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Abstract

Multiple hypothesis testing requires a control procedure: the error probabilities in
statistical testing compound when several tests are performed for the same con-
clusion. A common type of multiple hypothesis testing error rates is the Family-
Wise Error Rate (FWER) which measures the probability that any one of the per-
formed tests rejects its null hypothesis erroneously. These are often controlled
using Bonferroni’s method or later more sophisticated approaches all of which in-
volve replacing the test level α with α/k, reducing it by a factor of the number of
simultaneous tests performed. Common paradigms for hypothesis testing in per-
sistent homology are often based on permutation testing, however increasing the
number of permutations to meet a Bonferroni-style threshold can be prohibitively
expensive. In this paper we propose a null model based approach to testing for
acyclicity (ie trivial homology), coupled with a Family-Wise Error Rate (FWER)
control method that does not suffer from these computational costs.

1 Introduction

Hypothesis testing in the based on topological summaries of data has been an area of Topological
Data Analysis (TDA) that has seen growth recently as both applied and mathematical statistics have
been developed using TDA. Almost of all the current literature on hypothesis testing in TDA has
focused on two sample tests [16] or extensions to analysis of variance (ANOVA) settings [5] where
differences across more than two conditions are considered. Both of these papers work on construct-
ing a statistic from in-group and out-group distances and comparing this statistic for the observed
diagram collections to collections of label permutations. Neither of these papers take into account
multiple testing because the number of hypotheses tested is small, for example one in two sample
tests. However, as the number of groups in an ANOVA increase mutiple testing is a concern, in
addition there are many applications where TDA can be applied to many subsets of features of coor-
dinates in a two sample test with the goal of finding those subsets which are significantly different
between the two groups. When the number of subsets of features are in the hundreds or thousands
correction for multiple hypothesis testing is crucial.

Additionally to the two sample and ANOVA style tests, work has also been done in the field on
one sample testing through creating confidence regions using stability of persistence combined with
bootstrap sampling of the underlying point cloud to derive bounds for bottleneck distances [8].

In all of these setups, the noise model is taken to be intrinsic to and represented by the diagrams
themselves. This approach is too flexible for currently known limit theorems [11], which makes
the construction of efficient Family-Wise Error Rate (FWER) control procedures with our approach
difficult.
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In this paper, we propose a one sample hypothesis test for persistence diagrams that incorporates an
explicit choice of noise model and a Family-Wise Error Rate control procedure compatible with the
structure of the test.

Noise model: Our main candidate for a noise model first draws a sample from an stationary and
ergodic point process, conditioned to be similar to the observed point cloud. Next, persistent ho-
mology using some construction of a filtered simplicial complex – such as Čech, Vietoris-Rips or
alpha-complexes – is computed, together with some interesting statistic of the resulting persistence
diagram.

Hypothesis test: Our hypothesis test using a noise model is essentially a simulation test. N − 1
noise samples are drawn, conditioned to be similar to the point cloud to be tested. For the resulting
N point clouds – 1 observed and N − 1 simulated – the same pipeline with persistent homology
and an interesting statistic of the persistence diagram is applied. The resulting statistic values are
ranked, and if the value corresponding to the observed value is sufficiently extreme, the test rejects
a null hypothesis of the observed point cloud could have been produced by the noise model.

FWER control: We assume that the noise model used has a limit theorem similar to the ones
provided in [11]. The limit theorem of interest to us says that up to a scaling factor, persistence
diagrams of filtered simplicial complexes generated from “square” sampling windows from a sta-
tionary and ergodic point process converge to a distribution on the persistence diagram half plane
that is determined only by the underlying point process.

Since the persistence diagrams follow almost the same distribution, the statistics calculated from
them will also be very similar in distribution. Hence, up to rescaling, the values extracted from
these diagrams will be comparable.

By calculating z-scores, the appropriate scaling constant can be derived from the statistic val-
ues directly. These considerations lead to our suggested FWER controlled procedure for multiple
one sample hypothesis tests with a specified noise model:

For each of K observed diagrams, draw N − 1 noise model samples. Compute filtered complexes,
persistence diagrams and statistics for all the K ·N point clouds. We can organize all these statistic
values in a K × N matrix with one row for each observation and its associated simulations. Use
the N − 1 simulated values in each row to estimate mean and standard deviation of the statistic
corresponding to that specific observed diagram and its simulated repetitions. Compute z-scores for
each statistic value using the row-wise means and standard deviations. At this point we can treat
each column as a separate simulation run for the entire collection of diagrams, and pick the column
wise most extreme statistic. This produces a total N extreme values – rank them and check if the
rank assigned to the most extreme statistic from the observed point clouds is sufficiently extreme to
reject a null hypothesis of all of the observed point clouds could have been generated by the noise
model.

The idea that topological summaries such as persistence diagrams form a probability space for which
formal statistical analysis is well defined was developed in [14]. Further developments on defining
useful summary statistics within persistent homology and considering means, medians, and vari-
ances of persistence diagrams was pursued in several papers [15, 17, 19]. The main challenge in
considering persistence diagrams as a probability space was pointed out in [17, 18]—the space of
persistence diagrams is positively curved which results in non-unique geodesics. As a result the
mean of a set of diagrams need not be unique which complicates data analysis. To avoid this issue
persistence landscapes were introduced in [4], persistence landscapes are functions so they can be
considered as random functions in a Banach space, a construction that admits central limit theorems,
unique means and medians. Further examinination of bootstrap properties of persistence based sum-
maries as well as a notion of confidence intervals for points in a diagram was developed in [8, 10].
An alternative approach was considered in a series of papers where instead of considering a persis-
tence diagram as a summary a probability density was used as a topological summary, an approach
called distance to measure [6, 7, 8]

In the context of hypothesis testing [2] proposed using goodness of fit statistics – Kolmogorov-
Smirnov, χ2 or Mann-Whitney – to test compare empirical distributions from two samples of per-
sistence diagrams. The ideas most closely related to the procedures we develop in this paper was
to define hypothesis testing procedures directly on persistence diagrams using permutation testing
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and barcode distances [5, 16]. In this paper we will extend two sample single hypothesis testing and
ANOVA procedures to the multiple hypothesis test setting.

2 Noise model and one-sample hypothesis test

We construct a one-sample hypothesis test that explicitly encodes a noise model in the test. Our test
will test the null hypothesis the observed point cloud could have been produced by the noise model
against an alternative of there are homological obstructions to consistency between the observation
and the noise model. Our construction works with a wide range of possible noise models – however,
for the test to fit into the FWER control procedures that we introduce in Section 2.1, we rely on limit
theorems to ensure that the statistics used are comparable between different hypothesis tests.

Definition We take noise model to refer to a method that given a point cloud generates new point
clouds.

Ideally, the point clouds generated by a specific noise model will share some properties with the input
point cloud, and share some properties with our expectations of a lack of homological structure.

We propose as one widely applicable noise model to use uniformly distributed points in a bound-
ing shape for the observed point cloud. Following conventions in spatial statistics, we suggest to
condition the noise model sample on the size of the observed point cloud. This idea produces two
concrete noise models:

Uniform bounding box noise model Given point cloud X

1. Estimate a bounding box of X
2. Sample |X| points uniformly in this bounding box

Given points x1, . . . , xn ∈ Rd, we can produce a uniformly minimum variance unbiased estimator
of the bounding box by estimating a bounding interval [âi, b̂i] for each coordinate separately. Writing
mini for the smallest value of the ith coordinate and maxi for the corresponding largest value, this
estimator is given by

âi =
N + 1

N
(mini − maxi) b̂i =

N + 1

N
(maxi − mini),

With a noise model in place, simulation testing produces a hypothesis test as specified. For the
simulation test we assume that some statistic γ(D) of a persistence diagram D = {(b1, d1), . . . } has
been chosen. One example of such statistics is maxi(di − bi), but there are plenty other possible
choices of useful statistics that can be used.

One-sample persistent homology simulation test Given a point cloud X , an integer N

1. Generate noise model samples M2, . . . ,MN

2. Calculate persistence diagrams D1 of X and Dj of each Mj

3. Sort the diagram statistics γ(D1), . . . , γ(DN ) and reject the null hypothesis if the rank r of
γ(D1) is sufficiently extreme

We may then reject the null hypothesis at a level of p = (N − r + 1)/N .

2.1 Family-wise error rates

When using either Bonferroni, Holm or Hochberg’s FWER control procedures [3, 12, 13] in a per-
mutation or simulation setting, the number m of simultaneous tests can drive up the number of
permutations or simulations required for an acceptable test level dramatically. If computations are
expensive – such as with persistence diagrams or with bottleneck distances – then this quickly be-
comes prohibitive.

Most interesting persistence statistics vary with the overall scale of the point cloud; different point
clouds produce statistics that usually are not immediately comparable. If they were, however, we
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could detect a deviation from the null model behaviour through the existence of a particularly large
value for corresponding barcode-based statistics. We can produce a joint test by first making the
statistics comparable, and then performing a simulation test where in each simulation step the largest
statistic value across simulated representatives for all the point clouds is extracted.

The approach is rooted in the observation that, having computed test statistics t1, . . . , tm from each
test separately, the probability of any one of the test statistics exceeding a threshold c is equal to the
probability of the maximum among them exceeding that threshold:

αFWER = P({t1 > c} ∪ · · · ∪ {tm > c}|H0) = P(max
i

ti > c|H0)

We don’t need distributional assumptions as long as the null hypothesis sampling distributions are
comparable across all test cases.

Based on this we propose the following approach

Family-wise error rate controlled test for acyclicity Given a family of point clouds X1, . . . , XK ;
a method for constructing filtered simplicial complexes and calculating persistence diagrams from
them; an invariant γ : {Point clouds} → R; and a null model M of random point clouds, we may
reject the null hypothesis of acyclicity in favor of non-acyclicity by:

1. Draw M2
1 , . . . ,M

N
K from M.

2. Calculate persistence diagrams D1
j from Xj and Di

j from M i
j .

3. Compute all ỹji = γ(Dj
i ).

4. For each i ∈ [1,K] and j ∈ [2, N ], use ỹji to create a standardization method, (ie to
calculate mean and standard deviation for the studentization, or to calculate the empirical
CDF for histogram equalization) and standardize all ỹji to yji .

5. For each j ∈ [1, N − 1] calculate yi = maxj y
j
i .

6. Compute the rank r of y1 among all the yi.

We may then reject the null hypothesis at a level of p = (N − r + 1)/N .

3 Experiments

To validate our suggested FWER method and evaluate its performance we perform simulation tests
on null model data input to verify the level, and with a single noisy circle input together with null
model data input for a power analysis of each method. The level is measured by generating sets of
point clouds from the null model, and measuring how often the joint null hypothesis is rejected. The
power is measured by generating sets of point clouds both from the null model and using the noisy
circle input, ensuring that exactly one of the point clouds is drawn from a noisy circle. The power
is the rate of rejection of the null hypothesis for these cases. Examples of these noisy circles can be
seen in Figure 1.

We use the null model of uniformly distributed points in a plane rectangle, and for computational
expediency we restrict our testing to two ambient dimensions.

Our simulations test for all combinations of:

• N ∈ {100, 500} (number of point clouds for each test)

• K ∈ {5, 10, 50} (number of simultaneous tests to control)

For each box, we draw uniformly at random

• Box side lengths in {0.1, 1, 10}
• Point counts for a box in {10, 50, 100, 500}
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Table 1: Rejection rates for null model and noisy circle data using the FWER control method de-
scribed in Section 2.1.

p < null σ = 0.1 σ = 0.25

0.01 0.04 0.88 0.37
0.05 0.10 0.90 0.54
0.10 0.13 0.93 0.62
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Figure 1: Noisy cir-
cles as used by the
power calculation.
Top row, σ = 0.1 and
bottom row σ = 0.25.
The plots have, from
left to right, 10, 50,
100 and 500 points.

• For the power test: in one of the boxes, points on a circle with added multivariate isotropic
Gaussian noise with variance from {0.1, 0.25} fitted in a square box with side lengths 1×1.

The α-complex construction is topologically equivalent to Čech complexes [1], and for speed in our
simulations we choose to use the α-complex persistent homology calculation in the R package TDA
[9]. With simulations in place we perform bootstrap evaluations of level and power of our methods.

We will use the invariant γ(X) =
√
2∥X∥B = max td − tb of maximum bar length.

We validate the FWER control procedures by estimating the probability of false discovery on null
model data and we analyze the power of the proposed methods by attempting to detect a single noisy
circle in a family of null model data samples.

For the experiments, we precomputed 160 000 point cloud invariants. Since we are working with
point clouds in the plane, we computed in homological dimensions 0 and 1, and for each combination
of box shapes and point counts as well as for each noise level and point count combination, we
generated 5 000 point clouds.

3.1 Validation and Power estimation

We evaluate the empirical level of our proposed methods. From 100 simulations drawing from pre-
computed barcode sizes, the null rejection rates for null model data for our methods are summarized
in Table 1. For each of the simulations, a random number, between 2 and 50 of point cloud invariants
were drawn from the precomputed data. To each point cloud invariant, another 99 point clouds with
matching box sizes and point counts are drawn as a simulation test. These 100 batches of 100 point
clouds go through each of our proposed methods, and rejection rates at confidence levels of 0.1, 0.05
and 0.01 are calculated.

For the power analysis we picked pre-calculated invariants from circles with a 1× 1 bounding box,
with additive multivariate Gaussian noise with a standard deviation of 0.1 and 0.25 respectively –
see Figure 1 for examples of the generated point clouds. For each of 100 simulations, one circle
invariant was picked, and another random number (between 1 and 49) of null model point cloud
invariants added. This collection of point clouds go through the same process of generating 99 null
model invariants for each, and run the collections through the described methods. The result of 100
simulations each at the two noise levels is shown in Table 1.
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