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Abstract

Computer vision foundation models, such as DINO or
OpenCLIP, are trained in a self-supervised manner on large
image datasets. Analogously, substantial evidence suggests
that the human visual system (HVS) is influenced by the
statistical distribution of colors and patterns in the natu-
ral world, characteristics also present in the training data
of foundation models. The question we address in this pa-
per is whether foundation models trained on natural images
mimic some of the low-level characteristics of the human
visual system, such as contrast detection, contrast masking,
and contrast constancy. Specifically, we designed a pro-
tocol comprising nine test types to evaluate the image en-
coders of 45 foundation and generative models. Our results
indicate that some foundation models (e.g., DINO, DINOv?2,
and OpenCLIP), share some of the characteristics of human
vision, but other models show little resemblance. Founda-
tion models tend to show smaller sensitivity to low contrast
and rather irregular responses to contrast across frequen-
cies. The foundation models show the best agreement with
human data in terms of contrast masking. Our findings sug-
gest that human vision and computer vision may take both
similar and different paths when learning to interpret im-
ages of the real world. Overall, while differences remain,
foundation models trained on vision tasks start to align with
low-level human vision, with DINOv2 showing the closest
resemblance.

1. Introduction

Computer vision foundation models, such as DINO [9] or
OpenCLIP [22, 32], show exceptional ability to generalize
to different tasks and are becoming cornerstones of many
computer vision methods. They owe their exceptional per-
formance to self-supervised training on very large image
datasets. The human visual system also owes much of its
capability to being able to perceive the world, over many
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Figure 1. To determine whether image encoders of foundation
models exhibit a similar low-level characteristic as human vision,
we test them on psychophysical stimuli for which human data is
available. We want to test the alignment of contrast encoding be-
tween human and computational vision models.

years from infancy to childhood [6]. A question arises: if
the neural network and the visual system are trained by be-
ing exposed to a large number of images of the world, will
they share their low-level vision characteristics? If they do,
we will know that those low-level characteristics arise nat-
urally and likely reflect the statistics of real-world scenes.
If they do not, it means that human low-level vision charac-
teristics are specific to the optical/biological limitations of
human vision rather than natural image statistics. Our anal-
ysis is meant to shed some light on how the vision, either
biological or computational, may develop from observing
samples of the world, taking either the same or different
routes to accomplish their respective tasks.

In particular, we are interested in the characteristics that
are well understood and measured in human vision science
using psychophysical methods: contrast detection [4], con-
trast masking [25] and contrast constancy [18]. Contrast



detection and contrast masking quantify the ability of the vi-
sual system to detect small contrast patterns, either on uni-
form backgrounds (contrast detection) or on backgrounds
with patterns (contrast masking). Contrast detection and
masking capture the “bottlenecks” of the visual system —
the characteristic that may prevent us from detecting pat-
terns that are too dark or too small. Similarly, cameras used
for computer vision are limited by the MTF of the lens, sen-
sor resolution, photon and sensor noise, and we can expect
that computer vision methods may need to deal with similar
limitations.

Contrast constancy is the term used in vision science
to describe the invariance of the visual system to spatial
frequency [18] and partially luminance [24, 31]. George-
son and Sullivan [18] showed that the perceived magnitude
of the contrast that is well above the detection threshold
(supra-threshold) appears to us the same regardless of spa-
tial frequency. This is a very important characteristic as it
allows us to see contrast (and therefore objects) the same
regardless of the viewing distance; otherwise, the frequen-
cies would change with the viewing distance and hence the
contrast appearance. A partial constancy (invariance) is also
observed across luminance [24, 31], though there is a sig-
nificant deviation from constancy at lower luminance levels,
once the visual system needs to rely on the rod vision. The
invariance is also an important feature of many computer vi-
sion methods. For example in SIFT features [27] have been
designed to be invariant to the changes in contrast, bright-
ness, scale, and rotation. In our experiments, we used the
supra-threshold contrast matching test to assess whether the
models exhibit the characteristic of contrast constancy.

Numerous works on adversarial attacks demonstrated
that the classification performance of deep learning mod-
els can be greatly degraded by visually inconsequential
changes [20]. At the same time, human vision does not suf-
fer from such adversarial vulnerability [43]. This is one of
the most salient arguments put forward to state that deep
architectures are different from human vision. Here, we
propose a different methodology to study this question. We
consider the deep neural network to be a black box and com-
pare its responses to well-understood and measured charac-
teristics of the human visual system. In particular, we want
to check whether the foundation vision models share the
same “bottlenecks” and invariance properties as the visual
system. To achieve this, we test foundation models on ba-
sic vision stimuli, such as Gabor patches and band-limited
noise, and compare the response of those models with the
psychophysical data collected from human observers.

In summary, our contributions are as follows:

* We developed a protocol to evaluate the similarity be-
tween machine vision models and the human visual sys-
tem. This protocol includes contrast detection, contrast
masking, and contrast constancy, subdivided into nine

distinct test types that collectively capture the low-level
fundamental characteristics of human vision.

* We tested the image encoders of 45 foundation and gen-
erative models. The results reveal similarities between
certain foundation models (e.g., DINOv2 and OpenCLIP)
and human vision, particularly in the contrast masking
test. However, differences persist across other tests.

2. Related Work

Since the advent of deep learning, machine vision models
based on foundation models [13, 23, 30] and DNNs [28, 38,
46] have successfully handled numerous advanced visual
tasks. However, researchers have observed that machine vi-
sion operates differently from human vision. [16] revealed
that standard convolutional neural networks (CNNs) trained
on ImageNet are strongly biased toward texture recognition
rather than shape, which contrasts with human visual pat-
terns. [43] provided further evidence that deep neural net-
works (DNNs) differ significantly from the HVS, demon-
strating poor robustness in object classification under 3D
viewpoint changes and image distortions, and showing vul-
nerability to adversarial examples, which are rarely prob-
lematic for humans. [5] pointed out that DNNs performing
well in benchmark tests share little overlap with biological
vision mechanisms and fail to account for many findings in
psychological studies of human vision. This highlights a
clear distinction between machine and human vision, lead-
ing to the rise of interest in domain adaptation [7] and mak-
ing networks robust to adversarial attacks [45].

But there is also evidence that the gap between neural
network-based machine vision models and human vision
is gradually narrowing. [39] compared vision transformers
(ViT) [13] and CNN, finding that ViT not only achieves su-
perior task accuracy but also exhibits weaker inductive bi-
ases, with error patterns more consistent with human errors.
[17] discovered that the long-standing robustness gap be-
tween humans and CNNs in handling distortions is shrink-
ing. [10, 19] also demonstrated that foundation models like
DINO [9] and CLIP [33] can generate more accurate and
robust metrics for low-level perceptual similarity.

Most of the aforementioned studies focus on high-level
task performance (e.g., accuracy, consistency, ...), which
may not reveal whether computation models suffer from
the same bottlenecks and rely on the same invariances as
human vision. To that end, [2, 26] have attempted to re-
veal CSF characteristics within pretrained architectures by
training a head with a contrast discrimination classifier. The
problem with this approach is that it introduces a bias by re-
lying on a classifier trained to compare contrast. Such stud-
ies also make an incorrect assumption that CSF explains
both near-threshold and super-threshold vision, while con-
trast constancy results (see Section 4.3) show that this is not
the case. In contrast, we examine networks’ low-level char-



acteristics without additional task-specific training, consid-
ering both near-threshold and supra-threshold vision.

3. Testing framework

We first explain the tested models, testing methods, result
visualization, and the strategy we used to summarize and
quantify our results.

3.1. Tested models and testing methodology

The objective is to evaluate the responses of machine vision
foundation models to stimuli commonly used in human vi-
sion research [3, 8] and to compare these responses with
psychophysical human data. We tested a representative set
of 45 models, encompassing the most influential large vi-
sion foundation models, including the variants of DINO [9],
DINOV2 [12, 30], OpenCLIP [22, 32], SAM [23], SAM-
2 [34], and MAE [21], as well as the encoder used for
the latent space of generative model Stable Diffusion (SD-
VAE, [35]). Additionally, we report the responses of Col-
orVideoVDP [29], which is an image and video quality met-
ric that explicitly models low-level human vision and acts as
a reference for a low-level human vision model. All models
and their variants are listed in Figure 6.

To test these models, we need to be able to compare pairs
of images and assess the “perceived” difference between
them. For example, for a pattern detection task, a pair of im-
ages could be a Gabor patch (test) and a uniform field (ref-
erence), as shown on the left of Figure 2. As such patterns
are calibrated in physical light units in vision science, we
generate these patterns as luminance maps, scaled in physi-
cal units of cd/m?. These luminance maps are then mapped
from the linear space to the SRGB color space using a dis-
play model (display peak luminance of 400 cd/m?) and fed
into the image encoder of the foundation model for feature
extraction. Note that the SRGB space is almost universally
used to represent training datasets and is expected input for
the tested encoders. To ensure that models can operate on
small contrast values, we modified them to accept floating-
point values (instead of 8-bit integers) as input. This was
necessary as the quantization artifacts in 8-bit images are
often larger than the detection thresholds of human vision.

To investigate whether the distances in the feature space
reflect the perceptual detection thresholds and invariances,
we experimented with a series of distance measures, includ-
ing Ly and L,. We found the cosine similarity expressed as
a relative angle (S,.) yielded results most consistent with
the psychophysical data. .S, is defined as:
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where Fr and Fy are the test and reference feature vectors
(feature maps reshaped into one dimension), and - denotes
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Figure 2. Pipeline for computing S,c. Generate test and reference
images in the linear luminance space (cd/m?), transform them
to the sSRGB color space using a display model, and input each
into the image encoder. Reshape the output features into one-
dimensional vectors Fr and Fg, then compute Sy.

the dot product. S, = 0 indicates two input images are
equivalent, while S,. = 1 indicates large differences.

To compare the encoder responses with psychophysical
data, we need to be able to map the image sampling fre-
quency into the spatial frequency on the retina. For that,
we select the effective resolution of 60 pixels-per-degree,
which is typical for modern monitors. We note, however,
that the choice of this parameter is arbitrary and the model
similarity scores can be shifted by a small multiplier along
the spatial frequency axis. The luminance maps are gener-
ated at the resolution of 224 x224 pixels, corresponding to
the size of 3.7x3.7 visual degrees.

For ColorVideoVDP, we do not use sSRGB encoding as
the metric can directly work on physical units. We directly
use its quality score instead of S,.. Note that the primary
focus of this study is on foundation models, with the Col-
orVideoVDP metric used solely for comparison purposes.

3.2. Model alignment score

Most of our results will be represented as contour plots of
model responses, providing qualitative interpretation. Here,
we explain our measure of model alignment, which pro-
vides quantitative scores.

As an example, we take the leftmost contour plot in row
(a) of Figure 5. Each point on the contour plot corresponds
to S,c between the test image as shown in Figure 3 and a
uniform field of the same mean luminance. The dashed line
represents human contrast detection data, predicted with
castleCSF [3]. A well-aligned model should show one of
the contour lines that follows the dashed castleCSF line. We
cannot directly use the S,. values along the dashed line as
the measure of alignment because some models result in
Sac = 0 for most points near the detection threshold (they
detect no difference). Therefore, instead, we rely on the
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Figure 3. Gabors with different spatial frequencies (x-axis) and
contrast (y-axis) used as the test images in the contrast detection
tests (Section 4.1). “cpd” denotes cycles per degree. Note that the
high-frequency patterns can be rendered with aliasing artifacts on
the screen or in print — those were not present in our tests.

measure of change in S, in the neighborhood of the dashed
line.

For a well-aligned model, the perceived differences in
the neighborhood of the detection threshold (dashed line)
should increase as the contrast increases (the sensitivity de-
creases), Furthermore, the values should be similar along
the dashed line. The measure these two properties, we sam-
ple the S, values for the points that are shifted in contrast
(vertical direction) from the dashed line by a multiplier m,
where 0.5<m<2 (note the logarithmic scale in the contour
plot in Figure 5). We collect such data for multiple fre-
quencies (or other dimensions) along the dashed line and
calculate the Spearman rank order correlation between the
multipliers m and the S,. values. If the properties men-
tioned above are preserved, the correlation coefficient value
rs should be close to 1.

The above strategy is used for all contrast detection and
contrast masking experiments. For the contrast matching
experiment, we use the root mean squared error (RMSE)
between the model and human matching data, expressed as
the logarithm of contrast.

4. Experiments
4.1. Contrast detection and CSF

We begin by testing the foundation models’ ability to detect
low-contrast (near-threshold) patterns (e.g., Gabor patches,
band-limited noise) and compare their performance with the

human data. As the reference human data, we rely on the
caslteCSF [3], which is the recent contrast sensitivity func-
tion, modeling contrast detection of both achromatic and
chromatic patterns.

Spatial Frequency Contrast sensitivity of the human eye
is typically associated with the variation across the spatial
frequency. The visual system exhibits a band-pass charac-
teristic, with a peak sensitivity between 2 and 4 cycles per
degree (cpd), depending on the luminance and other param-
eters of the stimulus. The lower sensitivity of the visual sys-
tem at lower frequencies is associated with the mechanism
of lateral inhibition [4], which helps to reduce the influence
of (low-frequency) illumination on the perceived images.
Such invariance to illumination is a desirable property if the
goal is to recognize objects regardless of illumination con-
ditions. The drop in sensitivity at high frequencies is as-
sociated with the limitations of eye optics (achromatic con-
trast) and cone density (chromatic contrast). Here we want
to test whether the computer-vision foundation models pick
up similar traits when trained on natural images.

To test encoder responses across frequencies, we gener-
ated a 2D array of image pairs, in which the reference image
had uniform luminance, and the test image contained a Ga-
bor patch, as shown in Figure 3 (refer to Supplementary for
the visualization of other stimuli). We generate such Gabors
for achromatic (see Figure 4-a) and chromatic modulation
(see Figure 4-c,d). We also tested band-limited noise (see
Figure 4-b). The test patterns had fixed size but varying spa-
tial frequency (x-axis) and contrast (y-axis). Because most
of the contrast detection data are plotted as the function of
sensitivity, we follow this convention and plot the sensitiv-
ity, which is the inverse of the contrast. This corresponds to
the reversal of the axis on the logarithmic plots, which we
use in our analysis. The other parameters of the stimuli are
listed in Table 1. Although we tested multiple variants of
each foundation model, here we show only the variant with
the highest complexity and best performance on its original
high-level tasks. The contour plots for other variants can be
found in the Supplementary.

The contour plots of foundation model responses
are shown together with a contrast sensitivity function
(castleCSF [3]) in rows (a)—(d) of Figure 5. If the foun-
dation models had the same contrast detection characteris-
tics as the human eye, we would expect the smallest differ-
ence (the lowest S,.) contour line to follow the black dashed
curve of castleCSF. This is not the case for any of the tested
foundation models. Some models, and in particular DI-
NOv2 and SD-VAE, show overall band-pass characteristics,
in particular for noise and achromatic Gabors. SD-VAE has
a drop of sensitivity at lower frequencies much larger than
that of the visual system. The responses to chromatic pat-
terns (rows (c) and (d)) tend to be less regular than to achro-
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Figure 4. Examples of test images for contrast detection and contrast masking. The detailed explanation of the stimuli can be found in the

Supplementary. “Ach.” denotes achromatic.

Table 1. Key parameters for all our tests. Note that “Radius” does not apply when the pattern is not a Gabor.

Test | Spatial Frequency (cpd) |Luminance (cd/m?) |Radius (degree)| Contrast
Spatial Frequency - Gabor Achromatic 0.5-32 100 1 0.001 -1
Spatial Frequency - Noise Achromatic 0.5-32 100 - 0.001 -1
Spatial Frequency - Gabor RG 0.5-32 100 1 0.001-0.2
Spatial Frequency - Gabor YV 0.5-32 100 1 0.001-0.2
Luminance - Gabor Achromatic 2 0.1-200 1 0.001 -1
Area - Gabor Achromatic 8 100 0.1-1 0.001 -1
Phase-Coherent Masking 2 (mask) / 2 (test) 32 0.5 (test) 0.005 - 0.5 (mask) / 0.01 - 0.5 (test)
Phase-Incoherent Masking 0 - 12 (mask) / 1.2 (test) 37 0.8 (test) 0.005 - 0.5 (mask) / 0.01 - 0.5 (test)
Contrast Matching 5 (reference) / 0.25 - 25 (test) 10 - 0.005 - 0.629 (reference)

matic patterns and lack the shift toward lower frequencies,
which is observed in the human data. Both OpenCLIP and
SAM-2 show a very inconsistent response across the spatial
frequencies.

From the data, we can conclude that foundation models
do not follow the sensitivity pattern of the visual system,
but some may show a band-pass characteristic that is asso-
ciated with the CSF. Many models show lower sensitivity
at lower frequencies, which may indicate that those models
obtained some invariance to (low-frequency) illumination
through training.

Luminance The sensitivity of the human eye increases
with the luminance. In dim light, human contrast sensitivity
increases proportionally to the square root of retinal illu-
minance, following the DeVries-Rose law. Conversely, in
bright light, sensitivity follows Weber’s law, remaining in-
dependent of illuminance [37]. In this experiment, we want
to test whether the computer vision models lose sensitivity
at lower luminance levels. Such a loss could be justified by
camera noise, which increases in terms of contrast as the
light intensity decreases [1].

To produce contour plots, we generated a 2D array of

image pairs in a similar manner as for spatial frequency
variations in the section above, but instead of varying spa-
tial frequency, we varied luminance, as shown in Figure 4-
e. As a reminder, we did not pass the absolute lumi-
nance values directly to each model but instead converted
them to display-encoded (gamma-corrected) sSRGB space
— the colour space used for training datasets (see Figure 2).
Such an encoding partially compensates for perceptual non-
uniformity of luminance.

The results, shown in row (e) of Figure 5, indicate a
systematic drop in sensitivity with luminance for all tested
models. The drop in sensitivity of those models is faster
than that observed in the human data, in particular for Open-
CLIP.

We can conclude that the models trained on sufficiently
large datasets mimic the sensitivity of the visual system
to luminance but with a faster drop in sensitivity. This,
however, may be the result of using SRGB representation
for training datasets, which were presumably mostly well-
exposed and contained relatively little information in darker
image regions.
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Figure 5. Selected representative experimental results. Each row represents a test, and each column corresponds to a model, selected as the
best-performing in their original tasks. (a)-(f): contour plots of contrast detection S, with the ground truth castleCSF [3]. (g),(h): contour
plots of contrast masking S, with the ground truth from [14] and [15], respectively. (i): results from the contrast matching experiment,
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Figure 6. The quantified similarity error between all 45 models
and HVS under 9 different tests. For the Contrast Detection and
Contrast Masking tasks, Spearman Correlation was used as the
metric, with higher values (closer to 1) indicating greater similar-
ity to human vision. For the Supra-threshold Contrast Matching
task, RMSE was used as the metric, with lower values (closer to
0) indicating better similarity.

Area Stimulus area (size) significantly affects sensitivity,
as larger stimuli activate more retinal cells. Sensitivity in-
creases with area up to the saturation point, denoted as the
critical area [36]. The response to stimuli of different sizes
tests the model’s ability to pool information across the vi-
sual field.

In this experiment, we vary the size of the Gaussian en-
velope limiting stimulus size to observe its effect on model
responses. We follow the same procedure as in the two pre-
vious sections and generate pairs with a uniform field and a

Gabor patch (see Figure 4-f). The parameters of the Gabor
patch are listed in Table 1.

The results, shown in row (f) of Figure 5, indicate that
most models show summation across the area (the S, val-
ues increase with the area) and the rate of the increase varies
across the models; DINO and SAM-2 have a smaller in-
crease, SD-VAR has a higher increase of S,. than the hu-
man data, and only DINOv2 roughly matches human per-
formance. OpenCLIP shows no consistent patterns. We can
conclude that many models show spatial pooling character-
istic that shares the trend observed in human data, though
the actual slope of the increase is typically different.

4.2. Contrast masking

Contrast masking explains the decreased visibility of a sig-
nal (test) due to the presence of a supra-threshold back-
ground (mask). The masking function defines the relation-
ship between the threshold test contrast required for signal
detection and the mask contrast. Put simply, a pattern is
more difficult to detect in the presence of another pattern of
similar spatial frequency and orientation. A typical masking
characteristic of the visual system is shown in rows (g) and
(h) of Figure 5. It consists of a relatively shallow segment
at low mask contrast (near the detection threshold), with the
slope increasing for high mask contrast. The shape of the
curve is influenced by the specific properties of the mask
and test signals [11, 42]. We will consider the case in which
the masker is a sinusoidal grating of the same frequency
as the test pattern (phase-coherent masking, row (g)) and
when the masker is noise (phase-incoherent masking, row
(h)) [11, 14, 15], as shown in Figure 4-g,h.

First, we consider the fundamental form of phase-
coherent masking in which the masker image (reference
in Figure 2) is a sinusoidal grating and the test image is
the masker plus a Gabor patch of the same frequency and
phase as the masker (see Figure 4g). Contrast masking
data, shown as the dashed black curve in row (g) of Fig-
ure 5, shows the smallest contrast of the test Gabor that is
detectable in the presence of the masker of a given con-
trast. As the contrast of the masker increases, the smallest
detectable contrast of the test also needs to increase. How-
ever, such an increase starts only for a masker that has the
contrast sufficiently high to be detected. If the contrast of
the masker is near the detection threshold, we can observe
a dipper effect — the contrast detection is facilitated by a
masker [14, 41, 44]. Such an effect can be only observed in
phase coherent masking.

As an example of phase-incoherent masking, we will
consider a masker with band-limited noise and a test with
a Gabor patch — see Figure 4h. The human detection
thresholds for such masking patterns are similar to those
for phase-coherent masking, except that the dipper effect
disappears [40].



The differences predicted by DINOv2 and OpenCLIP
are surprisingly well-aligned with the human contrast mask-
ing data — their responses roughly match the slopes of
the human data. The alignment is stronger for the phase-
incoherent masking. This is particularly notable for Open-
CLIP, which did not show any consistent trends for contrast
detection. Other models do not show strong alignment with
the human data.

Overall, computational models are better aligned with
human data for contrast masking than for contrast detec-
tion. One possible explanation is that the signals that in-
duce contrast masking are plentiful in natural images, but
contrast detection stimuli, which involve barely noticeable
patterns on uniform backgrounds, are rare. Therefore, com-
putational models are more likely to pick up the character-
istic that is well represented in the training datasets.

4.3. Supra-threshold contrast matching

While contrast detection and contrast masking explain the
just detectable (near-threshold) contrast, most of the vision
tasks, such as detection or recognition, involve well-visible
(supra-threshold) contrast. Supra-threshold human vision
has been studied in contrast-matching experiments in which
the magnitude of one contrast is visually matched to the
magnitude of another contrast of a different frequency [18]
or luminance [24, 31]. One of the most significant findings
of those studies is contrast constancy [18] — the ability of
the visual system to match physical contrast across frequen-
cies and luminance levels. The results of the seminal study
of Georgeson and Sullivan [18] on matching contrast across
frequencies are shown as dashed lines in row (i) of Figure 5.
At small contrast, the dashed lines show a band-pass shape
that follows the contrast sensitivity function. However, as
the contrast is increased, the lines become flat showing lit-
tle influence of frequency on contrast perception. This is
an important property that lets us see objects to have the
same appearance regardless of the viewing distance. Such
a scale invariance is also important for neural networks that
are tasked to detect or recognize objects regardless of their
size.

We followed the experimental setup from [18], where
the reference was a 5 cpd, 10 cd/m? sinusoidal grating, pre-
sented at eight distinct contrast levels ¢;. The test stimulus
had the same luminance but a different spatial frequency p.
In [18], observers adjusted the test stimulus contrast ¢, until
its apparent contrast matched that of the reference (contrast
matching). In our experiments, we match contrast encod-
ings of sinusoidal gratings: the (S, (), eq. (1)), between a
feature vector of a sinusoidal grating, F'(p, ¢) of frequency
p and contrast ¢, and a uniform field, U = F(py, 0). We find
the test contrast ¢, that minimizes the expression:

2
(Selllouckl)_SsF) D)V

argmin -
Sac(F(pr,1),U) ac(F(pe; 1),0)

Ct

where the reference frequency p; = 5cpd. The denomina-
tors in the expression are used to normalize contrast across
frequencies. We experimented with other contrast encod-
ings, including a direct comparison of feature vectors, but
the formula above resulted in the best contrast constancy
properties across the models.

The matching contrast predictions for foundation mod-
els are visualized as continuous lines in row (i) of Figure 5.
The plots show that only DINOv2 and OpenCLIP roughly
follow the dashed contrast constancy lines. Both models
show less attenuation (more constancy) at the highest spa-
tial frequencies, which could be advantageous when the
model needs to work with small-scale features. Both mod-
els show attenuation of low frequencies (below 1 cpd), sug-
gesting worse contrast constancy in that frequency range.
Other models, including DINO and SAM-2, suffer from
large instability across frequencies, or very heavy attenua-
tion of low frequencies in the case of SD-VAE. To conclude,
we can observe only partial contrast constancy for selected
models.

4.4. Model alignment scores

As the analysis of all 45 variants of the models is infeasible
in the scope of this paper, we prepared quantitative results
according to the method explained in Section 3.2 and sum-
marized them in Figure 6. Those let us make three observa-
tions:

First, ColorVideoVDP, which is a visual metric that
models human low-level vision, is better aligned with the
human data in almost all contrast detection tasks and in
terms of contrast constancy, as expected. However, certain
variants of OpenCLIP and DINOv2 can match or surpass
the ColorVideoVDP alignment in terms of contrast mask-
ing. Second, the alignment scores of different foundation
model variants (e.g., OpenCLIP) show significant variations
and alignment scores appear unrelated to the complexity of
the variants or their performance on higher-level tasks. Fi-
nally, DINOv2 variants, which have been trained to solve
vision tasks, show the greatest alignment with the human
data among all foundation models.

5. Conclusions

If we believe that the goal of both biological and computa-
tional low-level vision is to efficiently encode visual infor-
mation, we can expect that computational models trained
on large natural image datasets will share similarities with
human vision. In this work, we find that selected compu-
tational models, e.g., variants of DINOv2 and OpenCLIP,
show surprisingly high alignment with supra-threshold hu-
man contrast masking and contrast matching data, but little
alignment with the near-threshold contrast detection. This
means that computation models do not have the same “bot-
tlenecks” as human vision, but, through training, they attain



invariance and efficient contrast coding that resembles that
of the visual system. We hope that our testing protocol with
basic psychophysical stimuli will provide a useful tool for
examining future computational models of vision.
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