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Abstract

This paper firstly addresses the challenge of few-shot universal cross-domain re-
trieval (FS-UCDR), enabling machines trained with limited data to generalize to
novel retrieval scenarios, with queries from entirely unknown domains and cate-
gories. To achieve this, we first formally define the FS-UCDR task and propose the
Multi-Modal Interactive Agent Layer (MAIL), which enhances the cross-modal
interaction in vision-language models (VLMs) by aligning the parameter updates of
target layer pairs across modalities. Specifically, MAIL freezes the selected target
layer pair and introduces a trainable agent layer pair to approximate localized pa-
rameter updates. A bridge function is then introduced to couple the agent layer pair,
enabling gradient communication across modalities to facilitate update alignment.
The proposed MAIL offers four key advantages: 1) its cross-modal interaction
mechanism improves knowledge acquisition from limited data, making it highly
effective in low-data scenarios; 2) during inference, MAIL integrates seamlessly
into the VLM via reparameterization, preserving inference complexity; 3) exten-
sive experiments validate the superiority of MAIL, which achieves substantial
performance gains over data-efficient UCDR methods while requiring significantly
fewer training samples; 4) beyond UCDR, MAIL also performs competitively on
few-shot classification tasks, underscoring its strong generalization ability. Code.
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1 Introduction

The objective of universal cross-domain re-
trieval (UCDR) [37, 3] is to retrieve images from
the real world (Real domain) using queries orig-
inating from unseen domains and classes. To
achieve robust performance in these generalized
retrieval scenarios, UCDR methods typically
require extensive, diverse, and well-annotated
datasets from multiple domains to learn domain-
agnostic feature embeddings [37, 43, 13]. How-
ever, labeling data across multiple domains in
real-world scenarios is often prohibitively expen-
sive. More critically, in the UCDR task, the sub-
stantial domain gap between training and test-
ing domains implies that excessive reliance on
source domain data may lead to overfitting and
poor generalization to unseen domains. Given
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Figure 1: Comparison of MAIL with various meth-
ods on DomainNet [38] dataset under FS-UCDR
(2-shot). The symbol [] indicates adapter-based
methods, ) represents prompt-based methods, )
denotes partially fine-tuned methods, and A\ de-
notes ProS [13], the SOTA method for UCDR.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 2: Modality-coupled methods in fine-tuning VLMs: (a) MaPLe achieves multi-modal align-
ment by establishing interconnections between the prompts. (b) MMA designs a unified feature-
projection layer within the adapter that is shared by both modalities. (c) In contrast, MAIL achieves
multi-modal alignment while preserving inference efficiency by introducing linked trainable agent
layers (AL) that align parameter updates without altering the original model structure.

that recent CLIP-based methods [39, 24, 49] have demonstrated strong performance in few-shot
classification, indicating the potential to generalize well with limited supervision, this raises a natural
question: Is it possible to train a model using only a few samples from each domain to achieve
performance comparable to, or even surpass, existing data-efficient UCDR methods?

In response, this paper formally defines the problem of few-shot UCDR (FS-UCDR), which aims to
train a retrieval model using minimal samples per class from each source domain. To address this
challenge, we explore parameter-efficient fine-tuning (PEFT) for pretrained vision-language models
(VLMs) like CLIP [39], whose remarkable “zero-shot” generalization capabilities position them as
promising tools for the FS-UCDR problem. We first empirically conduct a comprehensive empirical
study on fine-tuning CLIP under the FS-UCDR setting, covering four categories of methods: three
types of PEFT methods—® adapter-based methods [6, 49], @ prompt-based methods [23, 24], and
® partially fine-tuned methods (either through direct tuning such as BitFit [52] or indirect tuning such
as LoRA [22])—as well as @ the previous state-of-the-art UCDR method, ProS [13]. The results
are shown in Fig. 1, where we observe that modality-coupled methods (MCMs) (e.g., MaPLe [24]
and MMA [49]; see Fig. 2-a and Fig. 2-b) consistently outperform their modality-independent
counterparts, i.e., independent vision-language prompt / adapter (IVLP / IVLA). Since the objective
of vision—language training is to achieve effective alignment between modalities, the explicit cross-
modal interactions inherent in MCMs strengthen this alignment and facilitate knowledge transfer
from source domains, which is particularly valuable in low-data scenarios. Furthermore, cross-modal
interaction can be interpreted as a form of regularization: such coupling ensures that updates in one
modality are propagated to the other, thereby promoting more coherent and consistent representations.

Building upon the three explored types of PEFT methods, the first two—adapter-based and prompt-
based methods—both include modality-coupled variants. However, modality coupling in the third
type of PEFT methods has never been explored. This is primarily due to the non-trivial nature of such
an endeavor. For instance, establishing cross-modal bias interactions in BitFit [52] or introducing
modality coupling into the low-rank matrices of LoRA [22] poses significant challenges in both design
and implementation. Given the unique advantage of the third type of PEFT methods—introducing
no additional inference cost—designing a MCM for this category remains an important and yet
underexplored problem. To fill this gap, this paper propose the Multi-Modal Interactive Agent Layer
(MAIL), which, to the best of our knowledge, is the first CLIP-based modality-coupled method
explicitly aimed at enhancing the alignment of updates of the internal parameters between image and
text modalities within the backbone, as illustrated in Fig. 2-c.

Specifically, to facilitate alignment updates between a specific pair of layers, MAIL designates
these as the target layer pair while keeping their original parameters frozen. For each target layer,
we introduce a lightweight agent layer that approximates the localized parameter updates through
training. Each agent layer consists of a scaling and a shifting component [31], which together
capture the fine-grained adjustments of the corresponding target layer. To encourage cross-modal
interaction, we further incorporate a bridge function that couples the agent layers, enabling gradient
flow between modalities during tuning and thereby strengthening alignment. At inference, the agent



layers are seamlessly reparameterized into their corresponding frozen layers, ensuring that the overall
complexity of CLIP remains unchanged.

Compared to MaPLe and MMA, MAIL achieves superior performance with higher parameter
efficiency in FS-UCDR and even surpasses ProS using only 1/140 of the training data, as shown
in Fig. 1. To summarize, our main contributions are outlined as follows: @ We formally define
the problem of FS-UCDR and explore the potential of leveraging the pretrained vision-language
model (VLM), specifically CLIP, to effectively address this challenge. ® We experimentally find
that the modality-coupled method works effectively under FS-UCDR due to the explicit cross-modal
interaction. ® We introduce MAIL, a novel MCM crafted to optimize the alignment of partially
parameter updates across image and text modalities. @ Extensive experiments on three FS-UCDR
benchmarks and eleven few-shot classification datasets demonstrate that MAIL achieves state-of-the-
art performance while maintaining superior parameter efficiency and CLIP’s inference efficiency.

2 Related Work

Universal Cross-Domain Retrieval. Cross-domain retrieval (CDR) [26, 16] addresses the inherent
limitations of uni-domain retrieval (UDR) [5, 4, 42, 47] by enabling retrieval across diverse domains.
However, it typically assumes that the testing phase involves known domains and semantic classes.
This assumption restricts its applicability in real-world scenarios, where models often encounter
entirely new domains and classes. Therefore, universal cross-domain retrieval (UCDR) [37, 43]
has emerged as a promising direction, which leverages queries from unseen domains and unseen
classes to retrieve semantically similar examples from the Real domain. However, this setup demands
substantial data collection from diverse domains, which is both costly and time-intensive. To address
these challenges, we propose a more practical and significantly more challenging variant: few-shot
universal cross-domain retrieval (FS-UCDR), where only a limited number of samples per class are
available for training, aiming to reduce data requirements while preserve retrieval effectiveness.

Parameter Efficient Fine-Tuning. With the rapid advancement of datasets, model architectures,
and training algorithms [51, 7], foundation models like BERT [10], ViT [11], and CLIP [39] have
revolutionized deep learning. However, their increasing size presents challenges for fine-tuning
due to high memory and computational demands. To address these issues, parameter-efficient fine-
tuning (PEFT) methods have been proposed, which can be broadly categorized into three types:
@ Prompt-based methods. These methods introduce additional learnable tokens during fine-tuning,
while keeping all other parameters fixed. These tokens can be integrated into the vision model [23],
the language model [57], or both [24], depending on the specific task requirements. @ Adapter-
based methods. These methods incorporates lightweight adapter modules that are updated during
fine-tuning, leaving the original model parameters unchanged. Adapters can take various forms, such
as bottleneck structures [21, 6], simple residual layers [15], or memory banks [55, 54], and can be
implemented either sequentially [21] or in parallel [6] with the original model. ® Partially fine-tuned
methods. Some of these methods directly update a limited (target) subset of pretrained parameters,
such as specific layers [1, 28] or biases [52], thereby minimizing overhead. Additionally, methods
such as LoRA [22] and VeRA [27] indirectly approximate the partial updates by introducing new
trainable parameters, which are merged back via re-parameterization to preserve inference efficiency.

3 Preliminary

3.1 Problem Setting

UCDR. In universal cross domain retrieval (UCDR), the training setup includes Ng > 2 source

domains, collectively represented as Dg = {DJS };\’:sl. Each domain is defined as Dg ={(z], yzj) f-l"l,

where 2] denotes the i-th image out of a total of P; images in the j-th source domain, and y;
represents its class label from a shared label space Vs. Additionally, the Real domain Dpg, consists
of real-word images, serves a dual purpose by contributing to both training and testing. Within Dp,
there are two distinct subdomains: DE and Df,. DE is a subset belongs to Dg, i.e., DE € Ds. Dy
serves as the gallery set during testing. In the test phase, a query set Do = {(z?, yf)}i“l is also
provided, containing P, samples drawn from an unseen domain and unseen classes. By default, the
classes in D, are identical to those in D¢, and we denote this scenario as UnseenGallery. However,
in a realistic scenario, D may include additional classes, such as those from the training phase,
which is refereed to as MixedGallery.



UPCDR and U°CDR. Universal domain cross-domain retrieval (UPCDR) and universal class
cross-domain retrieval (U°CDR) are two specialized variations of UCDR. In UPCDR, the query
class is encountered during training, while in U° CDR, the query domain has been seen.

Few-Shot Setup. The aforementioned setups demand substantial data collection across diverse
domains, which is costly and time-intensive. To this end, we propose a more practical few-shot setup.
While the shared label space consists of C' classes, we limit it to only & (a small number) shots per
class for each domain, resulting in a total of |Dg| = Ng X k x C' training samples.

3.2 Revisiting CLIP

CLIP [39] is a pretrained vision-language model (VLM) consisting of two encoders: a text encoder,
denoted by 7 (-), and an image encoder (ViT [11] as default), denoted by V(-). Both encoders com-
prise L transformer [45] blocks, represented as {7}}%:1 and {V,;}Z-Lzl, respectively. For classification
inference with C classes, CLIP inserts all class names into a pre-defined text template, e.g., “a photo
of a <category>", generating C inputs {t;}< ; for the text encoder 7 (-). For a certain input ¢,, its
output 7 () is:

Wy = TextEmbed(t,)
Wi =TiWi—1), 1=12,..,L (1
T (t,) = TextProj o LN(wh"),
where Wy = [w, wd, ..., w)*]T € RNe*d is the word embedding, with N; and d; indicate text
embedding length and dimension, o represents the composition of functions. TextProj is a linear
layer (d; — d;). Similarly, for the image I, its representation V() is calculated as:
Po = PatchEmbed([)
[CZ',’Pi] :Vi([cifl;tpifl]), 1= 1,2,...,L (2)
V(I) = ImageProj o LN(cp),

where Py € RV»*4v is the image embedding, with NV, and d, indicate embedding length and
dimension, and ¢o € R% is the initial CLS Token. ImageProj is also a linear layer (d, — d;). With
V(I) available, the text features of the text templates with class labels are matched using the formula

— _ exp(sim(T (ty),V())) . U
p(y|I)= SO pGim O () V(T where y€{1,2,...,C}, and sim(., .) refers to cosine similarity.

4 Multi-Modal Interactive Agent Layer

Modality-coupled methods (MCMs), such as MaPLe [24] and MMA [49], improve cross-modal align-
ment by enhancing synergy between encoders during training, thereby boosting retrieval performance
under FS-UCDR. However, these benefits come with increased inference complexity. In contrast,
the third type of PEFT methods—partially fine-tuned approaches—offers a key advantage: they
introduce no additional inference overhead. Despite this, modality coupling has not been explored
in this category. To bridge this gap, we propose the Multi-Modal Interactive Agent Layer (MAIL),
a lightweight MCM that aligns parameter updates across modalities while preserving the inference
efficiency. As illustrated in Fig. 3, MAIL incorporates agent layers to capture localized parameter
updates, while the bridge functions further refine and align these updates across encoders.

4.1 Agent Layer

The agent layer (AL) is designed to approximately capture the updates of specific operations within
the encoders. It consists of a scaling vector a, initialized as an all-one vector, and a shifting vector
b, initialized as an all-zero vector [31]. The agent layer can be appended after various positions:

AL o OP(z) = OP(z) - A(a) + b, 3)

where OP is a specific operation or a layer, A(a) represents the diagonal matrix with the vector
a as its diagonal elements, - denotes the matrix multiplication. In a transformer block, the agent
layer can be positioned after the LayerNorm (LN) layer (Position-1) to capture updates related to
the parameters of LN. Similarly, it can be placed after the multi-head self-attention (MHSA) layer
(Position-2) to monitor updates to the output weight matrix W©, or after the MLP layer (Position-3)
to track changes in the second linear layer, Wﬁllp. Beyond the confines of transformer blocks, the

agent layer can also be appended after the final LN layer (Position-4) and the last projection layer
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Figure 3: The proposed Multi-Modal Interactive Agent Layer (MAIL) for the transformer-based CLIP
models. During training, we only fine-tune the agent layers, which are inserted into both encoders.
The image agent layers interact with the text agent layers through a trainable bottleneck-based bridge
function, fostering mutual synergy between the two modalities.

Woproj (Position-5), effectively capturing the relevant updates. One can refer to Appendix G.4 for a
clearer visual illustration. In summary, the agent layer is specifically designed to track updates for
five positions from two types of layers: the LN layer and the linear layer. For illustrative purposes,
we will focus on the text encoder (i.e., a, b € R%) to demonstrate how updates occur in the LN and
linear layers.

LN Layer: The LN operation is formulated as:

LN(z) = % 9+ B, @

where 2 € RV+*? denotes the input to the LN layer, u, 0 € RVt v, 3 € R%. The agent layer,
appended after the LN layer, can be formulated as:

ALoLN(a:):x;—“chagM@wb, ®)
ol B

where underline indicates the trainable component, and ® represents the Hadamard product. As
shown in Eq. (5), the update of the agent layer can approximately correspond to the updates of v and
£ in the LN layer.

Linear Layer: The linear layer is formulated as:
LiL(z) = 2 - W' + bias, (6)

where € RV+*da represents the input, with d,, can either equal to d; or the intermediate dimension of
the MLP layer within the transformer block. W € R9*4a denotes the weight matrix, and bias € R%
represents the bias. The agent layer, appended after the linear layer, is expressed as:

ALoLiL(z) =z - (A(a) - W) + bias ®a+b. @)

w bias

Due to the left multiplication by A(a) applied to W, the updates of W are row-wise.

During inference, based on Eq. (5) and Eq. (7), the agent layers can be seamlessly integrated into the
original foundation model, eliminating additional inference latency.

4.2 Agent Layer Coupling

We define the text agent layer as ALoyxs = {ay, bt € Rdt}, and the image agent layer at the same
location in the image encoder as ALiyage = {ay, by € R%} or ALipage = {ay, by € R%} (when
the agent layer is appended after the final projection layer). These agent layers can be trained
independently, and we term such a design as independent vision-language updating (IVLU). To



Table 1: FS-UCDR (2-shot) evaluation results (%) on DomainNet. * denotes the results are obtained
using the full training data, i.e., the UCDR results. The best performance under FS-UCDR is marked
as bold and the second best performance is marked as underline, while scores from our method are
highlighted with a
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enhance the synergy between the vision and language agent layers, we introduce a multi-modal agent
layer coupling approach. Specifically, the scaling vector a,, in the vision agent layer is integrated with
ay via a bottleneck-based language-to-vision projection, acting as a bridge function that facilitates
gradient exchange and promotes aligned updates across the modalities:

Oy = Gy + Wup . Wdown G, (8)

where W, € R4 or W,,, € R4%*" and Wypyn € R™ %, with r representing the rank of the
bridge function. Following the initialization method in LoRA [22], W 44, 1S initialized with random
Gaussian values, i.e., Wyown ~N(0,02), with oy = ﬁ, while W, is initialized to zeros. a, will
replace in a, in the image agent layer. Alg. 1, 2, 3 provides the pseudo-codes for MAIL in a PyTorch-
like style. With just a few lines, MAIL can significantly boost performance in a plug-and-play manner.
Additional design details and variants are provided in Appendix G, including the structure of the
bridge function, various initialization strategies, pseudocode, and other implementation choices.

4.3 Parameter Analysis

Here, we analyze the parameter complexity of MaPLe, MMA, and the proposed MAIL. For a
transformer block, MAIL fine-tunes (8 + 4r) - (d; + d,) parameters, where r is set to 8 in our
implementation for FS-UCDR. In contrast, MMA fine-tunes 271 - (d; + d,) + r%, with 1 =32 as the
intermediate dimension of the bottleneck layer. Meanwhile, MaPLe requires d.d,, + N, d; parameters,
with N}, denotes the number of text prompts. Based on these calculations, we conclude that MAIL
and MMA have a comparable number of learnable parameters, while both are significantly more
parameter-efficient than MaPLe, i.e., MAIL ~ MMA < MaPLe. The detailed time and resource
consumption are provided in Appendix E.

S Experiments

In this section, we evaluate the effectiveness of our proposed MAIL on two tasks: FS-UCDR
(including its variants) and few-shot classification. Details on datasets, metrics, implementations,
loss functions and computational cost are provided in Appendix A, B, C, D, E.
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Table 2: FS-UPCDR (2-shot) evaluation results (%) on DomainNet.
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5.1 Experimental Setup for FS-UCDR and Its Variants

In terms of the retrieval task, we conduct three core evaluations to comprehensively assess MAIL’s
performance: FS-UCDR, FS-UPCDR, and FS-UCCDR. All experiments utilize a 2-shot setting, i.e.,
only 2 x Ng training examples per category, where N denotes the number of source domains.

Datasets. We conduct experiments on three bench-
mark datasets: DomainNet [38], Sketchy [41, 32],
and TU-Berlin [12, 53]. DomainNet is utilized for

Table 3: FS-UCCDR (2-shot) evaluation re-
sults (%) on Sketchy and TU-Berlin.

FS-UCDR and FS-UPCDR evaluations, while the  Methods | _ Sketchy | TU-Berlin
Sketchy and TU-Berlin datasets are employed for |mAP200 Precaoo [mAPau Precioo
FS-U®CDR evaluation. ProS*(cveras) | 69.91 65.45 | 66.75 74.42
Baselines. We primarily compare our methods with gkgi’t[‘“\‘:‘z[_l“‘ g?% gig? gég? ‘;gég
the following categories: @ adapter-based methods,  1oRA jicir ) 54.23 5277 | 57.78 67.97
including AdaptFormer (vision-only adapter) [6], VPT-Drccva 65.19 61.16 | 62.12 70.89
IVLA (modality-independent adapter) [49], and ﬁfﬁ’;me”““*“’* 21 ggg; gg% Eg-?g ggég
. . . [CVPR’23] . . oJ. .
MMA [49]; @ prompt-based methods, including  1yy'y ey | 5677 5271 | 5913 70.42
VPT-D (vision-only prompt) [23], IVLP (modality-  MaPLe cver o3 71.86  68.14 | 65.90 73.73
independent prompt) [24], and MaPLe [24]; ©® par- MMA cver2e 61.59 57.14 | 63.70 72.69
tially fine-tuned methods, including LoRA [22] and ~ MAIL 0w 7346 69.73 | 67.97 75.10

BitFit [52]; @ other methods, including the zero-shot
CLIP [39] and the SOTA method under UCDR, ProS [13]. Implementation details of these methods
are provided in Appendix F.

5.2 Experimental Setup for Few-Shot Classification

We also conduct three core few-shot classification evaluations that are widely adopted in prior
work: @ base-to-novel generalization, @ cross-dataset evaluation, and @ domain generalization. All
experiments are conducted under a 16-shot setting, i.e., using 16 training examples per category.

Datasets. We conduct the base-to-novel generalization and cross-dataset evaluations across 11 diverse
image classification datasets: ImageNet [9], Caltech101 [14], OxfordPets [36], StanfordCars [29],
Flowers102 [34], Food101 [2], FGVCAircraft [33], SUN397 [48], UCF101 [35], DTD [8], and
EuroSAT [17]. In terms of the domain generalization evaluation, we use ImageNet as the training
dataset and evaluate on four variants—ImageNetV2 [40], ImageNet-Sketch [46], ImageNet-A [19],
and ImageNet-R [18]—each introducing different types of domain variation.

Baselines. We primarily compare our method with prompt-based and adapter-based approaches,
including CoOp [57], CoCoOp [56], MaPLe [24], and MMA [49], as well as regularization-based
methods such as KgCoOp [50], PromptSRC [25], and DeKg [30]. To ensure fairness, we exclude
methods that rely on LLMs or adopt regularization purely as an auxiliary loss trick.

5.3 Comparison Results

Comparison Results under FS-UCDR and FS-U” CDR. We compare the FS-UCDR and FS-
UPCDR performance of our MAIL against other baselines on DomainNet, as summarized in Tab. 1
and Tab. 2. We identify several key observations: @ Our method consistently outperforms existing
baselines. Notably, under FS-UCDR, MAIL significantly outperforms ProS, a model operate under
data-efficient UCDR. Moreover, MAIL achieves comparable performance under FS-U”CDR while



Table 4: Base-to-novel generalization (16-shot) evaluation results (%) across 11 datasets.

Average ImageNet Caltech101 OxfordPets
Methods Base Novel HM | Base Novel HM | Base Novel HM | Base Novel HM
CLIP jicm121] 69.34 74.22 T71.70 | 72.43 68.14 70.22 | 96.84 94.00 95.40 | 91.17 97.26 94.12
CoOp [1cv'22] 82.69 63.22 T71.66 | 76.47 67.88 71.92 | 98.00 89.81 93.73 | 93.67 95.29 94.47
CoOpOp [cVPR22) 80.47 71.69 75.83 | 75.98 70.43 73.10 | 97.96 93.81 95.84 | 95.20 97.69 96.43
KgCoOp [cvPr23] 80.73 73.60 77.00 | 75.83 69.96 72.78 | 97.72 94.39 96.03 | 94.65 97.76 96.18
MaPLe (cvPr21) 82.28 75.14 7855 | 76.66 70.54 73.47 | 97.74 94.36 96.02 | 95.43 97.76 96.58
PromptSRC [iccv2s) | 84.26  76.10 79.97 | 77.60 70.73 74.01 | 98.10 94.03 96.02 | 95.33 97.30 96.30
MMA [CVPR 24 83.20 76.80 79.87 | 77.31 71.00 74.02 | 98.40 94.00 96.15 | 95.40 98.07 96.72
DeKg [1cLRr25] 84.96 76.38 80.44 | 77.40 69.20 73.07 | 98.64 95.20 96.89 | 94.47 97.76 96.09
MAIL [0urs] 8519 7739 8110 | 77.92 7122 74.42| 9834 9536 96.83 | 95.50 97.97 96.72
Methods StanfordCars Flowers102 Food101 FGVCAircraft
Base Novel HM Base Novel HM | Base Novel HM Base Novel HM
CLIP jicm121] 63.37 74.89 68.65 | 72.08 77.80 74.83|90.10 91.22 90.66 | 27.19 36.29 31.09
CoOp [1cv'22] 78.12 60.40 68.13 | 97.60 59.67 74.06 | 88.33 82.26 85.19 | 40.44 22.30 28.75
CoOpOp [cVPR22) 70.49 73.59 72.01 | 94.87 71.75 81.71 | 90.70 91.29 90.99 | 33.41 23.71 27.74
KgCoOp [cvPr 22| 71.76  75.04 73.36 | 95.00 74.73 83.65 | 90.50 91.70 91.09 | 36.21 33.55 34.83
MaPLe [cvPr™23) 72.94 74.00 73.47 | 95.92 7246 8256 | 90.71 92.05 91.38 | 37.44 35.61 36.50
PromptSRC [iccv23) | 78.27  74.97 76.58 | 98.07 76.50 85.95 | 90.67 91.53 91.10 | 42.73 37.87 40.15
MMA [CVPR 24 78.50 73.10 75.70 | 97.77 75.93 85.48 | 90.13 91.30 90.71 | 40.57 36.33 38.33
DeKg (1cLRr25] 81.18 7475 77.83 | 98.58 75.18 85.30 | 90.73 91.55 91.14 | 45.20 35.09 39.51
MAIL [0urs 82.27 72.03 76.81|98.20 75.27 85.22|90.54 91.77 91.15| 47.80 36.27 41.24
Method SUN397 DTD EuroSAT UCF101
etho Base Novel HM | Base Novel HM | Base Novel HM Base Novel HM
CLIP jicm121] 69.36 75.35 72.23 | 53.24 59.90 56.37 | 56.48 64.05 60.03 | 70.53 77.50 73.85
CoOp (V2] 80.60 65.89 72.51 | 79.44 41.18 54.24 | 92.19 54.74 68.69 | 84.69 56.05 67.46
CoOpOp [cVPR22 79.74 76.86 78.27 | 77.01 56.00 64.85 | 87.49 60.04 71.21 | 82.33 73.45 77.64
KgCoOp [cvPr 22| 80.29 76.53 78.36 | 77.55 54.99 64.35 | 85.64 64.34 73.48 | 82.89 76.67 79.65
MaPLe [cvPr™23) 80.82 78.70 79.75 | 80.36 59.18 68.16 | 94.07 73.23 82.35 | 83.00 78.66 80.77
PromptSRC [iccv23) | 82.67 78.47 80.52 | 83.37 62.97 71.75|92.90 73.90 82.32 | 87.10 78.80 82.74
MMA [CvPR 24 82.27 7857 80.38 | 83.20 65.63 73.38 | 85.46 82.34 83.87 | 86.23 80.03 82.20
DeKg [icLRr 25 82.52 7830 80.35 | 83.80 59.66 69.70 | 94.02 81.69 87.42 | 88.06 81.77 84.80
MAIL [0urs] 82.50 78.70 80.56 | 83.15 67.39 74.45|93.50 85.11 89.11 | 87.34 80.22 83.63

utilizing only approximately 1/140 of ProS’s training data, highlighting its remarkable efficiency
in low-data scenarios. @ Modality-coupled methods consistently outperform modality independent
methods. For instance, under FS-UCDR’s UnseenGallery scenario, MaPLe and MMA achieve
average mAPygy improvements of 4.44% and 3.22% over IVLP and IVLA, respectively. This
emphasizes the importance of collaboration and information sharing between modalities in low-data
settings. @ The vision-only methods perform similarly to, or even slightly outperform, the modality-
independent methods. As seen in the table, AdaptFormer achieves results comparable to IVLA, while
VPT-Deep achieves an average mAP improvement of 0.5%-1.6% over IVLP. Therefore, we conclude
that the benefit of simply fine-tuning the text side for retrieval is limited.

Comparison Results under FS-U“CDR. In Tab. 3, we compare the FS-U“CDR performance
of our MAIL with other baselines. The results demonstrate that MAIL consistently achieves the
best performance among all methods, indicating its effectiveness in enhancing CLIP’s capability to
handle semantic shifts under limited-data scenarios. Moreover, it can be observed that adapter-based
methods and LoRA perform relatively poorly under the FS-UCDR setting.

Comparison Results under Few-Shot Classification. In Tab. 4, we compare the base-to-novel
performance of MAIL against existing baselines across 11 datasets, reporting accuracies on base
and novel classes, along with their harmonic mean (HM). Without relying on any regularization loss,
MAIL achieves consistent gains of 0.23%, 1.01%, and 0.66% in Base, Novel, and HM, respectively,
surpassing the previous best method, DeKg [30]. The improvement on novel classes is particularly
notable, as DeKg [30] depends on regularization to enhance generalization, while MAIL attains better
results with a simpler, regularization-free design. For results under the other two evaluation settings,
please refer to Tab. 5 and Tab. 6, where our MAIL also showcases strong performance.

5.4 Ablation Studies

In this section, we assess the performance of each component within MAIL. By default, we present
the average performance scores for the UnseenGallery and MixedGallery scenarios on DomainNet
across five query domains under FS-UCDR. More ablation studies can be found in Appendix G, H.



Table 5: Comparison of MAIL with previous state-of-the-art methods on cross-dataset evaluation.

Source | Target
¥
I &
N & & 3> <O
~ &) > (@) S K
Fl g § § & &£ & 5 8 &9
g|1& § & § & 5 & 5 8§ 8
§$ |v F g 4 & €K g 9 & 9
CoOp [1JCV22] 71.51 | 63.88 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55
CoOpOp [CVPR22] 71.02 | 65.74 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21
MaPLe [CVPR 23] 70.72 | 66.30 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69
PromptSRC [1ccv23) 71.27 | 65.81 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75
MMA [CVPR24] 71.00 | 66.61 93.80 90.30 66.13 72.07 86.12 25.33 68.17 46.57 49.24 68.32
DeKgliCLR25] 7233 | 66.64 94.73 90.02 65.49 7239 86.59 25.05 67.19 44.47 51.37 68.78
MAIL [Ours] 72.10 ‘ 67.02 9473 9137 66.63 71.47 86.33 25.27 67.30 45.47 52.80 68.87

Table 6: Comparison of MAIL with previous state-of-the-art methods on domain generalization
across 4 datasets. These results of DeKg are derived from their OpenReview comment section.

Source | Target
ImageNet | Average  -V2 -S -A R
CLIP [1ICML21] 66.73 57.17 60.83 46.15 47.77 73.96
CoOp [11CV*22] 71.51 59.27 64.20 4799 49.71 75.21
CoOpOp [CVPR22] 71.02 59.91 64.07 48.75 50.63 76.18
MaPLe [CVPR 23] 70.72 60.28 64.07 49.15 50.90 76.98
PromptSRC [1CCV23) 71.27 60.65 64.35 49.55 50.90 77.80
MMA VPR 24] 71.00 60.47 64.33 49.13 5112 77.32
DeKg [1CLR25] 72.33 59.89 64.31 48.38 50.51 76.37
MAIL [Ours] 72.10 ‘ 60.68 64.50 49.67 50.70 77.80

Variants of AL and MAIL. We first com- Table 7: Ablation studies on variants of AL and MAIL.
pare the performance of adding ALs to both

UnseenGallery | MixedGallery |

encoders (IVLU) versus only to the im-  Methods | Params. (|)

age encoder (VU), as shown in the first | mAPoo  Precago | mAPau  Precigo |

two rows of Tab. 7, focusing exclusively VU 5913 54.59 | 53.34  49.24 76288
IVLU 58.88 54.29 53.13 49.06 127488

on the image encoder yields better results.
Next, we analyze the directionality of infor- V —L 58.67  54.00 | 5297 4879 | 637400

. . S 4 =4 44 B |4

mation flow in MAIL. Vlslon—to—lz,mguage zilﬂ g;g; ;gg; ;gﬁg ;Z;g 161347T0902
flow (V' — L) reduces the model’s repre- —
sentational capacity, as evidenced by its poorer performance compared to IVLU. Similarly, the
bidirectional flow (V <+ L) underperforms compared to language-guided alignment (L < V).
This is likely due to visual features, which often include significant background noise and limited
category-specific information, diluting the discriminability of text features. In contrast, text features,
being semantically compact and category-specific, are better suited to guide alignment effectively
without being adversely affected by redundant noisy information.

Variants of Adding AL. We begin by evalu-
ating the effect of placing ALs at the final LN 4
and projection layers of both encoders, as shown s

_:__ Unseen Gallery _DE__ Mixed Gallery ~ wm® mAP200 (%) ™= Prec200 (%)

----59-A-@.
56

in Fig. 4-a. Results reveal a significant perfor- 3} I
mance boost when ALs are applied to these lo- 2 o I
cations. Please note that when we add AL to the 3 38 ‘8

projection layer, we also set the projection layer zsclip +In +pU 13579101 1@ -mip -att -In
trainable. Next, we progressively distribute ALs (a) (©

across transformer blocks, from the first layer

to the [-th block (I = 1,2,...,12). Asshown s | *"*" s ./o—._./ss .

in Fig. 4-b, performance peaks when ALs are  [; | ..o | o o sl e 01 °

added to all 12 layers. Furthermore, we exam- 2 | ° 52 G/E_E_B_?E,B/E’ESZB o
ine the effect of removing ALs from key trans- jg gom@ ST i ‘; i‘; .
former components—MLP, attention, and LN vl +In *PU TEs 7 etom ‘W mip att in
layers. Fig. 4-¢ shows that stepwise removal @ © ®

consistently degrades performance, highlighting Figure 4: Ablation studies on different configura-
the critical role of ALs across all components.  tions of adding AL and MAIL.



Variants of Adding MAIL. Building on IVLU, we integrate the bottleneck-based bridge function
into ALs, transforming them into MAILs. We first place the bridge function in the final LN and
projection layers of both encoders, as illustrated in Fig. 4-d, which delivers promising results. Next,
we incrementally add the bridge function to ALs in each transformer block, as shown in Fig. 4-e.
Notably, introducing the bridge function in the first block yields a significant performance boost.
While subsequent additions initially cause minor declines, a sharp improvement begins at the 10th
block, culminating in the best performance when applied across all 12 blocks. Finally, we remove
the bridge function (degrading MAIL to AL) systematically from each transformer block. Fig. 4-f
reveals that removing it from the LN layer has the most pronounced negative effect.

~®—Unseen Gallery w8 mAP200 (%) MAP,o, (%)
65 £ o MiedGallery  mPrecooo(%) T TaemS: (M) A 5 200
63 i 45 63
61 | i 4 61

! 3.5 59

59 F 1 3
57 ! 4 25 57
55 | | 2 55
53 1 : 1'5 53
o1 r I 0.5 51
49 : 0 49

0 1 2 4 8 16 32 64 128 1-shot 2-shot 3-shot 4-shot 8-shot

Figure 5: Ablation studies on different ranks. Figure 6: Results with different shots under FS-
rank =0 denotes IVLU. UCDR (UnseenGallery).

Rank of the Bridge Function. To evaluate the impact the rank of the bridge function in our MAIL,
we conduct an ablation study by varying the rank systematically. As shown in Fig. 5, performance
peaks when the rank is set to 16. However, increasing the rank beyond 16 leads to a slight decline in
performance, likely due to the additional parameters increasing the risk of overfitting. To achieve a
better trade-off, we select a rank of 8 for the final configuration.

Results with Different Shots. Fig. 6 presents the results of our method compared to other methods
across varying shot numbers, with detailed numerical values provided in Appendix I. This figure
clearly demonstrates that the performance of all methods improves as the number of shots increases.
Notably, our method consistently outperforms the its competitors. Additionally, it is worth noting
that nearly all methods surpass ProS [13] with proper shots.

6 Conclusion and Limitation

In this paper, we introduce FS-UCDR, a practical setting that alleviates the data scarcity challenge in
UCDR. Accordingly, we propose MAIL, a novel approach that enhances update alignment between
modalities through coupled agent layers. Leveraging a scaling-and-shifting reparameterization
mechanism, these agent layers are seamlessly integrated into the original CLIP, preserving inference
efficiency while improving adaptability. Extensive experiments across three benchmarks validate
its effectiveness. Beyond retrieval, MAIL’s alignment strategy also holds promise for few-shot
classification.

The limitation of MAIL lies in: MAIL’s sequential nature, i.e., AL o OP(z) leads to slight longer
training time and memory (as we have provided in the Appendix E) compared with MaPLe and
MMA. We will explore optimizations in future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation of our method is the slightly higher computational cost during
training compared to other PEFT methods.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include any theoretical results. Instead, it focuses on
thorough experimental validation and strong empirical performance, which we believe are
more appropriate and relevant for evaluating the proposed method.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have spare no efforts to illustrate the implementation details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will provide the code if the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have specifies all the training details in Appendix A, B, C, D, E.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: For FS-UCDR, following prior work, all results are obtained with the random
seed fixed at 0. For few-shot classification, results are averaged over three independent runs
with different random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As detailed in Appendix C, a single 24GB GPU is sufficient to reproduce all
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We strictly follow the EthicsGuidelines.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: NA.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper has no such tricks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the original paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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Summary of the Appendix

In the appendix of this paper, we provide further details:

* Elaboration on the used datasets (Appendix A).

* Explanation on the used metrics (Appendix B).

» Explanation on the implementation details (Appendix C).

* Elaboration on the used loss functions (Appendix D).

* Elaboration on the computational cost (Appendix E).

* Elaboration on the implementations for baseline methods (Appendix F).
» Additional design choices and details (Appendix G).

* Additional visualization results (Appendix H).

* Detailed experiment results with other shots under FS-UCDR (Appendix I).

A Datasets

A.1 Datasets for FS-UCDR and Its Variants

We conduct experiments on three datasets: DomainNet [38], Sketchy [41, 32], and TU-Berlin [12, 53].
DomainNet is utilized for UCDR and UPCDR evaluations, comprising 596,006 images across six
domains: Real, Sketch, Quickdraw, Infograph, Clipart, and Painting. Following the leave-one-out
protocol from ProS, five domains serve as sources, while the remaining one acts as the unseen query
domain. The MixedGallery is created by combining the UnseenGallery with 8% of samples from
each seen class in the Real domain. For UPCDR evaluation, we select 45 training classes and use
25% of the samples from each class for both the query domain (10% for Quickdraw) and the Real
domain. The Sketchy and TU-Berlin datasets are employed for U CDR evaluation, each containing
two domains: Real and Sketch. Detailed statistics of the datasets are summarized in Tab. 8.

Table 8: Statistics of the utilized datasets for FS-UCDR and its variants. The average shots denotes
the average number of images per class in each domain.

Dataset Images Domains Classes Train Classes Val Classes Test Classes  Average Shots
DomainNet 596006 6 345 245 55 45 287.9
Sketchy 148473 2 125 93 11 21 593.9
TU-Berlin 224489 2 250 200 20 30 449.0

A.2 Datasets for Few-Shot Classification.

Base-to-Novel Generalization: In this evaluation, the dataset’s categories are partitioned equally into
base and novel classes. The model is trained solely on the base classes and evaluated on both base
and novel classes. This setup enables us to assess the model’s transfer learning performance on seen
categories. We conduct this evaluation across 11 diverse image classification datasets: ImageNet [9],
Caltech101 [14], OxfordPets [36], StanfordCars [29], Flowers102 [34], Food101 [2], FGVCAircraft
[33], SUN397 [48], UCF101 [35], DTD [8], and EuroSAT [17].

Cross-Dataset Evaluation: This evaluation tests how well the model works on new datasets it has
never seen before. Like CoCoOp [56], we first train the model on all 1000 ImageNet classes using
only a few examples per class. Then, we directly apply the trained model to other datasets to see
if it can generalize across datasets. The target datasets used are the ten remaining datasets in the
base-to-novel generalization experiment.

Domain Generalization: In this setup, similar to cross-dataset evaluation, we also use ImageNet for
training, and evaluate on four domain-shifted variants—ImageNetV2 [40], ImageNet-Sketch [46],
ImageNet-A [19], and ImageNet-R [18]—each presenting a distinct type of domain variation.

Detailed statistics of the datasets are summarized in Tab. 9.
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Table 9: Statistics of the utilized datasets for few shot classification. * denotes the number of images.

Dataset ‘ Classes Train* Val*  Test* Prompt

ImageNet 1000 1.28M  ~ 50000 “a photo of a <category>."

Caltech101 100 4128 1649 2465 “a drawing of a <category>.”
OxfordPets 37 2944 736 3669 “an awesome animal pet photo of a <category>.”
StanfordCars 196 6509 1635 8041 “a photo of my <category>.”
Flowers102 102 4093 1633 2463 “a flower photo of a <category>."
Food101 101 50500 20200 30300 “a food photo of a <category>.”
FGVCAircraft 100 3334 3333 3333 “a brand aircraft a <category>.”
SUN397 397 15880 3970 19850 “a scene photo of a <category>."

DTD 47 2820 1128 1692 “a beautiful texture drawing a <category>.”
EuroSAT 10 13500 5400 8100 *“a photo of a <category>, a type of centered satellite.”
UCF101 101 7639 1898 3783 “a photo of a <category>, a type of action.”
ImageNetV2 1,000 ~ ~ 10,000 “a photo of a <category>.’
ImageNet-Sketch | 1,000 ~ ~ 50,889 “a sketch photo of a <category>.”
ImageNet-A 200 ~ ~ 7,500 “a poor photo of a <category>.”
ImageNet-R 200 ~ ~ 30,000 “a sketch photo of a <category>.”

A.3 Practicality of FS-UCDR

1. Data collection is hard. UCDR relies on DomainNet [38] as its benchmark dataset, where
each domain contains an average of 287.9 samples per class, resulting in approximately 1,400
samples per class across five diverse domains. For comparison, ImageNet—commonly used in
few-shot learning—contains roughly 1,200 to 1,300 samples per class. Although the per-class sample
sizes are similar, collecting DomainNet-style multi-domain data is significantly more challenging
than collecting single-domain (real-world) images like those in ImageNet. While automated data
collection may be feasible for domains such as Real, it is much harder for others like Clipart or Sketch.
Therefore, developing and studying the few-shot UCDR setting is both meaningful and necessary, as
it reduces data requirements while maintaining the core challenge of cross-domain generalization.

2. More data does not help. Since UCDR involves unseen domains and classes during testing, the
inherent domain and semantic shifts between training and testing phases may increase the risk of
overfitting for PEFT methods when more training data is used. This phenomenon is supported by
empirical evidence: as shown in the Tab. 10, the average mAP for 2-shot and full-shot settings is
62.05% and 61.95%, respectively. This indicates that increasing the number of training samples does
not necessarily lead to better performance, further highlighting the relevance of the FS-UCDR setting.

Table 10: The average performance of MAIL across five query domains under varying shot settings in
the FS-UCDR task. Bold values denote the best performance. Results from 2-shot UCDR experiments

are highlighted with a , while those from full-shot UCDR experiments are
highlighted with a
| UnseenGallery | MixedGallery
Shot
| mAPyg Precogg | mAP,;  Precigo
1 60.40  56.12 | 54.70  50.87
2 62.06 58.31 | 56.05 52.80
4 63.64  59.94 | 57.71  54.63
8 63.75  60.19 | 57.72  54.62
16 63.77 6042 | 57.75 54.66
32 63.52  60.13 | 57.52  54.13
64 63.21  59.82 | 57.31  53.95
128 62.79  59.42 | 57.01 53.54
FULL (287.9) | 61.95 58.12 | 56.60  52.96
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B Evaluation Metrics

For FS-UCDR, FS-UPCDR, and FS-U¢CDR, following prior work ProS [13], we adopt the same
evaluation metrics. For the Sketchy and DomainNet datasets, precision (Precsgg) and mean Aver-
age Precision (mAP5) are calculated based on the top-200 retrieved results. For the TU-Berlin
dataset, we use Precigg and mAP,,;; as the evaluation metrics. As for the few-shot classification, the
classification accuracy is adopted.

C Implementation Details.

C.1 Implementation Details for FS-UCDR and Its Variants

When CLIP [39] is applied in UCDR tasks, the ViT-B/32 [11] backbone is most commonly used [13].
We follow this convention and utilize a pre-trained ViT-B/32 [11] CLIP model with d; =512 and
d, =768, the rank (r) of the bridge function in MAIL, is set to 8. The text prompt is fixed as “a
photo of a <category>".

For DomainNet, training is limited to 1 epoch, whereas Sketchy and TU-Berlin are trained for 20
epochs, with early stopping applied after 2 epochs. Given the diverse source domains in FS-UCDR,
we organize each batch as B = Ny x C} X ky, where N, represents the number of source domains,
Cp = 3 denotes the number of classes sampled from each domain (we sample different classes for
each domain), and k;, = 4 denotes the number of images for each class from each source domain
within the batch. Note that if k;, > k, repeated images will appear in the batch, with £ denotes the
shot number.

The optimization is performed using the Adam optimizer with a learning rate of 2e—4 and a cosine
decay schedule. All experiments are conducted on a single NVIDIA RTX 4090 GPU with mixed-
precision training to accelerate computation. To ensure reproducibility, we follow the setting in
ProS [13] and fix the random seed to 0. A 2-shot training strategy is employed, where two samples
per class per domain are randomly selected. For the used loss functions and the results with other
shot configurations, one can refer to Appendix D and Appendix I.

C.2 Implementation Details for Few-Shot Classification

We follow prior studies [57, 56, 24, 49], the ViT-B/16 [11] variant of the CLIP model serves as the
visual backbone for all experimental setups, with d; =512 and d,, = 768, the rank (r) of the bridge
function in MAIL, is set to 32. Hand-crafted text prompts from prior methods [39, 57, 55] are utilized
and described in detail in Tab. 9. A 16-shot training strategy is employed, where 16 samples per class
are randomly selected. The average accuracy is reported over three independent runs with random
seeds set to 0, 1, and 2. All experiments are conducted on a single NVIDIA RTX 4090 GPU.

For base-to-novel evaluation, we adopt a batch size of 64 for the larger datasets (ImageNet and
SUN397) and 4 for all others. Training is performed for 5 epochs on ImageNet and 10 epochs on
the remaining datasets. We employ the AdamW optimizer for all experiments, except on EuroSAT,
where the SGD optimizer yields better performance. The initial learning rate is set to 5.0 x 10~° for
Food101, 2.5 x 10~° for DTD, and 1.5 x 10~° for the other datasets. The rank (r) of the bridge is
set to 12 for DTD and 32 for the remaining datasets.

For cross-dataset evaluation and domain generalization tasks, we train the model on ImageNet
for 2 epochs. Due to GPU memory constraints—mainly caused by the full 1000-class setting, which
is twice the size of the base-to-novel evaluation (500 classes)—we reduce the batch size from 64 to
32 and use half-precision training (fp16). The initial learning rate is set to 2.5e—5 .

D Loss Function

Given the diverse source domains in FS-UCDR, we organize each batch as B = N, x C} X ky,
where IV, represents the number of source domains, C, = 3 denotes the number of classes sampled
from each domain (we sample different classes for each domain), and k;, = 4 denotes the number
of images for each class from each source domain within the batch. Note that if k;, > k, repeated
images will appear in the batch, with k£ denotes the shot number. We utilize two loss functions: the
image-text matching loss and the triplet-hard loss [20]. The image-text matching loss is defined as a
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cross-entropy loss:

1< exp(sim(7 (ty,), V(I;)))
,Cce = — —Yj 10 ; J
B ; PO explsim(T (), V(L))

; &)

where I; is the j-th image in the batch, and y; is the corresponding label.

The triple-hard loss is formulate as:

P K
1
Loriinara = 35 30D lp— min,_sim(V{I), VL) + max sim(VI) V)], (10)
i=1 a=1 VES
n=1...K

where p = 0.5 is the margin hyper-parameter, P = (', denotes the number of identities within the
batch, and K = Ng X k; is the total number of samples for each class across all the source domains.
[']+ denotes the max (0, -) function, sim(-, -) represents cosine similarity, and I identifies the anchor
image, specifically the a-th image from the i-th class within the batch. Additionally, I? refers to the
positive sample, while ;" corresponds to the negative sample.

In terms of the few-classification task, we only utilize the cross-entropy loss.

E Computational Cost

To validate the efficiency of our method, we present the computational costs of MAIL in Fig. 7. Both
the training and inference stages utilize a batch size of 60. Compared to MMA and MaPLe, while
MAIL incurs higher computational costs during training—including memory usage and training
time—it reduces test time, inference memory, and GFLOPs. These results highlight the superior
efficiency of MAIL during inference. Please note these results are obtained under FS-UCDR’s
UnseenGallery scenario, where Skefch domain is used as the query domain.

I | IVLA | | MMA | | VPT-D | ] IVLP [ | MaPLe | ] IVLU | ] MAIL

A4 14.85- 14.86 36.77 2.69
15.26- 15.43 36.69 36.76 380.79

222
12.4512_57 2.68

2.67 267

1
1328 12.18

13.13

36.2 367.20
1.01 357.22,

1.00
7.82 7.91 357.15

0.64 353.61

AR AR THILTTRLT

Params. (M) Training time (Sec) Training memory (G)  Test time (Sec) Test memory (G) Test GFLOPs

Figure 7: Computational costs of various tuning methods, presented from left to right: the number of
trainable parameters, training time (per epoch), training memory usage, test time, test memory usage,
and test GFLOPs.

F Implementation of Baseline Methods under FS-UCDR and Its Variants

We re-implement VPT-Deep [23], IVLP [24], MaPLe [24], MMA [49], AdaptFormer [6] and IVLA
[49] based on the released code. Specifically, the configurations for VPT-Deep, IVLP, and MaPLe are
mainly taken directly from the MaPLe paper. However, while the original prompt depth for MaPLe
ranges from 1 to 9, we find that a depth of 1 to 12 performs significantly better for our task. The
configurations for VPT-Deep, IVLP and MaPLe, are as follows:

Table 11: The used configurations for VPT-D, IVLP, and MaPLe. PL denotes the prompt length.

METHOD PL-VISUAL PL-TEXTUAL PROMPT DEPTH LEARNING RATE

VPT-D 4 0 1-12 0.0002
IVLP 2 2 1-12 0.0002
MAPLE 2 2 1-12 0.0002
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For AdaptFormer, IVLA and MMA, we adopt the configurations outlined in the MMA paper, with
one exception regarding the depth parameter. While the MMA paper sets the depth to 9-12 for cross-
dataset evaluation, we find that a depth of 1-12 performs better under FS-UCDR. The configurations
for AdaptFormer, IVLA and MMA, are as follows:

Table 12: The used configurations for IVLA and MMA.

METHOD ADAPTER RANK  ADAPTER DEPTH LEARNING RATE
ADAPTFORMER 32 1-12 0.0015
IVLA 32 1-12 0.0015
MMA 32 1-12 0.0015

For LoRA[22], we adopt the implementation from CLIP-LoRA [22], with an initial learning rate of
0.0005, and the rank of the low-rank matrices, is set to 6 after hyper-parameter tuning. For BitFit [52],
we fine-tune all bias terms in the CLIP backbone, using an initial learning rate of 0.0002. All other
configurations, including batch size and loss functions, are kept identical to those used in our MAIL.

Note that LoRA performs poorly from the main body. To further investigate this issue, we conduct
additional experiments under the FS UCDR setting, where we replace CLIP with our trained MAIL
as the backbone for LoRA. The results are presented in Tab. 13, showing that LoRA remains inferior
to MAIL and even degrades its performance. We believe this is an interesting open question for future
research—why LoRA, despite its effectiveness in many scenarios, performs poorly in this context.

Table 13: FS-UCDR (2-shot) evaluation results (%) on DomainNet. * denotes the results are obtained
using the full training data, i.e., the UCDR results. 1 denotes that the results are obtained when our
MAIL is used as backbone.

| Sketch | Quickdraw | Painting

Methods UnseenGallery MixedGallery | UnseenGallery MixedGallery | UnseenGallery MixedGallery
mAPyo Precagp mAPygg Precagg |mAP2gg Precagg mAP2gg Precagg | mAP200 Precagy mAP200 Precagn

ProS* [cver24) | 64.67  60.01 5843 54.63 | 2842 2544 2318 21.27| 75.16 69.55 7120 66.12

CLIP [1cmL21) 4220 3528 36.62 29.79 | 7.44 5.61 6.00 3.17 | 61.68 55.07 56.53 50.14
LoRA icLr22) | 54.85 49.23 48.71 43.33 | 22.16 1810 17.73 14.21 | 71.46 65.10 66.81 60.81
LoRAT icir22) | 64.74  60.41  56.82 52.90 | 27.98 2539 20.40 18.63 | 74.95 68.37 69.44 64.33

MAIL [Ours| 65.76 61.57 59.05 55.25 | 2941 26.95 22.83 21.26 | 76.05 70.85 71.12 66.44
| Infograph | Clipart | Average
Methods UnseenGallery MixedGallery | UnseenGallery MixedGallery | UnseenGallery MixedGallery

mAPyo Precagp mAP2gg Precago |mAP2gg Precagg mAP2gg Precagg | mAP200 Precagy mAP2g0 Precagn
ProS* [cvpr 24 ‘ 57.98 54.42 52.19 49.56 ‘ 76.48 T71.86 72.28 68.15 ‘ 60.52 56.26 55.46 51.95
CLIP [1cvL21] 50.08 44.74 43.75 38.91 | 60.37 51.30 56.08 46.91 | 44.35 38.40 39.80 33.78
LoRA [1cLr22) 58.01 53.84 51.86 48.20 | 70.52 64.11 66.00 59.63 | 55.40 50.08 50.22 45.24

LoRAT (ciro2y| 58.96 55.04 5230 50.26 | 77.12 72.56 72.02 67.25 | 60.75 56.35 54.20 50.67
MAIL [0urs] 60.11 5740 5334 5095 | 7894 7480 7391 70.14 | 62.05 5831 56.05 52.80

G Additional Design Choices and Details

G.1 Linear Layer Bridge Function

The bridge function in our MAIL is a bottleneck structure, although it could be implemented as a
simple linear layer. In our experiments, we find that the linear layer not only has significantly more

trainable parameters but also performs worse than the bottleneck structure. The results are as follows:

Table 14: Ablation studies on linear layer bridge function. We present the average performance scores
on DomainNet across five query domains under FS-UCDR.

UnseenGallery MixedGallery

| Params. (J)
‘ mAPgoo PreCQOO ‘ mAPa“ PreC100 ‘

V — L (Linear Layer) 58.49 54.65 53.53 49.50 19657216
V < L (Linear Layer) 61.32 57.46 55.39 52.04 39186944
V « L (Linear Layer) 61.40 57.53 55.52 52.16 19657216
V < L (Bottleneck) 62.05 58.31 56.05 52.80 637400

Methods
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G.2 Initialization Method of the Bridge Function

Next, we exam the initialization method of the bridge function. As noted in the main body, W 5.1, 18
initialized with random Gaussian values, while W, is initialized to zeros, i.e., Waown ~N(0, atz),
with o; = ﬁ, Wyp = 0. Here we conduct more experiments about the initialization of the two

matrices, the results, are as follows:

Table 15: Ablation studies on different initialization methods of W, and W,,. Note that

. T . . V1202 /1202

if Waown or Wy, are initialized with Uniform values, then, Wyouwn ~ U(—~= 7 3 i ) and
1202 /1202 . . . . .

Wyp~U (—@, TU), with o, = ﬁ. Similarly, if W,,, is initialized with Gaussian values,

then, W, ~ N(0,02). We present the average performance scores for the UnseenGallery and
MixedGallery scenarios on DomainNet across five query domains under FS-UCDR.

UnseenGaller MixedGaller
Wdown Wu p ‘ y ‘ y

‘ mAP200 PreCQOO ‘ mAPa” PI‘eCloo

0 Uniform 59.94 56.05 53.99 50.53
0 Gaussian 60.47 56.48 54.48 50.98
0 0 58.77 54.17 53.08 48.92
Uniform  Uniform 59.61 55.65 53.66 50.14
Uniform 0 62.01 58.16 55.83 52.59
Gaussian  Gaussian 59.89 55.88 53.95 50.43
Gaussian 0 62.05 58.31 56.05 52.80

From Tab. 15, we observe that the Gaussian distribution achieves slightly better performance
compared with the uniform distribution. We encourage readers to explore additional distributions.

G.3 Should the Shifting Vectors in the Agent Layers Be Connected Across Modalities?

Note that we only apply the bridge function to the scaling vectors a across modalities. To address
the question above, we conducted the following experiments, selectively adding or removing bridge
functions from the shifting vectors b:

Table 16: Ablation studies on bridge function applied to the shifting vector b. We present the average
performance scores on DomainNet across five query domains under FS-UCDR.

UnseenGallery \ MixedGallery

Methods | | Params. (/)

‘ IIlAPz()() PI‘ECQ()() ‘ IIlAPa” PreCmo ‘
w Bridge Function 62.26 58.50 56.23 53.01 1147392
w/o Bridge Function 62.05 58.31 56.05 52.80 637400

As we can see from Tab. 16, the introduction of the bridge function to the shifting vectors b does
improve performance; however, this improvement is limited. Furthermore, it results in doubling the
number of trainable parameters, which creates a poor trade-off. Therefore, we propose to remove the
bridge function from the shifting vectors.

Position-4 Position-5
Encoder Layer T
Text/Image Text/Image | Encoder | Encoder ___| Encoder | | LN Text/Image
p

Input Embed Layer 73 Layer 7, _| Layer7; roj

Figure 8: The five types of insertion locations.

G.4 Discussion About the Insert Locations.

We have utilized about five types of insert locations (Fig. 8):
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* Position-1&2&3: In the transformer block, insert the agent layer after each LayerNorm
(LN) & MHSA & MLP layer.

* Position-4&5: Out of the transformer block, insert the agent layer after the last LN &
projection layer.

We select these five positions for ease of implementation. For clarity, we illustrate only positions 1, 2,
and 3. The pseudocode for the Transformer block is presented in Alg. 1. As shown, incorporating our
modifications requires adding just four lines of code, as depicted in Alg. 2, ensuring minimal code
changes. Additionally, the definition of MAIL is located outside the transformer block (Alg. 3).

Algorithm 1 Pseudocode for the Transformer block within CLIP, presented in a PyTorch-like style.

# X: features from the last transformer block
# y: features to the next transformer block
# LN: layer normalization

# MHSA: multi-head self-attention
# MLP: multilayer perceptron
# flag: indicates whether the current block from the image encoder or the text encoder.

x = LN(x) # We can insert MAIL here

# 1. x = MAIL(x, flag)

mhsa = MHSA(x) # We can insert MAIL here
# 2. mhsa = MAIL(mbhsa, flag)

x = x + mhsa

x = LN(x)# We can insert MAIL here

# 3. x = MAIL(x, flag)

mlp = MLP(x)# We can insert MAIL here

# 4. mlp = MAIL(mlp, flag)

y =x + mlp

Algorithm 2 Pseudocode for the Transformer block with MAIL integration within CLIP, presented in
a PyTorch-like style.

# flag: indicates whether the current block from the image encoder or the text encoder.
# MAILs: a list containg 4 MAIL blocks

x = LN(x)

x = MAILs[0](x, flag) # position-1

mhsa = MHSA(x)

mhsa = MAILs[1](mhsa, flag) # position-2
X = x + mhsa

x = LN(x)

x = MAILs[2](x, flag) # position-1

mlp = MLP(x)

mlp = MAILs[3](mlp, flag) # position-3

y =x + mlp

Algorithm 3 Pseudocode of MAIL in a PyTorch-like style.

# x: input feature
# y: output feature
# flag: indicates whether x from the image encoder or the text encoder.
# imageAgent: the agent layer for the image encoder
# textAgent: the agent layer for the text encoder
# W: bridge function
if flag==""text’":
y = x * textAgent.a + textAgent.b
else:

a = imageAgent.a + textAgent.a @ W.down @ W.up
y = x * a + visionAgent.b
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H Visualization

H.1 T-SNE Visualization

A =1.0644 A =1.2068 A =1.1498 A =1.2345

o

H (a) IVLP H (b) IVLA ‘ ‘ (©) IVLU

A =1.3257 A =1.2069 A =1.3893

QO clipart A Real

. Giraffe Parrot

[ polphin [l Windmill

Ladder . Motorbike

Helicopter Bread

Sailboat Airplane

(d) MaPLe (f) MAIL (Ours)

Figure 9: The t-SNE visualization for 10 randomly selected unseen classes of Clipart (query) domains

and Real (gallery) domain. Different colors represent different classes, while /\ and O represent
samples from Real and Clipart domains, respectively. we also evaluate the inter-class distinctiveness

and intra-class compactness of feature space by the metric A = %ﬁ:ﬁ: (higher is better).

As shown in Fig. 9, we visualize the image features extracted from frozen CLIP, IVLP, IVLA,
IVLU, MaPLe, MMA, and our MAIL method for 10 randomly selected unseen classes from the Real
and unseen Clipart domains using t-SNE [44]. We also evaluate the inter-class distinctiveness and
intra-class compactness of the feature space using the metric

mean D;,zer

A = —— —inter (11)

mean D;pira

where D, 1S a set that measures distances between all centers testing classes:

Dinter = {d(¢', )i = 1,2, ..., Creat,; j = i+ 1, ., Crest }- (12)

Here, C;.s; denotes the number of classes during the test, ¢t = ni 2_1 ;C is the centroid of the

i-th class, with n; being the number of samples in the i-th class, b}, denoting the sample, and d(-, -)
representing the Euclidean distance.

Similarly, D;,+-, measures the distances among samples of the same class relative to their corre-
sponding centroid: ,
Dintra = {dlh: 1a2;---;ctest}7 (13)
ng

where d' = L 3" | d(b}, ¢') indicates the compactness of the i-th class.
From Fig. 9, we can observe that modality-coupled methods better align feature representations of
the same classes between the two domains and exhibit greater separation between different classes

compared to modality-independent methods. Furthermore, our MAIL method achieves the best
results in both the visualization and numeric metric evaluations.
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Figure 10: Retrieval results with query classes axe. Please zoom in for a better resolution.
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Figure 11: Retrieval results in query domain Quickdraw. Please zoom in for a better resolution.
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Figure 12: Retrieval results in query domain Infograph. Please zoom in for a better resolution.

H.2 Top-10 Retrieved Results

To further evaluate the effectiveness of MAIL, we visualize several retrieval results. Fig. 10 presents
the top-10 retrieved candidates for the category “axe” using query images from different domains,
while Fig. 11 and Fig. 12 display the top-10 retrieval results for queries originating from the
Quickdraw domain.

These visualizations demonstrate that while MAIL achieves strong retrieval performance overall,
its effectiveness is occasionally hindered by query ambiguity. This issue arises primarily from
two factors: (1) Lack of detail: Queries from the Quickdraw domain often contain simplistic or
abstract sketches, making them inherently ambiguous and prone to misinterpretation. (2) Object
clutter: Queries from the Infograph domain frequently depict multiple objects within a single image,
introducing uncertainty regarding the intended retrieval target. These challenges highlight potential
areas for further refinement in handling ambiguous queries across diverse domains.
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I Evaluation Results with Other Shots

While the 2-shot results are presented in the main body, we provide additional results for other
shot settings in this section: 1-shot, 3-shot, 4-shot, and 8-shot. As observed in the tables below,
the performance of all methods improves with an increased number of shots. Notably, our method
consistently outperforms its competitors. Furthermore, it is important to emphasize that nearly all
methods surpass ProS with a sufficient number of shots (significantly fewer than full shots).

I.1 1-Shot Results

Table 17: 1-shot UCDR evaluation results (%) on DomainNet.
| Sketch | Quickdraw | Painting

Methods Unseen Gallery MixedGallery | UnseenGallery MixedGallery | UnseenGallery MixedGallery
mAP200 PTCCQOO mAP200 PI‘GCQOO mAP200 PTGCQOO mAP200 PTGCQOO mAP200 PTCCQOO mAono PI'CCQOO

ProS* ‘ 64.67 60.01 58.43 54.63 ‘ 28.42 2544 23.18 21.27 ‘ 75.16 69.55 71.20 66.12
ZS CLIP 42.20 35.28 36.62 29.79 | 7.44 5.61 6.00 3.17 | 61.68 55.07 56.53 50.14
VPT-D 55.16 49.98 48.48 43.71 | 21.22 19.20 15.94 14.36 | 69.71 63.05 64.76 58.46
AdaptFormer| 49.73 43.15 43.55 37.33 | 11.35 9.29 8.63 5.88 | 65.00 57.75 59.86 53.04
IVLP 51.41 46.31 45.18 40.19 | 13.10 11.95 9.65 8.08 | 68.42 62.08 63.32 57.38
IVLA 51.23 4482 4494 3893 | 12.72 10.58  9.69 6.90 | 65.75 58.61 60.63 53.92
MaPLe 60.31 55.51 53.59 49.20 | 2591 23.52 20.06 18.29 | 74.03 68.18 69.27 63.74
MMA 53.15 46.85 46.15 40.83 | 15.29 12.68 11.66 8.75 | 66.73 59.81 61.63 55.15
MAIL 63.25 58.59 56.67 5243 | 27.56 24.82 21.73 19.78 | 74.53 68.78 69.75 64.41
| Infograph | Clipart | Average

Methods UnseenGallery MixedGallery | UnseenGallery MixedGallery | UnseenGallery MixedGallery
mAP200 PI‘CCQ()O mAPQOQ Preczoo mAPQOQ Preczoo mAPQ()O PI”CCQO() mAPgoo PI‘CCQQO mAPQOO Pr60200

ProS* ‘ 57.98 54.42 52.19 49.56 ‘ 76.48 71.86 72.28 68.15 ‘ 60.52 56.26 55.46 51.95
ZS CLIP 50.08 44.74 43.75 3891 | 60.37 51.30 56.08 46.91 | 44.35 3840 39.80 33.78
VPT-D 53.82 49.27 47.11 43.17 | 69.30 63.65 64.55 58.95 | 53.84 49.03 48.17 43.73
AdaptFormer| 55.05 49.40 49.34 44.23 | 65.51 57.30 61.09 52.89 | 49.33 43.38 4494 38.67
IVLP 56.59 51.91 50.09 45.99 | 68.32 62.44 63.84 58.02 | 47.21 4141 4273 37.15
IVLA 55.66 50.16 49.92 44.94 | 65.73 56.42 62.34 54.42 | 50.22 44.12 45.50 39.82
MaPLe 59.56 56.02 52.85 49.63 | 75.67 70.64 70.83 65.92 | 59.09 54.77 53.32 49.35
MMA 56.62 51.37 50.72 4598 | 67.95 60.25 6347 55.82 | 51.94 46.19 46.73 41.31
MAIL 59.48 56.29 52.83 49.99 | 77.19 7213 7253 67.72 | 6040 56.12 54.70 50.87
Table 18: 1-shot UPCDR evaluation results (%) on DomainNet.
Method \ Sketch | Quickdraw |  Painting | Infograph | Clipart |  Average
ethods

‘ mAPQOO PFCCQOU ‘ mAP200 Preczoo ‘ mAPgoo PI'CCQUQ ‘mAPQUU PI'BCQUO ‘ mAP200 Preczoo ‘ mAPgoo Preczog
ProS* ‘ 73.85 49.11 ‘ 28.89 11.86 ‘ 72.27  46.15 ‘ 60.56  39.62 ‘ 81.05 52.98 ‘ 63.32 39.94
ZS CLIP 47.60 28.71 | 8.67 4.50 | 55.69 31.70 | 47.56 29.36 | 55.81 31.10 | 43.07 25.07
VPT-D 62.69 40.36 | 20.04 8.91 | 63.44 38.43 | 55.64 35.40 | 69.49 42.50 | 54.26 33.12
AdaptFormer| 55.36 33.66 | 11.75 5.63 | 58.74 32.41 | 54.15 31.65 | 61.41 34.99 | 48.28 27.67
IVLP 59.60 38.37 | 1597 7.73 | 63.40 37.86 | 57.27 35.49 | 67.76 40.84 | 52.80 32.05
IVLA 57.31 3497 | 12.81 5.99 | 59.59 33.05 | 55.07 32.35 | 62.83 35.98 | 49.52 28.47
MaPLe 68.54 45.29 | 25.18 10.80 | 69.06 43.30 | 60.06 39.10 | 76.15 48.14 | 59.79 37.33
MMA 59.39 36.31 | 14.38  6.40 | 60.67 33.98 | 56.20 33.27 | 64.27 37.02 | 50.98 29.39
MAIL 70.28 45.79 | 25.79 11.06 | 70.15 43.15 | 60.19 39.09 | 77.10 48.66 | 60.70 37.61

Table 19: 1-shot UY CDR evaluation results (%) on Sketchy and TU-Berlin.

|  Sketchy | TU-Berlin
Methods

‘ mAPQ[)() PI'BCQQ() ‘ mAP,,,” Precmo
ProS* ‘ 69.91 65.45 ‘ 66.75 74.42
ZS CLIP 35.82 33.08 | 31.45 46.12
VPT-D 58.43 53.74 | 57.91 67.81
AdaptFormer| 52.15 48.87 | 46.38 60.52
IVLP 51.98 47.76 | 53.33 65.16
IVLA 52.17 48.89 | 46.85 60.76
MaPLe 65.95 61.51 | 63.00 71.85
MMA 52.53 49.31 | 50.26 63.68
MAIL 65.70 61.24 | 65.30 73.82
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I.2 3-Shot Results
Table 20: 3-shot UCDR evaluation results (%) on DomainNet.

| Sketch | Quickdraw | Painting

Methods Unseen Gallery MixedGallery | UnseenGallery MixedGallery | UnseenGallery MixedGallery
IIlAPQ(]() PI‘CCQ()(] mAPQOQ PI'ECQ(]() mAP200 PI'CCZ()[) IIIAPQ()[) PI’CCQ[)() mAPQOQ PI‘eCQ(]() IIlAPQ(]() PI‘CCQ()(]

ProS* 64.67 60.01 58.43 54.63 | 28.42 25.44 23.18 21.27 | 75.16 69.55 71.20 66.12
ZS CLIP 42.20 35.28 36.62 29.79 7.44 5.61 6.00 3.17 61.68 55.07 56.53 50.14
VPT-D 60.47 55.78 53.00 48.80 | 23.83 21.17 18.16 16.44 | 73.32 67.32 68.20 62.61
AdaptFormer| 64.44 59.53 57.38 53.05 | 27.28 24.45 21.75 19.70 | 7447 68.63 69.67 64.27
IVLP 59.66 55.05 52.37 48.30 | 22.53 20.13 16.77 15.27 | 72.64 66.89 67.50 62.16
IVLA 63.77 59.91 57.68 53.40 | 26.16 24.31 20.58 19.57 | 74.30 68.52 69.44 64.10
MaPLe 64.38 59.88 57.46 53.48 | 26.64 23.86 21.06 19.14 | 75.55 70.00 70.91 65.79
MMA 65.99 61.55 59.04 55.11 | 27.61 25.19 21.79 20.29 | 75.52 70.07 70.70 65.68
MAIL 67.68 63.63 60.81 57.24 | 28.15 25.70 2224 20.55 | 77.22 72.07 7235 67.69
| Infograph | Clipart | Average

Methods UnseenGallery MixedGallery | UnseenGallery MixedGallery | UnseenGallery MixedGallery
mAP200 Pre0200 mAP200 PTCCQOO mAP200 PTGCQOO mAPgoo PTGCQOO mAP200 PTCCQOO mAono PI'CCQOO

ProS* | 57.98 54.42 5219 49.56 | 76.48 71.86 7228 68.15| 60.52 56.26 55.46 51.95
ZS CLIP 50.08 44.74 43.75 3891 | 60.37 51.30 56.08 46.91 | 44.35 38.40 39.80 33.78
VPT-D 57.70 53.82 50.72 47.29 | 73.94 6899 6881 63.98 | 57.85 53.42 51.78 47.82
AdaptFormer| 57.55 53.59 51.13 47.47 | 77.24 7210 7244 67.56 | 60.19 55.66 54.47 50.41
IVLP 58.95 55.10 52.11 48.68 | 73.44 68.38 68.57 63.63 | 57.44 53.11 51.46 47.61
IVLA 56.62 52.61 50.08 47.39 | 76.27 72.02 7244 6748 | 59.42 55.47 54.04 50.39
MaPLe 60.65 57.36 53.94 51.08 | 77.08 7230 71.99 67.56 | 60.86 56.68 55.07 51.41
MMA 58.08 56.40 51.46 48.16 | 77.92 73.43 7297 6881 | 61.02 56.93 55.19 51.61
MAIL 61.65 58.81 55.06 52.70 | 79.29 7531 74.61 71.05 | 62.80 59.10 57.01 53.85

Table 21: 3-shot UPCDR evaluation results (%) on DomainNet.

Method \ Sketch | Quickdraw |  Painting | Infograph | Clipart |  Average
etnods

‘ mAP200 PTCCQOO ‘ mAP200 PTGCZOO ‘ mAPZOO PTGCQOO ‘mAPzOO PFBCQOO ‘ mAPQOO Preczoo ‘ mAPgoo PTCCQOU
ProS* | 73.85 49.11 | 28.89 11.86 | 72.27 46.15 | 60.56 39.62 | 81.05 52.98 | 63.32 39.94
ZS CLIP 47.60 28.71 | 8.67  4.50 | 55.69 31.70 | 47.56 29.36 | 55.81 31.10 | 43.07 25.07
VPT-D 68.21 45.24 | 22.76 10.09 | 68.17 42,51 | 60.59 39.10 | 75.14 47.89 | 58.61 36.75
AdaptFormer| 71.93 46.63 | 24.77 10.68 | 69.15 41.88 | 59.36 38.39 | 76.87 47.61 | 60.42 37.03
IVLP 67.46 44.41 | 22.68 9.66 | 67.96 42.08 | 60.15 38.30 | 74.37 46.90 | 58.52 36.27
IVLA 72.16 46.62 | 24.94 10.64 | 68.88 41.69 | 59.19 38.13 | 76.80 47.41 | 60.39 36.90
MaPLe 71.91 4727 | 2592 10.82 | 71.41 44.92 | 61.97 39.85 | 78.29 49.38 | 61.90 38.45
MMA 73.44 4839 | 26.53 11.27 | 70.84 43.94 | 60.43 39.38 | 78.86 50.33 | 62.02 38.66
MAIL 75.65 50.54 | 27.30 11.24 | 74.18 47.23 | 64.37 4191 | 80.99 53.45 | 6450 40.87

Table 22: 3-shot U°CDR evaluation results (%) on Sketchy and TU-Berlin.

Methods |  Sketchy | TU-Berlin

‘ mAP200 PI‘CCQ()(J ‘ mAPa” PI‘CCl(J()
ProS* | 69.91 65.45 | 66.75 74.42
ZS CLIP 35.82 33.08 | 31.45 46.12
VPT-D 67.03 63.32 | 63.35 71.52
AdaptFormer| 63.97 58.79 | 65.44 73.22
IVLP 64.72 60.48 | 60.95 69.54
IVLA 64.36 59.12 | 64.97 73.02
MaPLe 73.28 69.44 | 66.72 73.93
MMA 69.74 65.14 | 67.39 74.12
MAIL 75.73 71.61 | 68.28 74.51

32



I.3 4-Shot Results
Table 23: 4-shot UCDR evaluation results (%) on DomainNet.

| Sketch | Quickdraw | Painting

Methods Unseen Gallery MixedGallery | UnseenGallery MixedGallery | UnseenGallery MixedGallery
IIlAPQ(]() PI‘CCQ()(] mAPQOQ PI'ECQ(]() mAP200 PI'CCZ()[) IIIAPQ()[) PI’CCQ[)() mAPQOQ PI‘eCQ(]() IIlAPQ(]() PI‘CCQ()(]

ProS* ‘ 64.67 60.01 58.43 54.63 ‘ 28.42 2544 23.18 21.27 ‘ 75.16  69.55 71.20 66.12
ZS CLIP 42.20 35.28 36.62 29.79 7.44 5.61 6.00 3.17 61.68 55.07 56.53 50.14
VPT-D 62.30 57.65 54.61 50.52 | 26.01 23.32 19.96 18.27 | 74.32 68.36 69.21 63.70
AdaptFormer| 65.22 61.11 58.58 54.73 | 28.83 26.07 22.36 20.89 | 75.11 69.52 70.33 65.18
IVLP 62.06 57.59 54.58 50.72 | 23.83 21.38 18.19 16.68 | 73.64 67.91 68.47 63.15
IVLA 65.57 61.04 58.52 54.57 | 27.24 25.83 21.83 20.81 | 74.97 69.40 70.09 64.95
MaPLe 65.76 61.43 58.61 54.86 | 28.46 25.80 22.42 20.72 | 7541 69.86 70.76 65.62
MMA 66.65 62.36 59.80 55.99 | 28.54 26.20 22.70 21.22 | 7549 70.04 70.64 65.66
MAIL 68.74 64.64 6193 5839 | 30.24 27.82 23.77 2237 | 7737 7220 7246 67.80
| Infograph | Clipart | Average

Methods UnseenGallery MixedGallery | UnseenGallery MixedGallery | UnseenGallery MixedGallery
mAP200 Pre0200 mAP200 PTCCQOO mAP200 PTGCQOO mAPgoo PTGCQOO mAP200 PTCCQOO mAono PI'CCQOO

ProS* | 57.98 54.42 5219 49.56 | 76.48 71.86 7228 68.15| 60.52 56.26 55.46 51.95
ZS CLIP 50.08 44.74 43.75 3891 | 60.37 51.30 56.08 46.91 | 44.35 38.40 39.80 33.78
VPT-D 59.10 55.35 52.14 48.79 | 75.28 70.46 70.20 65.55 | 59.40 55.03 53.22 49.37
AdaptFormer| 57.14 53.44 50.65 47.31 | 78.11 73.60 73.21 69.05 | 60.94 56.74 55.02 51.43
IVLP 59.99 56.25 53.21 49.86 | 74.77 69.82 69.88 65.12 | 58.86 54.59 52.87 49.10
IVLA 56.77 54.03 51.20 47.78 | 77.08 7235 7219 68.79 | 60.33 56.53 54.76 51.38
MaPLe 60.48 57.19 53.79 50.80 | 77.15 7274 72.02 6792 | 61.45 57.40 55.52 51.98
MMA 59.93 56.59 53.50 50.53 | 78.27 73.90 73.35 69.34 | 61.78 57.82 55.60 52.55
MAIL 62.34 59.59 55.67 5337 | 79.50 7546 7475 71.22 | 63.64 59.94 57.71 54.63

Table 24: 4-shot UPCDR evaluation results (%) on DomainNet.

Method \ Sketch | Quickdraw |  Painting | Infograph | Clipart |  Average
etnods

‘ mAP200 PTCCQOO ‘ mAP200 PTGCZOO ‘ mAPZOO PTGCQOO ‘mAPzOO PFBCQOO ‘ mAPQOO Preczoo ‘ mAPgoo PTCCQOU
ProS* | 73.85 49.11 | 28.89 11.86 | 72.27 46.15 | 60.56 39.62 | 81.05 52.98 | 63.32 39.94
ZS CLIP 47.60 28.71 | 8.67  4.50 | 55.69 31.70 | 47.56 29.36 | 55.81 31.10 | 43.07 25.07
VPT-D 70.43 46.26 | 25.21 1091 | 69.31 43.01 | 60.98 39.39 | 76.52 48.51 | 60.49 37.62
AdaptFormer| 73.37 48.15 | 27.03 11.60 | 70.91 43.90 | 59.57 39.05 | 79.06 50.38 | 61.99 38.62
IVLP 69.90 45.58 | 24.20 10.29 | 68.80 42.40 | 61.58 39.34 | 75.19 47.25 | 59.93 36.97
IVLA 73.25 47776 | 26.77 11.22 | 70.37 43.28 | 59.78 38.88 | 78.66 49.65 | 61.76 38.19
MaPLe 73.59 48.62 | 28.01 11.54 | 71.59 45.26 | 61.88 40.59 | 79.32 51.00 | 62.88 39.40
MMA 74.39 4885 | 27.14 1142 | 71.40 44.54 | 61.18 39.86 | 79.31 50.86 | 62.68 39.11
MAIL 76.26 50.56 | 29.31 11.95 | 7498 47.53 | 65.33 42.44 | 82.03 53.52 | 65.58 41.20

Table 25: 4-shot U°CDR evaluation results (%) on Sketchy and TU-Berlin.

Methods |  Sketchy | TU-Berlin

‘ mAP200 PI‘CCQ()(J ‘ mAPa” PI‘CCl(J()
ProS* | 69.91 65.45 | 66.75 74.42
ZS CLIP 35.82 33.08 | 31.45 46.12
VPT-D 71.55 67.32 | 67.16 74.78
AdaptFormer| 69.76 65.27 | 67.64 73.98
IVLP 66.36 62.39 | 62.83 70.88
IVLA 69.79 65.18 | 66.89 73.94
MaPLe 73.54 69.60 | 66.76 73.84
MMA 72.20 68.17 | 68.22 74.46
MAIL 75.51 7191 | 68.77 74.94
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1.4 8-Shot Results
Table 26: 8-shot UCDR evaluation results (%) on DomainNet.

| Sketch | Quickdraw | Painting

Methods Unseen Gallery MixedGallery | UnseenGallery MixedGallery | UnseenGallery MixedGallery
IIlAPQ(]() PI‘CCQ()(] mAPQOQ PI'ECQ(]() mAP200 PI'CCZ()[) IIIAPQ()[) PI’CCQ[)() mAPQOQ PI‘eCQ(]() IIlAPQ(]() PI‘CCQ()(]

ProS* ‘ 64.67 60.01 58.43 54.63 ‘ 28.42 2544 23.18 21.27 ‘ 75.16  69.55 71.20 66.12
ZS CLIP 42.20 35.28 36.62 29.79 7.44 5.61 6.00 3.17 61.68 55.07 56.53 50.14
VPT-D 64.28 59.77 56.67 52.80 | 28.67 26.08 22.06 20.20 | 7548 69.76 70.35 64.72
AdaptFormer| 65.95 62.09 59.03 55.61 | 28.11 26.20 21.80 20.52 | 75.15 69.91 70.55 65.70
IVLP 64.37 59.90 56.90 53.07 | 27.66 25.13 21.15 19.63 | 75.10 69.54 69.93 64.82
IVLA 67.13 62.89 60.22 56.53 | 28.78 26.59 22.72 21.36 | 75.85 70.43 71.09 66.14
MaPLe 66.37 62.25 59.26 55.77 | 29.83 27.29 23.35 21.75 | 75.16 69.48 70.37 65.19
MMA 67.44 63.24 60.67 57.04 | 29.58 27.29 23.40 21.94 | 75.78 7043 71.05 66.16
MAIL 68.72 65.01 62.22 58.56 | 31.41 29.06 24.08 22.79 | 77.21 7215 7241 67.62
| Infograph | Clipart | Average

Methods UnseenGallery MixedGallery | UnseenGallery MixedGallery | UnseenGallery MixedGallery
mAP200 Pre0200 mAP200 PTCCQOO mAP200 PTGCQOO mAPgoo PTGCQOO mAP200 PTCCQOO mAono PI'CCQOO

ProS* | 57.98 54.42 5219 49.56 | 76.48 71.86 7228 68.15| 60.52 56.26 55.46 51.95
ZS CLIP 50.08 44.74 43.75 3891 | 60.37 51.30 56.08 46.91 | 44.35 38.40 39.80 33.78
VPT-D 60.44 57.05 53.35 50.36 | 77.08 7245 7187 6750 | 61.19 57.02 54.86 51.12
AdaptFormer| 55.72 52.73 49.17 46.50 | 77.87 73.83 72.70 69.04 | 60.56 56.95 54.65 51.47
IVLP 61.20 57.83 54.17 51.22 | 76.79 7230 71.85 6741 | 61.02 56.94 54.80 51.23
IVLA 58.11 54.87 51.48 48.55 | 78.62 74.32 73.65 69.73 | 61.70 57.82 55.83 52.46
MaPLe 60.58 57.46 53.93 51.04 | 77.61 73.03 7283 68.60 | 61.91 57.90 55.95 52.47
MMA 60.29 57.38 53.83 51.44 | 78.48 74.25 7349 69.68 | 62.31 58.54 56.49 53.25
MAIL 62.22 5944 5510 53.10 | 79.22 7531 7478 71.01 | 63.75 60.19 57.72 54.62

Table 27: 8-shot UPCDR evaluation results (%) on DomainNet.

Method \ Sketch | Quickdraw |  Painting | Infograph | Clipart |  Average
etnods

‘ mAP200 PTCCQOO ‘ mAP200 PTGCZOO ‘ mAPZOO PTGCQOO ‘mAPzOO PFBCQOO ‘ mAPQOO Preczoo ‘ mAPgoo PTCCQOU
ProS* | 73.85 49.11 | 28.89 11.86 | 72.27 46.15 | 60.56 39.62 | 81.05 52.98 | 63.32 39.94
ZS CLIP 47.60 28.71 | 8.67  4.50 | 55.69 31.70 | 47.56 29.36 | 55.81 31.10 | 43.07 25.07
VPT-D 7276 4821 | 27.66 10.13 | 71.22 44.72 | 63.77 41.24 | 79.12 50.57 | 62.91 38.97
AdaptFormer| 75.19 49.58 | 28.01 11.79 | 71.71 44.90 | 60.62 40.12 | 80.44 52.42 | 63.19 39.76
IVLP 72.29 4771 | 27.10 11.24 | 71.10 44.64 | 63.79 40.89 | 78.44 50.11 | 62.54 38.92
IVLA 7490 49.47 | 28.05 11.74 | 71.80 44.88 | 60.99 40.04 | 80.23 51.53 | 63.19 39.53
MaPLe 74.60 49.62 | 29.54 12.08 | 71.84 45.27 | 63.06 4093 | 79.45 51.23 | 63.70 39.75
MMA 75.38 4997 | 28.52 11.87 | 72.26 45.12 | 62.82 41.14 | 80.38 51.66 | 63.87 39.95
MAIL 76.87 51.53 | 30.76 12.67 | 7547 4822 | 65.79 42.92 | 81.99 53.74 | 66.17 41.81

Table 28: 8-shot U°CDR evaluation results (%) on Sketchy and TU-Berlin.

Methods |  Sketchy | TU-Berlin

‘ mAP200 PI‘CCQ()(J ‘ mAPa” PI‘CCl(J()
ProS* | 69.91 65.45 | 66.75 74.42
ZS CLIP 35.82 33.08 | 31.45 46.12
VPT-D 70.86 67.19 | 66.79 74.44
AdaptFormer| 74.51 70.98 | 68.42 73.24
IVLP 70.08 66.24 | 65.23 72.83
IVLA 74.48 70.70 | 68.84 74.46
MaPLe 74.86 70.98 | 67.66 74.27
MMA 75.08 71.63 | 68.94 74.66
MAIL 76.22 7278 | 68.91 74.61
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