lies in client drift caused by data heterogeneity, which severely
impairs the performance of the global model (Xiao et al., 2024). To tackle this, existing strategies
include: introducing a proximal term to constrain local updates (Li et al., 2020); retaining private
batch normalization layers to adapt to local features (Li et al., 2021b); utilizing contrastive learning
to align model representations (Li et al., 2021a); and building domain-invariant knowledge through
a federated graph learning (Xiao et al., 2024). However, while effective against heterogeneity, these
methods often fail under complex domain or covariate shifts, which motivates our work.

F.2 CLIP IN FL: FROM EFFICIENT FINE-TUNING TO DOMAIN GENERALIZATION

The primary barrier to deploying VLMs in FL is their immense computational and communica-
tion overhead. Consequently, mainstream research has converged on parameter-efficient fine-tuning
(PEFT) (Pan et al., 2024; Saha et al., 2025a; Chen et al., 2024). This strategy freezes the large VLM
backbone and exclusively trains lightweight, client-side modules. Approaches range from federated
prompt learning (Guo et al., 2023a; Yang et al., 2023), where clients collaboratively tune prompts,
to designing specialized adapters that help the global model adapt to local data with minimal com-
munication (Wu et al., 2025; Lu et al., 2023; Shi et al., 2024).

Although PEFT-based methods mitigate the efficiency bottleneck and offer some improvement in
generalization, they fail to address the fundamental problem: efficiently trained models tend to learn
“spurious features” tethered to specific domains, resulting in poor performance on unseen domains
(Varma et al., 2024b). While recent research attempts to guide models toward invariant features
(Zhang et al., 2024b; Guo et al., 2025) using techniques like test-time prompt optimization (Ma
et al., 2025) and causal learning (Chen et al., 2023; Zhang et al., 2025), these methods share a funda-
mental flaw from a causal perspective. They erroneously assume that invariant and domain-specific
features are independent, thus ignoring the profound causal connections between them. In contrast,
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our work is the first to introduce a more complete causal inference framework to federated VLMs.
We advocate for modeling the deep causal structure behind the features, positing a core hypothesis:
a pure, domain-invariant “concept” acts as the common root cause for the observed invariant fea-
tures, variant features, and the final label. By performing inference on this causal graph, our model
aims to transition from learning “superficial correlations” to understanding “deep causality,” thereby
fundamentally enhancing its domain generalization.
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