
Restoring balance: principled under/oversampling of data for optimal
classification

Emanuele Loffredo * 1 Mauro Pastore * 1 Simona Cocco 1 Rémi Monasson 1

Abstract
Class imbalance in real-world data poses a
common bottleneck for machine learning tasks,
since achieving good generalization on under-
represented examples is often challenging. Miti-
gation strategies, such as under or oversampling
the data depending on their abundances, are rou-
tinely proposed and tested empirically, but how
they should adapt to the data statistics remains
poorly understood. In this work, we determine
exact analytical expressions of the generalization
curves in the high-dimensional regime for linear
classifiers (Support Vector Machines). We also
provide a sharp prediction of the effects of un-
der/oversampling strategies depending on class
imbalance, first and second moments of the data,
and the metrics of performance considered. We
show that mixed strategies involving under and
oversampling of data lead to performance im-
provement. Through numerical experiments, we
show the relevance of our theoretical predictions
on real datasets, on deeper architectures and with
sampling strategies based on unsupervised proba-
bilistic models.

1. Introduction
Many real-world classification tasks, e.g. in automated
medical diagnostics (Krawczyk et al., 2016; Fotouhi et al.,
2019), molecular biology (Wang et al., 2006; Yang et al.,
2012; Cheng et al., 2015; Song et al., 2021; Ansari & White,
2023), text classification (Liu et al., 2009; 2017), ... are
plagued by the so-called curse of class imbalance (Kubat &
Matwin, 1997; Lemaître et al., 2017): one or more classes
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in the training data are significantly under-represented, yet
correct identification of these rare examples is crucial for
performance (Weiss, 2004). For such imbalanced datasets,
machine learning methods struggle to achieve good classifi-
cation performances when tested fairly (He & Ma, 2013).

Due to its wide-spread and intrinsic nature, the issue of
learning with class imbalance has long been studied in the
computer science literature. Systematic empirical studies,
assessing the performances of various architectures and
algorithms with imbalanced data have been carried out (Jap-
kowicz & Stephen, 2002; Akbani et al., 2004; Lemnaru &
Potolea, 2012; Buda et al., 2018), with a renewed interest
in the era of big data and deep learning (Ghosh et al., 2022;
Johnson & Khoshgoftaar, 2019). Various strategies (Anand
et al., 1993; Laurikkala, 2001; Chawla et al., 2002; Batista
et al., 2004; He et al., 2008; Alshammari et al., 2022) based
on restoring balance in the training set can be found in text-
books (He & Ma, 2013; Fernández et al., 2018). Despite
this considerable body of work, a theoretical understanding
of learning with class imbalance remains elusive, which pos-
sibly impedes the design of optimal, task-adapted strategies.

In this work we propose a probabilistic setting that faithfully
takes into account the imbalance ratio and essential features
of the data, such as their first and second moments, in which
the performances of linear classifiers can be analytically
derived in the high-dimensional limit using the framework
of the statistical mechanics of learning (Engel & Van den
Broeck, 2001). Based on this theory we can identify strate-
gies to under or oversample the data in, respectively, the
majority and minority classes offering optimal performances
for the metrics of interest.

Summary of the main results. We report here the main
results of our work.

In Sec. 2, we analytically characterize the asymptotic perfor-
mances of linear classifiers trained on imbalanced datasets,
when data points are discrete multi-state variables. These
asymptotics are based on the so-called replica method from
statistical physics.

We provide quantitative behaviors of various metrics within
this setting – such as confusion matrix, accuracy (ACC),
balanced accuracy (BA) and area under the ROC curve
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(AUC). This allows us to show, for example, that AUC is
rather insensitive to imbalance, and is therefore not a reliable
predictor of some aspects of the performances captured by
more sensitive metrics, e.g. BA.

In Sec. 3, we provide exact asymptotic predictions to assess
the effect of simple under and/or oversampling strategies
to mitigate the imbalance problem. We show that best per-
formances are reached with mixed strategies restoring data
balance (Fig. 1).

In Sec. 4, we provide empirical support that our theoretical
findings qualitatively hold with deeper classifiers and more
sophisticated under/oversampling methods. In particular,
we propose and test an unsupervised probabilistic model,
learned on the minority class, to generate new minority-class
instances or to filter out majority-class data (Fig. 1).

P

N

oversampling

un
de

rs
am

pl
in

g

mixed u/o. sampling

initial composit.

balanced composit.
w under/over-sampling

Figure 1. Illustration of our restoring balance procedure. Classi-
fiers trained on datasets with severe imbalance (blue star) generally
show poor generalization performances. Restoring balance by mix-
ing under and oversampling improves classification performances
(red stars across the line P = N ). Here P,N indicate the sizes of
the positive and negative classes, initially with P ≪ N .

Related works. Learning imbalanced mixture models of
data with linear classifiers has long been studied in the
statistical physics literature (Del Giudice, P. et al., 1989).
Recently, Loureiro et al. (2021); Mignacco et al. (2020);
Pesce et al. (2023) evaluated rigorously the generalization
error of a linear classifier on data from Gaussian mixture
models, on test sets distributed as the training set; in the
present work, we consider instead data in the form of multi-
state discrete variables not necessarily normally distributed,
we compare different performance metrics and study the
impact of mitigation strategies on the learning protocol. For
rigorous results that go beyond the hypothesis of Gaussian
data from this approach, see the recent Dandi et al. (2023).
Mannelli et al. (2023) revisited this problem in the context
of the fairness of AI methods; at variance with them, we con-
sider a classification task with labels coinciding with class
membership, and we focus on dataset-preprocessing miti-

gation strategies more than on algorithmic-based methods
(loss-reweighting, coupled neural networks). The dynam-
ics of learning with gradient-based methods in presence of
class imbalance, which we do not address here, was recently
studied by Francazi et al. (2023).

Other theoretical assessments from complementary point of
views were formulated in the recent past to obtain optimal
oversampling ratios for imbalanced datasets (Shang et al.,
2023; Chaudhuri et al., 2023). An interesting comparison
with our work is given by Menon et al. (2013), which proves
that classifiers trained with empirically-balanced losses at-
tain optimal performances in the limit of infinite data: as
discussed in Section 3.4, we can account for this setting
within our formalism, but our work deals with the propor-
tional asymptotics where both the input dimension and the
training set size are large, for which we show that simple
loss-reweighting methods are sub-optimal with respect to
data augmentation techniques more sophisticated than ran-
dom oversampling.

In addition, a plethora of methods have been proposed to
effectively restore balance in datasets. SMOTE (Chawla
et al., 2002), whose strategy is to oversample the minority
class by linearly interpolating existing data points, is one
of the most frequently applied algorithms and exists in the
literature under more than 100 variations (Kovács, 2019).
The use of unsupervised generative model to first learn and
then augment the minority class has been actively explored,
e.g. with generative adversarial networks (Douzas & Ba-
cao, 2018), autoencoders (Mondal et al., 2023), variational
autoencoders (Wan et al., 2017; Ai et al., 2023), etc. Our
proposed approch is closely related to RBM-SMOTE, intro-
duced by Zięba et al. (2015), where a Restricted Boltzmann
Machine (RBM) is trained on the minority class and then
used to generate new samples starting from intermediate
points obtained by SMOTE. Similar restoring balance pro-
cedures have been showed in Mirza et al. (2021) to have a
positive impact on different performances metrics.

Table 1. Notations and conventions used in this work.

L,Q dimension of the data, size of the alphabet
P,N positive and negative class sizes of training data
α+, α− classes sizes scaled by data dimension
ρ+, ρ− fractions of the two classes in the training dataset
φ+, φ− fractions of the two classes in the test dataset
⟨·⟩± average over positive and negative data
M, δ midpoint and shift between the classes’ centers
C covariance matrix of the data
J, b weights and bias of the linear SVM
κ margin of the linear SVM
∆+, ∆− pre-activations of the output neuron
ℓ(y,∆) training loss function
g(y,∆) test loss function
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2. Theoretical setting
We consider pairs (vν , yν) ∈ RL×Q × {−1,+1} with
ν = 1, . . . , P + N of training data points independently
sampled, where L sets the dimension of data points and
each symbol vi can take Q values (Table 1). For example,
in image recognition tasks, L is the number of pixels and Q
the number of possible colors of each pixel; in molecular
biology, L is the length of the biological sequence and Q the
size of the alphabet, e.g. 20 for amino acids. In statistical
physics, this kind of data are usually called Potts configura-
tions; in computer science, they are routinely obtained via
tokenization, for example in language models (Jurafsky &
Martin, 2009) or image recognition (Wu et al., 2020). A
convenient representation of these categorical variables is
one-hot encoding: si(t) = 1 if vi = t, 0 otherwise.

In particular, we focus on a binary classification task where
the classes are labeled by y = ±1 and the training set
is made of P positive and N negative examples, T =
{(sµ+, yµ = +1)}Pµ=1 ∪ {(sν−, yν = −1)}Nν=1. The classes
are imbalanced, i.e. in general P ̸= N . We denote with
α± the classes’ sizes scaled by the dimension of data, e.g.
α+ = P/L, and with ρ± the fractions of positive and nega-
tive examples in the training set, i.e. ρ± = α±/(α+ + α−).
We are interested in studying the statistical properties of the
linear classifier

ŷ = f(s) = sgn

[∑
i,t

Ji(t)si(t)√
L

− b

]
, (1)

where the weights and bias (J, b) ∈ RL×Q × R define the
model and are learnt over the training data. The scaling of
the inner product with

√
L is chosen to obtain components

Ji(t) ∼ O(1) after regularization and training. Due to the
property

∑
t si(t) = 1 of one-hot encoding, a linear classi-

fier described by the set of parameters (Ji(t), b) is identical
to the one defined by (Ji(t) + ui, b+

∑
i ui/

√
L) for any

arbitrary real numbers ui. To avoid this overparametrization,
we impose the zero-sum conditions

∑
t Ji(t) = 0 for all i.

Given the training set, the parameters of the model are learnt
through the following Empirical Risk Minimization (ERM):

(J⋆, b⋆) = argmin
J∈S,b∈R

L(J, b) , (2)

L(J, b) =
P∑

µ=1

ℓ
[
yµ = +1,∆+

µ (J, b)
]

+

N∑
ν=1

ℓ
[
yν = −1,∆−

ν (J, b)
]
, (3)

∆±
µ (J, b) =

∑
i,t

Ji(t)s
µ
±,i(t)√
L

− b, (4)

where ℓ : {−1,+1} × R → R+ is a loss function and the
set S, over which the optimization problem (2) is defined,

is the surface of the (L×Q)-dimensional sphere (spherical
regularization) compatible with the zero-sum conditions.
Notice that the variables ∆±

µ defined in Eq. (4) are simply
the pre-activations of the output neuron evaluated on the
input points sµ±. A possible choice of the loss function,
which we will use in the following as a case of study, is the
hinge loss

ℓ(y,∆) = max(0, κ− y∆) , (5)

for some positive parameter κ called margin. High values
of κ make the classifier less affected by noise in the training
data, so that the learning protocol is more stable. The choice
of the set S and of the hinge loss implies that the linear
model (1) is a spherical perceptron with hinge loss (Franz
et al., 2019), which is equivalent to a soft-margin support
vector machine with L2 regularization, as detailed in the
Appendix A.6.

In this work we assume that the input data points belong-
ing to the two classes are sampled independently from a
distribution having the following first and second moments:

⟨si(t)⟩± = Mi(t)±
δi(t)

2
√
L
,

⟨si(t)sj(u)⟩± − ⟨si(t)⟩± ⟨sj(u)⟩± = Cij(t, u) ,

(6)

where the angle brackets stand for the expectations over the
positive and negative classes. The vector M represents the
global center-of-mass of the positive and negative distribu-
tions, δ is the (rescaled) shift between their centers. The
scaling by the factor 1/

√
L with δi(t) ∼ O(1) ensures that

the classification task is non-trivial for a linear classifier
in the high-dimensional regime L ≫ 1. Notice that, to
simplify the analysis, we are assuming the two classes to
have the same covariance, a condition often referred to as
homoscedasticity. Higher-order statistics of the data is ir-
relevant for the asymptotic properties reported below under
mild conditions on the cumulants (Monasson, 1992).

2.1. Statistical mechanics of the learning problem

The ERM problem introduced in the previous section can be
rephrased in a statistical mechanics framework. We consider
(J, b) as the configuration of a ‘physical’ system with energy
L. The partition function of this system reads

Ω =

∫
dbdµ(J) exp[−βL(J, b)], (7)

where dµ(J) is an opportune measure over the weights tak-
ing into account regularization and zero-sum conditions, as
defined in Appendix A, Eq. (16). As the ‘inverse temper-
ature’ β → ∞, the integral in Eq. (7) is dominated by the
solution of the optimization problem (2). Within this frame-
work, we are able to derive the expected values of functions
of (J⋆, b⋆) over the data. In particular, we can characterize
the asymptotic performance of the linear classifer.
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Proposition 2.1. Consider the ERM problem in Eq. (2)
under the assumption of training data distribution (6). Let
the fractions φ± be the composition of the test set and

Mgen.(φ
+, φ−) =

∑
y∈{±}

φy ⟨g(∆y, y)⟩∆y , (8)

a performance metric of choice, with ∆± defined as in
Eq. (4) over test data points and g a generic test loss func-
tion (see Table 2 for examples). In the asymptotic regime
L,P,N → ∞ at fixed ratios α+ = P/L and α− = N/L,
the expected value in Eq. (8) can be taken over the normal
distribution

p(∆±) = N
(
±r

2
− b, q

)
, (9)

whose parameters q, r, b are the solution of the saddle-point
equations stemming from the extremization of the following
quantity

Edata [log Ω] ∼
βL

2
extr
b,r,q,x

k̂,r̂,q̂,x̂

(GS + α+G+ + α−G−). (10)

In the above proposition – fully derived in Appendices A.1-
4, B – the functions G± and GS in Eq (10) are defined
as

G± = −
√

q

2π

(
x−K±

x
e−

(x−K±)2

2q +
K±

x
e−

K2
±

2q

)
+

(x−K±)
2 + q

x
H

(
x−K±√

q

)
− K2

± + q

x
H

(−K±√
q

)
,

(11)

and

GS = Qk̂ + x̂q + q̂x+ 2r̂r +
r̂2

L
δ⊤A−1δ

− q̂

L
tr
(
A−1C

)
, (12)

where K± = κ− r/2± b, H(x) = erfc(x/
√
2)/2 (erfc is

the complementary error function), A = k̂IQ ⊗ IL + x̂C
(⊗ is the Kroenecker product). Here, algebraic operations
as traces and vector/matrix multiplications are performed in
the (L×Q)-dimensional linear space spanned by the Potts
and position indices.

We stress here that Proposition 2.1 holds under the hypothe-
ses that higher cumulants in the distribution of the data can
be neglected in Eq. (10) for large L with respect to the first
and second cumulants reported in Eq. (6), and that the op-
timization problem (2) is strictly convex; the hypothesis of
strict convexity is inessential and can be relaxed to convex-
ity, in which case Eqs. (11) and (12) need to be substituted

Table 2. Analytical predictions for the elements of the confusion
matrix and common performance metrics derived from them.
Brackets indicate averages w.r.t. the distributions (9), the threshold
γ is introduced to define the ROC and the PR curves, φ± indicates
the composition of the test set and θ the Heaviside step function.
Other metrics are reported in Appendix.

TPR(γ) ⟨θ(∆+ − γ)⟩∆+ True positive rate

FPR(γ) ⟨θ(∆− − γ)⟩∆− False positive rate

TNR(γ) 1− FPR(γ) True negative rate

FNR(γ) 1− TPR(γ) False negative rate

PPV(γ)
φ+TPR(γ)

φ+TPR(γ) + φ−FPR(γ)
Precision

ACC φ+TPR(0) + φ−TNR(0) Accuracy

BA [TPR(0) + TNR(0)]/2 Balanced accuracy

AUC
∫∞
−∞dγ|FPR′(γ)|TPR(γ) Area under ROC

AUPRC
∫∞
−∞dγ|TPR′(γ)|PPV(γ) Area under PRC

with (35) and (30), as discussed in Appendix A. The extrem-
ization in Eq. (10) is performed numerically with respect to
the bias b, the order parameters x, q, r, and the conjugate
variables x̂, q̂, r̂, k̂. This procedure provides our analyti-
cal predictions for training and generalization metrics as
a function of α+, α− and the data statistics, M, δ and C.
The order parameters, whose precise definition in terms of
replica-symmetric overlap matrices is detailed in the Ap-
pendix, have a simple physical interpretation in terms of the
low-order statistics of the variables ∆±

test(J
⋆, b⋆), defined

over test data points. The order parameters can also be in-
terpreted in geometric terms. In particular, r measures how
well J⋆ is aligned along the vector δ, q measures the inner
product (J⋆)⊤CJ⋆/L, and b is the optimal value of the bias
in Eq. (1).

Detailed calculations and more general results, such as the
expression for the functions GS , G± in the linearly separa-
ble phase of the classifier, are reported in Appendix A.2-3.

2.2. Performance metrics

The approach above, and in particular Eq. (9) evaluated
on the values of the order parameters obtained from the
extremization (10), provides analytical expressions for the
generalization performance, assessed through the elements
of the confusion matrix from Table 2. For example, the
accuracy ACC(φ+, φ−) (or 0/1 accuracy) referred to as
ACC in Table 2 is obtained from Eq. (8) with g(y,∆y) =
θ(y∆y), where θ is the Heaviside step function. The choice
φ± = 0.5 corresponds to the balanced accuracy (BA), a
popular measure of performance with imbalanced datasets,
while φ+ = ρ+ stands for test as imbalanced as training.
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The expression of the balanced accuracy BA is generally
involved, but simplifies for large margin κ ≫ 1. In this
regime, we obtain explicit rates of convergence in terms of
the training set size (α+, α−). In the case of Q = 2 states
(t = ±), position-independent Mi(t = ±) = (1±m)/2 and
diagonal covariance matrix Cij(t = +, u = +) = δij(1−
m2)/4, we obtain the peak value of the BA at α+ = α− as

BA(α+ = α−) ∼ 1− 1

2
erfc

(
∥δ∥2

2
√
2L(1−m2)

)
+

C
2α+

,

(13)
where C is a constant term, while BA(α+ ̸= α−) = 0.

3. Theoretical results on imbalanced learning
3.1. Behaviour of common performance metrics

In this section we analyze the metrics defined in Table 2
based on the theory explained above. We first notice, from
their definition, that these metrics are impacted by imbal-
ance both explicitly, due to the dependence on the ratios φ±

expressing the composition of the test set, and implicitly,
due to the fact that they are evaluated on a model trained
on an imbalanced dataset. Common choices for the test
set are φ+ = ρ+ (test set distributed as the training set) or
φ+ = 0.5 (balanced test set).

We report in Fig. 2a the analytical curves as a function of
the training imbalance ratio ρ+, obtained in the theoretical
setting explained above, for φ+ = ρ+. We conclude that:

• ACC, even if exhibiting a peak around the balanced
point ρ+ = 0.5, predicts best performances when the
dataset is heavily imbalanced. This is expected: due
to the explicit dependence on φ± and the fact that
φ+ = ρ+, ACC only evaluates how well the majority
class is predicted, even though the model behaves as a
random classifier on the minority class.

• BA, which has no explicit dependence on the compo-
sition of the test set (it weights in the same way the
probabilities of true label prediction on the majority
and minority classes), assign best performances to the
model trained on a balanced dataset.

• AUC predicts best performances away from the bal-
anced point. AUC is defined as the area under the
receiver operating characteristic (ROC) curve, that is
the parametric curve (FPR(γ),TPR(γ)) as a function
of the threshold on the predictor γ. As γ ∈ (−∞,∞),
AUC is independent from the bias b in Eq. (9), which
is the observable most impacted by imbalance (see its
trend obtained from our theory in Appendix A, Fig. 5,
and many observations in literature, e.g. Chaudhuri
et al. (2023)).

• AUPRC, i.e. the area under the Precision-Recall curve
(PRC – the parametric curve (TPR(γ),PPV(γ)) as a
function of γ), is often proposed as a better alternative
to AUC in presence of imbalance. As AUC, it does
not depend on the bias b, and thus does not directly
measure the parameter most sensitive to imbalance.
However, due to the explicit dependence on the test set
(notice that PPV(∞) = 1, PPV(−∞) = φ+), AUPRC
is always bounded from below by φ+ = ρ+, increasing
“by definition” as the positive class ratio in the dataset.

For more of these metrics, we address the reader to Ap-
pendix B and Table 3. We conclude from this analysis that,
for different reasons we can explain within our theoretical
setting, standard generalization metrics can be misleading
about the performance of a model trained under imbalance.
For the rest of this paper we will mostly make use of BA,
which is one of the most robust in predicting best perfor-
mances around the balanced point.

3.2. Agreement with results on real datasets.

We show in Figure 2b that the theory devised in this work
is able to quantitatively predict the BA curves (as well as
other generalization curves) of linear SVMs trained on stan-
dard benchmark datasets. In particular, we validated our
predictions on (i) the Parity MNIST (pMNIST) dataset,
having odd and even digits classes; (ii) Fashion MNIST
(FMNIST) with classes containing "Pullover" and "Shirt"
images; and (iii) CelebA with classes containing faces with
"Straight hair" and "Wavy hair". Note that our theory as-
sumes the two classes in the training dataset to have the
same covariance matrices: while this is not generally true
on all datasets, we observe agreement between numerical
experiments and asymptotic predictions, by feeding the
mean empirical covariance of positive and negative data,
C = (C+

emp + C−
emp)/2, in our theory. Such agreement

remains quantitatively valid provided that the covariance
matrices C+

emp, C−
emp are similar, and is only qualitative for

more diverse covariances (e.g. 0/1 MNIST). Moreover, we
report in Appendix E a benchmark dataset with Lattice Pro-
teins where diagonal covariances are sufficient to predict
quantitatively the numerical results.

3.3. Balance-to-performance trade-off

Using analytical results from Sec. 2, we can assess to what
extent the imbalance of the dataset and the stability of the
classifier impact the performance. We evaluate results in
terms of the BA for different compositions of the training set.
The generalization curves in Figure 2c exhibit the presence
of a balance-to-performance trade-off: for high values of κ,
the accuracy is extremely sensitive to the composition of the
training set, and the outputs of the classifier are essentially
random unless ρ− = ρ+ ∼ 0.5. Increasing the margin κ
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Figure 2. Analytical results derived within our framework. a) Different metrics on synthetic data evaluated on a test set having same train
set composition. Here L = 100, κ = 2, α− = 5 with C, δ sampled randomly. b) Analytical predictions for benchmark datasets (MNIST,
FashionMNIST and CelebA). Dots show numerical simulations, averaged over 10 trials for κ = 0.5. c) Balanced accuracy curves as a
function of ρ−. The margin κ of the algorithm controls the balance-to-performance trade-off. Dots correspond to numerical simulations
with α+ = 2, Q = 2, L = 100, position-independent M, normally-distributed δ, and diagonal covariance C averaged over 50 trials.

results in an absolute gain of accuracy as a function of ρ−,
but narrows down the window outside of which the classifier
acts as a random one.

We can get intuition on the existence of such trade-off by
looking at the high-κ and ρ+ = 0.5 case. In this regime, the
bias of the algorithm b is then factoring out the center-of-
mass M of the data, while the weight vector J becomes fully
aligned with the displacement δ between the two classes,
yielding the optimal solution for the classification task. How-
ever, as soon as one moves away from the balanced training
set, the extremely steep behaviour of the parameters J and
b around ρ+ = ρ− = 0.5 – due to the high margin – makes
the performance drop down (see Figure 5a in the Appendix
A). For milder values of κ, the effect is less pronounced,
even though J and b are not optimal.

For real data, the value of the margin κ of the linear classi-
fier has to be compared to the data statistics to determine
how tight the balance-to-performance trade-off is. Theory
suggests that what matters is an effective margin depending
on the ratio η(C)/∥δ∥22, where η(C) denotes the largest
eigenvalue of the covariance matrix. We check this on pM-
NIST and CelebA datasets, where the ratio η(C)/∥δ∥22 is
larger for CelebA data and thus results in a tighter good
performance window (see Figure 2b).

Hence, from the interplay between κ and data statistics and
composition arises the balance-to-performance trade-off.

3.4. Insights on standard over vs. undersampling

The theoretical framework of Sec. 2 allows us to gain some
understanding on whether it is better to restore balance
by oversampling the minority class or undersampling the

majority class. With no loss of generality we assume the
minority class to be the positive one; hence, the negative
class size is α− > α+.

0.00 0.25 0.50 0.75 1.00
mixing %

0.70

0.72

0.74

0.76

B
A

ρ− = 0.667

ρ− = 0.952

ρ− = 0.997

Figure 3. Optimal mixing strategy. We report theoretical pre-
dictions for the BA metric as a function of the mixing un-
der/oversampling percentage in the training set. Depending on
the initial training set composition (ρ+, ρ−), one can select the
optimal strategy to restore balance. Here L = 100, κ = 0.5, with
C and δ sampled randomly.

The full undersampling strategy consists in randomly re-
moving negative data points down to α− = α+, a strategy
called Random Undersampling (RUS). To oversample posi-
tive data, we modify Eq. (3) by introducing a factor cµ ≥ 1
in front of the loss function for positive samples, accounting
for their multiplicity due to duplication. For the sake of
simplicity, we assume ⟨cµ⟩ = c ∈ R, i.e. we uniformly
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sample each positive data c times, with c ∈ [1, α−/α+].
The limit case c = 1 corresponds to leaving the dataset as
it is (RUS), while when c = α−/α+ the minority class is
duplicated up to the majority class size, a strategy known as
Random Oversampling (ROS). In this respect, ROS is the-
oretically equivalent to a simple loss-reweighting strategy
that scales the contribution of each class to the total loss by
the inverse of their size. Intermediate strategies mixing un-
der and oversampling are associated to intermediate values
of c. Based on our observation from the previous section,
we study only the case of balanced training set looking at
BA – even though our theory allows to make prediction for
any training set composition and metrics. Thus we define
the mixing percentage as

mixing % =
α+

α− − α+
(c− 1), (14)

and we ask what is the optimal mixing percentage in terms
of BA, i.e. what is the best c value?

In Figure 3 we observe that for all tested cases, full un-
dersampling is a sub-optimal technique among restoring
balance protocols, while mixed under/oversampling and
oversampling should be preferred. In particular, for severe
imbalance a mixed strategy gives highest BA compared
to full oversampling, which should be preferred when the
imbalance is milder: this is also numerically observed on
real data in Figure 4b, dashed lines. However, we expect
that in general the optimal strategy strongly depends not
only on the imbalance ratio between classes, but on absolute
dataset size, on classes’ similarity in feature space and on
the margin κ used in the linear classifier.

In this respect, our theoretical framework can be useful as
it offers a quantitative way to evaluate a priori the perfor-
mances based on the first- and second-order statistic of the
data, thus providing a guideline in practical applications.

4. Numerical experiments
In this section we investigate with numerical experiments if
the phenomenological findings at the theoretical level hold
when we go beyond the limits of our theory. Specifically, we
developed a framework for liner SVMs and for ROS/RUS
techniques. We now ask what happens with deeper neural
networks and more involved under/oversampling techniques.
We address these two questions separately, to factor out any
other element.

4.1. Improved sampling strategies

First, we examine the effect of sampling strategies more in-
volved than random sampling, resorting to Restricted Boltz-
mann Machines (RBMs) that allow to under and oversam-
ple at the same time with a protocol we call Likelihood-

Informed Sampling (LIS). We train the model on the posi-
tive (minor) class solely and use it to generate new positive
digits and to subsample negative digits based on their likeli-
hood. A closely related approach to generate new examples
with RBMs has been introduced in Zięba et al. (2015).

Restricted Boltzmann machines. RBMs are bipar-
tite graphical models, and include L visible units v =
(v1, · · · , vL) and M latent (or hidden) units z =
(z1, · · · , zM ). Only connections between visible and la-
tent units are allowed through the interaction weights wiµ.
RBMs define a joint probability distribution over v and z as
the Gibbs distribution

p(v, z) =
1

Z
exp

{
L∑

i=1

hi(vi)−
M∑
µ=1

Uµ(zµ)

+

M∑
µ=1

L∑
i=1

wiµ(vi)zµ

}
, (15)

where the hi’s and Uµ’s act on, respectively, visible and
latent units, and the last term couples the latent and visible
layers. Learning of the model parameters is achieved by
maximizing the marginal likelihood p(v) ≡

∫
dz p(v, z)

over the training set. Details about the numerical imple-
mentation can be found in Appendix G. After training and
validation, the model can be used to score any new data v′

through log p(v′).

Likelihood-informed sampling. We use RBM scores
to form an appropriate balanced dataset by oversampling
the minority class or undersampling the majority one, as
follows.

(i) for oversampling, we rely on the generative power of
our unsupervised architecture. Starting from an ini-
tial configuration, we perform Gibbs sampling in data
space based on the model scores. We retain only sam-
ples having scores similar to the ones in the minority
data class, as low-score samples are considered not
representative of the class.

(ii) for undersampling, we filter out majority class samples
at the boundaries of the log-likelihood distribution, as
they are potentially less informative to the classifica-
tion task.

Results. We perform numerical experiments on MNIST
(classes with smaller and larger than digit 5) and with lin-
ear SVMs. Using RBMs for LIS we show that there is
an improvement of performances as it was happening for
ROS/RUS, even when starting from low positive class sizes;
moreover, this sampling strategy yields better results com-
pared to naive random under/oversamplings (see Figure 4a).
The effect of restoring balance of data can be seen through a
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geometric visualization of the problem. We train separately
two linear SVMs with imbalanced ERM and with ERM af-
ter restoring balance between the two classes of the training
set. We then project the test set data in the 2d space defined
by the two optimal decision boundaries found by the classi-
fier (see Figure 4b). We observe that data balance between
classes allows the model to place a more effective decision
boundary (gold line), while imbalanced ERM (purple line)
only learns the majority class.

4.2. Deep classifiers

We consider an ImageNet pretrained ResNet-50 and finetune
it on a binarized version of Cifar10 (i.e. images are split
in two classes – positive and negative – depending if their
label is smaller or larger than 5). To understand if the imbal-
ance plays a relevant role similarly to the case with linear
SVMs, we run two parallel experiments with imbalanced
and balanced training set, P = 0.1N and P = N respec-
tively. All network parameters in the two experiments stay
the same. We show that the balanced experiments achieves
higher accuracy by looking at the last feature layer of the
network (see Figure 4c).

5. Discussion and perspectives
In this work we devise a theoretical framework to study
the generalization performance of linear models for binary
classification tasks under imbalanced training datasets. We
show which metrics are more informative than others in
imbalance learning and we give sharp estimations on the
optimal mixing of under and oversampling strategy given
the data statistics. We extend our study beyond the limit
of the theoretical analysis, supporting our findings with
numerical investigations.

To the best of our knowledge, this is the first asymptotic
characterization of linear classifiers trained over imbalanced
datasets for any generalization metrics and categorical data.
Looking forward, we believe that while restoring data bal-
ance techniques are unanimously empirically beneficial for
ERM, their theoretical understanding falls behind, and our
work can help closing this gap. In this regard, our study can
be extended along several directions. First, our theoretical
setting assumes that the two classes of data differ by their
first-order statistics while share the same second-order one.
We would like to pursue this direction and derive analytical
predictions for heteroscedastic classes, motivated by the
stream of results obtained for high-dimensional data with
non-trivial structures, such as correlated patterns (Monas-
son, 1992; Lopez et al., 1995), Gaussian covariate and mix-
ture models (Loureiro et al., 2021), random features mod-
els (Goldt et al., 2020), object manifolds (Chung et al.,
2018), simplex learning (Pastore et al., 2020; Rotondo et al.,
2020; Pastore, 2021; Baroffio et al., 2024).

Moreover, it would be interesting to investigate, in light
of our findings, the behavior of deep classifiers: how does
the sensitivity to class imbalance scale with the expressive
power of the architecture? For a recent review on the phe-
nomenology, see Ghosh et al. (2022). While deep learning
models in general remain analytically intractable, theoret-
ical understanding has been reached in certain asymptotic
regimes (mainly, the infinite-width limit and the propor-
tional scaling between width and size of the training set),
both for fully connected (Jacot et al., 2018; Lee et al., 2018;
Pacelli et al., 2023; Cui et al., 2023; 2024) and convolutional
architectures (Naveh & Ringel, 2021; Aiudi et al., 2023).

Analysis in a framework similar to the one we provide has
been proven to work not only for linear models, but also
for kernel machines (Dietrich et al., 1999; Gerace et al.,
2020; Bordelon et al., 2020; Aguirre-López et al., 2024).
We expect our approach to be easily generalizable to these
cases, by simply replacing the input space we consider here
with the feature space of those models, and the input statis-
tics (means and covariances) with the one of the features
(means of the features, kernel in feature space). Deep neural
networks have been proven equivalent to kernel machines
in certain cases, namely the infinite-width limit mentioned
above; in this sense, kernels provide lower bounds on the
performance of deep neural networks that work in more
generic regimes of feature learning. Therefore, our findings,
which are sharp for linear models and could be extended to
kernel machines, can provide insights on generalization also
for deep neural networks. Considering the large use of deep
learning in practical applications, a theoretical assessment
of its properties in the case of imbalanced data is very much
needed.

Lastly, our theory could be extended beyond binary classifi-
cation as in several applications one faces imbalance within
the context of multiclass classification tasks.

As for numerical experiments, we introduced a strategy to
restore balance based on unsupervised probabilistic models
proving that it improves performance compared to naive
imbalanced ERM. At a speculative level, RBMs have the
potential to capture interpretable features of the minority
class, while saving computational cost compared to deeper
architectures. This restoring balance approach could also
benefit from recent progress on efficient out-of-equilibrium
sampling with RBMs (Agoritsas et al., 2023; Carbone et al.,
2023). We believe that similar increase in performances
would follow from restoring data balance with other meth-
ods (Mirza et al., 2021). Geometrically, we showed that
restoring balance allowed one to remove the bias of the
decision boundary towards the majority class only, as also
observed in Chaudhuri et al. (2023).
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Figure 4. Numerical investigation on improved sampling techniques and deep classifier ResNet-50. a) Mixed sampling strategies to
obtain a balanced training set for classification with a linear SVM on binary MNIST, as a function of the new sample size P ′. As random
sampling techniques, also higher level methods lead to an increase of performance. b) Geometrical interpretation of the effect of restoring
balance (gold line) on the decision boundary of a linear SVM compared to imbalanced ERM (purple line). Data points are the MNIST test
set. c) We visualize test data classification in the last feature layer of the network through tSNE, for imbalanced and balanced training set
(top and bottom, respectively). The network trained on balanced data achieves improved performances, separating better the two classes.
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A. Details on the replica calculation
We give here all the details in order to get the theoretical predictions sketched in Sec. 2 of the main text. The measure over
the weights for the two cases of the spherical perceptron and the SVM in Eq. (7) is defined as

dµ(J) =


∏

i,t

dJi(t)

Ω0
δ[
∑

u Ji(u)]δ(∥J∥22 − LQ) (perceptron) ,

∏
i,t

dJi(t)

Ω0
δ[
∑

u Ji(u)] exp

(
−βλ

2
∥J∥22

)
(SVM) ,

(16)

where Ω0 is the corresponding normalization factor and for convenience we included the L2 regularization in the measure of
the SVM. The common delta functions are enforcing the zero-sum conditions

∑
t Ji(t) = 0 for all i mentioned in Sec. 2.

We report in the following the case of the spherical perceptron, mentioning where the calculation differs crucially from the
case of the SVM in Sec. A.6.

A.1. Replicated partition function

To evaluate the expected value of the logarithm of the partition function appearing in Eq. (10), we resort to the so-called
replica trick from statistical physics: writing log Ω = limn→0+(Ω

n − 1)/n, we convert the quenched averaged over the
training data into an annealed average of the n-times replicated partition function Ωn. This quantity can be written as

Edata[Ω
n] =

∫ n∏
a=1

dba dµ(Ja)
∏

y∈{±}

∫ αyL∏
µ=1

d∆a
µ d∆̂

a
µ

2π
e−β(κ−y∆a

µ)θ(κ−y∆a
µ)ei

∑
a,µ ∆̂a

µ(∆
a
µ+b)

〈
e
−i

∑
a,µ ∆̂a

µ
Ja·sµ√

L

〉
y

(17)
where we inserted delta-functions for the variables (replicated versions of the ones defined in Eq. (4))

∆a
µ =

Ja · sµ√
L

− b , (18)

using their Fourier-conjugates ∆̂a
µ. We introduce the order parameters

ra =
∑
i,t

Ja
i (t)δi(t)

L
, qab =

∑
i,j,t,u

Ja
i (t)J

b
j (u)

L
Cij(t, u), (19)

so that the average over the samples gives, for large L,〈
e
−i

∑
a,µ ∆̂a

µ
Ja·sµ√

L

〉
±
∼ exp

[
− 1

2

∑
a,b

∆̂a
µ∆̂

b
µq

ab ∓ i

2

∑
a

∆̂a
µr

a − i√
L

∑
a

∆̂a
µ

∑
i,t

Ja
i (t)Mi(t)

]
. (20)

This asymptotic expansions is justified as long as higher moments in the distribution of the data can be neglected with
respect to the first and second moments. The full integral to work out becomes

Edata[Ω
n] =

∫ ∏
a

dba
∏
i,t

dJa
i (t)

Ω0
δ
[∑

u

Ja
i (u)

]
δ(∥Ja∥22 − LQ)

∫ ∏
a

draδ(Ja · δ − Lra)

×
∫ ∏

a≤b

dqabδ
( ∑

i,j,t,u

Ja
i (t)J

b
i (u)Cij(t, u)− Lqab

)
×
∏

y∈{±}

∫ ∏
a,µ

d∆a
µ d∆̂

a
µ

2π
e
−β(κ−y∆a

µ)θ(κ−y∆a
µ)− 1

2

∑
µ,a,b ∆̂a

µ∆̂
b
µq

ab+i
∑

µ,a ∆̂a
µ

[
∆a

µ+ba−y ra

2 − 1√
L

∑
i,t J

a
i (t)Mi(t)

]
(21)

The last line depends explicitly on the weights Ja only through the combination Ja ·M/
√
L; however, as the threshold ba

is a parameter to be optimized, it is always possible to shift it with

ba − 1√
L

∑
i,t

Ja
i (t)Mi(t) → ba , (22)
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in order to absorb this term.

To perform the integrals over the weights, we express all the delta-functions in their Fourier representation, introducing
additional variables gai (for the zero-sum conditions), k̂a (for the spherical constraint) and q̂ab, r̂a for the deltas enforcing
the definition of the order parameters. Moreover, we impose the replica symmetric (RS) Ansatz

ba = b , ra = r , k̂a = k̂ , r̂a = r̂ , qab = q0 δab + q(1− δab) , q̂ab = q̂0 δab + q̂(1− δab) (23)

on all the tensors with replica indices. This Ansatz is justified as long as the optimization problem in Eq. (2) is convex;
though one may find a non-convex regime arising for some values of α±, δ and C, as discussed in Franz et al. (2019), we
expect it to be exact for many choices of the parameters. In practice, we find excellent agreement between our theoretical
predictions and numerical experiments throughout this work (see Fig. 8).

Under the Ansatz (23), the high-dimensional integral over weights and threshold can be carried out and reduces to a
four-dimensional integral over the order parameters b, r, q, q0. The calculation can be split in an entropic contribution, from
the integrals over the weights, and an energetic term, from the training data. At the end, the expected value in Eq. (21) can
be written as

Edata[Ω
n] =

∫
dbdrdq0dq exp

[
nβL

2

(
GS + α+G+ + α−G−

)]
, (24)

where the functions of the order parameters GS (entropic term) and G± (energetic term) are detailed in the following. The
remaining integral over the order parameters can be estimated for L large through the saddle-point method.

A.2. Entropic term

First we evaluate the normalization of the measure µ(J) in Eq. (16). With our zero-sum conditions, compatible with the
ones of Nadal & Rau (1991), this factor is given by

Ω0 =

∫ ∏
i,t

dJi(t) δ
[∑

i,t

J2
i (t)− LQ

]∏
i

δ
[∑

t

Ji(t)
]

=

∫
dk̂

2π

∏
i

dgi
2π

∏
t

dJi(t) exp
[
ik̂
∑
i,t

J2
i (t)− LQik̂ + i

∑
i

gi
∑
t

Ji(t)
]

∼ exp
[L(Q− 1)

2
[1 + log(2π)]− L(Q− 1)

2
log
(Q− 1

Q

)
− L

2
log(Q)

]
,

(25)

as the integrals first over J and then over g are Gaussian and the large-L result for the integral over k̂ is obtained at the
saddle point, which is located in k̂ = i(Q− 1)/(2Q).

In the RS case, the integral over the weights becomes

I =

∫ ∏
a,i

dgai
2π

∏
t

dJa
i (t) exp

[
−1

2

∑
a,b

∑
t,u

Ja
i (t)Σ

ab
ij (t, u)J

b
i (u)− ir̂

∑
a,t

Ja
i (t)δi(t) + i

∑
a

gai
∑
t

Ja
i (t)

]
, (26)

where the quadratic form Σ is given by

Σab
ij (t, u) = k̂δijδtuδab + (2q̂0 − q̂)δabCij(t, u) + q̂Cij(t, u) (27)

(to write this equation, we rescaled all the hat variables by −i). The evaluation of this Gaussian integral is straightforward
but tedious. It can be performed, for example, factorizing the double sums over replica indices via Gaussian linearization
(Hubbard-Stratonovich transformation). The result for small n is given by

I = exp

{
n

2

[
L(Q− 1) log(2π)− L log

(
Q

k̂

)
− log detA− q̂ tr

(
A−1C

)
+ r̂2δ⊤A−1δ

]}
, (28)

where all the algebraic operations (determinants, traces, vector/matrix multiplications) are defined on the space spanned by
Potts and input indices, the matrix A is defined as

A = k̂IQ ⊗ IL + ŵC (29)
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and ŵ = 2q̂0 − q̂. Notice that, even if the matrix A is not invertible for k̂ = 0 (the matrix C has a spectrum with L zero
eigenvalues, corresponding to the eigenvectors v(ℓ) with components v(ℓ)i (t) = δiℓ1), the combinations appearing in this
formula are always well defined; in particular, the factor L log k̂ comes from the zero-sum conditions, which regularize the
divergence in log detA.

Summing over the input dimensions and normalizing by (25) we get, for the function GS appearing in Eq. (24),

nβLGS

2
= log

∫ i∞

−i∞

dk̂

4π

dŵ

2π

dq̂

2π

dr̂

2π
e

nL
2 [Qk̂+ŵw+ŵq+q̂w+2r̂r]−nL(Q−1)

2 [1−log(Q−1
Q )]

×e−
n
2 [log detA−L log k̂+q̂ tr(A−1C)−r̂2δ⊤A−1δ] ,

(30)

where w = q0 − q.

A.3. Energetic term

SAT phase. When the problem is linearly separable (low density α+ and α− of the classes, large distance δ between their
center), the perceptron at equilibrium reaches one of the many configurations corresponding to zero loss. This means that
the optimization problem (2) becomes equivalent to a constraint statisfaction problem (CSP) where all the training data are
required to be correctly classified by the decision boundary, namely in its satisfiable (SAT) phase. Formally, this means that
the terms depending on the loss in Eq. (21) can be written as follows:

e−β
∑

µ(κ−y∆a
µ)θ(κ−y∆a

µ) −→
β→∞

∏
µ

θ(y∆a
µ − κ) . (31)

Thus, the part of the integral depending on the constraints from the training data reduces to the evaluation (respectively, P
and N times) of the following two integrals

I± =

∫ ∏
a

d∆a d∆̂a

2π
θ(±∆a − κ)e−

w
2

∑
a(∆̂

a)2− q
2 (

∑
a ∆̂a)

2
+i

∑
a ∆̂a(∆a+b∓ r

2 ) . (32)

By Gaussian linearization,

I± =

∫
Dqξ

[∫
d∆d∆̂

2π
θ(±∆− κ)e−

w
2 ∆̂2+i∆̂(∆+b+ξ∓ r

2 )

]n
, (33)

where we defined the Gaussian measure as Dqξ = dξN (ξ|0, q). For small n, the final result is

log I± ≈ nβ

2
G± , (34)

with
βG±

2
=

∫
Dqξ log

[
H

(
κ± b∓ ξ − r/2√

w

)]
,

H(x) =
1

2
erfc

(
x√
2

)
= 1−H(−x) .

(35)

This equation defines the functions G± in Eq. (24) in the linearly separable phase.

UNSAT phase. When the training set is not linearly separable, the corresponding CSP is in its unsatisfiable phase. In this
case, the loss gives a non-trivial energetic contribution for each mis-classified input point. Calculations can be done as in the
previous paragraph, by noticing that

e−β(κ∓λ)θ(κ∓λ) = e−β(κ∓λ) +
[
1− e−β(κ∓λ)

]
θ(−κ± λ) . (36)

The result for the free energy contributions is

βG±

2
=

∫
Dqξ log

{
exp

[
−β(κ± b∓ ξ − r/2) +

1

2
β2w

]
H

(
−κ± b∓ ξ − r/2− βw√

w

)
+H

(
κ± b∓ ξ − r/2√

w

)}
.

(37)
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We will assume in the following that the space of equilibrium configurations of the model shrinks to a single point as
β → ∞. As the variance of this space is given, in the replica symmetric framework, by the order parameter w = q0 − q (see
Sec. B), for β → ∞ we take the following scaling Ansatz:

w → x

β
, q → q , r → r ,

ŵ → βx̂ , q̂ → β2q̂ , r̂ → βr̂ , k̂ → βk̂ ,
(38)

where we re-defined all the order parameters to their infinite-β value except w and ŵ, for which we introduced the quantities
x, x̂ to avoid ambiguities. The scaling of all the others variables is fixed once w scales as 1/β and we search for finite values
in the limit.

We can push forward the analysis using the asymptotic expansion of the complementary error function, which gives for β
large

H(
√
βa) ∼ θ(−a) +

e−
βa2

2√
2πβa

θ(a) , (39)

so that the logarithm in Eq. (37) can be expressed as

log{· · ·} ∼


−β (κ± b∓ ξ − r/2− x/2) if ∓ ξ > x+ r/2− κ∓ b ,

−β(κ± b− r/2∓ ξ)2/(2x) if ∓ ξ < x+ r/2− κ∓ b ∧ ∓ξ > r/2− κ∓ b ,

0 if ∓ ξ < r/2− κ∓ b .

(40)

As a result, we obtain Eq. (11) for the functions G±.

A.4. Saddle-point equations for large L

For large L, the integral in Eq. (24) can be evaluated via the saddle-point method. The stationary points of the functions
GS , G± with respect to the parameters can be found by solving the following equations. We distinguish the two cases
SAT/UNSAT we reported above.

SAT phase. We obtain stationary equations for the exponent in Eq. (24) by deriving with respect to all the order parameters
and their conjugate variables the function at exponent in Eq. (30) and the functions in Eq. (35). Deriving with respect to the
hat variables,

Q = k̂

[
1

L
tr
(
A−2

)
− 1

k̂2

]
+

ŵ

L
tr
(
A−2C

)
− q̂

L
tr
(
A−2C

)
+

r̂2

L
δ⊤A−2δ ,

q = − q̂

L
tr
(
A−2C2

)
+

r̂2

L
δ⊤A−2Cδ ,

w =
k̂

L
tr
(
A−2C

)
+

ŵ

L
tr
(
A−2C2

)
,

r = − r̂k̂

L
δ⊤A−2δ − r̂ŵ

L
δ⊤A−2Cδ ,

(41)

where we used the useful formulas

A−1 = k̂A−2 + ŵA−2C , A2 = k̂2IQ ⊗ IL + 2k̂ŵC + ŵ2C2 . (42)

The equations obtained deriving with respect to the other set of parameters are

ŵ = −α+∂q(βG+)− α−∂q(βG−) ,

ŵ + q̂ = −α+∂w(βG+)− α−∂w(βG−) ,

r̂ = [−α+∂r(βG+)− α−∂r(βG−)]/2 ,

0 = α+∂b(βG+) + α−∂b(βG−) ,

(43)

with βG± given by (35).
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UNSAT phase. Using the scalings (38), we can redefine the matrix A → A/β, so that now

A = k̂IQ ⊗ IL + x̂C . (44)

At leading order in β, the stationary equations for the hat variables in the scaling regime become

Q = − q̂

L
tr
(
A−2C

)
+

r̂2

L
δ⊤A−2δ ,

q = − q̂

L
tr
(
A−2C2

)
+

r̂2

L
δ⊤A−2Cδ ,

x =
k̂

L
tr
(
A−2C

)
+

x̂

L
tr
(
A−2C2

)
,

r = − r̂k̂

L
δ⊤A−2δ − r̂x̂

L
δ⊤A−2Cδ ,

(45)

while the other set of equations is
x̂ = −α+∂qG+ − α−∂qG− ,

q̂ = −α+∂xG+ − α−∂xG− ,

r̂ = [−α+∂rG+ − α−∂rG−)]/2 ,

0 = α+∂bG+ + α−∂bG− ,

(46)

with G± given by Eq. (11). These last equations admit a semi-analytical expression for the derivatives:

∂xG± = − G±

x
+

x−K±

x
erfc

(
x−K±√

2q

)
− 2

x

√
q

2π
e−

(K±−x)2

2q ,

∂qG± = − 1

2x

[
erfc

(
− K±√

2q

)
− erfc

(
x−K±√

2q

)]
,

∂rG± =
K±

2x
erfc

(
− K±√

2q

)
+

x−K±

2x
erfc

(
x−K±√

2q

)
+

1

x

√
q

2π

(
e−

K2
±

2q − e−
(K±−x)2

2q

)
,

∂bG± = ∓ K±

x
erfc

(
− K±√

2q

)
∓ x−K±

x
erfc

(
x−K±√

2q

)
∓ 2

x

√
q

2π

(
e−

K2
±

2q − e−
(K±−x)2

2q

)
.

(47)

SAT/UNSAT surface. The equations above can be used to draw the phase diagram of the model with respect to the
external control parameters α±, κ (and, possibly, to the vectors M, δ). In this space, the SAT/UNSAT transition surface
expressing the critical value of one of these control parameters as a function of the others can be plotted requiring that
w → 0 (approaching the transition from the SAT phase) or x → ∞ (approaching the transition from the UNSAT phase).

A.5. Ising case (Q = 2)

The case Q = 2 (Ising configurations, with the index t = ±1) admits a much simpler solution that dates back to Gardner
(1988), Monasson (1992). In this case, the probability distribution of the data can be parametrized as

Mi(±1) =
1±mi

2
, δi(±1) = ±δi

2
,

Cij(+1,+1) = Cij(−1,−1) = −Cij(+1,−1) = −Cij(−1,+1) =
Γij

4
,

(48)

where now mi, δi, Γij are scalars. The saddle-point equations for the hat variables become

1 = − q̂

L
tr
(
A−2Γ

)
+

r̂2

L
δ⊤A−2δ ,

q = − q̂

L
tr
(
A−2Γ2

)
+

r̂2

L
δ⊤A−2Γδ ,

x =
k̂

L
tr
(
A−2Γ

)
+

x̂

L
tr
(
A−2Γ2

)
,

r = − r̂k̂

L
δ⊤A−2δ − r̂x̂

L
δ⊤A−2Γδ ,

(49)
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Table 3. Additional common performance metrics that can be computed from Table 2

NPV φ−TNR(0)/(φ−TNR(0) + φ+FNR(0)) Negative predicted value

FDR 1− PPV False discovery rate

FOR 1− NPV False omission rate

MCC
√

TPR(0) · TNR(0) · PPV · NPV −
√

FNR(0) · FPR(0) · FOR · FDR Matthews correlation coefficient

F1 2 · PPV · TPR(0)/(PPV + TPR(0)) F1 score

FM 2 ·
√

PPV · TPR(0) Fowlkes–Mallows index
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Figure 5. a) Behaviors of the order parameters q, r, b for the data statistics in Figure 2a. The bias b becomes steep around ρ+ ∼ 0.5
and this effect is more evident the larger the value of κ is. b) Additional metric behaviors defined in this work (see Tables 2 and 3), for
synthetic data as in Figure 2a.

where now
A = k̂IL + x̂Γ , (50)

The other set of equations remains unchanged and the case of the SAT phase can be obtained as before.

A.6. SVM

The case of the soft-margin SVM can be cast in its standard form (see Sec. G.2) by starting from the loss defined in Eq. (3),
and scaling J → κJ, b → κb, λ → λ̃/κ, obtaining the optimization problem (we now move the L2 regularization from the
measure (16) to the training energy, as this is the standard formulation for SVMs)

(J⋆, b⋆) = argmin
J∈S,b∈R

{
P∑

µ=1

max
[
0, 1−∆+

µ (J, b)
]
+

N∑
ν=1

max
[
0, 1 + ∆−

ν (J, b)
]
+ λ̃

∥J∥22
2

}
. (51)

From this, we can define the associated finite-temperature statistical mechanics model from the SVM measure in Eq. (16)
and proceed as before. The calculation is the same, provided that we take κ → 1, we substitute k̂ from (26) with βλ̃, and we
do not integrate over it (being now fixed as an external hyperparameter). The scaling of λ̃ with β mirrors the fact that, at
finite regularization, the SVM is finding a single solution of the optimization problem (51) even in the linearly separable
case, the max-margin solution, so that the scalings (38) should be enforced in the whole phase diagram.

B. Details on the theoretical derivation of training and generalization metrics
The order parameters introduced in Sec. 2 and obtained from the replica method explained above have a clear interpretation
in terms of the low-order statistics – with respect to thermal fluctuations and quenched disorder – of the collective variables
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∆y (y ∈ {−1,+1}) after training. We recall here the definition of ∆y for convenience

∆y(J, b) =
∑
i,t

Ji(t)s
y
i (t)√
L

− b , (52)

where (J, b) is an equilibrium configuration of the canonical ensemble described by the partition function (7) and sy is an
input point from the probability distributions described by Eq. (6). We need to distinguish the two cases of sy being part
of the training set or sy being part of the test set (i.e., independent from – but identically distributed as – the training set),
denoting ∆y

train and ∆y
test the corresponding collective variables. It can be shown that their distribution for L large is given by

p(∆y
train|ξ) =

e−βℓ(y,∆y
train)N (∆y

train|ξ − b+ yr/2, q0 − q )∫
d∆ e−βℓ(y,∆)N (∆|ξ − b+ yr/2, q0 − q )

, (53)

p(∆y
test|ξ) = N (∆y

test|ξ − b+ yr/2, q0 − q ) , (54)

where ξ is an auxiliary normal random variable, in both cases and for both classes distributed as

p(ξ) = N (ξ|0, q) . (55)

Note that in the test case the marginal of ∆ can be obtained explicitly, as

p(∆y
test) = N

(
∆y

test

∣∣∣yr
2

− b, q0

)
, (56)

which reduces to Eq. (9) for large β and in the UNSAT phase where q0 = q + x/β. The Gaussian nature of ∆y
test is due

to the fact that the weights learned by the classifier and the points in the test set are independent, and from central limit
theorems. Eq. (53) and (54) are classical results from the statistical mechanics of disordered systems, and can be obtained
by mapping the replica approach we devised so far to the cavity method from Mezard (1989). For a more recent derivation,
see Agoritsas et al. (2018); for a way to obtain the train distribution directly from the replica approach, see Kepler & Abbott
(1988), extended in a more general non-convex setting in Franz et al. (2017).

Through these probability distributions, we obtain theoretical predictions for training and generalization metrics; in particular,
train error and mis-classification error (corresponding to 1− ACC) follow from

Etrain.(ρ
+, ρ−) =

∑
y∈{±}

ρy ⟨θ(−y∆y
train)⟩∆y

train
, Egen.(φ

+, φ−) =
∑

y∈{±}

φy ⟨θ(−y∆y
test)⟩∆y

test
, (57)

while training and generalization losses are given by

Ltrain.(ρ
+, ρ−) =

∑
y∈{±}

ρy ⟨ℓ(y,∆y
train)⟩∆y

train
, Lgen.(φ

+, φ−) =
∑

y∈{±}

φy ⟨ℓ(y,∆y
test)⟩∆y

test
. (58)

Alternatively, the training loss can be obtained in a more simple way, as the β → ∞ limit of the free-energy per-sample of
the physical model, so that from Eq. (10) we directly obtain

Ltrain.(ρ
+, ρ−) =

1

2(α+ + α−)
(GS + α+G+ + α−G−) , (59)

where the functions of the order parameters are evaluated on their saddle-point values. Other common performance metrics
that can be computed in this way can be found in Tables 2 and 3, from Proposition 2.1.

B.1. Convergence rate of the mis-classification error Egen.

Here we fully derive the analytical expression for the balanced mis-classification error as a function of the composition of
the training set, in the limit where the training set size is large. To obtain the expression in Eq. (13), we work in the Ising
case (Q = 2) using the notation of section Sec. A.5, setting mi = m, Γij = δij(1−m2). In this scenario the saddle point
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equations are simpler and can be carried out without any numerical support. In particular, for the hat variables the system
(49) becomes

1 =
r̂2u2 − q̂(1−m2)

[k̂ + x̂(1−m2)]2
, x =

1−m2

k̂ + x̂(1−m2)
,

q

1−m2
=

r̂2u2 − q̂(1−m2)

[k̂ + x̂(1−m2)]2
, r = − r̂u2

k̂ + x̂(1−m2)
,

(60)

where we defined the quantity u = ∥δ∥2/
√
L. The system is overdetermined due to the choice of a position-independent

vector mi = m. Indeed, the constraint enforced by the definition of q0 is equivalent to the spherical constraint on the
weights Ji, hence here q⋆0 = (1−m2); consequently, the conjugate variable q̂0 plays no role and we can set q̂0 = 0, from
which x̂ = −q̂ follows. The system of equation (60) gives

q⋆ = 1−m2 , k̂ =
q⋆

x
+ q̂q⋆ ,

q̂ =
q⋆

x2

(
r2

u2
− 1

)
, r̂ = − rq⋆

xu2
.

(61)

Replacing the hat variables in the entropic contribution, we have to perform the extremization over (x, r, b) of the training
loss

Ltrain.(α
+, α−) =

1

2(α+ + α−)
extr
x,r,b

[
q⋆

xu2

(
u2 − r2

)
+ α+G+ + α−G−

]
, (62)

where G± are given by Eq. (11) with q = q⋆. In addition, we fix α+ and minimize the training loss over the number of
negative samples α−, to obtain the optimal imbalance ratio in terms of training performances. Now we first derive Eq. (62)
w.r.t. to x obtaining

− 1

x2

{
q⋆(u2 − r2)

u2
+
∑
y=±

αy

√
q

2π

[
(Ky − x)e−

1
2q (x−Ky)

2 −Kye
− 1

2qK
2
y

]
−
∑
y=±

αy

[
(K2

y − x2 + q) erfc

(
x−Ky√

2q

)
− (K2

y + q) erfc

(
− Ky√

2q

)]}
= 0.

(63)

We discard the solution x → ∞ as it is only valid when approaching the SAT/UNSAT transition, and we call x =
x⋆(r, b, α+, α−) the other solution. The stationary conditions of Ltrain. in Eq. (62) using Eq. (63) w.r.t. (α−, r, b) are

α− :
α+

2(α+ + α−)2

[
(x−K−) erfc

(
x−K−√

2q

)
− (x−K+) erfc

(
x−K+√

2q

)]
= 0,

r :

[
∂x⋆(r, b)

∂r
− 1

2

]∑
y=±

αy

[
erfc

(
x−Ky√

2q

)
− 2(x−Ky)√

2qπ
exp

{
− (x−Ky)

2

2q

}]
= 0,

b :
∑
y=±

αy

(
∂x⋆(r, b)

∂r
− y

)[
erfc

(
x−Ky√

2q

)
− 2(x−Ky)√

2qπ
exp

{
− (x−Ky)

2

2q

}]
= 0.

(64)

The first equation gives the condition K− = K+, yielding b⋆ = 0. In the large limit κ ≫ 1, where we have shown to achieve
the absolute best generalization performance, we get K± → ∞. Hence Eq. (63) admits the explicit solution

x⋆ =
1

u

√
q⋆(u2 − (r⋆)2)

α+ + α− , (65)

with

r⋆ = u

√
(α+ + α−)u2

4q⋆ + u2(α+ + α−)
, α− = α+ . (66)

22



Principled under/oversampling of data for optimal classification

We conclude that optimal classification over the training set is reached at balanced number of samples, for high margin and
infinite dataset size. For large α±, we finally derive the convergence rate of the mis-classification error in the balanced case
(φ± = 0.5), as

Egen. ∼
α±≫1

1

2
erfc

(
∥δ∥2

2
√
2L(1−m2)

)
δ(α+ − α−) +

C
α+ + α− δ(α+ − α−) +O((α±)−2), (67)

where

C =
√
1−m2 exp

{
− ∥δ∥22
8L(1−m2)

}
. (68)

C. Details on the theory of oversampling strategy
Here we provide details about the main steps to adapt the analytical computation of Sec. A when the minority class is
oversampled c times. We assume, as in most of the paper, that the minority class is the positive one. The mathematical
formulation in this setting follows immediately from Eq. (17) by introducing the oversampling factor c, accounting for the
multiplicity of each positive sample:

exp

−β

α+L∑
µ=1

(κ−∆a
µ)θ(κ−∆a

µ)

 −→ exp

−βc

α+L∑
µ=1

(κ−∆a
µ)θ(κ−∆a

µ)

 . (69)

In the phase where the dataset is linearly separable, oversampling the positive class is pointless, as the perceptron already
correctly classifies all the training data and adding equivalent ones does not yield any benefit. On the other hand, in the
UNSAT phase the presence of the factor c becomes relevant and affects the energetic contribution from the positive class, see
Eq. (11); in practice, the quantities β, x are multiplied by the degree of oversampling c. The positive function G+ becomes

G+ = −
√

q

2π

(
cx−K+

cx
e−

(cx−K+)2

2q +
K+

cx
e−

K2
+

2q

)
+

(cx−K+)
2 + q

cx
H

(
cx−K+√

q

)
− K2

+ + q

cx
H

(−K+√
q

)
(70)

and all its derivatives in Eq. (47) are changed accordingly. The procedure to solve the saddle-point equations remains
analogous.

D. Oversampling vs undersampling: the choice depends on the performance metric
In Section 3.4 we discussed the advantage of restoring balance in the dataset, oversampling or undersampling, evaluating the
generalization performances in terms of the BA metrics. However, same data distributions and sizes can lead to different
optimal strategies depending on how performances are evaluated, i.e. on the specific performance metric adopted. We
discuss this phenomenon within our theoretical framework, comparing the mis-classification error Egen. and a distance-based
metric, namely the generalization loss Lgen. defined in Eq. (58). Both metrics are such that the lower the better, as they
measure wrongly classified data points.

The so-defined generalization loss gives the average distance of the mis-classified examples from the decision boundary
set by the classifier. In practice, low Lgen. and high Egen. values correspond to many mis-classified examples close to the
decision boundary, while the opposite refers to situations where there are few mis-classified examples far away from the
decision boundary. Using the same notation as in Section 3.4 with c ∈ [1, α−/α+], we compare the metrics Egen. and Lgen.
under two different protocols, defined as follows

(IP) Imbalanced Protocol: we leave the majority class as it is and augment the minority class size, thus performing training
with cα+ positives and α− negatives;

(BP) Balanced Protocol: we undersample the negatives down to the same size of positives, hence dealing with a balanced
training set of total size 2cα+. Note that this is the protocol adopted elsewhere in the work and it is the only one
restoring balance between classes.

We show results in Figure 6: in the same conditions, the optimal strategy minimizing the generalization loss is the BP
protocol with c = 1 (i.e., random undersampling of the majority class), while the optimal one for the mis-classification error
is the BP protocol with c = α−/α+ (i.e., random oversampling of the minority class).

23



Principled under/oversampling of data for optimal classification

0 5 10 15
cα+

0.3

0.4

0.5

0.6

L g
en
.

BP

IP

0 5 10 15
cα+

0.42

0.44

0.46

E g
en
.

Figure 6. Comparison between the mis-classification error and generalization loss as a function of the actual minority training size
(including oversampling) cα+ for protocols IP and BP. Here L = 100, Q = 2, κ = 0.4, α− = 15, α+ = 0.5 with mi = 0.4 over each
position, δi are i.i.d. as N (0.625, 0.75) and covariances are diagonal. Note that for these metrics the lower the better.

E. Lattice Proteins
In many real-world applications tokenization and categorical variables are routinely encountered in machine learning.
For example, biological applications are one of such cases, where Potts indices run over the amino acid or nucleotides
alphabet, i.e. Q = 20 or Q = 4 respectively. In this section we report an analysis carried out on synthetic protein data
– namely Lattice Proteins – where we aim to distinguish between two Lattice Proteins in a bounded or unbounded state.
In this analysis we note that our theory quantitatively predicts numerical results even if we ignore the covariance matrix,
i.e. Cij(t, u) = [M2

i (t) −Mi(t)Mi(u)]δij ; in other terms, the first-order statistics of the data is sufficient to reproduce
numerical results, despite the data contain non-trivial correlations.

Lattice Proteins (LPs) models consist of artificial protein sequences used to reproduce relevant features of real proteins and
investigate their folding properties (Li et al., 1996; Mirny & Shakhnovich, 2001). A LP is defined as a self-avoiding path of
over a 3× 3× 3 lattice cube. There are 103,406 possible configurations (structures) over the lattice cube, excluding global
symmetries (Shakhnovich & Gutin, 1990). A sequence v is given by the chain of L = 27 amino acids sitting on each site of
the lattice cube. A structure S is defined by its contact matrix cS such that - given two sites i,j on the lattice cube

cSij =

{
1 i, j in contact,
0 otherwise.

(71)

The probability that sequence v folds into structure S is

pnat(S|v) =
e−E(v|S)∑R

S′=1 e
−E(v|S′)

, (72)

where R is a representative subset of all possible structures (R = 10000 in this case). The energy of the sequence in a
structure E(v|S) is given by

E(v|S) =
∑
i<j

cSijEMJ(vi, vj), (73)

where residues in contact interact via the Miyazawa-Jernigan matrix EMJ , a proxy containing effective interaction energies
for each amino acid pair. Eventually we let two sequences v1, v2 – folded in structure S1, S2 respectively – interact to form
a unique compound via the interaction energy

I(v1,v2|S1 + S2, π) =
∑
i<j

c
(S1+S2,π)
ij EMJ(vi, vj), (74)
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Figure 7. a) Graphical representation of the compound SA + SC made of two Lattice Proteins. The solid black lines highlight the
backbone structures over the lattice cubes. b) Theoretical predictions (solid lines) and numerical simulations (dots) on LP data of training
and generalization losses as defined in Eq. (58) (left and right panel, respectively), for two different distributions of negative examples. In
practice, we use data SA + SC in the bounded state as positives; negatives are data SA + SC in the unbounded or mildly bounded state
(green and gold, respectively). Here α+ = 19, κ = 5, Q = 20, L = 54, with M, δ estimated from the data. Numerical simulations are
averaged over 20 trials.

where now the contact matrix c(S1+S2) is defined over both structures and the sum runs over all sites of both lattice cubes.
The index π in Eq. (74) labels a specific orientation of the interaction. In analogy with Equation (72), the probability that
sequences v1,v2 folded into the compound S1 + S2 interact is

pint(π = 0, S1 + S2|v1,v2) =

[
e−I(v1,v2|S1+S2,π=0)∑R′

π′=1 e
−I(v1,v2|S1+S2,π′)

]χ
, (75)

where R′ is the total number of orientations (R′ = 144 in this case) and we added the exponent χ to tune the interaction
strength. Depending on the value of χ, we refer to the compound S1 + S2 as bounded (χ = 5), mildly bounded (χ = 0.1)
or unbounded (χ = 0).

Given two structures S1, S2, we collect sequences through MCMC dynamics such that pnat(S1|v1), pnat(S2|v2) > 0.99.
Here we randomly choose two specific compounds, namely SA + SC and SB + SC (see Figure 7a to visualize one of the
two compounds). We group lists of sequences to form the dataset used in this work as follows:

• sequences vA, vC in the bounded state SA + SC represent positive data;

• sequences vA, vC in the unbounded state SA + SC represent negative data;

• sequences vB , vC in the bounded state SB + SC or sequences vA, vC in the mildly bounded state SA + SC represent
out-of-sample data.

We stress again explicitly that this so-defined model of LPs is not a model with independent features as it involves inter-
and intra-structures couplings in the energy terms (73) and (74). Yet, we find that our theoretical predictions with diagonal
covariance matrix closely reproduce numerical simulations (see Fig. 7b).

F. Additional numerical results
F.1. Numerical validation of replica calculation

Here we numerically validate our predictions of the quantities Ltrain., Lgen., Etrain. within the RS Ansatz. The numerical
solution of the saddle-point equations of interest can be obtained via a simple iterative method and allows to get the
theoretical predictions. The code to reproduce the theoretical curves can be found on github. We check the agreement of
numerical simulation with theory over three different synthetic datasets D1, D2, D3, composed as follows. Note that here all
the datasets contain diagonal covariance matrices, i.e. we are setting Ci,j(t, u) = [Mi(t)

2 −Mi(t)Mj(u)]δij .

1) The dataset D1 has L = 100, Q = 2, α+ = 1 and κ = 0.4. We sample positive and negative data using mi = 0.4 and
δi = 1 over each position.
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Figure 8. Theoretical curves with their numerical validation for the quantities Ltrain., Lgen. and Egen. – defined in Eq. (57), (58) – in panels
a), b) and c), respectively. We test our predictions within three different scenarios, labelled D1, D2, D3 and composed as explained in the
text. All numerical experiments are averaged over 20 trials.

2) The dataset D2 has L = 200, Q = 10, α+ = 3 and κ = 2. We sample the tensor M as i.i.d. variables uniform in
[0.1, 0.3] and δ as i.i.d. variables uniform in [0, 0.1]. We then enforce the normalization conditions setting the last
component over each position as

Mi(Q) = 1−
Q−1∑
t=1

Mi(t), δi(Q) = −
Q−1∑
t=1

δi(t). (76)

3) The dataset D3 has L = 200, Q = 10, α+ = 4.5 and κ = 2. We sample the tensors

M± = M± δ

2
√
L

∼ N (0.8± 0.2, 0.1), (77)

and rescale them so that on each position the vector sums to one (normalization condition). We then obtain M, δ from
M± by sum and difference.

We show the results in Figure 8.

G. On numerical experiments
G.1. Implementation details of RBM

We train the RBM using a gradient-based method to maximize the log-likelihood LRBM =
∑P

k=1 log p(vk), where the sum
runs over the training (positive) data. Given a generic parameter ω to learn, we solve the momentum matching condition

∂LRBM

∂ω
=

〈
∂E

∂ω

〉
M

−
〈
∂E

∂ω

〉
D

, (78)

where the r.h.s. expectation values are over the model and data distribution, respectively. The parameters are updated
with persistent-contrastive-divergence (PCD) (Tieleman, 2008) algorithm. Averages over the model are estimated running
T = 100 parallel Markov chains, while averages over the data are computed on mini-batches of size T sampled from
the training set. The RBM weights w are initialized to small random Gaussian values, with a standard deviation equal to
0.1/

√
L, where L is the number of visible units. Eventually, we include a regularization during the training procedure by

introducing a L2 penalty term LRBM → LRBM − λ∥ω∥22. For the MNIST dataset we used the following parameters: 784
visible units,100 hidden units, L2 strenght 0.001 and 250 Epochs.

Gibbs Sampling. To generate a new sample with the RBM, we use Gibbs Sampling as follows
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(i) We start from an initial configuration v0 (either random or taken from the training set);

(ii) We sample the next configuration v1 based on p(v0|z);
(iii) We repeat step (ii) for K times and return the configuration vK as a new sample.

G.2. Implementation details of supervised classifiers

Perceptron. To validate the theoretical predictions (e.g. Figure 2b), we minimize the following cost function

L(J, b) =
∑
µ

(κ− yµ∆µ) θ (κ− yµ∆µ)− λ
∑
t

[Ji(t)− 1]
2 − λ

∑
t

(
∥J∥22 − LQ

)2
, (79)

where the last two terms on the r.h.s. enforce the spherical weights and zero-sum condition. We set λ = LQ and minimize
Eq. (79) using the L-BFGS-B routine of the Scipy library (Jones et al., 2001).

Linear SVM. To carry out the numerical experiments on MNIST dataset to compare different mixing balancing strategies
(e.g. Figure 4a) we use Linear Support Vector Machines. We use the Scikit-learn package (Pedregosa et al., 2011) which
implements the SVM as follows

L(J, b) = C
∑
µ

max(0, 1− yµ(J · xµ + b)) +
1

2
∥J∥22, (80)

where the sum runs over the examples in the dataset. We set the intercept value b = 0 (option "fit-intercept=False") and
the regularization strength C = 10. For each minority class size we average over 100 realization to make the performance
curves smooth enough. We evaluate results using the BA metric. Notice how we can compare numerical curves obtained in
this way with theoretical predictions derived from Eq. (51), with C → λ̃−1, b → −b and rescaling the input data by

√
L.

ResNet-50 We take a pretrained ImageNet ResNet-50 architecture and add a fresh dense layer with 512 neurons and ReLU
activation; we put an output neuron with sigmoid activation for the binary classification task. We fine-tune the network
weights on Cifar10 data. We use RMSprop optimizer with a learning rate of 10−5 and decay of 10−5 and train for 100
epochs with a batch-size of 128.

G.3. Dataset preprocessing

CIFAR10. CIFAR10 for ResNet-50 fine-tuning are used without any preprocessing. To perform binary classification we
split images into two classes according to what they represent – [airplane, car, bird, cat, deer] and [dog, frog, horse, ship,
truck], respectively. The test set is balanced and has size 1000.

MNIST. MNIST data are first converted to binary values {0, 1} setting the threshold value for the black/white mapping at
0.5. To perform binary classification we split the digits in two classes. Parity MNIST (pMNIST) has odd and even digits
classes; while 5-MNIST has smaller and larger than digit five classes. Hence, the two classes contain ∼ 30000 examples
each. The test set is balanced and has size 1000.

FashionMINST. FMNIST data are first converted to binary values {0, 1} setting the threshold value for the black/white
mapping at 0.5. To perform binary classification we split the dataset in two classes representing "Pullover" and "Shirt"
images. Hence, each class has 6000 examples. The test set is balanced and has size 1000.

CelebA. Images of the CelebA datasets are first converted to single (grayscale) channel by taking the average of the three
color channels. Then data are binarized through the Sauvola–Pietikäinen adaptive image binarization algorithm (Sauvola &
Pietikäinen, 2000), that sets the threshold for the black/white mapping for each pixel (x, y) as

T (x, y) = m(x, y)

[
1 + k

(
s(x, y)

R
− 1

)]
. (81)

Here m, s refer to the mean and standard deviation of the intensity across a window of size 8 around the pixel (x, y). The
two constant values are set as R = max s(x, y) over all pixels in the image and k = 0.05. To perform binary classification
we only select images based on two attributes, namely "Straight hair" or "Wavy hair". Some randomly selected faces from
the two classes are shown in Figure 9.
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Figure 9. Randomly selected images of faces from the CelebA dataset after the data preprocessing described in the text. Images in the top
row belong to the straight hair class, while bottom row displays faces with wavy hair.

28


