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ABSTRACT

We introduce Dojo, a reinforcement learning environment intended as a bench-
mark for evaluating RL agents’ capabilities in the areas of multi-task learning,
generalization, transfer learning, and curriculum learning. In this work, we moti-
vate our benchmark, compare it to existing methods, and empirically demonstrate
its suitability for the purpose of studying cross-task generalization. We estab-
lish a multi-task baseline across the whole benchmark as a reference for future
research and discuss the achieved results and encountered issues. Finally, we pro-
vide experimental protocols and evaluation procedures to ensure that results are
comparable across experiments. We also supply tools allowing researchers to eas-
ily understand their agents’ performance across a wide variety of metrics.

1 INTRODUCTION

Recent research in reinforcement learning has yielded an abundance of learning algorithms able
to learn to perform complex sequential decision-making tasks without human supervision (Mnih
et al.l [2015; Silver et al.l [2016; [Hessel et al.| 2018). While these results are remarkable, in most
cases, each trained agent can only perform a single, specific task and new agent instances need
to be trained from scratch for every subsequent task (Hessel et al., 2019; |Vithayathil Varghese &
Mahmoud, 2020). Additionally, prior work has shown that learned policies are often brittle and can
break down when environment features are even slightly perturbed (Raileanu et al.| 2020). This can
also be observed within research on generalization where policies learned through RL have been
shown to generalize poorly to previously unseen tasks (Cobbe et al.,[2019;|2020). The same issues
may also hinder the adoption of RL for practical applications, where robustness and the ability to
adapt within a rich and dynamically changing world are essential.

For these challenges, the field of multi-task reinforcement learning (MTRL) has emerged as a po-
tential solution. MTRL is concerned with developing single RL agents that can perform a whole
spectrum of tasks without needing to be retrained. Apart from practical advantages, these methods
aim to yield policies that are substantially more robust, generalize better to other tasks within the
training distribution, and transfer to entirely different tasks (Team et al.,[2021)). Additionally, multi-
task learning agents can exhibit better data efficiency since experience can be shared across tasks
(Espeholt et al.| [2018).

Standardized benchmarks such as ImageNet (Deng et al., |2009) and the Arcade Learning Environ-
ment (ALE) (Bellemare et al., |2013; Machado et al.l 2018) have been a cornerstone of research
in many areas of machine learning. They allow researchers to reliably compare entirely dissimilar
approaches to important problems and serve as a measure of research progress. While many such
benchmarks exist for general RL, we believe that most of these are not well suited for research in
multi-task RL. If that is indeed the case, the continued reliance on them could greatly impede further
research progress.

Thus, in this paper, we present Dojo, a new benchmark aiming to fill this gap. Dojo consists of close
to 2000 different video game tasks drawn from several existing libraries. In the implementation,
special attention was paid to performance, configurability, and ease of use. In particular, Dojo
closely adheres to the gym environment API (Brockman et al., [2016) and can, for the most part,
be used as a drop-in replacement for existing benchmarks while also supporting more specific use
cases. In this work, we particularly focus on applications in multi-task learning, but we believe
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that the benchmark will also be a useful tool in related areas such as curriculum learning, transfer
learning, as well as other open-ended learning settings.

In Section 2] we give an overview of the current issues present in multi-task RL and discuss how
recent methods have attempted to address them. We then list available benchmarks and discuss
how they are used to (but frequently fail to) evaluate approaches to these issues. In Section [3} we
describe the specifics of our own benchmark, compare it to others, and detail how it avoids the listed
pitfalls. In Section ] we present experiments performed to support the design of the benchmark
itself, better understand the effect of knowledge transfer within Dojo, and establish a preliminary
multi-task baseline.

2 RELATED WORK

2.1 MULTI-TASK REINFORCEMENT LEARNING

Multi-task RL is uniquely affected by a number of issues not present in general single-task RL. This
section provides a brief overview of these and discusses existing solutions from the literature.

Task interference. When learning multiple tasks jointly, tasks may interfere with each other for
a variety of reasons. Negative knowledge transfer refers to the case where a behavior learned in
one task negatively affects the agent’s learning progress in another — for example by impeding ex-
ploration of the environment (Vithayathil Varghese & Mahmoud, 2020). Catastrophic forgetting
can also destabilize learning, particularly in the continual learning case (Fedus et al.l 2020). Fi-
nally, differences in the return magnitudes of different tasks which in turn cause differences in the
error magnitudes can cause an imbalance of learning progress across tasks (Hessel et al.| 2019
Schaul et al., 2021). Since the return distribution is generally unknown and non-stationary, naive
normalization methods are insufficient. PopArt normalization (van Hasselt et al. [2016), originally
introduced for the single-task setting, normalizes targets online but preserves the original unnormal-
ized value function by modifying the last layer of the value network. Return-based scaling (Schaul
et al.,[2021)) is an algorithm-agnostic method that instead rescales the error based on a normalization
factor derived from statistics of the environment. PopArt-IMPALA (Hessel et al.,|2019) combines
the IMPALA algorithm from (Espeholt et al., [2018)) with PopArt normalization and applies it to the
multi-task setting.

Training speed. Although large computational costs and long training times have also been a trait of
much of recent work in general RL (Badia et al.| [2020; Kapturowski et al., 2019; [Schrittwieser et al.,
2020; Hessel et al.l [2018), these issues affect multi-task RL to an even greater extent. Evaluation
of MTRL methods necessitates experiments with benchmarks consisting of larger numbers of tasks,
since MTRL-specific issues may only be observable there. Thus, training speed has been a focus
area of some recent work in MTRL. In particular, IMPALA (Espeholt et al., [2018)), an actor-critic
agent focusing on scalability, training throughput, and computational efficiency, has been used as a
research platform and baseline in some recent work (Hessel et al.| {2019} |Luo et al., 2020).

2.2 BENCHMARKS IN REINFORCEMENT LEARNING

In this section, we provide an overview of popular existing benchmarks in RL and discuss their
suitability for the purpose of MTRL research. We focus on visual, game-based environments since
these are most closely related to our benchmark. For a more comprehensive list of RL environments
commonly used to study generalization (many of which are also relevant for multi-task learning) see
Kirk et al.|(2021).

Arcade Learning Environment (ALE). Since its introduction in 2013, the ALE (Bellemare et al.}
2013;|Machado et al., 2018) has been one of the primary benchmarks used in RL research. It consists
of 57 Atari games, each of which exposes a discrete action space with up to 18 actions and uses RGB
images as observations. While the diversity of games in the ALE has been regarded as a benefit for
evaluating general RL methods, the minimal task overlap and stark differences between games make
it less suitable for MTRL research.

Procgen. This suite of 16 games specifically developed for RL research, replicates some of the
games in the ALE, but adds procedural level generation and improved configurability and perfor-
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mance (Cobbe et al.l [2020). Like its predecessor CoinRun (Cobbe et al.,|2019), Procgen has been
used primarily for research in generalization (Hilton et al.,2020; Raileanu et al., [2020; |Laskin et al.,
2020).

Meta Arcade. While similar to the ALE, Meta Arcade enables researchers to modify many aspects
of each provided game, define new games, and allows for a degree of procedural generation within
games. The benchmark is intended for research in meta and multi-task learning and includes 24
predefined games (Staley et al., [2021).

gym-retro. This library serves as an interface between classic video games and RL algorithms by
exposing various emulators as RL environments conforming to the gym-API (Nichol et al., [2018).
The gym-retro package ships with around 1000 game integrations included, but due to per-game dif-
ferences in action, observation, and reward spaces can be cumbersome for use in multi-task learning.

DeepMind Lab. DeepMind Lab (Beattie et al., 2016 is a library providing access to a collection
of 3d game-based tasks that has been used in similar settings as the ALE. It includes 10 predefined
environments along with other contributed environments such as the 30 DMLab-30 tasks.

MineRL. MineRL is an open-ended environment based on the game of Minecraft and includes
more than 20 predefined tasks. It has been employed in competitions on sample efficient RL with
human demonstrations (Shah et al., 2021; |Guss et al.).

We find that many of the existing benchmarks suffer from several issues that make them unsuitable
for research in MTRL. Ideally, MTRL benchmarks should contain a large number of tasks including
both clusters of similar and dissimilar tasks. This would allow researchers to evaluate how well
their algorithms can generalize across related tasks, avoid interference between unrelated tasks, and
scale to large numbers of tasks. In contrast, most existing benchmarks include only few, largely
unrelated tasks with little skill overlap (such as the ALE or the different Procgen games). There,
MTRL approaches have little benefit over conventional single-task methods, while suffering from
additional complexity. Furthermore, the limited number of tasks makes it difficult to investigate how
MTRL methods scale with the number of tasks. Environments that use procedural generation to
increase diversity (such as CoinRun, Procgen, and Meta Arcade) necessarily only randomize certain
parts of each game. While appropriate for research in generalization, this scenario differs from the
typical multi-task learning setting which generally includes more significant differences between
tasks. Finally, some benchmarks are affected by performance or usability issues. In particular,
MineRL suffers from the relatively high computational cost of the underlying game and gym-retro
requires substantial task-specific preprocessing as mentioned above.

3 DO0JO BENCHMARK SPECIFICATION

The main goal of Dojo is to provide a highly challenging environment that is only efficiently solv-
able by generalizing and transferring knowledge across games. To this end, the benchmark includes
many similar tasks to provide ample opportunities for positive knowledge transfer as well as many
dissimilar tasks to evaluate how well agents can avoid negative knowledge transfer and task inter-
ference problems. Finally, the benchmark is easy to use with existing algorithms and includes all
necessary tools for preprocessing and evaluation.

3.1 TASKS

The benchmark consists of around 1100 video games from which almost 2000 different RL tasks can
be derived. These games include 104 games drawn from Atari (via the ALE), 925 games from the
SNES, NES, GameBoy, Genesis and SMS game consoles (via the gym-retro library), 16 games from
the Procgen library, and 23 games that are adaptations of those included in the Meta Arcade library.
For many of these games, several variants or options are available: all procgen and MetaArcade
games support customizing their graphical appearance and many gym-retro games provide several
different levels and difficulty options. By exposing each game variant as a separate task to be solved,
the variety within the benchmark is increased further and brings the total number of tasks close to
2000. A small selection of games from the benchmark can be seen in Figure|T]

In an effort to standardize the use of Dojo we defined several subsets of tasks intended for different
kinds of experiments. These are supplied in the dojo.tasks module. In addition to the full
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Figure 1: Sample of 16 games from Dojo in native resolution and full color (left) and after default
preprocessing steps are applied (right).

set of tasks (dojo_full), we provide a slightly reduced version (dojo_core), which excludes
350 hard-exploration tasks with exceptionally sparse rewards. We expect work focusing on MTRL,
generalization, and transfer learning to primarily use the core set while work on exploration in multi-
task settings to use the full benchmark. Additionally, a number of clusters of semantically related
tasks (platforming, fighting, and air combat games) are provided as easier test-beds for multi-task
learning.

3.2 ACTIONS AND OBSERVATIONS

To enable simple use of the environment with existing algorithms, action and observation spaces
should be shared across all tasks. This is non-trivial, since many of the games differ in the resolution
of observations or the kinds of available actions. In particular, games intended for human players
were originally developed for different game consoles with different physical controllers.

Dojo therefore uses a unified action space with 15 discrete actions which are mapped to task-specific
action schemes in a sensible way. This mapping was chosen such that the semantics of each action
are roughly the same across tasks. Actions that are invalid for a certain task are automatically
mapped to the “NOOP” action. The exact mapping is provided in Appendix [C} For more advanced
use, an action mask is provided that can be used with algorithm-specific implementations of in-
valid action masking such as for instance discussed in |Huang & Ontafién| (2020). The included
Rainbow-DQN example agent implements this by discarding invalid actions both during environ-
ment interaction and within the DQN update step. The observations for all tasks consist of the screen
content of the respective game, but can differ both in resolution and used color space. Therefore, all
observations are converted to grayscale and scaled to a common resolution of 72 x 72 pixels using
area interpolation from OpenCV. These hyperparameters were found to be good choices in exper-
iments with a subset of games (see Section [4.3), but can be scaled up depending on the available
hardware.

3.3 REWARDS

Next we turn our attention to the reward function. Dojo reuses the task-specific reward functions
provided by the underlying libraries but optionally applies a normalization step and reward clipping.
This normalization is necessary since the unnormalized episodic returns range across ten orders of
magnitude as can be seen in Figure 2] Still, use of more advanced normalization schemes such as
PopArt is recommended since the applied normalization (dividing by the mean absolute return under
the uniform random policy) does not account for the shifting return distribution over the course of
training.
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Figure 2: Mean episodic return achieved under the uniform random policy for each of the 2000
tasks.

3.4 OTHER CONSIDERATIONS

Task scheduling. In existing work in MTRL, all tasks to be learned are commonly run in parallel
(Espeholt et al. 2018}, [Hessel et al.l [2019). This approach is computationally efficient and also
minimizes the issue of catastrophic forgetting compared to executing tasks sequentially. However,
due to the large number of tasks and the fact that gym-retro is not thread-safe (meaning each task
needs to be run in a separate process), the high resulting memory requirement make this approach
infeasible for Dojo. Instead, a pool of worker processes is maintained, each of which executes a
single task that is assigned to it by a central task scheduler. Upon episode termination, the scheduler
selects a new task to assign to the worker. The default scheduling policy chooses tasks based on
the total number of environment interactions allocated to each task so far. To reduce the scheduling
overhead, tasks are only replaced after having been run for a minimum of 500 frames in the current
session. By changing the order and frequency with which tasks are run, the task scheduler can also
induce a specific curriculum on the learning process. Thus, Dojo may also be a useful tool in the
area of curriculum learning research.

Seeding. To ensure that results are reproducible, Dojo implements a seeding system that ensures
that runs that are initialized with the same seed are exactly equal. In particular, the task scheduling
and game initializations are deterministically derived from the given seed.

Statistics & logging. Dojo includes a logging module that continuously records statistics related
to the performance of the agent as well as data on internals of the benchmark itself. Data includes
per-episode statistics (return, clipped return, episode length, and the episode action distribution)
and global statistics (distribution of actions over time, system resource utilization and performance
statistics, and statistics related to the task scheduling). Additionally, 30-second video snapshots of
all currently active tasks are periodically recorded.

Implementation. Dojo is implemented in Python and makes use of numpy, OpenCV, and the
underlying libraries of the individual games. The environment parallelization is done via Ray, which
exhibits a similar performance as other implementations of vectorized environments, but allows for
simpler dynamic scheduling of tasks.

4 EXPERIMENTS

We perform a number of experiments to (1) determine whether knowledge transfer between tasks in
the benchmark genuinely accelerates learning, (2) create a baseline multi-task agent, and (3) find a
good choice of preprocessing methods.
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4.1 KNOWLEDGE TRANSFER

To evaluate the impact of positive knowledge transfer, we perform the following experiment. We
manually determine clusters of semantically related tasks including a cluster of “Pacman”-like
games, a cluster of boxing games, and a cluster of air combat games (see Appendix [B] for the full
list). While games within a cluster differ substantially in their visual presentation and precise en-
vironment dynamics, they all share some underlying structure and require similar skills. Thus, we
expect an agent to perform better at a task when trained jointly with tasks from the same cluster than
with unrelated other tasks. To confirm this, we train a Rainbow-DQN (Hessel et al., 2018) agent
as implemented in [Schmidt & Schmied| (2021)) on tasks all sampled either from the same cluster or
from the union of all clusters. The agent used the IMPALA-CNN architecture from [Espeholt et al.
(2018)) with twice the number of channels and was trained for 20 million frames in each run.

The results presented in Figure [3] show a strong performance improvement in 73% of tasks when
trained jointly with tasks drawn from the same cluster. For reference, the mean and median differ-
ence in evaluation scores across tasks were 72% and 43% respectively. However, since the maximal
achievable scores depend highly on the specific task, the previous metric (percentage of tasks in
which the performance improved) is more meaningful. For additional context, the performance
difference between the same-cluster trained agent and the uniform random policy baseline, is also
provided. Overall, we can conclude that many tasks within Dojo do indeed share some underlying
structure making multi-task learning likely a fruitful approach to solving the benchmark.
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(b) Per-task performance increase of the agent
trained on tasks from the same cluster jointly com-
pared to the uniform random policy baseline. While
many of the tasks do present a difficult chal-
lenge (particularly exploration-wise due to sparse
rewards), we can see that the agent does make sub-
stantial learning progress even within only 20M
frames.

Figure 3: Performance difference between two agents for each of the selected tasks.

4.2 MULTI-TASK LEARNING

Since we were able to confirm the effectiveness of knowledge transfer within small clusters of tasks,
we now turn our attention to the full benchmark. To facilitate future research with Dojo, we want
to establish a baseline for all tasks and verify that Dojo indeed presents a difficult challenge to
current methods. To this end, we train a Rainbow-DQN agent with the IMPALA architecture on the
full suite of tasks. Due to compute limitations the agent was trained for only 250 million frames,
corresponding to a relatively low 2.5 hours of game play time per task.

While the mean clipped improvement across tasks (clipped at +200% for each task) was 46%, Fig-
ure [ clearly shows that the agent actually performed worse in a substantial share of tasks and in
several tasks the performance fully collapsed to zero. We hypothesize that this is due to the effects
of negative knowledge transfer combined with the short training duration. We also identified a fur-
ther problem whereby the issue of differences in the return scales of different tasks (as discussed
in Section [2.I) may be magnified when using prioritized experience replay (PER) (Schaul et al.
2016)). This is because PER prioritizes samples from the replay buffer based on the TD-error, poten-



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

tially leading to a disproportionate oversampling of tasks with large return scales in addition to the
imbalance within the update steps themselves.
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Figure 4: Per-task evaluation scores for the uniform random policy baseline (in black) and the trained
agent (in green or red depending on whether it performed better or worse).

4.3 PREPROCESSING SETTINGS

Using the raw high-resolution full-color images as observations preserves the most information,
but results in a large memory and compute cost, particularly when using experience replay. Thus,
we perform a number of experiments to determine sensible default hyperparameters that maximize
resource-efficiency while not impeding learning progress due to too much loss of information. We
train a Rainbow-DQN agent individually on 12 randomly chosen tasks for 3.2M frames each, using
the parameters listed in Table [T}

Table 1: Each row of hyperparameters was evaluated in 12 different tasks and averaged across 2
random seeds.

Grayscale Resolution

No 72 %X 72
Yes 72 X 72
Yes 64 x 64
Yes 72 X 72
Yes 80 x 80
Yes 88 X 88

Among color and grayscale observations there was no consistently better option, indicating that color
information is largely irrelevant for solving these tasks. Overall, we found grayscale observations
with a resolution of 72 x 72 pixels to strike a good balance between performance and resource-
efficiency. With this setting, an efficiently implemented DQN agent would require approximately
5GB of memory for its replay buffer. The full results can be found in Appendix [A]

5 CONCLUSION AND FUTURE WORK

In this work, we provided an overview of current methods and open problems in multi-task reinforce-
ment learning, discussed a number of shortcomings affecting existing benchmarks in this setting, and
introduced a new benchmark intended to support future research in this area. We performed an array
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of experiments that aided in the design of the benchmark, helped to better understand the role of
knowledge transfer in small task clusters, and yielded a preliminary baseline for the benchmark as a
whole.

In the future we intend to implement several additional improvements to the benchmark. These
include enhancements to the invalid action masking to allow for more fine-grained masking for Atari
games, implementation of other useful task-schedulers, and the option to use custom schedulers for
better usability in curriculum learning research. Using these tools, we then plan to perform a more
in-depth analysis of existing multi-task learning methods, particularly in regard to how they can be
used to improve data-efficiency and speed up exploration.
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A PREPROCESSING EXPERIMENTS

A.1 COLOR SPACE
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Figure 5: Learning curves for each of the twelve tasks

tions.

A.2 RESOLUTION
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Figure 6: Learning curves for each of the twelve tasks when using the specified resolutions for the

observations.
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B TASK CLUSTERS

Table 2: Clusters of tasks used in knowledge transfer experiments.

Cluster name Games

retro:MsPacMan-Nes
atari:ALE/MsPacman-v5
procgen:chaser
atari:ALE/Pacman-v5
pacman retro:PacMania-Genesis
retro:MsPacMan-Genesis
retro:MsPacMan-Sms
retro:PacManNamco-Nes
retro:PacMania-Sms

retro:SuperSpacelnvaders-Sms
retro:Spacelnvaders-Nes
space-invaders  retro:Spacelnvaders91-Genesis
retro:Spacelnvaders-Snes
atari:ALE/Spacelnvaders-v5

retro:BlockKuzushiGB-GameBoy
atari:ALE/Breakout-v5
retro:BlockKuzushi-Snes
retro:Alleyway-GameBoy

breakout

retro:Paperboy-Sms
retro:Paperboy2-Genesis
retro:Paperboy-Nes
retro:Paperboy-Genesis

paperboy

retro:EarthDefenseForce-Snes
retro:OverHorizon-Nes
retro:Hellfire-Genesis
retro:Gradius-Nes
retro:Sagaia-Genesis
retro:ZeroWing-Genesis

air-combat

meta_arcade:meta_arcade_levels/cst_pong.json
meta_arcade:meta_arcade_levels/cst_pong_breakout.json
meta_arcade:meta_arcade_levels/cst_battle_pong.json
atari:ALE/Pong-v5

pong

retro:FinalFight2-Snes

retro: ArtOfFighting-Snes

retro:PitFighter-Sms

retro:FinalFight-Snes

retro: ArtOfFighting-Genesis

retro:FinalFightGuy-Snes

retro: TeenageMutantNinjaTurtlesTournamentFighters-Nes
retro:FinalFight3-Snes

retro:PitFighter-Genesis
retro:TeenageMutantNinjaTurtlesTournamentFighters-Genesis

boxing-fighting
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C ACTION MAPPING

Table 3: The 15 available actions are mapped to the specified task-type-specific actions in the fol-
lowing way. This choice of mapping ensures that the effect of each action is relatively similar across
all tasks.

# Dojo action atari procgen NES SNES Genesis SMS GameBoy
0 NOOP NOOP ¢} None / / None None
1 FIRE FIRE D B Y B B B
2 UP UP UP UP UP UP UP UP
3 RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT
4 LEFT LEFT LEFT LEFT LEFT LEFT LEFT LEFT
5 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN
6 UP_RIGHT UPRIGHT RIGHT+UP UP+RIGHT UP+RIGHT UP+RIGHT UP+RIGHT UP+RIGHT
7 UP_LEFT UPLEFT LEFT+UP UP+LEFT UP+LEFT UP+LEFT UP+LEFT UP+LEFT
8 DOWN_RIGHT DOWNRIGHT RIGHT+DOWN DOWN+RIGHT DOWN+RIGHT DOWN+RIGHT DOWN+RIGHT DOWN+RIGHT
9 DOWN_LEFT DOWNLEFT LEFT+DOWN  DOWN+LEFT DOWN+LEFT DOWN+LEFT DOWN+LEFT DOWN+LEFT
10 JUMP UPFIRE A A (jump) B C A A
11 KICK DOWNFIRE w A+B (kick) A DOWN+B UP+DOWN
12 SPECO RIGHTFIRE S UP+B (special) X A DOWN+A
13 SPEC1 LEFTFIRE Q DOWN+A (squat) L V4

14 SPEC2 E R X
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