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ABSTRACT

The crew pairing problem (CPP) is central to optimal planning and scheduling of
operations in the airline industry, where the objective is to assign crews to cover a
flight schedule at minimal cost while adhering to various logistical, personnel, and
policy constraints. Despite the implementation of optimized schedules, operations
are frequently disrupted by unforeseen events. This vulnerability stems from
the deterministic nature of the CPP’s base formulation, which fails to account
for the uncertainties inherent in real-world operations. Existing solutions either
aim to safeguard against a specified level of uncertainty or focus on worst-case
scenarios.To this end, we propose a reliability-centric CPP formulation amenable to
solution by column-generation (CG) SurvCG, that leverages survival analysis for
dynamic quantification of uncertainty using the operation patterns in historical data.
Applied to CPP, SurvCG forecasts and incorporates flight connection reliability
into the optimization process. Through rigorous experiments on a large-scale first-
of-its-kind real-world instance under regular and irregular operating conditions,
we demonstrate that SurvCG achieves unprecedented improvements (up to 61%)
over baseline in terms of total propagated delays, establishing SurvCG as the first
data-driven solution for uncertainty-aware reliable scheduling.

1 INTRODUCTION

Airline operations planning involves complex decision making on optimal flight scheduling, aircraft
assignment, and crew pairing. A pairing is a sequence of flights assigned to a crew under strict rules
governed by aviation regulating bodies and union policies. Crew expenses are a major component of
airline costs and are highly sensitive to disruptions, since airlines incur additional costs due to any
delayed flights, swaps or call-ins (IATA). In this context, the crew pairing problem (CPP) is critical
for determining an optimal set of pairings with minimum crew cost under the said constraints.1

The CPP is a highly constrained NP-hard combinatorial optimization problem (Aydemir-Karadag
et al., 2013; Lu & Gzara, 2015; Deveci & Demirel, 2018), and is typically modelled as a set-
partitioning problem, and, the state-of-art solution methods are based on the column generation
(CG) method (Zeren & Özkol, 2016; Quesnel et al., 2020). CPP is often solved by minimizing
planned costs based on known schedules and flight times assuming no disruption, months prior to the
actual day of operations; also used as the benchmark for evaluation, referred to as the nominal cost
((Erdoğan et al., 2015; Eltoukhy et al., 2017)). However, unforeseen events, such as crew absenteeism
and adverse weather, introduce disruption, making the actual costs considerably higher than the
planned ones (Antunes et al., 2019). Such disruptions cause pairings to violate operational constraints,
such as union regulations, requiring overtime, crew swaps, or additional crews, often leading to
deadheading or last-minute crew assignments to maintain coverage, resulting in inflated costs, carbon
emissions, and customer dissatisfaction (Huang et al., 2020).

Using historical flight data at the time of planning can help with uncertainty management and crew
utilization (Sohoni et al. (2011)). To this end, current approaches introduce uncertainty in CPP by

1While we use airline operations for this exposition, a wide-range of industries are exposed to uncertain
operational environments, including aviation and logistics Ball et al. (2007); Wu (2016), manufacturing Alimian
et al. (2019) and healthcare Moosavi & Ebrahimnejad (2018).
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Figure 1: SurvCG integrates survival analysis with column generation for optimal crew pairing. The
reliabilities rij can be pre-computed or can be queried on-the-fly for the optimization for scalability.

modelling flight delay using predefined intervals or historical data (Lu & Gzara (2015), Antunes et al.
(2019)). Nevertheless, they struggle to account for real-time disruptions, since limited information
available during planning makes it challenging to accurately predict delays, especially on a new flight
route or time. Moreover, while minor prediction errors lead to missed connections, historical averages
result in an overly conservative plan, exacerbating operational inefficiencies and increasing costs.
Schaefer et al. (2005) used simulation to estimate operational crew costs but didn’t incorporate this
into optimization, emphasizing the need to consider these costs during planning.

Given this, there is a need to inform the CG-based CPP optimization via data-driven predictions,
allowing it to trade-off crew utilization and on-time performance for a selected reliability , which
virtually leads to planning costs better reflecting operational ones. To this end, we propose SurvCG –
a survival analysis-based CG algorithm that utilizes survival analysis predicted flight arrival likelihood
between two candidate connections (reliability rij) in the cost function evaluation; see Fig. 1.
Here, the refined cost ϕ(ckp) captures not only the planned scheduled costs but also historical flight
connection reliability – to the best of our knowledge, the first work to incorporate data-driven
reliability for this task. Note that, while for this exposition we use this specific cost function,
SurvCG’s modular structure allows for the use of data-driven reliabilities in other linear and non-
linear cost functions. Our evaluations on a real-world on-time performance dataset at different levels
of irregular (disrupted) operations reveals that SurvCG leads to significant performance gains in
total propagated delays, especially in the challenging higher-percentiles of delays, in some cases
reducing the delays by 61% – an unprecedented advancement enabled by our data-driven optimization
method. This is because, as opposed to historical averages, SurvCG can handle the long tail of delay
distributions. Our overall contributions may be summarized as follows:

1. Data-driven reliability-based optimization formulation: SurvCG combines survival
analysis with column generation, integrating reliability into the crew pairing optimization,
ensuring schedules are rigorously penalized for low reliability, thus optimizing for both
efficiency and robustness. To the best of our knowledge, this is the first approach to explicitly
quantify real-world uncertainties using time-to-event models.

2. Introduce P-Index to measure the predictive ability of time-to-event models. Conven-
tional survival metrics (e.g., C-index, Brier score) only consider event ordering, inadequate
when exact event timing is crucial. We propose the P-index to assess model precision.

3. Instance generation and rigorous analysis at different levels of disruptions: Using
real-world flight data, we generate instances and run extensive simulations to establish the
superior properties of SurvCG under various operational conditions. Our public dataset-
based instance offers the first benchmark for this task to drive advancements in the area.
https://anonymous.4open.science/r/SurvCG-Instance-67C6/

1.1 RELATED WORKS

Traditional crew pairing models are deterministic and fail to account for disruptions such as weather,
delays, or maintenance issues. To this end, stochastic programming has been applied to introduce
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randomness and develop more disruption-resilient solutions. For instance, Yen & Birge (2006) aimed
to minimize expected total costs through stochastic programming, though scalability remains an issue.
Ionescu & Kliewer (2011) and Dück et al. (2012) extended this work by incorporating crew swaps
and combining crew scheduling with aircraft assignment for operational resilience. Schaefer et al.
(2005) estimate crew pairing costs via simulation, without reflecting this in the optimization. They
propose heuristic-based improvements over nominal solution using penalties on undesirable features.

Robust optimization approaches, which account for uncertainty by modeling worst-case scenarios,
have also been explored. These models introduce additional constraints and variables, increasing
computational complexity. Antunes et al. (2019) developed a robust crew pairing model that accounts
for delay propagation and operational disruptions, while Lu & Gzara (2015) proposed a robust
optimization approach using Lagrangian relaxation to handle crew costs under worst-case conditions.
However, these methods often rely on historical delays or predefined uncertainty sets. This is limiting
because they averages are not sufficient to capture the long-tail distribution of delays, and therefore
these methods’ ability to handle irregular disruptions in the real-world.

Time-to-event modeling is used in a number of domains while survival analysis is a popular choice in
clinical studies to analyze disease progression Collett (2015); In & Lee (2018); George et al. (2014),
in engineering it is referred to as reliability engineering; we use survival analysis w.l.o.g. since recent
developments use this terminology. Survival analysis has been successfully applied in traffic incident
modeling Nam & Mannering (2000); Hojati et al. (2014); Li et al. (2020) and predictive maintenance
Vianna & Yoneyama (2017); Verhagen & De Boer (2018). A standard approach in survival analysis
is to use the Cox proportional hazard (CoxPH) model Cox (1972)], which is a semi-parametric model
that assumes that 1) the logarithm of risk (hazard) of an event has a linear dependence on their
covariates Breslow (1975), and 2) hazard of two data samples remains constant over time, known
as the proportional hazard assumption. The linearity and the proportional hazard assumptions are
limiting in real-world applications, and works such as Liestbl et al. (1994); Faraggi & Simon (1995);
Ishwaran et al. (2008a), and more recently neural network-based models Katzman et al. (2018); Lee
et al. (2018); Zhong et al. (2021) have become popular.

In the context of aviation, survival analysis has been used to analyze individual flight delays, such
as factors influencing delay recovery in an airline Wong & Tsai (2012), and assess delays in South
Korea’s air transportation Kim & Bae (2021). To the best of our knowledge, time-to-event models
have not been used to predict connection reliability or in any optimization settings.

2 SURVIVAL ANALYSIS FOR FLIGHT CONNECTION RELIABILITY

This section develops time-to-event (TTE) terminology for survival analysis in the context of flight
events, such as arrivals and departures, with examples. We then introduce flight connection reliability
forecasting based on a flight’s likelihood of arriving within the necessary time window.

2.1 METHODOLOGY FOR RELIABILITY PREDICTION

The success of a connection depends on whether the flight i lands within a feasible window before
flight j’s departure, to allow crew to transition to the next flight. Consequently, delays in flight i can
disrupt the entire sequence to be completed by a crew, causing reassignments or missed connections.
Hence, we will define the reliability based on flight i’s timely arrival within the connection window.
To this end, we use survival analysis to determine the probability that a flight i can connect to a
subsequent flight j departing at scheduled departure time, SDTj . The time-to-event (TTE) for flight i
is defined as TTEi = AATi − SDTi, where AATi is the actual arrival time, demonstrated as follows.

Example 2.1

Consider a flight from New York (JFK) to Los Angeles (LAX) with a (SDTi) of 08:00
AM and an (AATi) of 11:30 AM, both in Central Time (CT). TTE for this flight would be
TTEi = 11 : 30AM − 08 : 00AM = 3.5 hours. If the subsequent flight j from LAX to San
Francisco (SFO) is scheduled to depart at 12:00 PM (SDTj), we need to determine if the
connection between these flights is feasible given the TTE.

3
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We represent each flight, i by a tuple (zi, yi, Di), where zi ∈ Rd has features like origin, destination,
SATi, aircraft type/model etc., yi is the TTE, and Di is the event indicator. The event Di is 1 if the
flight lands by time t, otherwise 0. The survival function for a flight with features z at time t is:

S(t | z) = P(flight landing beyond time t | flight’s features z) = P(T > t | Z = z)

= 1− P(flight landing within time t | flight’s features z) = 1− P(T ≤ t | Z = z) (1)

Here, Z and T are random variables corresponding to features z, and the associated TTE.

To predict the reliability rij of two flights i and j in a sequence, we aim to estimate the probability that
flight i will arrive in time for the subsequent flight j to depart. Specifically, we need the probability
rij that the flight i to land in time tq = SDTj − SDTi − δmin, where δmin is minimum sit time
between flights. Using (1), we estimate rij by querying the estimated survival function Ŝ(t | zi) as

rij = P(T ≤ tq | Z = zi) = 1− Ŝ(tq | zi),where tq = SDTj − SDTi − δmin. (2)

The survival function Ŝ(t) can be estimated using a non-parametric Kaplan & Meier (1958) estimator
from empirical data as follows, where t1, t2, . . . , tL are unique times of flight landing, di denotes
the flights that landed at time ti, ni be the flights that could possibly land at time ti and 1{·} is the
indicator function. However, this cannot be used at time points without event observations.

Ŝ(t) =

L∏
i=1

(
1− di

ni

)1{ti≤t}

,where di =

n∑
j=1

1{yj = ti}Dj , ni =

n∑
j=1

1{yj ≥ ti} (3)

Therefore, semi-parametric methods, such as CoxPH Cox (1972) and DeepSurv Katzman et al. (2018)
which can capture non-linearity when modeling covariates, are a popular choice to tackle such cases
since since these can provide continuous survival estimates that extend beyond the observed event
times. CoxTime Kvamme et al. (2019) further extends the CoxPH model by allowing the risk score to
vary with time. The hazard function is defined below, where f(z, t; θ) is a time-dependent neural net.

h(t | z) = h0(t) exp (f(z, t; θ)) . (4)

This model relaxes the proportional hazards assumption by allowing the effect of covariates on hazard
to vary over time. We found CoxTime’s performance to be competitive and hence use it for this
exposition. In general, any time-to-event survival model which preserves the probability interpretation
can be used with SurvCG; See (Moore, 2016; Freedman, 2008) for a primer on survival analysis.

2.2 P-INDEX: EVALUATING THE PREDICTIVE PERFORMANCE OF SURVIVAL MODELS

The most commonly used evaluation metric for survival models is concordance index or C-index
Harrell et al. (1982). It quantifies the rank correlation between the actual time-to-event (TTE) and
the model’s predictions. However, C-index has been found to be less effective for evaluating models
that violate the proportional hazards’ assumption Antolini et al. (2005). Hence, we first use the
time-dependent C-index, Ctd given by Antolini et al. (2005), as used in Kvamme et al. (2019). For
an estimate Ŝ(t | z), Ctd estimates the probability that the predicted TTE Ti for flight i is less than
the TTE Tj for flight j, given that Ti is less than or equal to Tj as

Ctd = P (Ŝ(Ti | zi) < Ŝ(Tj | zj) | Ti ≤ Tj , Di = 1). (5)

However, since our interest extends beyond the discriminative ability of the model; we focus on the
accuracy with which probabilities derived from the predicted survival curve are mapped to specific
times. As illustrated by (2), the reliability of a connection rij is obtained by querying a time tq
against the predicted survival function Ŝ(t | z). This mapping is crucial, as errors in the probability
estimation for specific times impact the decision to choose a connection over the other. Therefore, to
evaluate the accuracy of this mapping, we introduce P -index, defined as:

P -index =

∑N
n=1 1(|t̂nq − t∗,nq | ≤ ε)

n
. (6)

Here, with a discretization N of a predicted survival function for the i-th flight (with certain origin,
destination, and TTEi), for each n ∈ N , the indicator is 1 if the predicted query time t̂nq is within a

4
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Predicted Survival Curve: Good Prediction

Kaplan Meier

(a) Within: t̂nq for flight 1 is within ε

Predicted Survival Curve: Bad Prediction
Kaplan Meier

(b) Not within: t̂nq for flight 2 is outside ε.

Figure 2: P-index: Ratio of predictions within ε to total predictions across query times tq .

predefined error margin ε of the actual query time t∗,nq , and 0 otherwise. Here, t∗,nq is the estimate of
the event time for flight i based on the non-parametric Kaplan-Meier estimator ŜKM (t∗q |zi). The t̂nq
is determined by the time at which the estimated survival probability by the model Ŝ(t|zi) matches
the Kaplan-Meier survival probability pKM = ŜKM (t∗,nq |zi). Figure 2 illustrates cases where t̂nq is
within and not within ε. Additionally, to quantify the deviations we compute the Mean Absolute
Error (MAE) for predictions within, above, and below the actual query times:

MAEl =

∑n
i=1 |t̂nq − t∗,nq | · 1θ

card(θ)
, θ ∈ {Within(≡),Above(>),Below(<)} (7)

where 1θ is the indicator function for each condition θ, and card(θ) is the number of instances
satisfying the condition θ. Above represents t̂nq > t∗,nq , and Below represents t̂nq < t∗,nq .

3 SURVIVAL-BASED COLUMN GENERATION (SURVCG)

We model the crew pairing problem for a set of crews K on a flight network G = (N,A); where
N includes origin and destination nodes O and D representing the crew base at the start and end
of the schedule, respectively, and flight nodes N \ {O,D} corresponding to the set of flights F in
the schedule. A flight node is defined by the flight’s origin and destination airports, and respective
departure and arrival times. The set A comprises three types of arcs: arc (O, i) if crew k can start
its schedule with flight i, arc (i,D) if crew k can end its schedule with flight i, and arc (i, j) for
sequential flights i and j where the destination airport of i is the same as the origin airport of j
and the minimum sit time is met. The latter is the minimum time needed for the crew to transition
between two consecutive flights in their pairing. The set P k represents all possible pairings for crew
k ∈ K, where pairing p ∈ P k has an associated cost ckp . The binary parameter aip is 1 if flight i ∈ F
is covered by pairing, p ∈ P k and 0 otherwise. The binary decision variable xk

p equals 1 if pairing
p ∈ P k is selected for crew, k ∈ K and 0 otherwise. The set-covering formulation of the reliable
crew pairing problem RCPP is given by:

[RCPP]: minimize
∑
k∈K

∑
p∈Pk

ϕ(ckp) (8)

subject to
∑
k∈K

∑
p∈Pk

aipx
k
p ≥ 1 ∀i ∈ F (9)

∑
p∈Pk

xk
p = 1 ∀k ∈ K (10)

xk
p ∈ {0, 1} ∀k ∈ K,∀p ∈ P k (11)

The objective function (8) minimizes the total cost of selecting |K| crew pairings using the reliability-
integrated cost function ϕ(.). Constraints (9) ensure that each flight i ∈ F is covered by at least one

5
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Figure 3: Network and Constraints: The first panel shows the flight network. The middle one violates
Constraint 2 (node 1 uncovered), while the last violates Constraint 3 (Crew 2 without pairing).

pairing. Constraint (10) makes sure that each crew k ∈ K is assigned exactly one pairing from their
respective set P k. Figure 3 illustrates constraint effects on a 4-flight, 2-crew network.

The reliable cost function ϕ reflects not only the cost of the pairing but also the reliability of the flight
connections within. The cost of a pairing ckp for pairing p and crew k, and its reliability-integrated
cost, ϕ(ckp) are defined on the arcs A of the flight network as follows, with the cost of including arc
(i, j) being cij in pairing p ∈ P k; the explicit expressions of these costs are detailed next.

ckp =
∑

(i,j)∈p

cij , ∀p ∈ P k; ϕ(ckp) =
∑

(i,j)∈p

ϕij(cij), ∀p ∈ P k. (12)

3.1 NOMINAL VS RELIABLE COST FUNCTIONS

The cost of arc (i, j), cij , corresponds to the cost of the crew covering flight j after flight i in their
pairing, and is calculated apriori in function of scheduled departure and arrival times. As such, it
is referred to as the nominal cost to distinguish from the actual crew cost, which is based on actual
departure and arrival times. cij is calculated based on the elapsed time of flight i and the connection
time between the two consecutive flights i and j, expressed as:

cij = (cei + α · ccij),where cei = SETi, c
c
ij = SDTj − SATi (13)

The scaling factor α penalises longer connection times, making pairings with shorter layovers between
flights more attractive from a cost perspective. Specifically, α reflects the operational priorities, such
as reducing crew downtime or enforcing extended layovers. The nominal cost function 13 is not
equivalent but mimics the pay-and-credit model, which itself does not accurately reflect the complexity
of crew pay in practice. Our function is motivated by discussions with an industry partner.

The nominal cost cij assumes perfect operation of the airlines, which is rarely the case. Delays in
one flight may cause a cascading effect of delays and disruptions in subsequent flights in the pairing,
leading to actual costs significantly different from the nominal. The reliable cost function ϕij(cij)
that we propose makes use of the reliability score of a connection to augment the nominal cost and
account for delays and disruptions under a push-back recovery policy that is commonly used in the
literature (Schaefer et al. (2005); Antunes et al. (2019); Lu & Gzara (2015)). It is expressed as:

rcij = ϕij(cij) = cij(λ1e
−λ2rij + 1)− cij(λ1e

−λ2) (14)

where λ1 is a parameter that adjusts how significantly the reliability score impacts the reliable cost.
A higher value of λ1 increases the sensitivity of the cost adjustment to changes in rij . The parameter
λ2 controls the rate of exponential decay, i.e, the rate of increase of the reliable cost as rij decreases.
A larger λ2 results in a steeper decay curve, which more aggressively penalizes lower rij values.
The term cij(λ1e

−λ2) is the vertical adjustment, it shifts the cost function such that the reliable cost
equals the nominal cost under ideal conditions (rij = 1). The effects of varying λ1 and λ2 on the
reliable cost function are illustrated in Figure 4.

The reliable cost function ϕij(cij) captures the trade-offs between reliability and cost efficiency and
is nonlinear in cij . Furthermore, similar incorporation of reliability is possible into a pay-and-credit
costing model. Consequently, ϕ(ckp) may be calculated for a given pairing p ∈ P k and the objective
function of [RCPP] remains linear in the decision variable xk

p . Hence, the linear programming

6
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Table 1: Comparison of survival models. η is the learning rate, and B is the batch size. Ctd is the
time-dependent C-Index. CoxTime shows the best performance across all metrics. MAE in minutes.

Model η B Ctd P -index MAE≡ MAE> MAE<

CoxPH 0.001 16 0.787 0.494 8.057 38.594 10.261
DeepSurv 0.0001 64 0.795 0.532 8.440 48.374 8.090
CoxTime 0.0001 32 0.807 0.911 4.839 21.227 4.730

relaxation of [RCPP] may be solved by column generation, where the subproblem is a shortest path
problem with modified reliable costs on the arcs. Once the relaxation is solved, one has to apply
branch-and-price in order to obtain the optimal solution. It is known that solving [RCPP] restricted
on the set of generated pairings by CG is usually optimal or very close to optimal. In our experiments,
we observed an optimality gap around 0.05%. We note that both [RCPP] and its nominal version
CPP defined on the nominal costs are solved using CG. All the instances with varying cost function
and parameter settings were solved using CPLEX v22.1.1 using docplex python API on a resouce
with 4 CPU cores, 25 GB RAM, and all computational times were less than 30mins.

4 EXPERIMENTAL RESULTS

This section validates SurvCG by outlining the dataset, hyperparameter tuning, and model perfor-
mance. It details instance generation, solution comparisons, and simulations, providing quantitative
evidence of the approach’s robustness and effectiveness.

4.1 SURVIVAL MODEL TESTING AND RELIABILITY PREDICTION

Dataset: We train the survival analysis model using the Bureau of Transportation Statistics (2024)
(BTS) On-Time Performance dataset for flight operations of Endeavor Air in 2019. There are 97294
total flights, of which 80% are used for training and 20% are used for testing. Specifically, for each
flight i in the data, the feature set zi consists of spatiotemporal attributes and aircraft information
including the day of week, aircraft age/model, origin, destination, and scheduled departure/arrival.

Model Implementation: We implement DeepSurv (Katzman et al., 2018), CoxPH (Cox, 1972), and
CoxTime (Kvamme et al., 2019). DeepSurv and CoxPH assume proportionality; CoxTime doesn’t.

Hyperparameter Tuning + Performance Comparison: We perform hyperparameter tuning for
each model to find an optimal combination of learning rate lr, and batch size b. For evaluation, we
primarily consider the P-index(6) for evaluating model performance and also consider the Ctd (5).
The optimal hyperparameter configurations and evaluation results are shown in Table 1.

Reliability Prediction: We use CoxTime (Kvamme et al. (2019)) for reliability prediction due to
its superior performance across all quantitative metrics. Notably, CoxTime achieved an P -index of
0.911, which indicates its robust capability to accurately predict survival functions. Further, this
precision is crucial for predicting if delayed flights will meet minimum crew connection times δmin.
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4.2 COMPARISON OF SOLUTIONS

Setup: Given an instance (see Appendix C for detailed instance generation), we run the CG algorithm
for the nominal cost function with α = 2, as defined in equation 13, meaning that the sit time is
penalized twice compared to the elapsed time. For the reliable solutions, we use two configurations
with λ1 = 10, λ2 = 3 and λ1 = 20, λ2 = 4, as defined in equation 14.

Cost comparison: We compute the cost of the solutions based on the nominal arc cost (13) with
α = 1 to ensure nominal and reliable solutions are comparable. The constraint (9) allows for a flight
node to be covered more than once, resulting in deadheading, where crew members are transported
as passengers, incurring additional costs. Reliable solutions show an increase in deadhead flying
costs by up to 5.93% compared to the nominal solution. However, these reliable solutions exhibit
significant reductions in deadhead connection costs, with decreases up to 13.58%. This results in
marginally lower total costs by up to 0.003%, as seen in Table 2. In comparison, Antolini et al. (2005)
report a 1-3% increase in planned costs for their robust solutions.

The number of deadheads in the nominal α = 2 solution is 28, based on the flight frequency count
(230 nodes covered once, 2 nodes twice, 9 nodes thrice, and 2 nodes four times). For the reliable
solution α = 2, λ1 = 10, λ2 = 3, the number of deadheads is 24 (232 nodes covered once, 7 nodes
thrice, 2 nodes four times, and 2 nodes five times). The configuration α = 2, λ1 = 20, λ2 = 4 also
results in 24 deadheads. The deadheading is lower for reliable solutions, as reflected by deadhead
costs. Additionally, severity of deadheading into a node is also much lower for reliable solutions.

4.3 SIMULATION

Setup: Given a crew pairing solution, either nominal or reliable (λ1 = 20, λ2 = 4), where a pairing
p ∈ Popt covers flights Fp, we simulate by obtaining an actual elapsed time for i ∈ Fp. The
simulation follows Antunes et al. (2019), where the actual elapsed time AETi is given by:

AETi = SETi + ϵi, ϵi ∼ Kernel Density Estimationarrival delay
i on matched flights (15)

For details on how matched flights are identified, refer to Appendix D.

Design of Experiments: We simulate across multiple scenarios by varying two controls: the
percentage of irregular operations and the severity of these delays/irregular operations. These
variables determine from where the ϵi will be sampled for the matched flights. Each flight is
simulated across 100 runs. The percentage of irregular operations (% IR) indicates the proportion of
runs (realizations of the pairings) that experience irregularities, while the level of delay specifies the
severity of these irregularities. Delay values for irregular operations (IR) are sampled from a specified
percentile of the delay distribution using Kernel Density Estimation (KDE). These parameters govern
how the flight delays ϵi are sampled for each realization. Scenarios are denoted using the format mR,
nIR-L, where m% of the runs are regular, n% are irregular, and L represents the percentile beyond
which delays are considered. For a full description of the scenarios, refer to Appendix F.

Metrics: We evaluate simulation outcomes using Total Propagated Delay (TPGD), which quantifies
delays carried from one flight segment to the next, capturing the cascading effects of delays.

TPGD =
∑
i

pgdi, pgdi =

{
∆− (SDTi+1 − AATi), if SDTi+1 − AATi < ∆

0, otherwise

Table 2: Comparison of Deadheading and Total Costs for Nominal (N)and Reliable (R) solutions
(α = 2). Changes in costs (in parentheses) are percentages compared to the nominal solution.
Headers: DFC - Deadhead Flying Cost, DCC - Deadhead Connection Cost, TFC - Total Flying Cost,
TCC - Total Connection Cost, TC - Total Cost. R1- (λ1, λ2) = (10, 3), R2- (λ1, λ2) = (20, 4).

Deadheading Cost Total Cost
Solution DFC DCC TFC TCC TC
Nominal 2948.0 17436.0 29233.0 214933.0 244166.0
Reliable 1 3123.0 (5.93) 16155.0 (-7.35) 29408.0 (0.60) 214750.0 (-0.09) 244158.0 (-0.003)
Reliable 2 3123.0 (5.93) 15015.0 (-13.58) 29408.0 (0.60) 214750.0 (-0.09) 244158.0 (-0.003)
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Table 3: Total Propagated Delays for 75R,25IR Scenarios with L = (70, 80, 90); pth represents the
pth percentile of the TPGD (Total Propagated Delays); N: Nominal, R: Reliable, with percentage
change in Reliable relative to Nominal. Improvements where R < N are highlighted.

pth 75R,25IR-70 75R,25IR-80 75R,25IR-90
N R N R N R

90 358.80 394.40 (9.94% ↑) 476.00 515.70 (8.37% ↑) 1080.90 831.10 (-23.11% ↓)
91 382.65 409.07 (6.90% ↑) 583.91 680.31 (16.53% ↑) 1119.24 922.99 (-17.54% ↓)
92 461.76 430.40 (-6.79% ↓) 858.80 734.00 (-14.53% ↓) 1155.52 939.24 (-18.75% ↓)
93 484.52 437.03 (-9.80% ↓) 891.98 745.62 (-16.39% ↓) 1218.96 1011.49 (-17.02% ↓)
94 535.16 480.20 (-10.27% ↓) 905.96 901.20 (-0.53% ↓) 1526.22 1022.86 (-33.00% ↓)
95 808.60 734.00 (-9.21% ↓) 921.75 920.65 (-0.12% ↓) 1562.25 1100.00 (-29.60% ↓)
96 896.36 741.96 (-17.21% ↓) 1011.32 934.96 (-7.56% ↓) 1639.68 1121.36 (-31.61% ↓)
97 964.64 938.58 (-2.71% ↓) 2822.09 986.11 (-65.06% ↓) 2930.61 1179.86 (-59.74% ↓)
98 2893.70 1119.20 (-61.32% ↓) 2922.12 1120.12 (-61.65% ↓) 3015.38 1241.38 (-58.84% ↓)
99 2928.25 1130.47 (-61.40% ↓) 2928.98 1176.07 (-59.87% ↓) 3037.12 1309.16 (-56.89% ↓)
100 2953.00 1276.00 (-56.78% ↓) 3026.00 1282.00 (-57.65% ↓) 3346.00 1325.00 (-60.39% ↓)

Table 4: Total Propagated Delays for 50R,50IR Scenarios with L = (70, 80, 90); pth represents the
pth percentile of the TPGD (Total Propagated Delays); N : Nominal, R: Reliable, with percentage
change in Reliable relative to Nominal. Improvements where R < N are highlighted.

pth 50R,50IR-70 50R,50IR-80 50R,50IR-90
N R N R N R

90 402.30 424.60 (5.55% ↑) 530.00 681.40 (28.59% ↑) 1591.70 1217.80 (-23.51% ↓)
91 406.80 430.45 (5.82% ↑) 558.26 745.93 (33.62% ↑) 1677.56 1288.81 (-23.20% ↓)
92 425.64 437.32 (2.75% ↑) 595.00 823.28 (38.37% ↑) 2030.44 1298.60 (-36.02% ↓)
93 436.43 480.94 (10.19% ↑) 871.91 908.82 (4.23% ↑) 2088.97 1317.56 (-36.95% ↓)
94 483.86 708.88 (46.51% ↑) 884.42 935.94 (5.83% ↑) 2346.04 1349.06 (-42.48% ↓)
95 531.40 757.20 (42.43% ↑) 891.70 983.40 (10.28% ↑) 2454.50 1727.80 (-29.63% ↓)
96 881.60 822.60 (-6.68% ↓) 905.64 1011.16 (11.67% ↑) 3037.84 1770.44 (-41.69% ↓)
97 896.27 934.68 (4.28% ↑) 923.85 1043.80 (12.99% ↑) 3588.64 1979.63 (-44.82% ↓)
98 944.76 994.74 (5.29% ↑) 1054.12 1200.66 (13.91% ↑) 3678.24 2203.68 (-40.09% ↓)
99 2901.00 1283.56 (-55.74% ↓) 2930.11 1290.31 (-55.96% ↓) 3886.91 2678.17 (-31.08% ↓)
100 3693.00 2032.00 (-45.00% ↓) 3733.00 2113.00 (-43.42% ↓) 3977.00 2695.00 (-32.24% ↓)

where pgdi is the propagated delay for each flight i in the pairings, SDTi+1 is the scheduled departure
time of the next flight i + 1, AATi is the actual arrival time of the current flight i, and ∆ is the
minimum sit time between flights.

Results: We simulate both nominal and reliable solutions separately for 100 seeds each and analyze
the results across the scenarios. Reliable crew pairing solutions outperform nominal solutions,
particularly in scenarios with higher irregular operations and higher levels of delay. The scenarios
with 75% regular operations and 25% irregular operations (75R, 25IR) at various severity levels (70th,
80th, and 90th percentiles) represent situations where delays were greater than the pth percentile used
to simulate delays. These scenarios are designed to test the robustness of crew pairing solutions under
mixed operational conditions, highlighting how well they handle varying degrees of irregularity.

When comparing reliable and nominal solutions for 75R, 25IR scenarios in Table 3 scenarios across
different severities of delay, it becomes evident that reliable solutions generally outperform nominal
ones, especially at higher percentiles. For the 75R, 25IR-70 scenario, the Total Propagated Delay
(TPGD) at the 99th percentile for reliable solutions is 1130.47, while for nominal solutions it is
significantly higher at 2928.25. As illustrated in Figure 5, this performance gap between reliable
and nominal solutions grows as the severity of delays increases, with the gap widening notably for
scenarios involving delays sampled from higher percentiles (P70, P80, P90).

In the 75R, 25IR-80 scenario, the trend continues with reliable solutions showing a TPGD of 1223.89
at the 99th percentile, compared to 2998.11 for nominal solutions. Even as the severity of delays
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Figure 5: Performance Gap Between nominal and Reliable Solutions for 75R,25IR Across Increasing
Delay Severity (P70, P80, P90). Here, ’P#’: delays of Irregular runs are sampled from #-th percentile.

increases, reliable solutions maintain a lower TPGD, demonstrating their effectiveness in mitigating
the impact of severity of delays. In the 75R, 25IR-90 scenario, the TPGD at the 99th percentile for
reliable solutions is 1309.16 mins, whereas for nominal solutions it is much higher at 3037.12 mins.
Reliable solutions consistently show better performance across these mixed operational scenarios,
with a significant reduction in TPGD at higher percentiles compared to nominal solutions, showing
an improvement of atleast 1000 mins (TPGD) for 98th, 99th and 100th percentiles.

As we transition from less irregular operations 100IR to more irregular operations 100IR, the
magnitude of the delays increases significantly. From Table 4, we observe that for 50R,50IR,
scenarios with more severity of delay shows greater performance improvements. For instance,
L = 90 percentile, R achieves a minimum reduction of 23% across all the upper percentiles of TPGD.
For scenarios 75R, 25IR-L=(70, 80, 90), 100R and 100IR, the detailed performance comparison
between the reliable and nominal solutions shows similar trends of improvement and can be further
summarized in Appendix G, highlighting robustness of SurvCG in highly irregular scenarios.

5 DISCUSSION

We introduce a data-driven approach for the Crew Pairing Problem (CPP) to tackle the uncertainty in
real-world planning using an exposition of crew pairing in aviation operations. Our results indicate the
tremendous potential to impact operational efficiencies in the real world by leveraging historical on
time performance data. We accomplish this by incorporating the reliabilities, predicted using survival
analysis – a popular time-to-event model, in the cost function of the CPP task and combining this
with column generation algorithm – the state-of-the-art algorithm to solve CPP. SurvCG significantly
reduces total propagated delay and deadheading connection costs compared to the nominal solution.

Reliable solutions also show a significant reduction in higher percentiles across various scenarios,
demonstrating their robustness under mixed and highly irregular conditions. While recent methods
Antunes et al. (2019) report a reduction of 18− 20% as compared to the nominal solution in terms
of total propagated delays, we demonstrate that SurvCG can lead to a reduction of up to approx.
60% over nominal on this metric, that too under the challenging irregular operating conditions. For
instance, in the 75R, 25IR-70 scenario in Table 3, reliable solutions save 1797.78 minutes in TPGD at
the 99th percentile. Similar trends are observed in the 75R, 25IR-80 and 75R, 25IR-90 scenarios, with
savings of 1955.12 minutes and 1724.70 minutes, respectively. Our solution also reduce certain costs
and significantly decrease deadheading, resulting in lower operational expenses over the nominal.

SurvCG, is also, to the best of our knowledge, the first algorithm to incorporate data-driven reliabili-
ties for this long-term planning problem. As a result, this investigation also lays the foundations of
developing other machine learning for optimization methods. While, a limitation of our approach is
that the optimal pairings obtained on solving the CPP using column generation algorithm depends on
how accurate the reliability predictions are from the survival model. It is worth noting that while we
use a specific survival analysis model – CoxTime, which worked well for this dataset, SurvCG is
not constrained to using this model and practitioners can incorporate any appropriate time-to-event
model. Future work on this thread can extend the use of reliabilities for other optimizations, or even
combine this with recent works on reinforcement learning for column generation Chi et al. (2022).
Overall, our work opens new avenues to usher operational efficiencies in the aviation industry and
beyond in the backdrop of high competition, climate impacts, and customer retention.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mahyar Alimian, Mohammad Saidi-Mehrabad, and Armin Jabbarzadeh. A robust integrated produc-
tion and preventive maintenance planning model for multi-state systems with uncertain demand
and common cause failures. Journal of Manufacturing Systems, 50:263–277, 2019.

Laura Antolini, Patrizia Boracchi, and Elia Biganzoli. A time-dependent discrimination index for
survival data. Statistics in medicine, 24(24):3927–3944, 2005.

David Antunes, Vikrant Vaze, and António Pais Antunes. A robust pairing model for airline crew
scheduling. Transportation science, 53(6):1751–1771, 2019.

Ayyuce Aydemir-Karadag, Berna Dengiz, and Ahmet Bolat. Crew pairing optimization based on
hybrid approaches. Computers & Industrial Engineering, 65(1):87–96, 2013.

Michael Ball, Cynthia Barnhart, George Nemhauser, and Amedeo Odoni. Air transportation: Irregular
operations and control. Handbooks in operations research and management science, 14:1–67,
2007.

N. E. Breslow. Analysis of survival data under the proportional hazards model. International
Statistical Review, pp. 45–57, 1975.

Bureau of Transportation Statistics. On-time: Reporting carrier on-time performance (1987-
present). https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_
VQ=FGJ&QO_fu146_anzr=b0-gvzr, 2024. URL https://www.transtats.bts.
gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr. Ac-
cessed: 2024-05-20.

Cheng Chi, Amine Aboussalah, Elias Khalil, Juyoung Wang, and Zoha Sherkat-Masoumi. A
deep reinforcement learning framework for column generation. Advances in Neural Information
Processing Systems, 35:9633–9644, 2022.

D. Collett. Modelling survival data in medical research. CRC press, 2015.

David R Cox. Regression models and life-tables. Journal of the Royal Statistical Society: Series B
(Methodological), 34(2):187–202, 1972.

Muhammet Deveci and Nihan Cetin Demirel. A survey of the literature on airline crew scheduling.
Engineering Applications of Artificial Intelligence, 74:54–69, 2018.

Viktor Dück, Lucian Ionescu, Natalia Kliewer, and Leena Suhl. Increasing stability of crew and
aircraft schedules. Transportation research part C: emerging technologies, 20(1):47–61, 2012.

Abdelrahman EE Eltoukhy, Felix TS Chan, and Sai Ho Chung. Airline schedule planning: a review
and future directions. Industrial Management & Data Systems, 117(6):1201–1243, 2017.
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A ABBREVIATIONS AND NOTATIONS

This appendix provides a comprehensive list of the abbreviations and notations used throughout the
paper.

A.1 FLIGHT-RELATED NOTATIONS

• F : Set of all flights

• origin: Origin of a flight.

• dest: Destination of a flight.

• SET: Scheduled Elapsed Time.

• SAT: Scheduled Arrival Time.

• SDT: Scheduled Departure Time.

• ADT: Actual Departure Time.

• AET: Actual Elapsed Time.

• AAT: Actual Arrival Time.

A.2 COST-RELATED NOTATIONS

• c: nominal cost.

• rc: Reliable cost.

A.3 METRICS

• P -index: P-index, a new metric introduced to measure the predictive power of the model.

• Ctd: Total Delay Cost index.
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A.4 TIME AND SURVIVAL MODEL

• tq: Query time.

• f : Survival model function.

• S: Survival function.

• p≡: Probability of being within the acceptable delay range.

• MAE>, MAE≡, MAE<: Mean Absolute Errors above, within, and below the predicted
threshold.

• q̂: Predicted time of an event.

A.5 DATASET, NETWORK, AND CONSTRAINTS

• D: Dataset of flights and connections.

• C: Constraints set.

• N : Flight network.

• A: Set of arcs in the network.

• c: Crew base.

• F̂ : Pruned set of flights.

• δ: Sit or Connection time between flights (assumed to be 60 mins).

A.6 PAIRING-RELATED NOTATIONS

• P: Set of all pairings.

• Popt: Set of optimal pairings.

• p: Single pairing.

• R: Actual elapsed distribution.

A.7 KDE AND RELIABILITY

• KDE(matched flights): Kernel Density Estimation for matched flights.

• r: Reliability score of a flight connection.

• ϕ: Cost function adjusted for reliability.

B SUMMARY OF SURVIVAL MODELS

Table 5: Summary of Survival Analysis Methods

Method Model Prop. Main Benefit
Type Constraint

Cox Proportional Regression Cox
(1972)

Continuous Yes Most Interpretable

DeepSurv Katzman et al. (2018) Continuous Yes Handles non-linearity (Uses NN for reg Cox)
Cox-Time Kvamme et al. (2019) Continuous No Extends Cox Reg beyond prop. hazards
Cox-CC Kvamme et al. (2019) Continuous Yes Proportional version of Cox-Time
Random Survival Forests Ish-
waran et al. (2008b)

Continuous No Handles interactions and non-linearity

DeepHit Lee et al. (2018) Discrete No Best discriminative ability (C-index)
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C INSTANCE GENERATION

To set up a crew pairing experiment, we first generate an instance of crew operations consisting of
a closed network of flights and connections over a fixed period. The crew starts and finishes at a
specified crew base. Specifically, an instance is described by a network N containing a set of flights
F̂ , connections Â, and costs Ĉ. Using a set of spatiotemporal constraints C, we construct N as
follows:

1. Filter D according to C to obtain a set of flights F0.
2. Construct an initial network N0 by applying space and time constraints to F0. A connection

between flight i and flight j is feasible if originj = desti and δmin ≤ SDTj − SATi ≤
δmax, where, δmin, δmax are the minimum and maximum connection times.

3. Prune N0 to remove redundant flights and extract the subgraph N describing our instance.

We create an instance for December 2-5, 2019, using the flight operations of Endeavor Air between
all the airports in the network on these dates, with John F. Kennedy International Airport (JFK) as the
crew base.

Figure 6: Block diagram for Instance Generation

Filtering: During the filtering phase, we specify space and time constraints to select relevant flights
from the dataset. The constraints include the specific dates and the crew base for starting and ending
operations. This phase aims to narrow down the vast dataset to a manageable subset that is relevant
to the instance we want to create. By applying these constraints, we extract a filtered set of flights F0

from the dataset D, such that F0 = {i ∈ D|i satisfies C}. This step ensures that only flights within
the specified dates and that either start or end at the crew base are included in the instance.

Constructing a Network: In the network construction phase, we form connections between the
filtered flights. The connections represent possible pairings of flights that a crew can operate within
the given constraints. The network includes nodes for the crew base and connections between flights
that are feasible based on time constraints. Specifically, a connection between flight i and flight
j is feasible if the destination of i matches the origin of j, and the time difference between the
scheduled departure time of flight j and the scheduled arrival time of flight i falls within the allowable
connection time range. The cost for a connection is calculated as SDTj − SATi + SETi, where SDT
is the scheduled departure time, SAT is the scheduled arrival time, and SET is the scheduled elapsed
time.

Network Pruning: The pruning phase ensures that the network remains practical and feasible for
crew pairings. During this phase, we remove redundant or infeasible flights and connections that do
not contribute to viable pairings. This is done by identifying and retaining only those flights that can
form a continuous path from the origin to the destination crew base. Flights that do not participate in
any such path are pruned out.

D FLIGHT MATCHING CRITERIA AND LATE AIRCRAFT DELAY

The matched flights are identified based on the following criteria:
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Table 6: Sensitivity analysis of α. Higher α penalizes longer connection times. Headers: DFC -
Deadhead Flying Cost, DCC - Deadhead Connection Cost, TFC - Total Flying Cost, TCC - Total
Connection Cost, TC - Total Cost.

Deadheading Cost Total Cost

α DFC DCC TFC TCC TC

1 1657 13244 27942 216189 244131
0.5 260 (-84.30) 1922 (-85.49) 26545 (-5.00) 217586 (0.65) 244131 (0.00)
2 2948 (77.91) 17436 (31.62) 29233 (4.63) 214933 (-0.58) 244166 (0.01)
3 3099 (87.01) 17130 (29.41) 29384 (5.18) 214777 (-0.65) 244161 (0.01)
4 3119 (88.17) 17406 (31.48) 29404 (5.23) 214727 (-0.68) 244131 (0.00)
5 3119 (88.17) 16211 (22.38) 29404 (5.23) 214762 (-0.66) 244166 (0.01)

• Origin: The airport from which the flight departs.

• Destination: The airport to which the flight arrives.

• Time of Day of the Scheduled Arrival: The time of day when the flight is scheduled to arrive.
This can be segmented into different periods, such as morning (06:00 AM - 11:59 AM),
afternoon (12:00 PM - 04:59 PM), evening (05:00 PM - 10:59 PM), and night (11:00 PM -
05:59 AM).

The LateAircraftDelay is not included in the initial delay estimation to avoid double-counting, as
this category represents delays caused by propagation through aircraft connections. This delay
is simulated separately following Antunes et al. (2019), where the delay is approximated as the
difference between actual and scheduled arrival times, minus the LateAircraftDelay.

E SENSITIVITY ANALYSIS OF α

Sensitivity analysis of α: For α = 0.5, deadhead fly and connection costs drop significantly (-84.3%
and -85.49%, respectively), with only a slight increase in total connection cost (+0.65%) as shown in
Table 6. As α increases to 1, costs rise, with deadhead fly cost increasing by 77.91% and connection
cost by 31.62%. At α = 3, deadhead fly cost peaks (+87.01%), with minimal changes for higher
values. Deadheads increase from 2 at α = 0.5 to 28 at α ≥ 3, indicating diminishing returns beyond
this point.

F DETAILED SCENARIO NOTATIONS

Table 7: Simulation Scenarios Based on Percentage Irregularity and Level of Delay. R: Regular
Operations, IR: Irregular Operations. For IR runs, delay values are sampled from the specified
percentile using KDE.

Scenario Notation Description

100R 0 100% of runs are R
75R, 25IR 70 75% of runs are R, 25% from >70 percentile
75R, 25IR 80 75% of runs are R, 25% from >80 percentile
75R, 25IR 90 75% of runs are R, 25% from >90 percentile
50R, 50IR 70 50% of runs are R, 50% from >70 percentile
50R, 50IR 80 50% of runs are R, 50% from >80 percentile
50R, 50IR 90 50% of runs are R, 50% from >90 percentile
25R, 75IR 70 25% of runs are R, 75% from >70 percentile
25R, 75IR 80 25% of runs are R, 75% from >80 percentile
25R, 75IR 90 25% of runs are R, 75% from >90 percentile
100IR 70 100% sample delay from >70 percentile
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G DETAILED PERFORMANCE COMPARISON

As we analyze the results, Figure 7 clearly shows the trends in performance as irregular operations
increase. The total propagated delays (TPGD) become more severe as both irregularity levels and
the percentiles of delay rise, demonstrating the greater importance of incorporating reliability into
decision-making, especially when met with disruptions.
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Figure 7: Total Propagated Delays for 75R,25IR Scenarios (70, 80, 90). N: Nominal, R: Reliable.
The “75R,25IR” denotes the percentage of regular and irregular runs, respectively. The numbers
70, 80, and 90 indicate the level of delay in each scenario, which increases from left to right. Total
Propagated Delays show significant improvements as irregularity increases or as the level of delay
rises.

Table 8: Total Propagated Delays for 25R, 75IR Scenarios with L = (70, 80, 90); pth represents the
pth percentile of the TPGD (Total Propagated Delays); N : Nominal, R: Reliable, with percentage
change in Reliable relative to Nominal. Improvements where R < N are highlighted.

pth 25R, 75IR-70 25R, 75IR-80 25R, 75IR-90
N R N R N R

90 425.80 679.90 (59.68% ↑) 594.80 817.80 (37.49% ↑) 2031.30 1330.50 (-34.50% ↓)
91 440.20 710.32 (61.36% ↑) 809.81 834.99 (3.11% ↑) 2094.39 1459.65 (-30.31% ↓)
92 536.04 757.20 (41.26% ↑) 822.24 849.96 (3.37% ↑) 2347.72 1552.12 (-33.89% ↓)
93 801.56 795.68 (-0.73% ↓) 871.91 908.05 (4.14% ↑) 2432.42 1728.52 (-28.94% ↓)
94 813.32 818.60 (0.65% ↑) 885.80 927.28 (4.68% ↑) 2583.38 1928.35 (-31.41% ↓)
95 881.20 832.70 (-5.50% ↓) 919.10 1011.45 (10.05% ↑) 3413.10 1981.84 (-42.00% ↓)
96 898.76 924.68 (2.88% ↑) 1025.44 1040.80 (1.50% ↑) 3589.52 2196.58 (-44.79% ↓)
97 1235.57 990.74 (-19.82% ↓) 1257.88 1084.96 (6.51% ↑) 3675.56 2287.96 (-37.79% ↓)
98 1469.66 1117.66 (-24.03% ↓) 1469.66 1117.66 (10.06% ↑) 3729.20 2678.17 (-28.09% ↓)
99 2542.62 1125.16 (-55.75% ↓) 2543.02 1208.14 (-52.42% ↓) 3886.91 2695.00 (-30.45% ↓)
100 3693.00 2032.00 (-45.00% ↓) 3733.00 2113.00 (-43.42% ↓) 3977.00 2695.00 (-32.24% ↓)
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Table 9: Total Propagated Delays for 100R − 0 and 100IR − 70 scenarios; pth represents the pth
percentile of the TPGD (Total Propagated Delays); N : Nominal, R: Reliable, with percentage change
in Reliable relative to Nominal. Improvements where R < N are highlighted.

pth 100R-0 100IR-70
N R N R

90 237.40 253.00 (6.57% ↑) 801.30 710.80 (-11.30% ↓)
91 241.00 266.41 (10.55% ↑) 804.45 757.60 (-5.83% ↓)
92 245.72 312.28 (27.09% ↑) 814.76 795.92 (-2.31% ↓)
93 300.77 328.47 (9.22% ↑) 881.28 818.70 (-7.10% ↓)
94 313.76 351.54 (12.05% ↑) 885.66 837.66 (-5.42% ↓)
95 359.20 423.35 (17.86% ↑) 912.65 991.90 (8.67% ↑)

96 403.36 734.00 (82.01% ↑) 1237.76 1049.76 (-15.18% ↓)
97 473.35 739.64 (56.24% ↑) 1491.35 1116.39 (-25.12% ↓)
98 937.52 922.22 (-1.63% ↓) 2894.20 1131.94 (-60.88% ↓)
99 2534.97 934.86 (-63.12% ↓) 2960.40 1283.56 (-56.64% ↓)
100 2928.00 1119.00 (-61.78% ↓) 3693.00 2032.00 (-45.00% ↓)
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