
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OFFLINE REINFORCEMENT LEARNING WITH GENERA-
TIVE TRAJECTORY POLICIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative models have emerged as a powerful class of policies for offline re-
inforcement learning (RL) due to their ability to capture complex, multi-modal
behaviors. However, existing methods face a stark trade-off: slow, iterative models
like diffusion policies are computationally expensive, while fast, single-step models
like consistency policies often suffer from degraded performance. In this paper, we
demonstrate that it is possible to bridge this gap. The key to moving beyond the lim-
itations of individual methods, we argue, lies in a unifying perspective that views
modern generative models—including diffusion, flow matching, and consistency
models—as specific instances of learning a continuous-time generative trajectory
governed by an Ordinary Differential Equation (ODE). This principled foundation
provides a clearer design space for generative policies in RL and allows us to
propose Generative Trajectory Policies (GTPs), a new and more general policy
paradigm that learns the entire solution map of the underlying ODE. To make this
paradigm practical for offline RL, we further introduce two key theoretically princi-
pled adaptations. Empirical results demonstrate that GTP achieves state-of-the-art
performance on D4RL benchmarks – it significantly outperforms prior generative
policies, achieving perfect scores on several notoriously hard AntMaze tasks.

1 INTRODUCTION

In offline reinforcement learning (RL), an agent needs to learn a policy from a pre-collected dataset
without any further interaction with the environment. This setting creates a fundamental challenge:
the agent is asked to generalize from limited, often narrow, experience to an unpredictable world.
At the heart of this challenge lies the need for policy expressiveness - the capacity to capture rich,
often multi-modal patterns of behavior present in real-world datasets. Traditional offline RL methods
rely on simple function approximators and are prone to distribution shift, as the learned policy may
choose actions not present in the dataset, leading to inaccurate value estimates (Fujimoto et al., 2019;
Wu et al., 2019; Kumar et al., 2020). This has sparked growing interest in generative models - from
generative adversarial networks (GANs), variational autoencoders (VAEs), to Energy-Based Models
(EBMs) - as powerful tools to model the full complexity and diversity of RL policies (Ho & Ermon,
2016; Ha & Schmidhuber, 2018; Ho et al., 2020; Brahmanage et al., 2023; Messaoud et al., 2024).

Most recently, diffusion-based policies have emerged as a powerful paradigm due to their exceptional
ability to represent complex, multi-modal distributions (Wang et al., 2023; Janner et al., 2022; Pearce
et al., 2023). However, their expressive power comes at a steep price: the slow, iterative sampling
process required for generation imposes a significant computational burden, hindering their practical
utility. To resolve this, subsequent work has employed consistency-based models to accelerate
inference, often enabling one or two-step generation (Ding & Jin, 2024). While remarkably fast, this
simplification frequently leads to degraded policy quality, with performance saturating quickly.

This demonstrates a fundamental trade-off between expressiveness and efficiency for generative
policies. The research question in this work is: Is it possible to design a policy class that can achieve
both policy expressiveness and computational efficiency?

A key insight of our work is that the path to resolving this trade-off lies in a general principle
that unifies a family of powerful modern generative models. We observe that a spectrum of recent
advancements, including diffusion models (Song & Ermon, 2019; Song et al., 2021b), Consistency
Models (Song et al., 2023), Consistency Trajectory Models (CTMs) (Kim et al., 2024), and various

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

forms of Flow Matching (Frans et al., 2025; Geng et al., 2025), can all be understood through the lens
of a continuous-time generative trajectory governed by an Ordinary Differential Equation (ODE).
This unified perspective provides the theoretical foundation for our work, enabling us to conceptualize
a policy itself as a full trajectory and thereby design a new class of expressive and efficient policies.

Building on this foundation, we introduce Generative Trajectory Policies (GTPs), a new policy
paradigm that learns the entire solution map of the underlying ODE. By learning the full trajectory,
GTPs are not confined to either slow, high-fidelity sampling or fast, low-fidelity shortcuts. Instead,
they enable flexible, multi-step, deterministic generation that can achieve high performance even with
a few sampling steps.

Our key contributions include: i) We propose GTP, a new and highly expressive policy paradigm
for offline RL, derived from a unifying framework that connects a family of modern generative
models to continuous-time ODE trajectories. ii) We make a practical implementation of the GTP
paradigm by developing two key theoretically-grounded adaptations that address computational cost,
training instability, and misaligned objectives, including a score approximation and a variational
framework for value-driven policy improvement. iii) We empirically validate GTP on the D4RL
benchmarks, where it achieves state-of-the-art performance, outperforming prior generative and
offline RL methods. Notably, our approach achieves perfect scores on several notoriously challenging
AntMaze tasks, demonstrating its ability to strike a more favorable balance between expressiveness
and efficiency. Our code is included in the supplementary and will be released upon paper acceptance.

2 RELATED WORK

We briefly introduce the related work. A more detailed discussion is provided in Appendix A.

Expressive Policies in Offline RL. Offline RL depends on policies that are expressive enough to
capture the diverse, often multi-modal behaviors present in datasets. Conventional choices like
Gaussian policies are easy to train but struggle to represent such complexity. Much of the literature
has instead advanced from the critic side, regularizing value functions to guard against overestimation
(Fujimoto et al., 2019; Wu et al., 2019; Kumar et al., 2020; Kostrikov et al., 2022). While effective,
these methods leave the policy class itself underpowered, motivating a complementary line of research:
actor-centric approaches that adopt generative models. Early explorations with GANs/VAEs (Ho &
Ermon, 2016) and energy-based policies (Messaoud et al., 2024) showed promise, but were often
hampered by training instabilities and did not achieve the sample quality of modern generative
paradigms, leaving the need for a truly robust and expressive policy class as a key open problem.
Continuous-Time Generative Models. A new generation of powerful tools for this task has
emerged from the generative modeling community. A spectrum of recent advancements can be
understood through the unifying lens of learning a continuous-time trajectory governed by an
Ordinary Differential Equation (ODE). This includes score-based diffusion models (Song et al.,
2021b), Flow Matching (FM) (Lipman et al., 2023; Frans et al., 2025), Consistency Models (CMs)
(Song et al., 2023) and Consistency Trajectory Models (CTMs) (Kim et al., 2024). While this
evolution has produced a powerful toolbox of trajectory-based generative models, their potential has
not yet been fully realized in the RL domain. The challenge of adapting these powerful but complex
models to the specific constraints and objectives of offline RL remains a significant barrier.
The Trade-off in Generative Policies. Researchers have begun to apply these powerful generative
tools as policies in offline RL. Early work with diffusion-based policies demonstrated their immense
potential to model complex action distributions (Wang et al., 2023; Janner et al., 2022; Pearce et al.,
2023), but at the cost of slow, iterative inference. In response, consistency-based policies were
introduced to accelerate sampling, often to one or two steps (Ding & Jin, 2024), but this frequently
resulted in degraded policy performance. This work has established a new and critical trade-off
between expressiveness and efficiency. How to properly adapt the underlying principles of these
powerful generative models to create a policy class that is both high-performing and efficient in the
demanding offline RL setting remains a key open problem that our work aims to address.

3 ODE-BASED GENERATIVE MODELING

A cornerstone of many modern generative models is the idea of reversing a process that gradually
perturbs data into noise. The reverse process can be described by a general ODE, providing a unifying

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

framework for this class of models (Song et al., 2021b):

dxt

dt
= f(xt, t), (1)

where the vector field f(x, t) defines a deterministic trajectory from a point xT sampled from a
simple prior distribution to a data sample x0, and t ∈ [0, T].

Innovation within this framework has advanced along two complementary axes: (1) defining the
vector field f , as in diffusion-based approaches (Song et al., 2021b) and flow matching (Lipman et al.,
2023); and (2) solving the ODE efficiently, which is a central challenge since standard numerical
solvers require hundreds of discretization steps, leading to slow inference and accumulated errors
(Song et al., 2023; Kim et al., 2024). While the first axis has largely matured, the second remains a
bottleneck and has inspired a new class of methods that directly learn the ODE’s solution map.

3.1 DEFINING THE VECTOR FIELD

The choice of the vector field f(xt, t) is crucial, as it determines the exact generative path from noise
to data. Prominent methods for defining these dynamics include:

Diffusion Models. Originating from diffusion-based modeling, this class of methods defines the
vector field indirectly. The dynamics are determined by the score function, ∇xt

log pt(xt), which is
the gradient of the log-density of the noisy data distribution. In the corresponding Probability Flow
(PF) ODE (Song et al., 2021b), a neural network is trained to approximate this score (or an equivalent
denoising function), thereby implicitly specifying the vector field that governs the generative process.

Flow Matching. In contrast, Flow Matching (FM) (Lipman et al., 2023) provides a more direct
and general framework for learning the vector field. This method involves training a neural network
fθ(xt, t) by directly regressing it against a known target vector field that connects the data and prior
distributions. This direct regression offers a stable and often more efficient training objective.

3.2 EFFICIENTLY SOLVING THE ODE BY LEARNING THE SOLUTION MAP

To overcome the limitations of numerical solvers, a powerful alternative paradigm has emerged:
bypassing the iterative process to directly learn the ODE’s solution map. At the heart of this paradigm
is the ODE’s true solution map, or flow map, Φ(xt, t, s), which maps the state at time t to the
corresponding state at time s. We observe that its integral form naturally provides a unifying
representation for this entire family of models:

xs = Φ(xt, t, s) = xt +

∫ s

t

f(xτ , τ)dτ. (2)

(See Appendix E for an illustration of the unified framework.) Viewing through the lens of this unified
framework, we will show in the following that classic frameworks such as Consistency Models (Song
et al., 2023), Consistency Trajectory Models (Kim et al., 2024), and most recent models such as
Shortcut Models (Frans et al., 2025), and Mean Flows (Geng et al., 2025) can all be re-interpreted as
instances of learning the flow map. For example, the denoiser target in diffusion models corresponds
to the infinitesimal form of Φ, while the self-consistency principle in Consistency Models aligns with
the compositional property of Φ.

3.3 A UNIFIED FRAMEWORK FOR LEARNING ODE TRAJECTORIES

As introduced in Eq.(2), the cornerstone of our framework is the ideal ODE flow map Φ(xt, t, s).
While this represents the target, its integral form is not directly amenable to neural network training.
Inspired by the reparameterization trick in (Kim et al., 2024), we introduce a related function
ϕ(xt, t, s) that is more practical to learn and provides deeper connections to existing methods:

ϕ(xt, t, s) = xt +
t

t− s

∫ s

t

f(xτ , τ)dτ. (3)

The ideal flow map Φ can then be recovered from ϕ and the initial state xt via a linear interpolation:

Φ(xt, t, s) =
(
1− s

t

)
ϕ(xt, t, s) +

s

t
xt. (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The function ϕ(xt, t, s) has a direct and intuitive interpretation: it can be understood as an estimate
of the final data point, x0, extrapolated from the current state xt using the average velocity of the
trajectory over the interval [s, t]. To learn the flow map, we find that models in this family can be
trained by optimizing two fundamental objectives:

1. The Instantaneous Flow Loss. This objective ensures the learned map is correct for infinitesimal
steps by enforcing a boundary condition at the limit s→ t:

lim
s→t

ϕ(xt, t, s) = xt − tf(xt, t). (5)

For convenience, we denote ϕinst(xt, t) := ϕ(xt, t, t) and refer to it as the Inst Map. This condition
provides a powerful connection to prominent generative modeling paradigms: the right-hand side
recovers the denoiser D(xt, t) (i.e., E[x0 | xt]) in diffusion models and the velocity field target
in flow matching, f(xt, t) = (xt − ϕinst(xt, t))/t. In practice, ϕinst

θ (xt, t) is the model prediction,
trained with task-specific targets: for diffusion, the target is the clean sample x0; for flow matching,
the target becomes xt − t(x1 − x0). In this sense, the Inst Map acts as a local anchor, unifying
diffusion-style denoising and flow-matching velocity estimation under a single principle.

2. The Trajectory Consistency Loss. This objective enforces correctness across long, multi-step
jumps by requiring self-consistency:

Φ(xt, t, s) ≈ Φ(Φ(xt, t, u), u, s), for t > u > s. (6)

where u denotes an intermediate time between t and s. Here, the displacement over [t, s] must equal
the sum of displacements over [t, u] and [u, s]. In practice, the right-hand side is treated as the target:
Φ(xt, t, u) is obtained using an ODE solver (or its learned approximation), and then composed
forward to s. The loss is then defined by the discrepancy between the left- and right-hand sides of
Eq. (6). This serves as a global regulator, enforcing coherence of long trajectories with the additive
structure of ODEs.

Taken together, the two objectives are complementary: the instantaneous loss enforces fidelity in
local dynamics, while the trajectory consistency loss guarantees global coherence across time. A
more detailed analysis of how this framework connects to prior models is provided in Appendix B.1.

4 GENERATIVE TRAJECTORY POLICIES FOR OFFLINE RL

In the previous section, we established a unified ODE trajectory framework that offers an elegant
lens for understanding a family of modern generative models. This lays a theoretical foundation for
designing expressive generative trajectory policies. We define a Generative Trajectory Policy (GTP)
as a policy class that generates actions by learning the solution map of a continuous-time generative
ODE. However, translating these insights into a functional offline RL algorithm is hindered by three
practical challenges:

Prohibitive Computational Burden. Learning an ODE trajectory requires on-trajectory supervision.
As discussed in Section 3.3, this is obtained by numerically solving the ODE backward from t to
an intermediate point u using multiple discrete steps (e.g., Euler, Heun), an operation we denote
as Solver(xt, t, u). When scaled to offline RL, where millions of updates are needed, repeatedly
performing this inner-loop solving for every sample makes the overall computation quickly intractable.

Inherent Training Instability. Unlike distillation methods, our framework must learn the entire
ODE trajectory from scratch. Central to this process is the Inst Map ϕinst(xt, t), which specifies the
ODE’s right-hand side through f(xt, t) = (xt − ϕinst(xt, t))/t. Early in training, the Inst Map is
highly inaccurate; yet its outputs are immediately fed back into the solver to generate supervision.
This bootstrapping quickly forms a vicious cycle that resembles TD learning (Sutton, 1988)—bad
targets yield bad updates—that destabilizes the Actor–Critic loop and often hinders convergence.

Misaligned Generative Objective. The default objective of generative models is to match the data
distribution, which in offline RL reduces to behavior cloning (BC). While BC is a reasonable baseline,
it cannot achieve policy improvement—the central goal of offline RL. Thus, a key challenge is to
design a value-aware objective that leverages the generative process not only to imitate observed
actions but also to emphasize those leading to higher returns.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Self-Supervised

Approximate Score

Target Trajectory

(a) Stable Score Approximation

BC Trajectory

GTP Trajectory

Data

Noise

Optimal Action

(b) Value-Driven Guidance

Figure 1: The two core techniques of the GTP implementation: (a) Stable Score Approximation: the
target trajectory (green) is contrasted with a reference (red) computed by a multi-step ODE solver (red
dashed arrow). The blue dashed arrow denotes a single-step update obtained from our approximate
score, which yields the blue trajectory without multi-step integration. (b) Value-Driven Guidance: the
BC trajectory (green) is shifted toward high-value regions so that the learned GTP trajectory (blue)
approaches the optimal action while remaining aligned with the data.

To address these challenges, we introduce two key techniques tailored to the practical implementation
of GTP, as illustrated in Figure 1. The following subsections detail these techniques and show how
they jointly enable stable, efficient, and value-driven training.

4.1 EFFICIENT AND STABLE TRAINING VIA SCORE APPROXIMATION

A central difficulty in our framework is the reliance on self-referential supervision: the model must
repeatedly supply ϕinst(xt, t) (score estimates) at each solver time point1, which the ODE solver
integrates over many iterations. This approach is not only computationally demanding, but also
fragile—early-stage errors in the learned vector field immediately corrupt the supervision signals.
To address it, we replace ϕinst(xt, t) with a closed-form surrogate anchored to the offline sample,
f̃(xt, t) = (xt − x)/t. The theorem below shows that this yields a training loss asymptotically
equivalent to the ideal one.
Theorem 1. Fix a time horizon T > 0, let x ∼ pdata, z ∼ N (0, I), and define xt = x + tz.
Define the vector fields f⋆, f̃ : Rd × (0, T]→ Rd by f⋆(xt, t) :=

xt−E[x|xt]
t and f̃(xt, t) :=

xt−x
t .

Assume f⋆(·, t) is Lipschitz in x. Let t = τ0 > τ1 > · · · > τK = u be a sequence of time points with
step sizes ∆k = τk+1 − τk and maximal step h = maxk |∆k|. For a p-th order, zero-stable one-step
solver S∆k

[f] : Rd → Rd, define the multi-step propagation from t to u as

Ψsol
t→u[f] := S∆K−1

[f] ◦ · · · ◦ S∆0
[f]. (7)

Assume further that for each u > s, Φθ(·, u, s) : Rd → Rd is Lipschitz in x, and that solver states
admit bounded second moments independent of h. Define the ideal and practical training objectives

Lideal(θ) := E
[∥∥Φθ(xt, t, s)− Φθ−

(
Ψsol

t→u[f
⋆](xt), u, s

)∥∥2], (8)

Lprac(θ) := E
[∥∥Φθ(xt, t, s)− Φθ−

(
Ψsol

t→u[f̃](xt), u, s
)∥∥2], (9)

where Φθ− denotes the exponentially moving averaged model. Then∣∣Lprac(θ)− Lideal(θ)
∣∣ = O(hp). (10)

In particular, as h→ 0, the two objectives coincide in expectation.

Proof Sketch. The only difference between the two objectives is that the solver uses the surrogate f̃
instead of the true field f⋆. Since both are Lipschitz and the solver is p-th order and zero-stable, the
propagated states differ by O(hp) in mean square. By Lipschitz continuity of Φθ, this discrepancy
transfers directly to the objectives, giving the stated bound. Details are deferred to Appendix B.3.

1Throughout the paper we use the term score for consistency with prior literature, although in our framework
it is formally the Inst Map ϕinst.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 1 shows that using the closed-form surrogate f̃ changes the objective only by O(hp),
providing theoretical support for our formulation. This replacement makes GTP training both efficient
and robust in offline RL, which is further validated empirically by our ablation study (Section 5.3).
Further intuition is given in Appendix B.4, where we relate this formulation to consistency training
and flow matching.
Remark 1 (Computational Efficiency). Using the surrogate score removes the need for multi-step
ODE integration. Intermediate points xu for the trajectory consistency loss are obtained directly as

xu = x+ u · z, z ∼ N (0, I), (11)
a one-step perturbation instead of a costly numerical solver.
Remark 2 (Training Stability). Anchoring supervision to offline data avoids the instability of self-
generated targets. The model no longer relies on imperfect early-stage estimates of its own vector
field, but instead receives a stable analytical signal tied directly to x. This breaks the cycle of error
propagation and ensures consistent learning from the very beginning of training.

4.2 VALUE-DRIVEN GUIDANCE FOR POLICY IMPROVEMENT

To address the misaligned generative objective and unify generative imitation with value-based policy
improvement, we formalize a value-weighted training objective for our GTP in Theorem 2, with the
detailed derivation provided in Appendix B.5.
Theorem 2 (Advantage-Weighted Objective). Consider the KL-regularized policy optimization
problem in offline RL. Its optimal solution can be written as

π∗(a|s) ∝ πBC(a|s) exp
(
ηA(s, a)

)
, (12)

where A(s, a) = Q(s, a)− V (s) is the advantage. Training a generative policy πθ to match π∗ is
therefore equivalent to solving the weighted generative training objective

max
θ

E(s,a)∼D
[
exp
(
ηA(s, a)

)
ℓgen(πθ; a|s)

]
, (13)

where ℓgen denotes the standard generative loss (e.g., diffusion loss, or flow-matching loss).

Theorem 2 confirms that exponential advantage weighting is the theoretically correct way to incorpo-
rate value guidance into generative training.
Remark 3 (Practical Implementation). For numerical stability, we normalize the advantage weights
and truncate negatives:

w(s, a) = exp

(
η · max(0, A(s, a))

std(A) + ϵ

)
. (14)

This ensures stable optimization while allowing GTP to preferentially imitate high-advantage actions,
thereby preserving the robustness of standard generative training.

4.3 THE GTP OPTIMIZATION FRAMEWORK

Having introduced the two key techniques for the practical implementation of our GTP paradigm, we
now integrate them into a complete actor-critic algorithm. The actor is our Generative Trajectory
Policy, πθ, represented by the learned solution map Φθ. The critic is a standard double Q-network,
Qφ, trained to estimate state-action values.

Policy Representation and Action Sampling. The actor Φθ(s, at, t, τ) learns to map a noisy action
at at time t to a cleaner action aτ at time τ ≤ t, conditioned on a state s. At inference time, an
action is generated by starting with pure Gaussian noise aT ∼ N (0, T 2I) and iteratively applying
the learned map over a sequence of timesteps T = t0 > t1 > ... > tK = 0:

ati+1
= Φθ(s, ati , ti, ti+1), for i = 0, . . . ,K − 1. (15)

The final denoised sample a0 is the action executed by the policy, i.e., πθ(s) := a0.

Critic Training. We use a standard double Q-network parameterized by ϕ to mitigate the overesti-
mation bias. The critic is trained to minimize the temporal-difference (TD) error using a batch of
transitions (s, a, r, s′) from the offline dataset:

Lcritic = E
[(

r + γ ·minj=1,2 Qφ−
j
(s′, πθ′(s′))−Qφj

(s, a)
)2]

(16)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where φ− and θ− are the target networks for the critic and actor, respectively, updated via exponential
moving average (EMA).

Actor Training. The GTP actor is trained by combining the two fundamental objectives in Eqs.(5)-
(6) introduced in our unified framework. These objectives are directly modified to incorporate our
key adaptations for offline RL. To enable policy improvement, both loss components are weighted
by the advantage-based term w(s, a), thereby prioritizing high-value actions. Simultaneously, to
ensure computational feasibility and training stability, the supervision targets are generated using our
efficient score approximation instead of a costly ODE solver. First, the Trajectory Consistency Loss,
LConsistency, enforces the global self-consistency of the learned flow map Φθ:

LConsistency = E(s,a)∼D Et,τ,u Ez∼N (0,I)

[
w(s, a) ∥Φθ(s, at, t, τ)− Φθ−(s, ãu, u, τ)∥22

]
. (17)

where at = a+ t · z, and the teacher’s intermediate action ãu = a+ u · z. Second, the Instantaneous
Flow Loss, LFlow, anchors the model’s local dynamics. As established in Section 3.3, this objective
enforces that the learned Inst Map behaves as a correct denoiser in the infinitesimal limit. We
implement it by penalizing the prediction error of ϕinst

θ :

LFlow = E(s,a)∼D Et

[
w(s, a)

∥∥ a− ϕinst
θ (s, at, t)

∥∥2
2

]
. (18)

The total actor loss is then a weighted sum of the two components: Lactor = LConsistency+λFlow ·LFlow.
The full training pipeline is outlined in Algorithm 1.

Algorithm 1 Training Generative Trajectory Policy (GTP)

1: Initialize actor Φθ, critic Qφ, target networks θ− ← θ, φ− ← φ
2: for iteration i = 1 to Niter do
3: Sample batch (s, a, r, s′) ∼ D
4: Update critic Qφ using Eq. (16)
5: Compute advantage weights w(s, a) using the trained critic
6: Sample time pairs t > u > τ , and noise z ∼ N (0, I)
7: Generate noisy actions via score approx.: at = a+ t · z, ãu = a+ u · z
8: Update actor Φθ using the weighted loss in Eq. (18)
9: Update target networks: θ− ← τθ + (1− τ)θ−, φ− ← τφ+ (1− τ)φ−

10: end for

5 EXPERIMENTAL RESULTS

In this section, we empirically validate our central claims through experiments. Our evaluation is
designed to answer three core questions: (i) whether GTP provides a more expressive generative
model for imitating complex behaviors than prior approaches; (ii) whether our two key techniques
(Section 4) effectively translate into stable policy improvement that surpasses state-of-the-art offline
RL algorithms; and (iii) whether GTP resolves the tension between expressiveness and efficiency.

We evaluate our method on a suite of challenging offline reinforcement learning tasks from the D4RL
benchmark (Fu et al., 2020), including the Gym and AntMaze domains. Following the standard
setting of Ding & Jin (2024), we evaluate each policy over 10 episodes for Gym tasks and 100
episodes for all other tasks. Unless otherwise noted, diffusion policies and our GTP use K = 5
sampling steps, and consistency policies use K = 2. Hyperparameters are provided in Appendix C.1.

Due to space limit, we only show major results in the following. Additional ablations and visualiza-
tions in a multi-goal environment are deferred to Appendix D, which provide further evidence of the
effectiveness and efficiency of GTP.

5.1 EXPRESSIVENESS AS A BEHAVIOR CLONING POLICY

To assess the intrinsic modeling capacity of our policy architecture, we first conduct experiments
in a pure behavior cloning (BC) setting. By setting the value-guidance coefficient η = 0, the
objective reduces to a purely generative supervised loss, so the policy is trained only to match the
data distribution without policy improvement.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Baselines. We compare our method, GTP-BC, against a diverse set of baselines, which includes
classic behavior cloning (a Gaussian policy), several strong offline RL methods such as AWAC (Nair
et al., 2020) and TD3+BC (Fujimoto & Gu, 2021), and importantly, other generative policies in a BC
setting: Diffusion-BC (D-BC) (Wang et al., 2023) and Consistency-BC (C-BC) (Ding & Jin, 2024).

Results and Analysis. As shown in Table 1, our method achieves strong results across a broad
spectrum of tasks, from basic locomotion to complex sparse-reward environments, achieving state-of-
the-art performances in 11 out of 15 tasks. This strong overall performance is reflected in the average
scores across both major task suites. In the Gym tasks, our model’s average return of 82.3 significantly
surpasses both D-BC (76.3) and C-BC (69.7). This highlights the superior modeling capacity of
learning the full trajectory map. The performance is even more striking in the notoriously difficult
AntMaze suite, where long-horizon planning and multimodality are critical. Here, GTP-BC (66.3)
dramatically outperforms all other methods, including the next-best generative approach, C-BC (44.1).
This substantial gap suggests that our model’s ability to learn the full continuous-time trajectory
provides a powerful inductive bias for capturing the complex, temporally extended behaviors required
for success. These results confirm the strong expressiveness inherent to the GTP architecture itself.

Table 1: Behavior cloning performances on D4RL. We report the mean and standard deviation of
normalized scores over 5 random seeds. Bold indicates the best performance among all methods.

Gym BC AWAC Diffuser MoRel Onestep RL TD3+BC DT D-BC C-BC GTP-BC (Ours)
halfcheetah-m 42.6 43.5 44.2 42.1 48.4 48.3 42.6 45.4 31.0 48.6±0.3
hopper-m 52.9 57.0 58.5 95.4 59.6 59.3 67.6 65.3 71.7 83.7±4.0
walker2d-m 75.3 72.4 79.7 77.8 81.8 83.7 74.0 81.2 83.1 77.1±1.7
halfcheetah-mr 36.6 40.5 42.2 40.2 38.1 44.6 36.6 41.7 34.4 46.3±0.6
hopper-mr 18.1 37.2 96.8 93.6 97.5 60.9 82.7 67.3 99.7 100.5±0.3
walker2d-mr 26.0 27.0 61.2 49.8 49.5 81.8 66.6 77.5 73.3 83.4±1.8
halfcheetah-me 55.2 42.8 79.8 53.3 93.4 90.7 86.8 90.8 32.7 91.3±0.5
hopper-me 52.5 55.8 107.2 108.7 103.3 98.0 107.6 107.6 90.6 109.6±1.9
walker2d-me 107.5 74.5 108.4 95.6 113.0 110.1 108.1 108.9 110.4 100.2±2.1
Average 51.9 50.1 75.3 72.9 76.1 75.3 74.7 76.3 69.7 82.3
AntMaze BC AWAC Diffuser MoRel Onestep RL TD3+BC DT D-BC C-BC GTP-BC (Ours)
antmaze-u 54.6 56.7 78.9 73.0 64.3 78.6 59.2 71.8 75.8 84.2±6.6
antmaze-ud 45.6 49.3 55.0 61.0 60.7 71.4 53.0 61.2 77.6 79.2±3.2
antmaze-mp 0.0 0.0 0.0 0.0 0.3 10.6 0.0 43.4 56.8 74.4±6.5
antmaze-md 0.0 0.7 0.0 8.0 0.0 3.0 0.0 29.8 31.6 85.0±6.6
antmaze-lp 0.0 0.0 6.7 0.0 0.0 0.2 0.0 14.6 10.2 34.4±5.1
antmaze-ld 0.0 1.0 2.2 0.0 0.0 0.0 0.0 26.6 12.8 40.8 ±6.3
Average 16.7 18.0 23.8 23.7 20.9 27.3 18.7 41.2 44.1 66.3

5.2 FROM IMITATION TO IMPROVEMENT: GTP IN OFFLINE RL

Having established GTP’s strong performance as an imitation learning agent, we now evaluate the
full actor-critic algorithm, GTP, to assess whether our variational policy optimization framework
(Section 4.2) can effectively translate this expressiveness into state-of-the-art policy improvement.

Baselines. We compare GTP against a suite of strong offline RL algorithms, including CQL (Kumar
et al., 2020), IQL (Kostrikov et al., 2021), χ-QL (Garg et al., 2023), ARQ (Goo & Niekum, 2022),
IDQL-A (Hansen-Estruch et al., 2023), and the two most relevant generative policy competitors:
Diffusion-QL (D-QL) (Wang et al., 2023), QGPO (Lu et al., 2023), BDM (Chen et al., 2024b), and
Consistency-AC (C-AC) (Ding & Jin, 2024).

Results and Analysis. Table 2 demonstrates that GTP sets a new state-of-the-art for generative
policies in offline RL. On the Gym tasks, our method achieves the highest average return (89.0),
outperforming the previous best, D-QL (87.9). The gains are even more pronounced in the challenging
AntMaze suite, where GTP (80.6) significantly surpasses both Diffusion-QL (69.6) and QGPO (78.3).
Notably, on the antmaze-umaze task, our method achieves a perfect score of 100.0. These results
provide strong evidence that our principled, advantage-weighted learning objective successfully
leverages the critic’s signal to guide the powerful generative policy beyond simple imitation, enabling
robust and effective policy improvement.

5.3 ABLATION STUDY

We conduct ablations to evaluate the contribution of two key components of GTP: the score approxi-
mation scheme (Section 4.1) and the variational value guidance mechanism (Section 4.2).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Offline RL results on D4RL (mean ± std over 5 random seeds). Bold indicates best result.

Gym CQL IQL χ-QL ARQ IDQL-A D-QL QGPO BDM C-AC GTP (Ours)
halfcheetah-m 44.0 47.4 48.3 45 51.0 51.1 54.1 57.0 69.1 53.9±0.1
hopper-m 58.5 66.3 74.2 61 65.4 90.5 98.0 98.4 80.7 90.3±2.7
walker2d-m 72.5 78.3 84.2 81 82.5 87.0 86.0 87.4 83.1 89.5±0.6
halfcheetah-mr 45.5 44.2 45.2 42 45.9 47.8 47.6 51.6 58.7 50.8±0.4
hopper-mr 95.0 94.7 100.7 81 92.1 101.3 96.9 92.7 99.7 101.7±0.3
walker2d-mr 77.2 73.9 82.2 66 85.1 95.5 84.4 89.2 79.5 94.2±0.3
halfcheetah-me 91.6 86.7 94.2 91 95.9 96.8 93.5 93.2 84.3 93.8±0.8
hopper-me 105.4 91.5 111.2 110 108.6 111.1 108.0 104.9 100.4 112.2±0.6
walker2d-me 108.8 109.6 112.7 109 112.7 110.1 110.7 111.1 110.4 114.2±0.3
Average 77.6 77.0 83.7 76.2 82.1 87.9 86.6 87.3 85.1 89.0
AntMaze CQL IQL χ-QL ARQ IDQL-A D-QL QGPO BDM C-AC GTP (Ours)
antmaze-u 74.0 87.5 93.8 97 94.0 93.4 96.4 93.0 75.8 100±0
antmaze-ud 84.0 62.2 82.0 62 80.2 66.2 74.4 81.0 77.6 81.9±4.4
antmaze-mp 61.2 71.2 76.0 80 84.2 76.6 83.6 79.0 56.8 83.3±8.1
antmaze-md 53.7 70.0 73.6 82 84.8 78.6 83.8 84.0 - 94.2±2.0
antmaze-lp 15.8 39.6 46.5 37 63.5 46.4 66.6 - - 53.5±2.2
antmaze-ld 14.9 47.5 49.0 58 67.9 56.6 64.8 - - 71.0 ±4.9
Average 50.6 63.0 70.1 69.3 79.1 69.6 78.3 - - 80.6

Score Approximation. Replacing our score approximation with signals generated directly by an
ODE solver leads to substantially longer training time and weaker performance, even when the solver
is limited to at most three steps. Without approximation, training suffers from high variance and slow
convergence due to the need for numerical integration at each iteration. In contrast, our approximation
provides an efficient surrogate that closely aligns with the desired consistency condition, enabling
faster optimization and stronger policies.

Variational Guidance. We compare GTP with a baseline that combines the generative loss with a
linear Q-learning actor loss. As shown in Table 3, this baseline is highly brittle: for typical coefficients
(λ = 0.1 or 1.0), training diverges due to exploding critic gradients. Even with λ = 0.01, the baseline
occasionally achieves returns close to ours, but this setting is highly sensitive to the critic scale and
does not transfer across tasks. In contrast, our variational guidance normalizes and clips critic signals
into stable importance weights, yielding consistently high returns across seeds without per-task
hyperparameter tuning. Further details and extended comparisons are provided in Appendix B.6.

Table 3: Ablation results on hopper-medium-expert-v2 (mean ± std over 5 random seeds).
Training time is wall-clock hours per run. Baselines with λ = 0.1 or 1.0 consistently diverged.

Method Training Time Score

GTP (ours) 4.26 h 112.2 ± 0.6
w/o score approximation (ODE solver) 5.23 h 99.7 ± 1.7

GTP-BC + linear Q-term (λ = 0.01) 5.08 h 111.4 ± 0.9
GTP-BC + linear Q-term (λ = 0.1) Diverged –
GTP-BC + linear Q-term (λ = 1.0) Diverged –

6 CONCLUSION

In this work, we introduced Generative Trajectory Policies, a new paradigm for offline RL that
leverages our proposed unifying perspective of continuous-time generative ODEs. We show that
while this framework offers immense expressive power, its direct application is hindered by critical
challenges of computational cost, training instability, and objective misalignment. We overcame these
obstacles through two theoretically principled adaptations: score approximation for efficient, stable
training and a variational, advantage-weighted objective to bridge the gap between imitation and
policy improvement. Our empirical results on the D4RL benchmarks validate this approach, showing
that GTP establishes a new state-of-the-art for generative policies in offline RL. This work opens a
promising direction for harnessing continuous-time dynamics in RL. While inference is fast, reducing
the substantial training time of this model class remains an important avenue for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018.

Janaka Brahmanage, Jiajing Ling, and Akshat Kumar. Flowpg: action-constrained policy gradient
with normalizing flows. In Advances in Neural Information Processing Systems, volume 36, pp.
20118–20132, 2023.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. In
International Conference on Machine Learning, 2025.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization
through diffusion behavior. In International Conference on Learning Representations, 2024a.

Huayu Chen, Kaiwen Zheng, Hang Su, and Jun Zhu. Aligning diffusion behaviors with q-functions
for efficient continuous control. In Advances in Neural Information Processing Systems, volume 37,
pp. 119949–119975, 2024b.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
offline reinforcement learning. In Advances in Neural Information Processing Systems, 2024c.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, 43(1):3–24, 2023. doi: 10.1177/02783649241273668.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization. In
Advances in Neural Information Processing Systems, 2024.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. In International Conference on Learning Representations, 2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In International Conference on Learning Representations, 2025.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems, volume 34, pp. 20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062, 2019.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy. In International Conference on Learning Representations, 2023.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. In Advances in Neural Information Processing Systems, 2025.

Wonjoon Goo and Scott Niekum. Know your boundaries: The necessity of explicit behavioral cloning
in offline rl. arXiv preprint arXiv:2206.00695, 2022.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361,
2017.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, volume 29, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
neural information processing systems, volume 33, pp. 6840–6851, 2020.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915,
2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and YAN Shuicheng. Efficient diffusion policies for
offline reinforcement learning. In Advances in Neural Information Processing Systems, 2023.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. In International Conference on Learning Representations,
2024.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
Advances in Neural Information Processing Systems, volume 34, pp. 21696–21707, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In Advances in Neural Information Processing Systems, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, volume 33, pp.
1179–1191, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pp. 45–73. Springer, 2012.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. In International Conference on Learning Representations, 2023.

Xu-Hui Liu, Tian-Shuo Liu, Shengyi Jiang, Ruifeng Chen, Zhilong Zhang, Xinwei Chen, and Yang
Yu. Energy-guided diffusion sampling for offline-to-online reinforcement learning. In International
Conference on Machine Learning, pp. 31541–31565, 2024.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In International Conference on Learning Representations, 2025.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In
International Conference on Machine Learning, 2023.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Soft diffusion actor-critic: Efficient online
reinforcement learning for diffusion policy. In International Conference on Machine Learning,
2025.

Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and Sanjay
Chawla. S2ac: Energy-based reinforcement learning with stein soft actor critic. In International
Conference on Learning Representations, 2024.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Sergio
Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam Devlin. Imitating
human behaviour with diffusion models. In International Conference on Learning Representations,
2023.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 24, pp. 1607–1612, 2010.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization. In
International Conference on Learning Representations, 2025.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In Interna-
tional Conference on Learning Representations, 2024.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in neural information processing systems, volume 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning, pp. 32211–32252, 2023.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In International Conference on Learning Representations,
2023.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Related Work 2

3 ODE-Based Generative Modeling 2

3.1 Defining the Vector Field . 3

3.2 Efficiently Solving the ODE by Learning the Solution Map 3

3.3 A Unified Framework for Learning ODE Trajectories 3

4 Generative Trajectory Policies for Offline RL 4

4.1 Efficient and Stable Training via Score Approximation 5

4.2 Value-Driven Guidance for Policy Improvement 6

4.3 The GTP Optimization Framework . 6

5 Experimental Results 7

5.1 Expressiveness as a Behavior Cloning Policy . 7

5.2 From Imitation to Improvement: GTP in Offline RL 8

5.3 Ablation Study . 8

6 Conclusion 9

A Related Work 14

B Theoretical Insights 15

B.1 A Unified View of Prior Generative Models . 15

B.2 Derivation of a Continuous-Time Training Objective 16

B.3 Proof of Theorem 1 . 17

B.4 Theoretical Rationale for the Score Function Approximation 19

B.5 Derivation of the Advantage-Weighted Objective 21

B.6 Additional Discussion on Actor Loss Formulations 22

C Implementation Details 23

C.1 Experimental Hyperparameters . 23

C.2 Dynamic Timestep Scheduling for Robust Trajectory Learning 23

D Additional Results 24

D.1 Ablation Study: Efficiency–Performance Trade-off at Inference 24

D.2 Ablation on Actor Loss Formulation . 24

D.3 Visualizing Expressiveness and Efficiency in Multi-Goal Environments 25

E Additional Illustrations 26

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

Expressive Policies in Offline RL Offline RL seeks to learn policies from static datasets, but
suffers from extrapolation error when actions fall outside the dataset distribution. Early work such
as Lange et al. (2012) laid the foundations for batch RL, while subsequent studies introduced more
expressive policy classes, including energy-based formulations (Haarnoja et al., 2017). A major line
of research has emphasized conservatism, aiming to constrain policy behavior to dataset-supported
regions. Batch-Constrained Q-Learning (BCQ) (Fujimoto et al., 2019) explicitly restricted the policy
to actions close to the behavior data, whereas BEAR (Wu et al., 2019) imposed a Maximum Mean
Discrepancy penalty to softly align the learned policy with the dataset. Conservative Q-Learning
(CQL) (Kumar et al., 2020) further advanced this idea by penalizing Q-values on out-of-distribution
actions, mitigating overestimation at the cost of tuning sensitivity. In parallel, regression-based
approaches sought to improve expressiveness while retaining stability. Advantage-Weighted Actor-
Critic (AWAC) (Peng et al., 2019) biased behavior cloning toward high-advantage actions, while
Implicit Q-Learning (IQL) (Kostrikov et al., 2022) simplified training by implicitly aligning value
estimates with policy improvement, avoiding explicit constraints but limiting the ability to fully
capture multimodal behaviors. Overall, these approaches highlight a persistent trade-off: policies that
are more expressive tend to risk instability, while more conservative methods achieve robustness at
the cost of limited representational power.

Continuous-Time Generative Models. Diffusion models have significantly advanced generative
modeling capabilities. Ho et al. (2020) introduced Denoising Diffusion Probabilistic Models (DDPM),
utilizing forward and reverse diffusion processes to produce high-quality samples, albeit slowly.
To address computational efficiency, Song et al. (2021a) developed Denoising Diffusion Implicit
Models (DDIM), reducing required steps but encountering stability issues when overly accelerated.
To enhance training stability, Kingma et al. (2021) integrated variational inference into diffusion
models, yet this approach added complexity and computational overhead. Providing a continuous-
time formulation, Song et al. (2021b) proposed modeling diffusion through Stochastic Differential
Equations (SDEs), increasing flexibility but at considerable computational expense. Nichol &
Dhariwal (2021) improved DDPM architectures and noise schedules, enhancing sample quality while
still necessitating multiple denoising steps. Song et al. (2023) subsequently introduced Consistency
Models, achieving faster sampling through trajectory consistency but potentially risking mode
collapse and reduced diversity. Building on this, Kim et al. (2024) developed Consistency Trajectory
Models, directly modeling diffusion trajectories via Ordinary Differential Equations (ODEs), refining
sampling consistency and quality. Lastly, Frans et al. (2025) extended flow-matching models by
introducing adjustable step sizes, further improving sampling efficiency without compromising
quality. While this evolution has produced a powerful toolbox of trajectory-based generative models,
their potential has not yet been fully realized in the RL domain.

The Trade-off in Generative Policies Integrating generative models into RL allows for highly
expressive policies capable of capturing complex, multimodal action distributions. Diffusion policies,
first introduced by Wang et al. (2023), exemplify this potential but inherit the slow, iterative sampling
of their generative counterparts. This has created a central trade-off between policy expressiveness
and inference speed. One line of research aims to guide the generative process toward high-reward
regions. This is achieved by incorporating energy functions (Liu et al., 2024), leveraging contrastive
energy prediction (Lu et al., 2023), or weighting the diffusion objective with Q-values (Ding et al.,
2024). Another major effort focuses on accelerating inference. This includes developing more
efficient sampling schemes (Kang et al., 2023), distilling the diffusion policy into a fast, deterministic
one (Chen et al., 2024a), and leveraging consistency models to enable few-step action generation
(Ding & Jin, 2024). Recent work has focused on tightly integrating these generative policies into
established RL algorithms. Examples include IDQL (Hansen-Estruch et al., 2023), which combines
a diffusion policy with an IQL critic, and DPPO (Ren et al., 2025), which enables policy gradient
fine-tuning. Further refinements include advanced entropy estimation techniques (Celik et al., 2025;
Ma et al., 2025), trust-region guided sampling (Chen et al., 2024c), and applications to complex
domains like visuomotor control (Chi et al., 2023). Despite their potential for balancing quality and
speed, this emerging class of trajectory-based generative models remains largely unexplored as a
policy framework, motivating our work.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B THEORETICAL INSIGHTS

B.1 A UNIFIED VIEW OF PRIOR GENERATIVE MODELS

With this framework of the flow map Φ, the reparameterization ϕ, and the two fundamental training
objectives, we can now clearly position and unify prior work:

Consistency Models (CMs) Consistency Models (CMs) (Song et al., 2023) can be viewed as a
specialized case of Eq. (2), where the flow map is restricted to Φ(xt, t, 0) that always targets the data
origin. Their self-consistency loss corresponds directly to a Trajectory Consistency Loss: the model’s
prediction at time t is constrained to match the prediction at a slightly earlier time t−∆t along the
same trajectory. Formally,

LCM = ||Φθ(xt, t, 0)− Φθ′(xt−∆t, t−∆t, 0)||2, (19)

where Φ−
θ is the EMA model with delayed weights. Interestingly, this bootstrapping mechanism is

conceptually analogous to Temporal Difference (TD) learning (Sutton, 1988), where an estimate for
the present is updated to be more consistent with an estimate from the future.

Consistency Trajectory Models (CTMs) CTMs (Kim et al., 2024) provide a representative
example of how our unified framework manifests in prior work. Although originally motivated from
a diffusion-based perspective with a PF ODE backbone, their essence lies in directly parameterizing
the time-conditional flow map Φ(xt, t, s) in Eq. (2). The training objective can also be naturally
interpreted through our lens: the self-consistency objective used in CTMs corresponds exactly to the
Trajectory Consistency Loss, albeit in a specialized form where trajectories are first mapped to an
intermediate time s and then further mapped to the terminal time 0/ϵ. This design ensures that all
supervision signals are anchored at the same reference time, keeping the loss consistent. In addition,
the auxiliary diffusion loss serves the role of the Instantaneous Flow Loss, enforcing local fidelity
along trajectories. Thus, under our framework, CTMs emerge not as an isolated construction, but as a
concrete instantiation of Eq. (2) that integrates both of the fundamental training principles.

Shortcut Models The work on Shortcut Models (Frans et al., 2025) also fits squarely within our
unified framework in Eq.(2), focusing on learning the ”average velocity” of the underlying ODE.
This approach parameterizes a dedicated stepping function, s(xt, t, d), which is trained to predict the
average velocity over a future time interval of duration d, i.e., [t, t+ d]. Mathematically, it learns:

s(xt, t, d) =
1

d

∫ t+d

t

f(xτ , τ)dτ (20)

While Shortcut Models define their process forward in time (e.g., from t = 0 noise to t = 1 data),
the principle is directly analogous to our backward-in-time formulation. Their average velocity s
provides a direct way to approximate our flow map ϕ(xt, t, t− d) = xt − t · s(xt, t, d) (adjusting
for the time direction).

Their training objectives can be understood as specific applications of our two proposed losses. First,
the requirement that the learned average velocity must collapse to the instantaneous velocity in the
limit (d → 0) is a direct application of our Instantaneous Flow Loss. This is implemented with a
flow-matching objective that regresses the instantaneous velocity s(xt, t, 0) against the velocity of a
simple straight-line path connecting noise x0 and data x1:

||sθ(xt, t, 0)− (x1 − x0)||22 (21)

Second, they employ a Trajectory Consistency Loss by enforcing self-consistency between steps of
different durations. A step of size 2d is constrained to match the composition of two consecutive
steps of size d:

||sθ(xt, t, 2d)− starget||22 (22)
where the target starget is constructed by bootstrapping from the model’s own (stop-gradient) predic-
tions for the two smaller steps.

However, a crucial difference in methodology emerges here. In practice, the right-hand side of
Eq. (6) is treated as the supervision signal: Φ(xt, t, u) is obtained via an ODE solver (or its learned

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

approximation) and then composed forward to s. Our GTP framework incorporates an explicit
“teacher” in this process to provide stable on-trajectory information. In contrast, Shortcut Models rely
purely on self-consistency, where the model generates its own targets without external guidance. The
viability and trade-offs of learning without such a teacher remain a critical design question, which we
directly investigate through a targeted ablation study in Appendix D.2.

Mean Flows Similar to Shortcut Models, the more recent Mean Flow framework (Geng et al.,
2025) is also centered on learning the average velocity of the ODE. However, Mean Flows offer
another perspective on our unified framework, this time through a particularly direct, first-principles
formulation. At the core of this approach is the average velocity field

u(xt, r, t) =
1

t− r

∫ t

r

f(xτ , τ), dτ, (23)

which can be seen as a reparameterization of the integral term in our flow map Φ. Through this lens,
the function ϕ in Eq. (3) can be expressed simply as ϕ(xt, t, s) = xt − t · u(xt, t, s), making Mean
Flows a natural instantiation of our framework.

The crucial difference lies in the training philosophy. Rather than enforcing an explicit multi-
step consistency loss, Mean Flows are trained by satisfying a derived MeanFlow Identity: a local
differential equation linking the average velocity u to the instantaneous velocity f . This identity-based
view is closely related to recent continuous-time consistency models (Lu & Song, 2025), which also
replace explicit trajectory simulation with a local identity constraint implemented via Jacobian–vector
products, thereby avoiding the need for ODE solvers. By construction, satisfying this local identity
ensures that global trajectory consistency emerges as an inherent property, eliminating the need for
explicit multi-step supervision.

Within our framework, this identity-based approach offers a principled alternative to consistency-
based training. We therefore derive the corresponding identity for our own formulation in Ap-
pendix B.2, and empirically compare these two training philosophies—consistency versus identity—in
our ablation study (Appendix D.2).

B.2 DERIVATION OF A CONTINUOUS-TIME TRAINING OBJECTIVE

In this section, we derive an alternative training objective for our function ϕ, inspired by the method-
ology of continuous-time consistency models Lu & Song (2025) and Mean Flows (Geng et al., 2025).
This results in a self-contained identity that can be used for training, relying only on the function ϕ
itself and its derivatives.

We begin with the definition of ϕ(xt, t, s) from our unified framework:

ϕ(xt, t, s) = xt +
t

t− s

∫ s

t

f(xτ , τ)dτ. (24)

Rearranging the terms, we can isolate the integral expression:(
1− s

t

)
(ϕ(xt, t, s)− xt) =

∫ s

t

f(xτ , τ)dτ. (25)

We differentiate both sides with respect to t. Then we have:

s

t2
(ϕ(xt, t, s)− xt) +

(
1− s

t

)(dϕ(xt, t, s)

dt
− f(xt, t)

)
= −f(xt, t). (26)

Solving Equation 26 for ϕ(xt, t, s) yields a new identity relating the function to its own total derivative
and the instantaneous vector field:

ϕ(xt, t, s) = xt −
(
t2

s
− t

)
dϕ(xt, t, s)

dt
− tf(xt, t). (27)

This identity can be made fully self-referential by using the boundary condition from our Instantaneous
Flow Loss, which states ϕ(xt, t, t) = xt − tf(xt, t). We use this to substitute out the tf(xt, t) term:

ϕ(xt, t, s) = ϕ(xt, t, t)−
(
t2

s
− t

)
dϕ(xt, t, s)

dt
. (28)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For a practical implementation, the total derivative dϕ
dt is expanded using the chain rule, noting that

dxt

dt = f(xt, t):
dϕ(xt, t, s)

dt
=

dxt

dt
∂xϕ+ ∂tϕ = f(xt, t)∂xϕ+ ∂tϕ. (29)

Substituting the vector field f(xt, t) = (xt − ϕ(xt, t, t))/t into Equation 29 and then into Equation
28 gives the final, fully-expanded form:

ϕ(xt, t, s) = ϕ(xt, t, t)−
(
t2

s
− t

)(
xt − ϕ(xt, t, t)

t
∂xϕ+ ∂tϕ

)
. (30)

This final expression provides a self-contained regression target for ϕ(xt, t, s). A model ϕθ can be
trained to satisfy this identity by minimizing the L2 distance between the left-hand and right-hand
sides. The terms on the right-hand side involving ϕ are evaluated using the model ϕθ itself (typically
with a stop-gradient), and the required partial derivatives can be computed efficiently via automatic
differentiation, such as with Jacobian-vector products (JVPs).

B.3 PROOF OF THEOREM 1

We provide a detailed proof of Theorem 1. Recall that we fix a finite time horizon T > 0, let
x ∼ pdata, z ∼ N (0, I), and define xt = x+ tz. The vector fields f⋆, f̃ : Rd × (0, T]→ Rd are
given by

f⋆(xt, t) =
xt − E[x | xt]

t
, f̃(xt, t) =

xt − x

t
. (31)

The ideal and surrogate solver trajectories are denoted by

X⋆
k+1 = S∆k

[f⋆](X⋆
k), X̃k+1 = S∆k

[f̃](X̃k), X⋆
0 = X̃0 = xt. (32)

Here S∆k
[f] : Rd → Rd is a one-step method of order p with step size ∆k = τk+1 − τk. The

multi-step propagation from t to u is written as

Ψsol
t→u[f] := S∆K−1

[f] ◦ · · · ◦ S∆0
[f], (33)

with maximal step h = maxk |∆k|. We assume throughout that f⋆(·, t) is Lipschitz in x, the solver is
zero-stable, the decoder maps Φθ(·, t, s) and Φθ−(·, u, s) are Lipschitz in x, and solver states admit
bounded second moments independent of h.
Lemma 1 (Conditional unbiasedness). For all t ∈ (0, T] and x ∈ Rd with xt = x,

E
[
f̃(xt, t)

∣∣∣xt

]
= E

[
xt − x

t

∣∣∣∣xt

]
=

xt − E[x | xt]

t
= f⋆(xt, t). (34)

Proof. This follows immediately from the definitions of f̃ and f⋆.

Lemma 2 (One-step local bias). Let x ∈ Rd be the state at time τk. If the solver has order p, then

S∆k
[f̃](x)− S∆k

[f⋆](x) = ∆k

(
f̃(x, τk)− f⋆(x, τk)

)
+O(|∆k|p+1). (35)

Consequently, conditioning on xτk = x and using Lemma 1,

E
[
S∆k

[f̃](x)− S∆k
[f⋆](x)

∣∣∣xτk = x
]
= O(|∆k|p+1). (36)

Proof. By definition of an order-p one-step solver, for any drift f ,

S∆k
[f](x) = x+∆kf(x, τk) +O(|∆k|p+1). (37)

Subtracting the two cases f = f̃ and f = f⋆ gives

S∆k
[f̃](x)− S∆k

[f⋆](x) = ∆k

(
f̃(x, τk)− f⋆(x, τk)

)
+O(|∆k|p+1). (38)

Taking conditional expectation w.r.t. xτk = x and using Lemma 1 shows that the linear term vanishes,
leaving

E
[
S∆k

[f̃](x)− S∆k
[f⋆](x)

∣∣∣xτk = x
]
= O(|∆k|p+1). (39)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proposition 1 (Global state error). Let the solver trajectories be

X⋆
k+1 = S∆k

[f⋆](X⋆
k), X̃k+1 = S∆k

[f̃](X̃k), X⋆
0 = X̃0 = xt. (40)

If f⋆(·, τ) is Lipschitz in x and the solver is zero-stable, then there exist constants C,C ′ (independent
of h) such that

E∥X⋆
k+1 − X̃k+1∥ ≤ (1 + C|∆k|)E∥X⋆

k − X̃k∥ + C ′|∆k|p+1. (41)

Consequently, over the finite horizon [0, T],

E∥X⋆
K − X̃K∥ ≤ CT hp, (42)

where CT depends on T and the Lipschitz/stability constants but not on h.

Proof. We start from the standard decomposition

X⋆
k+1 − X̃k+1 =

(
S∆k

[f⋆](X⋆
k)− S∆k

[f⋆](X̃k)
)
+
(
S∆k

[f⋆](X̃k)− S∆k
[f̃](X̃k)

)
. (43)

By Lipschitz regularity of f⋆ and zero-stability of the scheme, there exists C > 0 such that

∥S∆k
[f⋆](x)− S∆k

[f⋆](y)∥ ≤ (1 + C|∆k|) ∥x− y∥, ∀x, y ∈ Rd. (44)

For instance, for explicit Euler S∆[f](x) = x+∆f(x, τk) and thus

∥S∆[f
⋆](x)−S∆[f

⋆](y)∥ = ∥(x− y)+∆(f⋆(x, τk)− f⋆(y, τk))∥ ≤ (1+Lf |∆|)∥x− y∥. (45)

General one-step methods admit the same bound with a (method-dependent) constant C.

By Lemma 2 and the law of total expectation,

E
∥∥S∆k

[f⋆](X̃k)− S∆k
[f̃](X̃k)

∥∥ = O(|∆k|p+1). (46)

Combining the two parts and taking expectations yields the recursion

E∥X⋆
k+1 − X̃k+1∥ ≤ (1 + C|∆k|)E∥X⋆

k − X̃k∥+ C ′|∆k|p+1. (47)

Denote Ek := E∥X⋆
k − X̃k∥, ak := C|∆k|, bk := C ′|∆k|p+1. Then

Ek+1 ≤ (1 + ak)Ek + bk. (48)

Unrolling the recursion gives

EK ≤
(K−1∏

j=0

(1 + aj)
)
E0 +

K−1∑
i=0

(K−1∏
j=i+1

(1 + aj)
)
bi. (49)

Since E0 = 0, the first term vanishes. For the product term, use 1 + x ≤ ex to obtain

K−1∏
j=i+1

(1 + aj) ≤ exp
(K−1∑

j=i+1

aj

)
= exp

(
C

K−1∑
j=i+1

|∆j |
)
≤ exp(CT) =: CT . (50)

For the sum, note |∆i|p+1 ≤ hp|∆i|, hence

K−1∑
i=0

bi ≤ C ′
K−1∑
i=0

|∆i|p+1 ≤ C ′hp
K−1∑
i=0

|∆i| = C ′hp(t− u) ≤ C ′Thp. (51)

Combining the two bounds,

EK ≤ CT

K−1∑
i=0

bi ≤ (CTC
′T)hp =: C̃T hp, (52)

which proves the claim.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proposition 2 (Decoder discrepancy). If Φθ−(·, u, s) is Lipschitz in x with constant L, then

E∥Φθ−(X⋆
K , u, s)− Φθ−(X̃K , u, s)∥ ≤ LE∥X⋆

K − X̃K∥ = O(hp), (53)

and, by Jensen and bounded moments,

E∥Φθ−(X⋆
K , u, s)− Φθ−(X̃K , u, s)∥2 = O(h2p). (54)

Proof sketch. Immediate from the Lipschitz property of Φθ− , Proposition 1, and Jensen’s inequality.

Proposition 3 (Objective gap). Define

Lideal(θ) := E
∥∥Φθ(xt, t, s)− Φθ−(X⋆

K , u, s)
∥∥2, (55)

Lprac(θ) := E
∥∥Φθ(xt, t, s)− Φθ−(X̃K , u, s)

∥∥2. (56)

Then ∣∣Lprac(θ)− Lideal(θ)
∣∣ = O(hp). (57)

Proof. Subtracting the two objectives yields

Lprac(θ)− Lideal(θ) =

E
[
∥Φθ(xt, t, s)− Φθ−(X̃K , u, s)∥2 − ∥Φθ(xt, t, s)− Φθ−(X⋆

K , u, s)∥2
]
. (58)

Expanding the difference gives

∥Φθ(xt, t, s)− Φθ−(X̃K , u, s)∥2 − ∥Φθ(xt, t, s)− Φθ−(X⋆
K , u, s)∥2 =〈

Φθ−(X⋆
K , u, s)− Φθ−(X̃K , u, s), Φθ−(X⋆

K , u, s) + Φθ−(X̃K , u, s)− 2Φθ(xt, t, s)
〉
.
(59)

Applying the Cauchy–Schwarz inequality yields∣∣Lprac(θ)− Lideal(θ)
∣∣ ≤√

E∥Φθ−(X⋆
K , u, s)− Φθ−(X̃K , u, s)∥2 ·

√
E∥Φθ−(X⋆

K , u, s) + Φθ−(X̃K , u, s)− 2Φθ(xt, t, s)∥2.
(60)

The second factor is O(1) uniformly in h by the bounded-moment assumption, while the first factor
is O(hp) by Proposition 2. Hence the product is O(hp).

Combining Propositions 1–3 proves that∣∣Lprac(θ)− Lideal(θ)
∣∣ = O(hp). (61)

which is the claim of Theorem 1.

B.4 THEORETICAL RATIONALE FOR THE SCORE FUNCTION APPROXIMATION

Theorem 1 formally establishes that replacing the true vector field f⋆ with the surrogate f̃ changes
the learning objective only by O(hp). Here we complement this result with intuition, showing why
such an approximation is both natural and conceptually aligned with existing frameworks.

The core challenge when training our GTP from scratch is providing stable, on-trajectory supervision.
The ideal consistency objective is to enforce that predictions from any two points on the same true
ODE trajectory are identical. In principle, the model could generate these points itself by acting as its
own ”teacher” and numerically solving its learned ODE. However, when learning from scratch, this
self-supervision process is inherently unstable. The initially random model produces highly inaccurate
estimates of the underlying vector field, which are then used to generate its own supervision. This
creates a vicious cycle where flawed targets lead to poor updates, causing further error propagation.

In contrast to our formulation with an explicit Inst Map, Consistency Training (Song et al., 2023)
compensates for the missing teacher by introducing a simple analytical supervision path (a straight
line) from which paired samples can be drawn. The process, illustrated in Figure 3a, is as follows:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1. A simple, straight-line supervision path (the white line) is constructed via xt = x0 + t · z
by sampling a data point x0 and noise z.

2. A point xt is sampled from this path. The ideal objective would require us to pair it with the
corresponding point xt−∆t on the same true ODE trajectory (the green curve). However,
obtaining this point is intractable without a teacher model.

3. To create a practical objective, Consistency Training instead samples the second point, which
we denote x′

t−∆t, directly from the simple white line.

4. Each of these points now lies on its own true (but unknown) PF ODE trajectory. The green
curve is the true trajectory passing through xt while the blue curve is the true trajectory
passing through xt−∆t.

5. The model Φ is then tasked with predicting the data origin from each of these starting points,
yielding x̂0 = Φ(xt, t, 0) and x̂′

0 = Φ(xt−∆t, t −∆t, 0). The consistency loss enforces
that these two predictions must match, even though they originated from different points on
different true trajectories:

LCT = E[||x̂0 − x̂′
0||22] (62)

The profound implication of this objective can be understood intuitively: the model is being asked to
produce the same output (x0) from two different inputs (xt and x′

t−∆t). For the model to succeed
at this task across all possible data points x0 and noise vectors z, it cannot learn any specific set
of curved trajectories. Its only viable strategy is to learn a vector field whose solution paths are,
on average, straight lines that align with the simple xt = x0 + t · z supervision structure. This
effectively ”tames” the learning problem, forcing the model to learn a consistent mapping from any
point on a noisy line back to its origin.

This leads to the deeper theoretical justification. A given noisy point xt is ambiguous; it could have
been generated by many different pairs of (x0, z). To minimize the consistency loss on average over
the entire dataset, the model’s output Φ(xt, t, 0) cannot learn to predict any single x0. Instead, it is
implicitly forced to learn the optimal Bayes estimator: the conditional expectation E[x0|xt]. This
learned denoiser is precisely the component needed to define the true, underlying PF ODE. This
process, where the model learns a single deterministic trajectory by averaging over all possible linear
paths that could generate a point xt, is conceptually illustrated in Figure 2.

To make this connection concrete, Figure 3b illustrates the training objective of our GTP framework.
While Consistency Training supervises the model indirectly by enforcing agreement between pre-
dictions from two noisy samples, our GTP formulation directly parameterizes the entire solution
map Φ(xt, t, s) and enforces its self-consistency across intervals. Conceptually, this is nothing
but the same principle as in Consistency Training: both objectives ensure that different ways of
tracing back a noisy point must yield the same underlying origin. The key difference is one of
perspective—Consistency Training views the model as a local denoiser (learning the map to t = 0),
whereas GTP treats the model as the generator of a global trajectory solution (learning the map to
any s). Thus, the two formulations are theoretically equivalent in spirit, with GTP offering a more
direct and integral-level realization of the same consistency idea.

A subtle point concerns the role of the step size. In Consistency Training (Song et al., 2023), the
theoretical justification is given in the limit ∆t → 0, ensuring locally correct supervision. In our
setting, the step size parameter h is defined as the maximum interval between adjacent time points,
so the requirement h → 0 is directly analogous to their ∆t → 0 condition. The difference is that
our Theorem 1 makes this correspondence explicit by proving that, even for finite h, the surrogate
objective deviates from the ideal one only by O(hp). Thus the infinitesimal-step reasoning of
Consistency Training can be viewed as a special case of our more general analysis.

Finally, this principle is not an isolated finding but a direct instantiation of the same powerful idea that
underpins the Flow Matching framework (Lipman et al., 2023). Both approaches learn the complex,
non-linear vector field of the true ODE by supervising it with a target derived from the conditional
expectation of simple, analytical paths. They differ only in what the neural network explicitly learns:
while Flow Matching trains a network to regress against this expected velocity, our GTP framework
learns to approximate the solution map Φ(xt, t, s) itself (the integral). This deep connection confirms
that our training strategy is not an ad-hoc simplification but a principled and theoretically sound
method for learning the correct generative dynamics.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

𝒙𝑡

training objective fixed (𝒙0, 𝐳) different (𝒙0, 𝐳) learned trajectory

Figure 2: Illustration of the learning process. A given point xt can be formed by many different
linear paths (corresponding to different pairs of (x0, z)). The model is trained to learn a single,
deterministic ”learned trajectory” that represents the conditional expectation of these paths. This
forces the model to learn the true underlying generative dynamics.

𝒙𝑡−∆𝑡

𝒙𝑡−∆𝑡
′

𝒙0

ෝ𝒙0
′

ෝ𝒙0

(a) Illustration of the Consistency Training objec-
tive. The process uses a simple, analytical supervi-
sion path (white line) defined by xt = x0 + t · z.
Two points, xt and x′

t−∆t, are sampled from this
path. Each lies on its own true (but unknown) PF
ODE trajectory (green and blue curves). The con-
sistency loss enforces that the model’s predictions
for the data origin, x̂0 and x̂′

0, must match, even
when starting from different points on different
trajectories.

𝒙0

ෝ𝒙0
′

ෝ𝒙0
𝒙𝑠

𝒙𝑠
′

𝒙𝑢

𝒙𝑢
′

(b) Illustration of the GTP Training objective. The
process mirrors that of standard Consistency Train-
ing but is generalized for an arbitrary target time
s. A student model’s direct prediction from xt to
a target point xs (green path) is trained to match
a target model’s two-step prediction via an inter-
mediate point xu (blue path). This generalization
allows the model to learn the full solution map
Φ(xt, t, s), not just the specialized map to the ori-
gin.

Figure 3: Comparison of training objectives. (a) Standard Consistency Training supervises predictions
back to the origin. (b) GTP extends this principle by enforcing self-consistency across arbitrary
intervals, enabling direct learning of the solution map.

B.5 DERIVATION OF THE ADVANTAGE-WEIGHTED OBJECTIVE

This section provides the detailed theoretical derivation for the advantage-weighted learning objective
presented in Section 4.2.

Our starting point is a standard objective in offline RL that seeks to maximize the Q-function
while regularizing the learned policy π to stay close to the dataset’s behavior policy πBC via a
KL-divergence constraint:

max
π

Ea∼π(·|s)

[
Q(s, a)− 1

η
DKL(π(·|s)||πBC(·|s))

]
(63)

As shown by prior work in variational RL (Peters et al., 2010; Abdolmaleki et al., 2018; Kumar et al.,
2020), the optimal solution π∗ for this problem takes the form of the behavior policy, re-weighted by
the exponentiated Q-function. For greater conceptual clarity and numerical stability, this solution is
typically expressed using the advantage function A(s, a) = Q(s, a)− V (s):

π∗(a|s) = 1

Z(s)
πBC(a|s) exp(ηA(s, a)), (64)

where Z(s) is the state-dependent normalization term. This π∗ represents the ideal, value-improved
target policy we wish our model to learn. The task now becomes how to train our expressive generative

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

policy πθ to match this optimal target π∗. The natural way to do so is to minimize the KL-divergence
between them:

min
θ

DKL(π
∗(·|s)||πθ(·|s)) = max

θ
Ea∼π∗(·|s)[log πθ(a|s)] (65)

To compute this expectation, we use importance sampling to switch from the intractable target distri-
bution π∗ to the tractable dataset distribution πBC. The importance weight is π∗(a|s)/πBC(a|s) =
exp(ηA(s, a))/Z(s). Substituting this into our objective gives:

max
θ

E(s,a)∼D

[
exp(ηA(s, a))

Z(s)
log πθ(a|s)

]
(66)

Here we arrive at the final crucial step. The normalization term Z(s) is also independent of our
optimization variable θ. Therefore, when taking the gradient with respect to θ, Z(s) acts as a
constant scaling factor and does not affect the location of the optimum. We can thus drop it from the
optimization objective, which yields the final, practical form:

max
θ

E(s,a)∼D[exp(ηA(s, a)) log πθ(a|s)] (67)

While we write the loss here in terms of log-likelihood for clarity, the same exponential advantage
weighting directly applies to any generative training loss, including diffusion and flow-matching
objectives. This confirms that applying an exponential advantage weight to the log-likelihood
objective of our generative policy is the theoretically correct implementation of the variational policy
optimization framework.

B.6 ADDITIONAL DISCUSSION ON ACTOR LOSS FORMULATIONS

In Section 5.3, we compared our variational guidance against a baseline that linearly combines the
generative loss with a Q-learning actor loss. Here we provide a more detailed discussion.

Formulation. The baseline takes the form
Lactor = LBC + λLQ, (68)

while our method instead adopts a weighted behavior cloning objective:
Lweighted-BC = E(s,a)∼D

[
w(s, a)LBC

]
, (69)

where w(s, a) is given in Equation 14.
Lemma 3. When LBC(π;πβ) is instantiated as a KL divergence DKL(πβ(·|s) ∥π(·|s)), the linear-
combination objective corresponds to a KL-regularized policy improvement whose optimizer

π∗(a|s) = 1
Z(s) πβ(a|s) exp

(
λQ(s, a)

)
. (70)

Training a parametric policy πθ to match π∗ then leads to a weighted-BC update

max
θ

Ea∼πβ(·|s)
[
exp
(
λQ(s, a)

)
log πθ(a|s)

]
, (71)

i.e., weighted behavior cloning with weights w(s, a) ∝ exp(λQ(s, a)).

Proof Sketch. By definition,
Lactor = LBC + λLQ. (72)

When LBC is instantiated as a KL divergence and LQ as the negative Q-expectation, this becomes

Lactor = Es∼D

[
DKL

(
πβ(·|s) ∥π(·|s)

)
− λEa∼π(·|s)[Q(s, a)]

]
. (73)

Optimizing over π yields
π∗(a|s) = 1

Z(s) πβ(a|s) exp
(
λQ(s, a)

)
, (74)

which is exactly the same Boltzmann form derived in Appendix B.5. Minimizing the KL divergence
between π∗ and the parametric policy πθ is therefore equivalent to weighted BC with exponential
weights.

Remark. Replacing Q(s, a) with the advantage A(s, a) = Q(s, a) − V (s) makes the weights
invariant to affine shifts of Q; the state-value term is absorbed into Z(s), leaving the training
objective unchanged.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

original data distribution value-guided distribution

Figure 4: Illustration of weighted behavior cloning. The empirical dataset distribution (black)
is reweighted into a value-guided distribution (red), which emphasizes high-value regions while
remaining strictly within the data support.

Discussion. This result shows that, when the behavior cloning loss is instantiated as a KL divergence,
the linear-combination baseline and our weighted-BC approach are consistent through the underlying
KL-regularized policy improvement. For other choices of LBC, this connection is less direct. In
practice, however, the raw linear form is highly sensitive to the scale of λ and critic values, whereas
our normalized and clipped weighting provides stable and robust training across settings.

Beyond this theoretical connection, the linear combination can be viewed as a more direct engineering
heuristic. Its practical challenge lies in the choice of λ, which controls the relative strength of the
gradient signals. Since our LBC is already composed of multiple components, the magnitudes of
LBC and LQ can differ by orders of magnitude. Stabilizing this baseline thus requires careful tuning
of λ—often by matching empirical gradient norms during training—otherwise one may encounter
exploding critic gradients or vanishing actor updates.

A further drawback is that the direct gradient from LQ can steer the policy toward out-of-distribution
(OOD) actions because it relies on critic estimates for actions with little or no dataset support. In
practice, this extrapolation error propagates through the bootstrapped TD targets, inflating temporal-
difference residuals and often causing the critic loss to explode—a phenomenon we frequently
observed in implementation. By contrast, our weighted-BC formulation never changes the data itself:
the policy is always trained on in-distribution samples, but their effective frequency (or density) is
adjusted according to value estimates. This reweighting not only shifts probability mass toward
high-value regions of the dataset (Figure 4), but also makes gradient magnitudes easier to control,
thereby greatly reducing the occurrence of critic loss explosions in practice.

C IMPLEMENTATION DETAILS

C.1 EXPERIMENTAL HYPERPARAMETERS

Unless otherwise noted, all ablation studies were executed on the RTX 4090 + i9-13900K workstation;
the other machines were used for main-figure experiments. All experiments are implemented in
Python and conducted on five machines: one with an RTX 4090 and i9-13900K CPU (24 cores / 32
threads); three with dual A40 GPUs and dual EPYC 7313 CPUs (16 cores / 32 threads each); and one
with an RTX 3050 and i7-13700H CPU (14 cores / 20 threads). RAM ranges from 24 GB to 128 GB
across machines.

C.2 DYNAMIC TIMESTEP SCHEDULING FOR ROBUST TRAJECTORY LEARNING

In our implementation, to address the trade-off between computational cost and approximation
accuracy inherent in selecting the number of discretization steps N , we adopt a dynamic scheduling
strategy inspired by Song & Dhariwal (2024). Rather than fixing N , the schedule gradually increases
the number of steps as training progresses. This curriculum exposes the model to trajectories of
varying resolutions, which prevents overfitting to a specific discretization and promotes a more
faithful understanding of the underlying continuous-time dynamics. Consequently, the learned policy

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 4: The hyperparameters in offline (including BC, η = 0) training on D4RL Gym, AntMaze,
Adroit and Kitchen tasks.

Hyperparameters
Tasks learning rate η Q norm max Q backup gradient norm

halfcheetah-medium-v2 3× 10−4 5.0 False False 9.0
hopper-medium-v2 3× 10−4 1.0 False False 9.0

walker2d-medium-v2 3× 10−4 5.0 False False 1.0
halfcheetah-medium-replay-v2 3× 10−4 5.0 False False 2.0

hopper-medium-replay-v2 3× 10−4 5.0 False False 4.0
walker2d-medium-replay-v2 3× 10−4 5.0 False False 4.0

halfcheetah-medium-expert-v2 3× 10−4 5.0 False False 7.0
hopper-medium-expert-v2 3× 10−4 0.5 False False 5.0

walker2d-medium-expert-v2 3× 10−4 5.0 False False 5.0
antmaze-umaze-v0 3× 10−4 5.0 False False 2.0

antmaze-umaze-diverse-v0 3× 10−4 1.0 False True 3.0
antmaze-medium-play-v0 1× 10−3 5.0 False True 2.0

becomes robust to the choice of inference steps, maintaining strong performance even with a small
number of sampling steps at deployment.

Formally, the number of steps at iteration k is given by:

N(k) = min

(
s0 · 2

⌊
k
K′

⌋
, s1

)
+ 1, where K ′ =

⌊
K

log2
s1
s0

+ 1

⌋
. (75)

Here K is the total number of training iterations, s0 = 10 and s1 = 1280 are the minimum and
maximum number of discretization steps, respectively. The schedule doubles the step count every K ′

iterations until the maximum s1 is reached, starting with short, computationally efficient rollouts and
progressively refining toward longer, more accurate trajectories.

D ADDITIONAL RESULTS

D.1 ABLATION STUDY: EFFICIENCY–PERFORMANCE TRADE-OFF AT INFERENCE

A core claim of our work is that GTP resolves the trade-off between expressiveness and efficiency.
To validate this, we compare inference-time efficiency across different generative policy classes on
halfcheetah-medium-expert-v2. Specifically, we sample 100 trajectories and report the
average wall-clock time per inference step together with final policy performance. We benchmark
GTP against diffusion policies with T = 5 sampling steps and consistency models with T = 2 steps,
while also evaluating GTP with T = 5 steps to ensure a fair comparison in terms of sampling cost.

Results and Analysis. Table 5 summarizes the results. We find that GTP with T = 5 achieves
slightly faster inference than diffusion with the same number of steps, while delivering substantially
better performance. Compared to consistency models with T = 2, our method is moderately
slower but significantly more expressive, closing the gap between efficiency and policy quality. This
demonstrates that GTP provides a favorable balance between efficiency and performance, resolving a
long-standing limitation of prior generative policies.

D.2 ABLATION ON ACTOR LOSS FORMULATION

We further examined whether our explicit teacher is truly necessary by testing two teacher-free
philosophies: (i) the self-consistency principle underlying Shortcut Models (Frans et al., 2025), and
(ii) the identity-based formulation of continuous consistency models and Mean Flows (Lu & Song,
2025; Geng et al., 2025). Both yield a continuous-time actor loss that is theoretically elegant and
fully self-referential, requiring no external supervision.

Results and Analysis. In practice, however, both variants were unsatisfactory. The identity-based
loss demanded repeated JVPs in PyTorch, leading to prohibitive memory and runtime overhead.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5: Ablation results on halfcheetah-medium-expert-v2. Inference time is averaged
over 100 sampled trajectories. GTP achieves a superior trade-off, being faster than diffusion while
outperforming consistency.

Method Inference Time (ms)

Diffusion Policy (T = 5) 1.16
Consistency Model (T = 2) 0.55
GTP (T = 5) 0.94

Table 6: Ablation results on hopper-medium-expert-v2 (mean ± std over 5 random seeds).
Teacher-free objectives are either too costly (Mean Flows) or unstable (Shortcut), while our teacher-
based formulation achieves the best trade-off.

Method Training Time Score
Shortcut Models (no teacher) 4.58 h 76.1± 5.7
Mean Flows (identity) 6.03 h Diverged
GTP (ours) 4.26 h 112.2± 0.6

Despite multiple attempts and stabilization tricks, all identity-based runs eventually encountered
severe divergence, with either actor loss blowing up or critic loss exploding due to OOD data.
We nevertheless completed several such runs: one experiment took 6.03 hours to finish but still
collapsed in performance. We suspect this discrepancy arises because the original Mean Flows were
implemented on TPUs with specialized auto-differentiation, while PyTorch+GPU implementations
incur heavy JVP costs and suffer from numerical instability—issues that are especially problematic
in RL, where stable training is crucial. The self-consistency variant, while computationally lighter,
also produced unstable targets and degraded policy quality.

In contrast, our teacher-guided score approximation provided stable, efficient training and consistently
stronger policies. These results highlight that while teacher-free objectives are conceptually appealing,
they are not yet practical under standard GPU-based RL settings. We leave further improvements in
this direction as an interesting avenue for future work.

D.3 VISUALIZING EXPRESSIVENESS AND EFFICIENCY IN MULTI-GOAL ENVIRONMENTS

6 4 2 0 2 4 6
8

6

4

2

0

2

4

6

8

G1G2

G3

G4

Multigoal Environment

4

4 4

4

8

8

8

8

12

12

12

12

16 16

16

16

16

20

20

20

20

20

24

24

24

24

28

28

28

28

32 32

32 32

36

36

36

36

40

40

40

40

44

44

44

44

48

48

48

48

52

52

52

52

56

56

56

56

60

60

60 60

(a) Original Dataset

6 4 2 0 2 4 6
8

6

4

2

0

2

4

6

8

G1G2

G3

G4

Multigoal Environment

4

4 4

4

8

8

8

8

12

12

12

12

16 16

16

16

16

20

20

20

20

20

24

24

24

24

28

28

28

28

32 32

32 32

36

36

36

36

40

40

40

40

44

44

44

44

48

48

48

48

52

52

52

52

56

56

56

56

60

60

60 60

(b) Diffusion-QL (48 mins)

6 4 2 0 2 4 6
8

6

4

2

0

2

4

6

8

G1G2

G3

G4

Multigoal Environment

4

4 4

4

8

8

8

8

12

12

12

12

16 16

16

16

16

20

20

20

20

20

24

24

24

24

28

28

28

28

32 32

32 32

36

36

36

36

40

40

40

40

44

44

44

44

48

48

48

48

52

52

52

52

56

56

56

56

60

60

60 60

(c) Consistency-AC (35 mins)

6 4 2 0 2 4 6
8

6

4

2

0

2

4

6

8

G1G2

G3

G4

Multigoal Environment

4

4 4

4

8

8

8

8

12

12

12

12

16 16

16

16

16

20

20

20

20

20

24

24

24

24

28

28

28

28

32 32

32 32

36

36

36

36

40

40

40

40

44

44

44

44

48

48

48

48

52

52

52

52

56

56

56

56

60

60

60 60

(d) GTP (Ours) (37 mins)

Figure 5: Policy visualization in a 2D multi-goal environment.

To provide an intuitive, visual confirmation of our claims, we design a 2D multi-goal environment
where the optimal policy is inherently multi-modal. As shown in Figure 5, our GTP model accurately
captures the four distinct modes of the data, learning a policy that successfully reaches all goals.
In contrast, while Diffusion-QL also captures the modes, it does so at a higher computational cost.
Consistency-AC is faster but fails to capture all modes, suffering from degraded policy quality. This
visualization provides a clear illustration of our method’s central achievement: successfully modeling
diverse, multi-modal behaviors without sacrificing computational efficiency.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E ADDITIONAL ILLUSTRATIONS

Slow Inference

Error Accumulation

𝒙0 𝒙𝑇

0 T

Data Distribution Noise DistributionLearned Flow Map Φ𝜃 𝒙𝑡 , 𝑡, 𝑠

Direct Jump

s

t

Figure 6: Illustration of the unified solution map Φ(xt, t, s). Iterative solvers (blue) suffer from slow
inference and error accumulation, whereas the learned flow map (red) enables direct jumps from the
noise distribution xT to the data distribution x0, providing an intuitive view of our unified framework.

26

	Introduction
	Related Work
	ODE-Based Generative Modeling
	Defining the Vector Field
	Efficiently Solving the ODE by Learning the Solution Map
	A Unified Framework for Learning ODE Trajectories

	Generative Trajectory Policies for Offline RL
	Efficient and Stable Training via Score Approximation
	Value-Driven Guidance for Policy Improvement
	The GTP Optimization Framework

	Experimental Results
	Expressiveness as a Behavior Cloning Policy
	From Imitation to Improvement: GTP in Offline RL
	Ablation Study

	Conclusion
	Related Work
	Theoretical Insights
	A Unified View of Prior Generative Models
	Derivation of a Continuous-Time Training Objective
	Proof of Theorem 1
	Theoretical Rationale for the Score Function Approximation
	Derivation of the Advantage-Weighted Objective
	Additional Discussion on Actor Loss Formulations

	Implementation Details
	Experimental Hyperparameters
	Dynamic Timestep Scheduling for Robust Trajectory Learning

	Additional Results
	Ablation Study: Efficiency–Performance Trade-off at Inference
	Ablation on Actor Loss Formulation
	Visualizing Expressiveness and Efficiency in Multi-Goal Environments

	Additional Illustrations

