

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OFFLINE REINFORCEMENT LEARNING WITH GENERATIVE TRAJECTORY POLICIES

Anonymous authors

Paper under double-blind review

## ABSTRACT

Generative models have emerged as a powerful class of policies for offline reinforcement learning (RL) due to their ability to capture complex, multi-modal behaviors. However, existing methods face a stark trade-off: slow, iterative models like diffusion policies are computationally expensive, while fast, single-step models like consistency policies often suffer from degraded performance. In this paper, we demonstrate that it is possible to bridge this gap. The key to moving beyond the limitations of individual methods, we argue, lies in a unifying perspective that views modern generative models—including diffusion, flow matching, and consistency models—as specific instances of learning a continuous-time generative trajectory governed by an Ordinary Differential Equation (ODE). This principled foundation provides a clearer design space for generative policies in RL and allows us to propose *Generative Trajectory Policies* (GTPs), a new and more general policy paradigm that learns the entire solution map of the underlying ODE. To make this paradigm practical for offline RL, we further introduce two key theoretically principled adaptations. Empirical results demonstrate that GTP achieves state-of-the-art performance on D4RL benchmarks – it significantly outperforms prior generative policies, achieving perfect scores on several notoriously hard AntMaze tasks.

## 1 INTRODUCTION

In offline reinforcement learning (RL), an agent needs to learn a policy from a pre-collected dataset without any further interaction with the environment. This setting creates a fundamental challenge: the agent is asked to generalize from limited, often narrow, experience to an unpredictable world. At the heart of this challenge lies the need for policy expressiveness - the capacity to capture rich, often multi-modal patterns of behavior present in real-world datasets. Traditional offline RL methods rely on simple function approximators and are prone to distribution shift, as the learned policy may choose actions not present in the dataset, leading to inaccurate value estimates (Fujimoto et al., 2019; Wu et al., 2019; Kumar et al., 2020). This has sparked growing interest in generative models - from generative adversarial networks (GANs), variational autoencoders (VAEs), to Energy-Based Models (EBMs) - as powerful tools to model the full complexity and diversity of RL policies (Ho & Ermon, 2016; Ha & Schmidhuber, 2018; Ho et al., 2020; Brahmane et al., 2023; Messaoud et al., 2024).

Most recently, diffusion-based policies have emerged as a powerful paradigm due to their exceptional ability to represent complex, multi-modal distributions (Wang et al., 2023; Janner et al., 2022; Pearce et al., 2023). However, their expressive power comes at a steep price: the slow, iterative sampling process required for generation imposes a significant computational burden, hindering their practical utility. To resolve this, subsequent work has employed consistency-based models to accelerate inference, often enabling one or two-step generation (Ding & Jin, 2024). While remarkably fast, this simplification frequently leads to degraded policy quality, with performance saturating quickly.

This demonstrates a fundamental trade-off between expressiveness and efficiency for generative policies. The research question in this work is: *Is it possible to design a policy class that can achieve both policy expressiveness and computational efficiency?*

A key insight of our work is that the path to resolving this trade-off lies in a general principle that unifies a family of powerful modern generative models. We observe that a spectrum of recent advancements, including diffusion models (Song & Ermon, 2019; Song et al., 2021b), Consistency Models (Song et al., 2023), Consistency Trajectory Models (CTMs) (Kim et al., 2024), and various

054 forms of Flow Matching (Frans et al., 2025; Geng et al., 2025), can all be understood through the lens  
 055 of a continuous-time generative trajectory governed by an Ordinary Differential Equation (ODE).  
 056 This unified perspective provides the theoretical foundation for our work, enabling us to conceptualize  
 057 a policy itself as a full trajectory and thereby design a new class of expressive and efficient policies.  
 058

059 Building on this foundation, we introduce *Generative Trajectory Policies* (GTPs), a new policy  
 060 paradigm that learns the entire solution map of the underlying ODE. By learning the full trajectory,  
 061 GTPs are not confined to either slow, high-fidelity sampling or fast, low-fidelity shortcuts. Instead,  
 062 they enable flexible, multi-step, deterministic generation that can achieve high performance even with  
 063 a few sampling steps.  
 064

065 Our key contributions include: i) We propose GTP, a new and highly expressive policy paradigm  
 066 for offline RL, derived from a unifying framework that connects a family of modern generative  
 067 models to continuous-time ODE trajectories. ii) We make a practical implementation of the GTP  
 068 paradigm by developing two key *theoretically-grounded adaptations* that address computational cost,  
 069 training instability, and misaligned objectives, including a score approximation and a variational  
 070 framework for value-driven policy improvement. iii) We empirically validate GTP on the D4RL  
 071 benchmarks, where it achieves state-of-the-art performance, outperforming prior generative and  
 072 offline RL methods. Notably, our approach achieves perfect scores on several notoriously challenging  
 073 AntMaze tasks, demonstrating its ability to strike a more favorable balance between expressiveness  
 074 and efficiency. Our code is included in the supplementary and will be released upon paper acceptance.  
 075

## 076 2 RELATED WORK

077 We briefly introduce the related work. A more detailed discussion is provided in Appendix A.  
 078

079 **Expressive Policies in Offline RL.** Offline RL depends on policies that are expressive enough to  
 080 capture the diverse, often multi-modal behaviors present in datasets. Conventional choices like  
 081 Gaussian policies are easy to train but struggle to represent such complexity. Much of the literature  
 082 has instead advanced from the critic side, regularizing value functions to guard against overestimation  
 083 (Fujimoto et al., 2019; Wu et al., 2019; Kumar et al., 2020; Kostrikov et al., 2022). While effective,  
 084 these methods leave the policy class itself underpowered, motivating a complementary line of research:  
 085 actor-centric approaches that adopt generative models. Early explorations with GANs/VAEs (Ho &  
 086 Ermon, 2016) and energy-based policies (Messaoud et al., 2024) showed promise, but were often  
 087 hampered by training instabilities and did not achieve the sample quality of modern generative  
 088 paradigms, leaving the need for a truly robust and expressive policy class as a key open problem.  
 089

090 **Continuous-Time Generative Models.** A new generation of powerful tools for this task has  
 091 emerged from the generative modeling community. A spectrum of recent advancements can be  
 092 understood through the unifying lens of learning a continuous-time trajectory governed by an  
 093 Ordinary Differential Equation (ODE). This includes score-based diffusion models (Song et al.,  
 094 2021b), Flow Matching (FM) (Lipman et al., 2023; Frans et al., 2025), Consistency Models (CMs)  
 095 (Song et al., 2023) and Consistency Trajectory Models (CTMs) (Kim et al., 2024). While this  
 096 evolution has produced a powerful toolbox of trajectory-based generative models, their potential has  
 097 not yet been fully realized in the RL domain. The challenge of adapting these powerful but complex  
 098 models to the specific constraints and objectives of offline RL remains a significant barrier.  
 099

100 **The Trade-off in Generative Policies.** Researchers have begun to apply these powerful generative  
 101 tools as policies in offline RL. Early work with diffusion-based policies demonstrated their immense  
 102 potential to model complex action distributions (Wang et al., 2023; Janner et al., 2022; Pearce et al.,  
 103 2023), but at the cost of slow, iterative inference. In response, consistency-based policies were  
 104 introduced to accelerate sampling, often to one or two steps (Ding & Jin, 2024), but this frequently  
 105 resulted in degraded policy performance. This work has established a new and critical trade-off  
 106 between expressiveness and efficiency. How to properly adapt the underlying principles of these  
 107 powerful generative models to create a policy class that is both high-performing and efficient in the  
 108 demanding offline RL setting remains a key open problem that our work aims to address.  
 109

## 110 3 A UNIFIED ODE FRAMEWORK FOR GENERATIVE MODELS

111 A cornerstone of many modern generative models is the idea of reversing a process that gradually  
 112 perturbs data into noise. While prior work typically treats diffusion models, consistency models, and  
 113



Figure 1: Illustration of the unified solution map  $\Phi(\mathbf{x}_t, t, s)$ . Iterative solvers (blue) suffer from slow inference and error accumulation, whereas the learned flow map (red) enables direct jumps from the noise distribution  $\mathbf{x}_T$  to the data distribution  $\mathbf{x}_0$ , providing an intuitive view of our unified framework.

flow matching as separate families, we propose a single unified ODE framework that reveals all these models as instances of the same underlying formulation. The reverse process can be described by a general ODE:

$$\frac{d\mathbf{x}_t}{dt} = f(\mathbf{x}_t, t), \quad (1)$$

where the vector field  $f(\mathbf{x}, t)$  defines a deterministic trajectory from a point  $\mathbf{x}_T$  sampled from a simple prior distribution to a data sample  $\mathbf{x}_0$ , and  $t \in [0, T]$ .

Innovation within this framework has advanced along two complementary axes: (1) defining the vector field  $f$ , as in diffusion-based approaches (Song et al., 2021b) and flow matching (Lipman et al., 2023); and (2) solving the ODE efficiently, which is a central challenge since standard numerical solvers require hundreds of discretization steps, leading to slow inference and accumulated errors (Song et al., 2023; Kim et al., 2024). While the first axis has largely matured, the second remains a bottleneck and has inspired a new class of methods that directly learn the ODE’s solution map.

### 3.1 DEFINING THE VECTOR FIELD

The choice of the vector field  $f(\mathbf{x}_t, t)$  is crucial, as it determines the exact generative path from noise to data. Prominent methods for defining these dynamics include:

**Diffusion Models.** Originating from diffusion-based modeling, this class of methods defines the vector field indirectly. The dynamics are determined by the score function,  $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$ , which is the gradient of the log-density of the noisy data distribution. In the corresponding Probability Flow (PF) ODE (Song et al., 2021b), a neural network is trained to approximate this score (or an equivalent denoising function), thereby implicitly specifying the vector field that governs the generative process.

**Flow Matching.** In contrast, Flow Matching (FM) (Lipman et al., 2023) provides a more direct and general framework for learning the vector field. This method involves training a neural network  $f_\theta(\mathbf{x}_t, t)$  by directly regressing it against a known target vector field that connects the data and prior distributions. This direct regression offers a stable and often more efficient training objective.

### 3.2 EFFICIENTLY SOLVING THE ODE BY LEARNING THE SOLUTION MAP

Instead of relying on numerical integration, a powerful alternative is to model the ODE’s solution map directly. We highlight that the true ODE flow map,  $\Phi(\mathbf{x}_t, t, s)$ , which maps a state at time  $t$  to its corresponding state at time  $s$ , naturally provides a *unifying representation* for a wide family of generative models:

$$\mathbf{x}_s = \Phi(\mathbf{x}_t, t, s) = \mathbf{x}_t + \int_t^s f(\mathbf{x}_\tau, \tau) d\tau. \quad (2)$$

Figure 1 illustrates this unified viewpoint. Under this formulation, classic approaches such as Consistency Models (Song et al., 2023), Consistency Trajectory Models (Kim et al., 2024), Shortcut Models (Frans et al., 2025), and Mean Flows (Geng et al., 2025) can all be interpreted as approximating specific aspects or limits of the same flow map  $\Phi$ . For instance, diffusion denoisers estimate its infinitesimal form, whereas consistency models enforce its compositional structure.

162 3.3 LEARNING THE FLOW MAP: A GENERAL PARAMETERIZATION  
163

164 Guided by this unified perspective, we introduce a general parameterization for learning the ODE  
165 flow map. Although  $\Phi$  provides the ideal target, its integral form is not directly suitable for training.  
166 We therefore adopt a surrogate function  $\phi(\mathbf{x}_t, t, s)$  inspired by (Kim et al., 2024):

$$167 \quad \phi(\mathbf{x}_t, t, s) = \mathbf{x}_t + \frac{t}{t-s} \int_t^s f(\mathbf{x}_\tau, \tau) d\tau. \quad (3)$$

170 The exact flow map can be recovered via linear interpolation:

$$171 \quad \Phi(\mathbf{x}_t, t, s) = \left(1 - \frac{s}{t}\right) \phi(\mathbf{x}_t, t, s) + \frac{s}{t} \mathbf{x}_t. \quad (4)$$

174 This parameterization has a natural interpretation:  $\phi(\mathbf{x}_t, t, s)$  serves as an estimate of the endpoint  
175  $\mathbf{x}_0$ , extrapolated from  $\mathbf{x}_t$  using the *average velocity* over  $[s, t]$ . Importantly, it allows us to define two  
176 complementary training objectives that together form the core of our unified ODE framework.

177 **1. The Instantaneous Flow Loss (Local Anchor).** This objective ensures the learned map is correct  
178 for *infinitesimal steps* by enforcing a boundary condition at the limit  $s \rightarrow t$ :

$$179 \quad \lim_{s \rightarrow t} \phi(\mathbf{x}_t, t, s) = \mathbf{x}_t - t f(\mathbf{x}_t, t). \quad (5)$$

181 For convenience, we denote  $\phi^{\text{inst}}(\mathbf{x}_t, t) := \phi(\mathbf{x}_t, t, t)$  and refer to it as the *Inst Map*. This condition  
182 provides a powerful connection to prominent generative modeling paradigms: the right-hand side  
183 recovers the denoiser  $D(\mathbf{x}_t, t)$  (i.e.,  $\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t]$ ) in diffusion models and the velocity field target  
184 in flow matching,  $f(\mathbf{x}_t, t) = (\mathbf{x}_t - \phi^{\text{inst}}(\mathbf{x}_t, t))/t$ . In practice,  $\phi_{\theta}^{\text{inst}}(\mathbf{x}_t, t)$  is the model prediction,  
185 trained with task-specific targets: for diffusion, the target is the clean sample  $\mathbf{x}_0$ ; for flow matching,  
186 the target becomes  $\mathbf{x}_t - t(\mathbf{x}_1 - \mathbf{x}_0)$ . In this sense, the Inst Map acts as a *local anchor*, unifying  
187 diffusion-style denoising and flow-matching velocity estimation under a single principle.

188 **2. The Trajectory Consistency Loss (Global Regulator).** This objective enforces correctness across  
189 long, *multi-step jumps* by requiring self-consistency:

$$190 \quad \Phi(\mathbf{x}_t, t, s) \approx \Phi(\Phi(\mathbf{x}_t, t, u), u, s), \quad \text{for } t > u > s. \quad (6)$$

192 where  $u$  denotes an intermediate time between  $t$  and  $s$ . Here, the displacement over  $[t, s]$  must equal  
193 the sum of displacements over  $[t, u]$  and  $[u, s]$ . In practice, the right-hand side is treated as the target:  
194  $\Phi(\mathbf{x}_t, t, u)$  is obtained using an ODE solver (or its learned approximation), and then composed  
195 forward to  $s$ . The loss is then defined by the discrepancy between the left- and right-hand sides of  
196 Eq. (6). This serves as a *global regulator*, enforcing coherence of long trajectories with the additive  
197 structure of ODEs.

198 Taken together, the two objectives are complementary: the instantaneous loss enforces fidelity in  
199 local dynamics, while the trajectory consistency loss guarantees global coherence across time. We  
200 next show how several prominent generative models emerge as a concrete instances of this unified  
201 ODE framework.

202 3.4 PRIOR MODELS AS SPECIAL CASES OF THE UNIFIED ODE FRAMEWORK  
203

204 With the flow map  $\Phi$ , the reparameterization  $\phi$ , and the two training objectives, many existing  
205 generative models naturally emerge as a special case of our unified ODE framework. Below we  
206 summarize the key correspondences; additional details are provided in Appendix B.1

208 **Consistency Models (CMs).** CMs (Song et al., 2023) effectively restrict the flow map to the terminal-  
209 time evaluation  $\Phi(\mathbf{x}_t, t, 0)$  in Eq. (2). Their core objective enforces a discrete approximation of the  
210 ODE’s compositional property:

$$211 \quad \Phi(\mathbf{x}_t, t, 0) \approx \Phi(\Phi(\mathbf{x}_t, t, -\Delta t), t - \Delta t, 0),$$

212 which is directly aligned with our Trajectory Consistency Loss in Eq. (6). The EMA bootstrapping  
213 operator is a practical implementation of enforcing the same flow-map identity with a one-step target.

215 **Consistency Trajectory Models (CTMs).** CTMs (Kim et al., 2024) explicitly parameterize  
216  $\Phi(\mathbf{x}_t, t, s)$  and train it using a form of trajectory self-consistency. This corresponds exactly to our

216 Trajectory Consistency Loss, while their auxiliary diffusion loss plays the role of our Instantaneous  
 217 Flow Loss. Thus CTMs instantiate both core components of our unified framework.

218 **Shortcut Models.** Shortcut Models (Frans et al., 2025) learn a finite-time “average velocity” over  
 219 the interval  $[t, t + d]$ , which corresponds to estimating the integral term in the reparameterized form  
 220  $\phi$  of Eq. (3). Taking the limit  $d \rightarrow 0$  yields the instantaneous velocity  $f(\mathbf{x}_t, t)$  and therefore aligns  
 221 with Eq. (5), while imposing compatibility across different  $d$  values realizes a discrete form of the  
 222 Trajectory Consistency condition in Eq. (6). Hence Shortcut Models can be viewed as learning  
 223 finite-time approximations to the same flow map  $\Phi$ .

224 **Mean Flows.** Mean Flows (Geng et al., 2025) reparameterize the average velocity

$$226 \quad 227 \quad u(\mathbf{x}_t, t, s) = \frac{\mathbf{x}_t - \phi(\mathbf{x}_t, t, s)}{t},$$

228 which follows directly from the flow-map definition in Eq. (2) and aligns with our  $\phi$  parameterization  
 229 in Eq. (3). Instead of applying an explicit multi-step consistency loss, Mean Flows enforce a  
 230 differential “MeanFlow Identity” relating  $u$  and the instantaneous velocity  $f$ , serving as an implicit  
 231 analog of the Trajectory Consistency condition in Eq. (6). Despite using a distinct training mechanism,  
 232 the learned object is mathematically a special case of our reparameterized flow representation.

## 234 4 GENERATIVE TRAJECTORY POLICIES FOR OFFLINE RL

235 In the previous section, we established a unified ODE trajectory framework that offers an elegant  
 236 lens for understanding a family of modern generative models. This lays a theoretical foundation for  
 237 designing expressive generative trajectory policies. We define a Generative Trajectory Policy (GTP)  
 238 as a policy class that generates actions by learning the solution map of a continuous-time generative  
 239 ODE. However, translating these insights into a functional offline RL algorithm is hindered by three  
 240 practical challenges:

241 **Prohibitive Computational Burden.** Learning an ODE trajectory requires on-trajectory supervision.  
 242 As discussed in Section 3.3, this is obtained by numerically solving the ODE backward from  $t$  to  
 243 an intermediate point  $u$  using multiple discrete steps (e.g., Euler, Heun), an operation we denote  
 244 as  $\text{Solver}(\mathbf{x}_t, t, u)$ . When scaled to offline RL, where millions of updates are needed, repeatedly  
 245 performing this inner-loop solving for every sample makes the overall computation quickly intractable.

246 **Inherent Training Instability.** Unlike distillation methods, our framework must learn the entire  
 247 ODE trajectory *from scratch*. Central to this process is the Inst Map  $\phi^{\text{inst}}(\mathbf{x}_t, t)$ , which specifies the  
 248 ODE’s right-hand side through  $f(\mathbf{x}_t, t) = (\mathbf{x}_t - \phi^{\text{inst}}(\mathbf{x}_t, t))/t$ . Early in training, the Inst Map is  
 249 highly inaccurate; yet its outputs are immediately fed back into the solver to generate supervision.  
 250 This bootstrapping quickly forms a vicious cycle that resembles TD learning (Sutton, 1988)—bad  
 251 targets yield bad updates—that destabilizes the Actor–Critic loop and often hinders convergence.

252 **Misaligned Generative Objective.** The default objective of generative models is to match the data  
 253 distribution, which in offline RL reduces to behavior cloning (BC). While BC is a reasonable baseline,  
 254 it cannot achieve policy improvement—the central goal of offline RL. Thus, a key challenge is to  
 255 design a value-aware objective that leverages the generative process not only to imitate observed  
 256 actions but also to emphasize those leading to higher returns.

257 To address these challenges, we introduce two key techniques tailored to the practical implementation  
 258 of GTP, as illustrated in Figure 2. The following subsections detail these techniques and show how  
 259 they jointly enable stable, efficient, and value-driven training.

### 260 4.1 EFFICIENT AND STABLE TRAINING VIA SCORE APPROXIMATION

261 A central difficulty in our framework is the reliance on self-referential supervision: the model must  
 262 repeatedly supply  $\phi^{\text{inst}}(\mathbf{x}_t, t)$  (score estimates) at each solver time point<sup>1</sup>, which the ODE solver  
 263 integrates over many iterations. This approach is not only computationally demanding, but also  
 264 fragile—early-stage errors in the learned vector field immediately corrupt the supervision signals.

265 <sup>1</sup>Throughout the paper we use the term *score* for consistency with prior literature, although in our framework  
 266 it is formally the Inst Map  $\phi^{\text{inst}}$ .



Figure 2: The two core techniques of the GTP implementation: (a) Stable Score Approximation: the target trajectory (green) is contrasted with a reference (red) computed by a multi-step ODE solver (red dashed arrow). The blue dashed arrow denotes a single-step update obtained from our approximate score, which yields the blue trajectory without multi-step integration. (b) Value-Driven Guidance: the BC trajectory (green) is shifted toward high-value regions so that the learned GTP trajectory (blue) approaches the optimal action while remaining aligned with the data.

To address it, we replace  $\phi^{\text{inst}}(\mathbf{x}_t, t)$  with a closed-form surrogate anchored to the offline sample,  $\tilde{f}(\mathbf{x}_t, t) = (\mathbf{x}_t - \mathbf{x})/t$ . The theorem below shows that this yields a training loss asymptotically equivalent to the ideal one.

**Theorem 1.** Fix a time horizon  $T > 0$ , let  $\mathbf{x} \sim p_{\text{data}}$ ,  $\mathbf{z} \sim \mathcal{N}(0, I)$ , and define  $\mathbf{x}_t = \mathbf{x} + t\mathbf{z}$ . Define the vector fields  $f^*, \tilde{f} : \mathbb{R}^d \times (0, T] \rightarrow \mathbb{R}^d$  by  $f^*(\mathbf{x}_t, t) := \frac{\mathbf{x}_t - \mathbb{E}[\mathbf{x}|\mathbf{x}_t]}{t}$  and  $\tilde{f}(\mathbf{x}_t, t) := \frac{\mathbf{x}_t - \mathbf{x}}{t}$ . Assume  $f^*(\cdot, t)$  is Lipschitz in  $x$ . Let  $t = \tau_0 > \tau_1 > \dots > \tau_K = u$  be a sequence of time points with step sizes  $\Delta_k = \tau_{k+1} - \tau_k$  and maximal step  $h = \max_k |\Delta_k|$ . For a  $p$ -th order, zero-stable one-step solver  $S_{\Delta_k}[f] : \mathbb{R}^d \rightarrow \mathbb{R}^d$ , define the multi-step propagation from  $t$  to  $u$  as

$$\Psi_{t \rightarrow u}^{\text{sol}}[f] := S_{\Delta_{K-1}}[f] \circ \dots \circ S_{\Delta_0}[f]. \quad (7)$$

Assume further that for each  $u > s$ ,  $\Phi_{\theta}(\cdot, u, s) : \mathbb{R}^d \rightarrow \mathbb{R}^d$  is Lipschitz in  $x$ , and that solver states admit bounded second moments independent of  $h$ . Define the **ideal** and **practical** training objectives

$$\mathcal{L}_{\text{ideal}}(\theta) := \mathbb{E} \left[ \left\| \Phi_{\theta}(\mathbf{x}_t, t, s) - \Phi_{\theta-}(\Psi_{t \rightarrow u}^{\text{sol}}[f^*](\mathbf{x}_t), u, s) \right\|^2 \right], \quad (8)$$

$$\mathcal{L}_{\text{prac}}(\theta) := \mathbb{E} \left[ \left\| \Phi_{\theta}(\mathbf{x}_t, t, s) - \Phi_{\theta-}(\Psi_{t \rightarrow u}^{\text{sol}}[\tilde{f}](\mathbf{x}_t), u, s) \right\|^2 \right], \quad (9)$$

where  $\Phi_{\theta-}$  denotes the exponentially moving averaged model. Then

$$|\mathcal{L}_{\text{prac}}(\theta) - \mathcal{L}_{\text{ideal}}(\theta)| = O(h^p). \quad (10)$$

In particular, as  $h \rightarrow 0$ , the two objectives coincide in expectation.

*Proof Sketch.* The only difference between the two objectives is that the solver uses the surrogate  $\tilde{f}$  instead of the true field  $f^*$ . Since both are Lipschitz and the solver is  $p$ -th order and zero-stable, the propagated states differ by  $O(h^p)$  in mean square. By Lipschitz continuity of  $\Phi_{\theta}$ , this discrepancy transfers directly to the objectives, giving the stated bound. Details are deferred to Appendix B.3.  $\square$

Theorem 1 shows that using the closed-form surrogate  $\tilde{f}$  changes the objective only by  $O(h^p)$ , providing theoretical support for our formulation. This replacement makes GTP training both efficient and robust in offline RL, which is further validated empirically by our ablation study (Section 5.3). Further intuition is given in Appendix B.4, where we relate this formulation to consistency training and flow matching.

**Remark 1** (Computational Efficiency). *Using the surrogate score removes the need for multi-step ODE integration. Intermediate points  $\mathbf{x}_u$  for the trajectory consistency loss are obtained directly as*

$$\mathbf{x}_u = \mathbf{x} + u \cdot \mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(0, I), \quad (11)$$

*a one-step perturbation instead of a costly numerical solver.*

324 **Remark 2** (Training Stability). *Anchoring supervision to offline data avoids the instability of self-  
 325 generated targets. The model no longer relies on imperfect early-stage estimates of its own vector  
 326 field, but instead receives a stable analytical signal tied directly to  $\mathbf{x}$ . This breaks the cycle of error  
 327 propagation and ensures consistent learning from the very beginning of training.*  
 328

329 **4.2 VALUE-DRIVEN GUIDANCE FOR POLICY IMPROVEMENT**  
 330

331 To address the misaligned generative objective and unify generative imitation with value-based policy  
 332 improvement, we formalize a value-weighted training objective for our GTP in Theorem 2, with the  
 333 detailed derivation provided in Appendix B.5.

334 **Theorem 2** (Advantage-Weighted Objective). *Consider the KL-regularized policy optimization  
 335 problem in offline RL. Its optimal solution can be written as*

$$336 \quad \pi^*(a|s) \propto \pi_{BC}(a|s) \exp(\eta A(s, a)), \quad (12)$$

338 where  $A(s, a) = Q(s, a) - V(s)$  is the advantage. Training a generative policy  $\pi_\theta$  to match  $\pi^*$  is  
 339 therefore equivalent to solving the weighted generative training objective

$$340 \quad \max_{\theta} \mathbb{E}_{(s, a) \sim \mathcal{D}} [\exp(\eta A(s, a)) \ell_{gen}(\pi_\theta; a|s)], \quad (13)$$

342 where  $\ell_{gen}$  denotes the standard generative loss (e.g., diffusion loss, or flow-matching loss).  
 343

344 Theorem 2 confirms that exponential advantage weighting is the theoretically correct way to incorpo-  
 345 rate value guidance into generative training.

346 **Remark 3** (Practical Implementation). *For numerical stability, we normalize the advantage weights  
 347 and truncate negatives:*

$$348 \quad w(s, a) = \exp\left(\eta \cdot \frac{\max(0, A(s, a))}{\text{std}(A) + \epsilon}\right). \quad (14)$$

350 This ensures stable optimization while allowing GTP to preferentially imitate high-advantage actions,  
 351 thereby preserving the robustness of standard generative training.  
 352

353 **4.3 THE GTP OPTIMIZATION FRAMEWORK**  
 354

355 Having introduced the two key techniques for the practical implementation of our GTP paradigm, we  
 356 now integrate them into a complete actor-critic algorithm. The actor is our Generative Trajectory  
 357 Policy,  $\pi_\theta$ , represented by the learned solution map  $\Phi_\theta$ . The critic is a standard double Q-network,  
 358  $Q_\varphi$ , trained to estimate state-action values.

359 **Policy Representation and Action Sampling.** The actor  $\Phi_\theta(s, a_t, t, \tau)$  learns to map a noisy action  
 360  $a_t$  at time  $t$  to a cleaner action  $a_\tau$  at time  $\tau \leq t$ , conditioned on a state  $s$ . At inference time, an  
 361 action is generated by starting with pure Gaussian noise  $a_T \sim \mathcal{N}(0, T^2 \mathbf{I})$  and iteratively applying  
 362 the learned map over a sequence of timesteps  $T = t_0 > t_1 > \dots > t_K = 0$ :

$$363 \quad a_{t_{i+1}} = \Phi_\theta(s, a_{t_i}, t_i, t_{i+1}), \quad \text{for } i = 0, \dots, K-1. \quad (15)$$

365 The final denoised sample  $a_0$  is the action executed by the policy, i.e.,  $\pi_\theta(s) := a_0$ .

366 **Critic Training.** We use a standard double Q-network parameterized by  $\phi$  to mitigate the overesti-  
 367 mation bias. The critic is trained to minimize the temporal-difference (TD) error using a batch of  
 368 transitions  $(s, a, r, s')$  from the offline dataset:

$$370 \quad \mathcal{L}_{\text{critic}} = \mathbb{E} \left[ \left( r + \gamma \cdot \min_{j=1,2} Q_{\varphi_j^-}(s', \pi_{\theta'}(s')) - Q_{\varphi_j}(s, a) \right)^2 \right] \quad (16)$$

372 where  $\varphi^-$  and  $\theta^-$  are the target networks for the critic and actor, respectively, updated via exponential  
 373 moving average (EMA).  
 374

375 **Actor Training.** The GTP actor is trained by combining the two fundamental objectives in Eqs.(5)-  
 376 (6) introduced in our unified framework. These objectives are directly modified to incorporate our  
 377 key adaptations for offline RL. To enable policy improvement, both loss components are weighted  
 by the advantage-based term  $w(s, a)$ , thereby prioritizing high-value actions. Simultaneously, to

378 ensure computational feasibility and training stability, the supervision targets are generated using our  
 379 efficient score approximation instead of a costly ODE solver. First, the Trajectory Consistency Loss,  
 380  $\mathcal{L}_{\text{Consistency}}$ , enforces the global self-consistency of the learned flow map  $\Phi_{\theta}$ :  
 381

$$382 \mathcal{L}_{\text{Consistency}} = \mathbb{E}_{(s,a) \sim \mathcal{D}} \mathbb{E}_{t,\tau,u} \mathbb{E}_{z \sim \mathcal{N}(0,I)} \left[ w(s,a) \|\Phi_{\theta}(s, a_t, t, \tau) - \Phi_{\theta^-}(s, \tilde{a}_u, u, \tau)\|_2^2 \right]. \quad (17)$$

383 where  $a_t = a + t \cdot z$ , and the teacher’s intermediate action  $\tilde{a}_u = a + u \cdot z$ . Second, the Instantaneous  
 384 Flow Loss,  $\mathcal{L}_{\text{Flow}}$ , anchors the model’s local dynamics. As established in Section 3.3, this objective  
 385 enforces that the learned Inst Map behaves as a correct denoiser in the infinitesimal limit. We  
 386 implement it by penalizing the prediction error of  $\phi_{\theta}^{\text{inst}}$ :  
 387

$$388 \mathcal{L}_{\text{Flow}} = \mathbb{E}_{(s,a) \sim \mathcal{D}} \mathbb{E}_t \left[ w(s,a) \|a - \phi_{\theta}^{\text{inst}}(s, a_t, t)\|_2^2 \right]. \quad (18)$$

390 The total actor loss is then a weighted sum of the two components:

$$391 \mathcal{L}_{\text{actor}} = \mathcal{L}_{\text{Consistency}} + \lambda_{\text{Flow}} \cdot \mathcal{L}_{\text{Flow}}. \quad (19)$$

393 The full training pipeline is outlined in Algorithm 1.

---

394 **Algorithm 1** Training Generative Trajectory Policy (GTP)

---

396 1: Initialize actor  $\Phi_{\theta}$ , critic  $Q_{\varphi}$ , target networks  $\theta^- \leftarrow \theta$ ,  $\varphi^- \leftarrow \varphi$   
 397 2: **for** iteration  $i = 1$  to  $N_{\text{iter}}$  **do**  
 398 3:   Sample batch  $(s, a, r, s') \sim \mathcal{D}$   
 399 4:   Update critic  $Q_{\varphi}$  using Eq. (16)  
 400 5:   Compute advantage weights  $w(s, a)$  using the trained critic  
 401 6:   Sample time pairs  $t > u > \tau$ , and noise  $z \sim \mathcal{N}(0, \mathbf{I})$   
 402 7:   Generate noisy actions via score approx.:  $a_t = a + t \cdot z$ ,  $\tilde{a}_u = a + u \cdot z$   
 403 8:   Update actor  $\Phi_{\theta}$  using the weighted loss in Eq. (19)  
 404 9:   Update target networks:  $\theta^- \leftarrow \tau\theta + (1 - \tau)\theta^-$ ,  $\varphi^- \leftarrow \tau\varphi + (1 - \tau)\varphi^-$   
 405 10: **end for**

---

406 **5 EXPERIMENTAL RESULTS**

409 In this section, we empirically validate our central claims through experiments. Our evaluation is  
 410 designed to answer three core questions: (i) whether GTP provides a more expressive generative  
 411 model for imitating complex behaviors than prior approaches; (ii) whether our two key techniques  
 412 (Section 4) effectively translate into stable policy improvement that surpasses state-of-the-art offline  
 413 RL algorithms; and (iii) whether GTP resolves the tension between expressiveness and efficiency.

414 We evaluate our method on a suite of challenging offline reinforcement learning tasks from the D4RL  
 415 benchmark (Fu et al., 2020), including the Gym and AntMaze domains. Following the standard  
 416 setting of Ding & Jin (2024), we evaluate each policy over 10 episodes for Gym tasks and 100  
 417 episodes for all other tasks. Unless otherwise noted, diffusion policies and our GTP use  $K = 5$   
 418 sampling steps, and consistency policies use  $K = 2$ . Hyperparameters are provided in Appendix C.1.

419 Due to space limit, we only show major results in the following. Additional ablations and visualiza-  
 420 tions in a multi-goal environment are deferred to Appendix D, which provide further evidence of the  
 421 effectiveness and efficiency of GTP.

423 **5.1 EXPRESSIVENESS AS A BEHAVIOR CLONING POLICY**

425 To assess the intrinsic modeling capacity of our policy architecture, we first conduct experiments  
 426 in a pure behavior cloning (BC) setting. By setting the value-guidance coefficient  $\eta = 0$ , the  
 427 objective reduces to a purely generative supervised loss, so the policy is trained only to match the  
 428 data distribution without policy improvement.

429 **Baselines.** We compare our method, GTP-BC, against a diverse set of baselines, which includes  
 430 classic behavior cloning (a Gaussian policy), several strong offline RL methods such as AWAC (Nair  
 431 et al., 2020) and TD3+BC (Fujimoto & Gu, 2021), and importantly, other generative policies in a BC  
 setting: Diffusion-BC (D-BC) (Wang et al., 2023) and Consistency-BC (C-BC) (Ding & Jin, 2024).

**Results and Analysis.** As shown in Table 1, our method achieves strong results across a broad spectrum of tasks, from basic locomotion to complex sparse-reward environments, *achieving state-of-the-art performances in 11 out of 15 tasks*. This strong overall performance is reflected in the average scores across both major task suites. In the Gym tasks, our model’s average return of 82.3 significantly surpasses both D-BC (76.3) and C-BC (69.7). This highlights the superior modeling capacity of learning the full trajectory map. The performance is even more striking in the notoriously difficult AntMaze suite, where long-horizon planning and multimodality are critical. Here, GTP-BC (66.3) dramatically outperforms all other methods, including the next-best generative approach, C-BC (44.1). This substantial gap suggests that our model’s ability to learn the full continuous-time trajectory provides a powerful inductive bias for capturing the complex, temporally extended behaviors required for success. These results confirm the strong expressiveness inherent to the GTP architecture itself.

Table 1: Behavior cloning performances on D4RL. We report the mean and standard deviation of normalized scores over 5 random seeds. Bold indicates the best performance among all methods.

| Gym            | BC    | AWAC        | Diffuser | MoRel       | Onestep RL   | TD3+BC      | DT    | D-BC  | C-BC  | GTP-BC (Ours)    |
|----------------|-------|-------------|----------|-------------|--------------|-------------|-------|-------|-------|------------------|
| halfcheetah-m  | 42.6  | 43.5        | 44.2     | 42.1        | 48.4         | 48.3        | 42.6  | 45.4  | 31.0  | <b>48.6±0.3</b>  |
| hopper-m       | 52.9  | 57.0        | 58.5     | <b>95.4</b> | 59.6         | 59.3        | 67.6  | 65.3  | 71.7  | 83.7±4.0         |
| walker2d-m     | 75.3  | 72.4        | 79.7     | 77.8        | 81.8         | <b>83.7</b> | 74.0  | 81.2  | 83.1  | 77.1±1.7         |
| halfcheetah-mr | 36.6  | 40.5        | 42.2     | 40.2        | 38.1         | 44.6        | 36.6  | 41.7  | 34.4  | <b>46.3±0.6</b>  |
| hopper-mr      | 18.1  | 37.2        | 96.8     | 93.6        | 97.5         | 60.9        | 82.7  | 67.3  | 99.7  | <b>100.5±0.3</b> |
| walker2d-mr    | 26.0  | 27.0        | 61.2     | 49.8        | 49.5         | 81.8        | 66.6  | 77.5  | 73.3  | <b>83.4±1.8</b>  |
| halfcheetah-me | 55.2  | 42.8        | 79.8     | 53.3        | <b>93.4</b>  | 90.7        | 86.8  | 90.8  | 32.7  | 91.3±0.5         |
| hopper-me      | 52.5  | 55.8        | 107.2    | 108.7       | 103.3        | 98.0        | 107.6 | 107.6 | 90.6  | <b>109.6±1.9</b> |
| walker2d-me    | 107.5 | 74.5        | 108.4    | 95.6        | <b>113.0</b> | 110.1       | 108.1 | 108.9 | 110.4 | 100.2±2.1        |
| <b>Average</b> | 51.9  | 50.1        | 75.3     | 72.9        | 76.1         | 75.3        | 74.7  | 76.3  | 69.7  | <b>82.3</b>      |
| AntMaze        | BC    | AWAC        | Diffuser | MoRel       | Onestep RL   | TD3+BC      | DT    | D-BC  | C-BC  | GTP-BC (Ours)    |
| antmaze-u      | 54.6  | <b>56.7</b> | 78.9     | 73.0        | 64.3         | 78.6        | 59.2  | 71.8  | 75.8  | <b>84.2±6.6</b>  |
| antmaze-ud     | 45.6  | 49.3        | 55.0     | 61.0        | 60.7         | 71.4        | 53.0  | 61.2  | 77.6  | <b>79.2±3.2</b>  |
| antmaze-mp     | 0.0   | 0.0         | 0.0      | 0.0         | 0.3          | 10.6        | 0.0   | 43.4  | 56.8  | <b>74.4±6.5</b>  |
| antmaze-md     | 0.0   | 0.7         | 0.0      | 8.0         | 0.0          | 3.0         | 0.0   | 29.8  | 31.6  | <b>85.0±6.6</b>  |
| antmaze-lp     | 0.0   | 0.0         | 6.7      | 0.0         | 0.0          | 0.2         | 0.0   | 14.6  | 10.2  | <b>34.4±5.1</b>  |
| antmaze-ld     | 0.0   | 1.0         | 2.2      | 0.0         | 0.0          | 0.0         | 0.0   | 26.6  | 12.8  | <b>40.8±6.3</b>  |
| <b>Average</b> | 16.7  | 18.0        | 23.8     | 23.7        | 20.9         | 27.3        | 18.7  | 41.2  | 44.1  | <b>66.3</b>      |

## 5.2 FROM IMITATION TO IMPROVEMENT: GTP IN OFFLINE RL

Having established GTP’s strong performance as an imitation learning agent, we now evaluate the full actor-critic algorithm, GTP, to assess whether our variational policy optimization framework (Section 4.2) can effectively translate this expressiveness into state-of-the-art policy improvement.

**Baselines.** We compare GTP against a suite of strong offline RL algorithms, including CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021),  $\chi$ -QL (Garg et al., 2023), ARQ (Goo & Niekum, 2022), IDQL-A (Hansen-Estruch et al., 2023), and the two most relevant generative policy competitors: Diffusion-QL (D-QL) (Wang et al., 2023), QGPO (Lu et al., 2023), BDM (Chen et al., 2024b), and Consistency-AC (C-AC) (Ding & Jin, 2024).

**Results and Analysis.** Table 2 demonstrates that GTP sets a new state-of-the-art for generative policies in offline RL. On the Gym tasks, our method achieves the highest average return (89.0), outperforming the previous best, D-QL (87.9). The gains are even more pronounced in the challenging AntMaze suite, where GTP (80.6) significantly surpasses both Diffusion-QL (69.6) and QGPO (78.3). Notably, on the antmaze-umaze task, our method achieves a perfect score of 100.0. These results provide strong evidence that our principled, advantage-weighted learning objective successfully leverages the critic’s signal to guide the powerful generative policy beyond simple imitation, enabling robust and effective policy improvement.

## 5.3 ABLATION STUDY

We conduct ablations to evaluate the contribution of two key components of GTP: the score approximation scheme (Section 4.1) and the variational value guidance mechanism (Section 4.2).

**Score Approximation.** Replacing our score approximation with signals generated directly by an ODE solver leads to substantially longer training time and weaker performance, even when the solver is limited to at most three steps. Without approximation, training suffers from high variance and slow convergence due to the need for numerical integration at each iteration. In contrast, our approximation

486 Table 2: Offline RL results on D4RL (mean  $\pm$  std over 5 random seeds). Bold indicates best result.  
487

| Gym            | CQL         | IQL   | $\chi$ -QL | ARQ  | IDQL-A      | D-QL        | QGPO        | BDM         | C-AC        | GTP (Ours)                      |
|----------------|-------------|-------|------------|------|-------------|-------------|-------------|-------------|-------------|---------------------------------|
| halfcheetah-m  | 44.0        | 47.4  | 48.3       | 45   | 51.0        | 51.1        | 54.1        | 57.0        | <b>69.1</b> | 53.9 $\pm$ 0.1                  |
| hopper-m       | 58.5        | 66.3  | 74.2       | 61   | 65.4        | 90.5        | 98.0        | <b>98.4</b> | 80.7        | 90.3 $\pm$ 2.7                  |
| walker2d-m     | 72.5        | 78.3  | 84.2       | 81   | 82.5        | 87.0        | 86.0        | 87.4        | 83.1        | <b>89.5<math>\pm</math>0.6</b>  |
| halfcheetah-mr | 45.5        | 44.2  | 45.2       | 42   | 45.9        | 47.8        | 47.6        | 51.6        | <b>58.7</b> | 50.8 $\pm$ 0.4                  |
| hopper-mr      | 95.0        | 94.7  | 100.7      | 81   | 92.1        | 101.3       | 96.9        | 92.7        | 99.7        | <b>101.7<math>\pm</math>0.3</b> |
| walker2d-mr    | 77.2        | 73.9  | 82.2       | 66   | 85.1        | <b>95.5</b> | 84.4        | 89.2        | 79.5        | 94.2 $\pm$ 0.3                  |
| halfcheetah-me | 91.6        | 86.7  | 94.2       | 91   | 95.9        | <b>96.8</b> | 93.5        | 93.2        | 84.3        | 93.8 $\pm$ 0.8                  |
| hopper-me      | 105.4       | 91.5  | 111.2      | 110  | 108.6       | 111.1       | 108.0       | 104.9       | 100.4       | <b>112.2<math>\pm</math>0.6</b> |
| walker2d-me    | 108.8       | 109.6 | 112.7      | 109  | 112.7       | 110.1       | 110.7       | 111.1       | 110.4       | <b>114.2<math>\pm</math>0.3</b> |
| <b>Average</b> | 77.6        | 77.0  | 83.7       | 76.2 | 82.1        | 87.9        | 86.6        | 87.3        | 85.1        | <b>89.0</b>                     |
| AntMaze        | CQL         | IQL   | $\chi$ -QL | ARQ  | IDQL-A      | D-QL        | QGPO        | BDM         | C-AC        | GTP (Ours)                      |
| antmaze-u      | 74.0        | 87.5  | 93.8       | 97   | 94.0        | 93.4        | 96.4        | 93.0        | 75.8        | <b>100<math>\pm</math>0</b>     |
| antmaze-ud     | <b>84.0</b> | 62.2  | 82.0       | 62   | 80.2        | 66.2        | 74.4        | 81.0        | 77.6        | 81.9 $\pm$ 4.4                  |
| antmaze-mp     | 61.2        | 71.2  | 76.0       | 80   | <b>84.2</b> | 76.6        | 83.6        | 79.0        | 56.8        | 83.3 $\pm$ 8.1                  |
| antmaze-md     | 53.7        | 70.0  | 73.6       | 82   | 84.8        | 78.6        | 83.8        | 84.0        | -           | <b>94.2<math>\pm</math>2.0</b>  |
| antmaze-lp     | 15.8        | 39.6  | 46.5       | 37   | 63.5        | 46.4        | <b>66.6</b> | -           | -           | 53.5 $\pm$ 2.2                  |
| antmaze-ld     | 14.9        | 47.5  | 49.0       | 58   | 67.9        | 56.6        | 64.8        | -           | -           | <b>71.0<math>\pm</math>4.9</b>  |
| <b>Average</b> | 50.6        | 63.0  | 70.1       | 69.3 | 79.1        | 69.6        | 78.3        | -           | -           | <b>80.6</b>                     |

503  
504 provides an efficient surrogate that closely aligns with the desired consistency condition, enabling  
505 faster optimization and stronger policies.  
506

507 **Variational Guidance.** We compare GTP with a baseline that combines the generative loss with a  
508 linear Q-learning actor loss. As shown in Table 3, this baseline is highly brittle: for typical coefficients  
509 ( $\lambda = 0.1$  or  $1.0$ ), training diverges due to exploding critic gradients. Even with  $\lambda = 0.01$ , the baseline  
510 occasionally achieves returns close to ours, but this setting is highly sensitive to the critic scale and  
511 does not transfer across tasks. In contrast, our variational guidance normalizes and clips critic signals  
512 into stable importance weights, yielding consistently high returns across seeds without per-task  
513 hyperparameter tuning. Further details and extended comparisons are provided in Appendix B.6.  
514

515 Table 3: Ablation results on hopper-medium-expert-v2 (mean  $\pm$  std over 5 random seeds).  
516 Training time is wall-clock hours per run. Baselines with  $\lambda = 0.1$  or  $1.0$  consistently diverged.  
517

| Method                                      | Training Time | Score                             |
|---------------------------------------------|---------------|-----------------------------------|
| <b>GTP (ours)</b>                           | 4.26 h        | <b>112.2 <math>\pm</math> 0.6</b> |
| w/o score approximation (ODE solver)        | 5.23 h        | 99.7 $\pm$ 1.7                    |
| GTP-BC + linear Q-term ( $\lambda = 0.01$ ) | 5.08 h        | 111.4 $\pm$ 0.9                   |
| GTP-BC + linear Q-term ( $\lambda = 0.1$ )  | Diverged      | -                                 |
| GTP-BC + linear Q-term ( $\lambda = 1.0$ )  | Diverged      | -                                 |

## 524 6 CONCLUSION

525 In this work, we introduced *Generative Trajectory Policies*, a new paradigm for offline RL that  
526 leverages our proposed unifying perspective of continuous-time generative ODEs. We show that  
527 while this framework offers immense expressive power, its direct application is hindered by critical  
528 challenges of computational cost, training instability, and objective misalignment. We overcame these  
529 obstacles through two theoretically principled adaptations: score approximation for efficient, stable  
530 training and a variational, advantage-weighted objective to bridge the gap between imitation and  
531 policy improvement. Our empirical results on the D4RL benchmarks validate this approach, showing  
532 that GTP establishes a new state-of-the-art for generative policies in offline RL. This work opens a  
533 promising direction for harnessing continuous-time dynamics in RL. While inference is fast, reducing  
534 the substantial training time of this model class remains an important avenue for future research.  
535

## 536 537 REFERENCES

538 Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin  
539 Riedmiller. Maximum a posteriori policy optimisation. In *International Conference on Learning*

540        *Representations*, 2018.

541

542        Janaka Brahmanage, Jiajing Ling, and Akshat Kumar. Flowpg: action-constrained policy gradient  
 543        with normalizing flows. In *Advances in Neural Information Processing Systems*, volume 36, pp.  
 544        20118–20132, 2023.

545        Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,  
 546        and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. In  
 547        *International Conference on Machine Learning*, 2025.

548

549        Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization  
 550        through diffusion behavior. In *International Conference on Learning Representations*, 2024a.

551        Huayu Chen, Kaiwen Zheng, Hang Su, and Jun Zhu. Aligning diffusion behaviors with q-functions  
 552        for efficient continuous control. In *Advances in Neural Information Processing Systems*, volume 37,  
 553        pp. 119949–119975, 2024b.

554

555        Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for  
 556        offline reinforcement learning. In *Advances in Neural Information Processing Systems*, 2024c.

557        Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,  
 558        and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The  
 559        International Journal of Robotics Research*, 43(1):3–24, 2023. doi: 10.1177/02783649241273668.

560

561        Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and  
 562        Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization. In  
 563        *Advances in Neural Information Processing Systems*, 2024.

564        Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement  
 565        learning. In *International Conference on Learning Representations*, 2024.

566

567        Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut  
 568        models. In *International Conference on Learning Representations*, 2025.

569        Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep  
 570        data-driven reinforcement learning, 2020.

571

572        Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In  
 573        *Advances in Neural Information Processing Systems*, volume 34, pp. 20132–20145, 2021.

574        Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without  
 575        exploration. In *International conference on machine learning*, pp. 2052–2062, 2019.

576

577        Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl  
 578        without entropy. In *International Conference on Learning Representations*, 2023.

579

580        Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for  
 581        one-step generative modeling. In *Advances in Neural Information Processing Systems*, 2025.

582        Wonjoon Goo and Scott Niekum. Know your boundaries: The necessity of explicit behavioral cloning  
 583        in offline rl. *arXiv preprint arXiv:2206.00695*, 2022.

584        David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2018.

585

586        Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with  
 587        deep energy-based policies. In *International conference on machine learning*, pp. 1352–1361,  
 588        2017.

589

590        Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.  
 591        Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint  
 592        arXiv:2304.10573*, 2023.

593        Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In *Advances in Neural  
 594        Information Processing Systems*, volume 29, 2016.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in*  
 595 *neural information processing systems*, volume 33, pp. 6840–6851, 2020.  
 596

597 Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for  
 598 flexible behavior synthesis. In *International Conference on Machine Learning*, pp. 9902–9915,  
 599 2022.

600 Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and YAN Shuicheng. Efficient diffusion policies for  
 601 offline reinforcement learning. In *Advances in Neural Information Processing Systems*, 2023.  
 602

603 Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,  
 604 Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-  
 605 bility flow ode trajectory of diffusion. In *International Conference on Learning Representations*,  
 606 2024.

607 Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In  
 608 *Advances in Neural Information Processing Systems*, volume 34, pp. 21696–21707, 2021.  
 609

610 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit  
 611 q-learning. In *Advances in Neural Information Processing Systems*, 2021.

612 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit  
 613 q-learning. In *International Conference on Learning Representations*, 2022.

614

615 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline  
 616 reinforcement learning. In *Advances in Neural Information Processing Systems*, volume 33, pp.  
 617 1179–1191, 2020.

618 Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In *Reinforcement*  
 619 *learning: State-of-the-art*, pp. 45–73. Springer, 2012.  
 620

621 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching  
 622 for generative modeling. In *International Conference on Learning Representations*, 2023.

623

624 Xu-Hui Liu, Tian-Shuo Liu, Shengyi Jiang, Ruijing Chen, Zhilong Zhang, Xinwei Chen, and Yang  
 625 Yu. Energy-guided diffusion sampling for offline-to-online reinforcement learning. In *International*  
 626 *Conference on Machine Learning*, pp. 31541–31565, 2024.

627

628 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.  
 In *International Conference on Learning Representations*, 2025.

629

630 Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy  
 631 prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In  
 632 *International Conference on Machine Learning*, 2023.

633

634 Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Soft diffusion actor-critic: Efficient online  
 635 reinforcement learning for diffusion policy. In *International Conference on Machine Learning*,  
 2025.

636

637 Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and Sanjay  
 638 Chawla. S<sup>2</sup>ac: Energy-based reinforcement learning with stein soft actor critic. In *International*  
 639 *Conference on Learning Representations*, 2024.

640

641 Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online  
 reinforcement learning with offline datasets. *arXiv preprint arXiv:2006.09359*, 2020.

642

643 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.  
 In *International Conference on Machine Learning*, pp. 8162–8171, 2021.

644

645 Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Sergio  
 646 Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam Devlin. Imitating  
 647 human behaviour with diffusion models. In *International Conference on Learning Representations*,  
 2023.

648 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:  
649 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.  
650

651 Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In *Proceedings of*  
652 *the AAAI Conference on Artificial Intelligence*, volume 24, pp. 1607–1612, 2010.

653 Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,  
654 Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization. In  
655 *International Conference on Learning Representations*, 2025.

656

657 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Internationa-*  
658 *l Conference on Learning Representations*, 2021a.

659

660 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In *Internationa-*  
661 *l Conference on Learning Representations*, 2024.

662

663 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.  
In *Advances in neural information processing systems*, volume 32, 2019.

664

665 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben  
666 Poole. Score-based generative modeling through stochastic differential equations. In *International*  
667 *Conference on Learning Representations*, 2021b.

668

669 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *International*  
670 *Conference on Machine Learning*, pp. 32211–32252, 2023.

671

672 Richard S Sutton. Learning to predict by the methods of temporal differences. *Machine learning*, 3  
(1):9–44, 1988.

673

674 Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy  
675 class for offline reinforcement learning. In *International Conference on Learning Representations*,  
2023.

676

677 Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.  
*arXiv preprint arXiv:1911.11361*, 2019.

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

|     |                                                                             |           |
|-----|-----------------------------------------------------------------------------|-----------|
| 702 | CONTENTS                                                                    |           |
| 703 |                                                                             |           |
| 704 |                                                                             |           |
| 705 | <b>1</b> <b>Introduction</b>                                                | <b>1</b>  |
| 706 |                                                                             |           |
| 707 | <b>2</b> <b>Related Work</b>                                                | <b>2</b>  |
| 708 |                                                                             |           |
| 709 | <b>3</b> <b>A Unified ODE Framework for Generative Models</b>               | <b>2</b>  |
| 710 |                                                                             |           |
| 711 | 3.1 Defining the Vector Field . . . . .                                     | 3         |
| 712 | 3.2 Efficiently Solving the ODE by Learning the Solution Map . . . . .      | 3         |
| 713 | 3.3 Learning the Flow Map: A General Parameterization . . . . .             | 4         |
| 714 | 3.4 Prior Models as Special Cases of the Unified ODE Framework . . . . .    | 4         |
| 715 |                                                                             |           |
| 716 |                                                                             |           |
| 717 | <b>4</b> <b>Generative Trajectory Policies for Offline RL</b>               | <b>5</b>  |
| 718 |                                                                             |           |
| 719 | 4.1 Efficient and Stable Training via Score Approximation . . . . .         | 5         |
| 720 | 4.2 Value-Driven Guidance for Policy Improvement . . . . .                  | 7         |
| 721 | 4.3 The GTP Optimization Framework . . . . .                                | 7         |
| 722 |                                                                             |           |
| 723 |                                                                             |           |
| 724 | <b>5</b> <b>Experimental Results</b>                                        | <b>8</b>  |
| 725 |                                                                             |           |
| 726 | 5.1 Expressiveness as a Behavior Cloning Policy . . . . .                   | 8         |
| 727 | 5.2 From Imitation to Improvement: GTP in Offline RL . . . . .              | 9         |
| 728 | 5.3 Ablation Study . . . . .                                                | 9         |
| 729 |                                                                             |           |
| 730 |                                                                             |           |
| 731 | <b>6</b> <b>Conclusion</b>                                                  | <b>10</b> |
| 732 |                                                                             |           |
| 733 | <b>A</b> <b>Related Work</b>                                                | <b>16</b> |
| 734 |                                                                             |           |
| 735 | <b>B</b> <b>Theoretical Insights</b>                                        | <b>17</b> |
| 736 |                                                                             |           |
| 737 | B.1 Prior Models as Special Cases of the Unified ODE Framework . . . . .    | 17        |
| 738 | B.2 Derivation of a Continuous-Time Training Objective . . . . .            | 18        |
| 739 | B.3 Proof of Theorem 1 . . . . .                                            | 19        |
| 740 |                                                                             |           |
| 741 | B.4 Theoretical Rationale for the Score Function Approximation . . . . .    | 21        |
| 742 | B.5 Derivation of the Advantage-Weighted Objective . . . . .                | 23        |
| 743 |                                                                             |           |
| 744 | B.6 Additional Discussion on Actor Loss Formulations . . . . .              | 24        |
| 745 |                                                                             |           |
| 746 | <b>C</b> <b>Implementation Details</b>                                      | <b>25</b> |
| 747 |                                                                             |           |
| 748 | C.1 Experimental Hyperparameters . . . . .                                  | 25        |
| 749 | C.2 Dynamic Timestep Scheduling for Robust Trajectory Learning . . . . .    | 25        |
| 750 |                                                                             |           |
| 751 | <b>D</b> <b>Additional Results</b>                                          | <b>26</b> |
| 752 |                                                                             |           |
| 753 | D.1 Ablation Study: Effect of Sampling Horizon $T$ . . . . .                | 26        |
| 754 | D.2 Ablation Study: Sensitivity Analysis . . . . .                          | 27        |
| 755 | D.3 Ablation Study: Efficiency–Performance Trade-off at Inference . . . . . | 27        |

|     |                                                                                    |    |
|-----|------------------------------------------------------------------------------------|----|
| 756 | D.4 Ablation on Actor Loss Formulation . . . . .                                   | 28 |
| 757 |                                                                                    |    |
| 758 | D.5 Visualizing Expressiveness and Efficiency in Multi-Goal Environments . . . . . | 28 |
| 759 |                                                                                    |    |
| 760 |                                                                                    |    |
| 761 |                                                                                    |    |
| 762 |                                                                                    |    |
| 763 |                                                                                    |    |
| 764 |                                                                                    |    |
| 765 |                                                                                    |    |
| 766 |                                                                                    |    |
| 767 |                                                                                    |    |
| 768 |                                                                                    |    |
| 769 |                                                                                    |    |
| 770 |                                                                                    |    |
| 771 |                                                                                    |    |
| 772 |                                                                                    |    |
| 773 |                                                                                    |    |
| 774 |                                                                                    |    |
| 775 |                                                                                    |    |
| 776 |                                                                                    |    |
| 777 |                                                                                    |    |
| 778 |                                                                                    |    |
| 779 |                                                                                    |    |
| 780 |                                                                                    |    |
| 781 |                                                                                    |    |
| 782 |                                                                                    |    |
| 783 |                                                                                    |    |
| 784 |                                                                                    |    |
| 785 |                                                                                    |    |
| 786 |                                                                                    |    |
| 787 |                                                                                    |    |
| 788 |                                                                                    |    |
| 789 |                                                                                    |    |
| 790 |                                                                                    |    |
| 791 |                                                                                    |    |
| 792 |                                                                                    |    |
| 793 |                                                                                    |    |
| 794 |                                                                                    |    |
| 795 |                                                                                    |    |
| 796 |                                                                                    |    |
| 797 |                                                                                    |    |
| 798 |                                                                                    |    |
| 799 |                                                                                    |    |
| 800 |                                                                                    |    |
| 801 |                                                                                    |    |
| 802 |                                                                                    |    |
| 803 |                                                                                    |    |
| 804 |                                                                                    |    |
| 805 |                                                                                    |    |
| 806 |                                                                                    |    |
| 807 |                                                                                    |    |
| 808 |                                                                                    |    |
| 809 |                                                                                    |    |

810 A RELATED WORK  
811

812 **Expressive Policies in Offline RL** Offline RL seeks to learn policies from static datasets, but  
813 suffers from extrapolation error when actions fall outside the dataset distribution. Early work such  
814 as Lange et al. (2012) laid the foundations for batch RL, while subsequent studies introduced more  
815 expressive policy classes, including energy-based formulations (Haarnoja et al., 2017). A major line  
816 of research has emphasized conservatism, aiming to constrain policy behavior to dataset-supported  
817 regions. Batch-Constrained Q-Learning (BCQ) (Fujimoto et al., 2019) explicitly restricted the policy  
818 to actions close to the behavior data, whereas BEAR (Wu et al., 2019) imposed a Maximum Mean  
819 Discrepancy penalty to softly align the learned policy with the dataset. Conservative Q-Learning  
820 (CQL) (Kumar et al., 2020) further advanced this idea by penalizing Q-values on out-of-distribution  
821 actions, mitigating overestimation at the cost of tuning sensitivity. In parallel, regression-based  
822 approaches sought to improve expressiveness while retaining stability. Advantage-Weighted Actor-  
823 Critic (AWAC) (Peng et al., 2019) biased behavior cloning toward high-advantage actions, while  
824 Implicit Q-Learning (IQL) (Kostrikov et al., 2022) simplified training by implicitly aligning value  
825 estimates with policy improvement, avoiding explicit constraints but limiting the ability to fully  
826 capture multimodal behaviors. Overall, these approaches highlight a persistent trade-off: policies that  
827 are more expressive tend to risk instability, while more conservative methods achieve robustness at  
828 the cost of limited representational power.  
829

830 **Continuous-Time Generative Models.** Diffusion models have significantly advanced generative  
831 modeling capabilities. Ho et al. (2020) introduced Denoising Diffusion Probabilistic Models (DDPM),  
832 utilizing forward and reverse diffusion processes to produce high-quality samples, albeit slowly.  
833 To address computational efficiency, Song et al. (2021a) developed Denoising Diffusion Implicit  
834 Models (DDIM), reducing required steps but encountering stability issues when overly accelerated.  
835 To enhance training stability, Kingma et al. (2021) integrated variational inference into diffusion  
836 models, yet this approach added complexity and computational overhead. Providing a continuous-  
837 time formulation, Song et al. (2021b) proposed modeling diffusion through Stochastic Differential  
838 Equations (SDEs), increasing flexibility but at considerable computational expense. Nichol &  
839 Dhariwal (2021) improved DDPM architectures and noise schedules, enhancing sample quality while  
840 still necessitating multiple denoising steps. Song et al. (2023) subsequently introduced Consistency  
841 Models, achieving faster sampling through trajectory consistency but potentially risking mode  
842 collapse and reduced diversity. Building on this, Kim et al. (2024) developed Consistency Trajectory  
843 Models, directly modeling diffusion trajectories via Ordinary Differential Equations (ODEs), refining  
844 sampling consistency and quality. Lastly, Frans et al. (2025) extended flow-matching models by  
845 introducing adjustable step sizes, further improving sampling efficiency without compromising  
846 quality. While this evolution has produced a powerful toolbox of trajectory-based generative models,  
847 their potential has not yet been fully realized in the RL domain.

848 **The Trade-off in Generative Policies** Integrating generative models into RL allows for highly  
849 expressive policies capable of capturing complex, multimodal action distributions. Diffusion policies,  
850 first introduced by Wang et al. (2023), exemplify this potential but inherit the slow, iterative sampling  
851 of their generative counterparts. This has created a central trade-off between policy expressiveness  
852 and inference speed. One line of research aims to guide the generative process toward high-reward  
853 regions. This is achieved by incorporating energy functions (Liu et al., 2024), leveraging contrastive  
854 energy prediction (Lu et al., 2023), or weighting the diffusion objective with Q-values (Ding et al.,  
855 2024). Another major effort focuses on accelerating inference. This includes developing more  
856 efficient sampling schemes (Kang et al., 2023), distilling the diffusion policy into a fast, deterministic  
857 one (Chen et al., 2024a), and leveraging consistency models to enable few-step action generation  
858 (Ding & Jin, 2024). Recent work has focused on tightly integrating these generative policies into  
859 established RL algorithms. Examples include IDQL (Hansen-Estruch et al., 2023), which combines  
860 a diffusion policy with an IQL critic, and DPPO (Ren et al., 2025), which enables policy gradient  
861 fine-tuning. Further refinements include advanced entropy estimation techniques (Celik et al., 2025;  
862 Ma et al., 2025), trust-region guided sampling (Chen et al., 2024c), and applications to complex  
863 domains like visuomotor control (Chi et al., 2023). Despite their potential for balancing quality and  
864 speed, this emerging class of trajectory-based generative models remains largely unexplored as a  
865 policy framework, motivating our work.

864 **B THEORETICAL INSIGHTS**  
 865

866 **B.1 PRIOR MODELS AS SPECIAL CASES OF THE UNIFIED ODE FRAMEWORK**  
 867

868 With this framework of the flow map  $\Phi$ , the reparameterization  $\phi$ , and the two fundamental training  
 869 objectives, we can now clearly position and unify prior work:  
 870

871 **Consistency Models (CMs)** Consistency Models (CMs) (Song et al., 2023) can be viewed as a  
 872 specialized case of Eq. (2), where the flow map is restricted to  $\Phi(\mathbf{x}_t, t, 0)$  that always targets the data  
 873 origin. Their self-consistency loss corresponds directly to a Trajectory Consistency Loss: the model’s  
 874 prediction at time  $t$  is constrained to match the prediction at a slightly earlier time  $t - \Delta t$  along the  
 875 same trajectory. Formally,

876 
$$\mathcal{L}_{CM} = \|\Phi_{\theta}(\mathbf{x}_t, t, 0) - \Phi_{\theta'}(\mathbf{x}_{t-\Delta t}, t - \Delta t, 0)\|^2, \quad (20)$$
  
 877

878 where  $\Phi_{\theta}^-$  is the EMA model with delayed weights. Interestingly, this bootstrapping mechanism is  
 879 conceptually analogous to Temporal Difference (TD) learning (Sutton, 1988), where an estimate for  
 880 the present is updated to be more consistent with an estimate from the future.

881 **Consistency Trajectory Models (CTMs)** CTMs (Kim et al., 2024) provide a representative  
 882 example of how our unified framework manifests in prior work. Although originally motivated from  
 883 a diffusion-based perspective with a PF ODE backbone, their essence lies in directly parameterizing  
 884 the time-conditional flow map  $\Phi(\mathbf{x}_t, t, s)$  in Eq. (2). The training objective can also be naturally  
 885 interpreted through our lens: the self-consistency objective used in CTMs corresponds exactly to the  
 886 Trajectory Consistency Loss, albeit in a specialized form where trajectories are first mapped to an  
 887 intermediate time  $s$  and then further mapped to the terminal time  $0/\epsilon$ . This design ensures that all  
 888 supervision signals are anchored at the same reference time, keeping the loss consistent. In addition,  
 889 the auxiliary diffusion loss serves the role of the Instantaneous Flow Loss, enforcing local fidelity  
 890 along trajectories. Thus, under our framework, CTMs emerge not as an isolated construction, but as a  
 891 concrete instantiation of Eq. (2) that integrates both of the fundamental training principles.

892 **Shortcut Models** The work on Shortcut Models (Frans et al., 2025) also fits squarely within our  
 893 unified framework in Eq.(2), focusing on learning the “average velocity” of the underlying ODE.  
 894 This approach parameterizes a dedicated stepping function,  $s(\mathbf{x}_t, t, d)$ , which is trained to predict the  
 895 average velocity over a future time interval of duration  $d$ , i.e.,  $[t, t + d]$ . Mathematically, it learns:  
 896

897 
$$s(\mathbf{x}_t, t, d) = \frac{1}{d} \int_t^{t+d} f(\mathbf{x}_{\tau}, \tau) d\tau \quad (21)$$
  
 898

899 While Shortcut Models define their process forward in time (e.g., from  $t = 0$  noise to  $t = 1$  data),  
 900 the principle is directly analogous to our backward-in-time formulation. Their average velocity  $s$   
 901 provides a direct way to approximate our flow map  $\phi(\mathbf{x}_t, t, t - d) = \mathbf{x}_t - t \cdot s(\mathbf{x}_t, t, d)$  (adjusting  
 902 for the time direction).

903 Their training objectives can be understood as specific applications of our two proposed losses. First,  
 904 the requirement that the learned average velocity must collapse to the instantaneous velocity in the  
 905 limit ( $d \rightarrow 0$ ) is a direct application of our Instantaneous Flow Loss. This is implemented with a  
 906 flow-matching objective that regresses the instantaneous velocity  $s(\mathbf{x}_t, t, 0)$  against the velocity of a  
 907 simple straight-line path connecting noise  $\mathbf{x}_0$  and data  $\mathbf{x}_1$ :

908 
$$\|s_{\theta}(\mathbf{x}_t, t, 0) - (\mathbf{x}_1 - \mathbf{x}_0)\|_2^2 \quad (22)$$
  
 909

910 Second, they employ a Trajectory Consistency Loss by enforcing self-consistency between steps of  
 911 different durations. A step of size  $2d$  is constrained to match the composition of two consecutive  
 912 steps of size  $d$ :

913 
$$\|s_{\theta}(\mathbf{x}_t, t, 2d) - s_{\text{target}}\|_2^2 \quad (23)$$
  
 914

915 where the target  $s_{\text{target}}$  is constructed by bootstrapping from the model’s own (stop-gradient) predic-  
 916 tions for the two smaller steps.

917 However, a crucial difference in methodology emerges here. In practice, the right-hand side of  
 918 Eq. (6) is treated as the supervision signal:  $\Phi(\mathbf{x}_t, t, u)$  is obtained via an ODE solver (or its learned

approximation) and then composed forward to  $s$ . Our GTP framework incorporates an explicit “**teacher**” in this process to provide stable on-trajectory information. In contrast, Shortcut Models rely purely on self-consistency, where the model generates its own targets without external guidance. The viability and trade-offs of learning without such a teacher remain a critical design question, which we directly investigate through a targeted ablation study in Appendix D.4.

**Mean Flows** Similar to Shortcut Models, the more recent Mean Flow framework (Geng et al., 2025) is also centered on learning the average velocity of the ODE. However, Mean Flows offer another perspective on our unified framework, this time through a particularly direct, first-principles formulation. At the core of this approach is the average velocity field

$$u(\mathbf{x}_t, r, t) = \frac{1}{t-r} \int_r^t f(\mathbf{x}_\tau, \tau) d\tau, \quad (24)$$

which can be seen as a reparameterization of the integral term in our flow map  $\Phi$ . Through this lens, the function  $\phi$  in Eq. (3) can be expressed simply as  $\phi(\mathbf{x}_t, t, s) = \mathbf{x}_t - t \cdot u(\mathbf{x}_t, t, s)$ , making Mean Flows a natural instantiation of our framework.

The crucial difference lies in the training philosophy. Rather than enforcing an explicit multi-step consistency loss, Mean Flows are trained by satisfying a derived MeanFlow Identity: a local differential equation linking the average velocity  $u$  to the instantaneous velocity  $f$ . This identity-based view is closely related to recent continuous-time consistency models (Lu & Song, 2025), which also replace explicit trajectory simulation with a local identity constraint implemented via Jacobian–vector products, thereby avoiding the need for ODE solvers. By construction, satisfying this local identity ensures that global trajectory consistency emerges as an inherent property, eliminating the need for explicit multi-step supervision.

Within our framework, this identity-based approach offers a principled alternative to consistency-based training. We therefore derive the corresponding identity for our own formulation in Appendix B.2, and empirically compare these two training philosophies—consistency versus identity—in our ablation study (Appendix D.4).

## B.2 DERIVATION OF A CONTINUOUS-TIME TRAINING OBJECTIVE

In this section, we derive an alternative training objective for our function  $\phi$ , inspired by the methodology of continuous-time consistency models Lu & Song (2025) and Mean Flows (Geng et al., 2025). This results in a self-contained identity that can be used for training, relying only on the function  $\phi$  itself and its derivatives.

We begin with the definition of  $\phi(\mathbf{x}_t, t, s)$  from our unified framework:

$$\phi(\mathbf{x}_t, t, s) = \mathbf{x}_t + \frac{t}{t-s} \int_t^s f(\mathbf{x}_\tau, \tau) d\tau. \quad (25)$$

Rearranging the terms, we can isolate the integral expression:

$$\left(1 - \frac{s}{t}\right)(\phi(\mathbf{x}_t, t, s) - \mathbf{x}_t) = \int_t^s f(\mathbf{x}_\tau, \tau) d\tau. \quad (26)$$

We differentiate both sides with respect to  $t$ . Then we have:

$$\frac{s}{t^2}(\phi(\mathbf{x}_t, t, s) - \mathbf{x}_t) + \left(1 - \frac{s}{t}\right)\left(\frac{d\phi(\mathbf{x}_t, t, s)}{dt} - f(\mathbf{x}_t, t)\right) = -f(\mathbf{x}_t, t). \quad (27)$$

Solving Equation 27 for  $\phi(\mathbf{x}_t, t, s)$  yields a new identity relating the function to its own total derivative and the instantaneous vector field:

$$\phi(\mathbf{x}_t, t, s) = \mathbf{x}_t - \left(\frac{t^2}{s} - t\right) \frac{d\phi(\mathbf{x}_t, t, s)}{dt} - tf(\mathbf{x}_t, t). \quad (28)$$

This identity can be made fully self-referential by using the boundary condition from our Instantaneous Flow Loss, which states  $\phi(\mathbf{x}_t, t, t) = \mathbf{x}_t - tf(\mathbf{x}_t, t)$ . We use this to substitute out the  $tf(\mathbf{x}_t, t)$  term:

$$\phi(\mathbf{x}_t, t, s) = \phi(\mathbf{x}_t, t, t) - \left(\frac{t^2}{s} - t\right) \frac{d\phi(\mathbf{x}_t, t, s)}{dt}. \quad (29)$$

972 For a practical implementation, the total derivative  $\frac{d\phi}{dt}$  is expanded using the chain rule, noting that  
 973  $\frac{d\mathbf{x}_t}{dt} = f(\mathbf{x}_t, t)$ :  
 974

$$\frac{d\phi(\mathbf{x}_t, t, s)}{dt} = \frac{d\mathbf{x}_t}{dt} \partial_{\mathbf{x}} \phi + \partial_t \phi = f(\mathbf{x}_t, t) \partial_{\mathbf{x}} \phi + \partial_t \phi. \quad (30)$$

975 Substituting the vector field  $f(\mathbf{x}_t, t) = (\mathbf{x}_t - \phi(\mathbf{x}_t, t, t))/t$  into Equation 30 and then into Equation  
 976 29 gives the final, fully-expanded form:  
 977

$$\phi(\mathbf{x}_t, t, s) = \phi(\mathbf{x}_t, t, t) - \left( \frac{t^2}{s} - t \right) \left( \frac{\mathbf{x}_t - \phi(\mathbf{x}_t, t, t)}{t} \partial_{\mathbf{x}} \phi + \partial_t \phi \right). \quad (31)$$

978 This final expression provides a self-contained regression target for  $\phi(\mathbf{x}_t, t, s)$ . A model  $\phi_{\theta}$  can be  
 979 trained to satisfy this identity by minimizing the L2 distance between the left-hand and right-hand  
 980 sides. The terms on the right-hand side involving  $\phi$  are evaluated using the model  $\phi_{\theta}$  itself (typically  
 981 with a stop-gradient), and the required partial derivatives can be computed efficiently via automatic  
 982 differentiation, such as with Jacobian-vector products (JVPs).  
 983

### 984 B.3 PROOF OF THEOREM 1

985 We provide a detailed proof of Theorem 1. Recall that we fix a finite time horizon  $T > 0$ , let  
 986  $\mathbf{x} \sim p_{\text{data}}$ ,  $\mathbf{z} \sim \mathcal{N}(0, I)$ , and define  $\mathbf{x}_t = \mathbf{x} + t\mathbf{z}$ . The vector fields  $f^*, \tilde{f} : \mathbb{R}^d \times (0, T] \rightarrow \mathbb{R}^d$  are  
 987 given by

$$f^*(\mathbf{x}_t, t) = \frac{\mathbf{x}_t - \mathbb{E}[\mathbf{x} \mid \mathbf{x}_t]}{t}, \quad \tilde{f}(\mathbf{x}_t, t) = \frac{\mathbf{x}_t - \mathbf{x}}{t}. \quad (32)$$

988 The ideal and surrogate solver trajectories are denoted by

$$X_{k+1}^* = S_{\Delta_k}[f^*](X_k^*), \quad \tilde{X}_{k+1} = S_{\Delta_k}[\tilde{f}](\tilde{X}_k), \quad X_0^* = \tilde{X}_0 = \mathbf{x}_t. \quad (33)$$

989 Here  $S_{\Delta_k}[f] : \mathbb{R}^d \rightarrow \mathbb{R}^d$  is a one-step method of order  $p$  with step size  $\Delta_k = \tau_{k+1} - \tau_k$ . The  
 990 multi-step propagation from  $t$  to  $u$  is written as  
 991

$$\Psi_{t \rightarrow u}^{\text{sol}}[f] := S_{\Delta_{K-1}}[f] \circ \cdots \circ S_{\Delta_0}[f], \quad (34)$$

992 with maximal step  $h = \max_k |\Delta_k|$ . We assume throughout that  $f^*(\cdot, t)$  is Lipschitz in  $x$ , the solver is  
 993 zero-stable, the decoder maps  $\Phi_{\theta}(\cdot, t, s)$  and  $\Phi_{\theta-}(\cdot, u, s)$  are Lipschitz in  $x$ , and solver states admit  
 994 bounded second moments independent of  $h$ .  
 995

996 **Lemma 1** (Conditional unbiasedness). *For all  $t \in (0, T]$  and  $x \in \mathbb{R}^d$  with  $\mathbf{x}_t = x$ ,*

$$\mathbb{E}\left[\tilde{f}(\mathbf{x}_t, t) \mid \mathbf{x}_t\right] = \mathbb{E}\left[\frac{\mathbf{x}_t - \mathbf{x}}{t} \mid \mathbf{x}_t\right] = \frac{\mathbf{x}_t - \mathbb{E}[\mathbf{x} \mid \mathbf{x}_t]}{t} = f^*(\mathbf{x}_t, t). \quad (35)$$

1000 *Proof.* This follows immediately from the definitions of  $\tilde{f}$  and  $f^*$ .  $\square$

1001 **Lemma 2** (One-step local bias). *Let  $x \in \mathbb{R}^d$  be the state at time  $\tau_k$ . If the solver has order  $p$ , then*

$$S_{\Delta_k}[\tilde{f}](x) - S_{\Delta_k}[f^*](x) = \Delta_k(\tilde{f}(x, \tau_k) - f^*(x, \tau_k)) + O(|\Delta_k|^{p+1}). \quad (36)$$

1002 Consequently, conditioning on  $\mathbf{x}_{\tau_k} = x$  and using Lemma 1,

$$\mathbb{E}\left[S_{\Delta_k}[\tilde{f}](x) - S_{\Delta_k}[f^*](x) \mid \mathbf{x}_{\tau_k} = x\right] = O(|\Delta_k|^{p+1}). \quad (37)$$

1003 *Proof.* By definition of an order- $p$  one-step solver, for any drift  $f$ ,

$$S_{\Delta_k}[f](x) = x + \Delta_k f(x, \tau_k) + O(|\Delta_k|^{p+1}). \quad (38)$$

1004 Subtracting the two cases  $f = \tilde{f}$  and  $f = f^*$  gives

$$S_{\Delta_k}[\tilde{f}](x) - S_{\Delta_k}[f^*](x) = \Delta_k(\tilde{f}(x, \tau_k) - f^*(x, \tau_k)) + O(|\Delta_k|^{p+1}). \quad (39)$$

1005 Taking conditional expectation w.r.t.  $\mathbf{x}_{\tau_k} = x$  and using Lemma 1 shows that the linear term vanishes,  
 1006 leaving

$$\mathbb{E}\left[S_{\Delta_k}[\tilde{f}](x) - S_{\Delta_k}[f^*](x) \mid \mathbf{x}_{\tau_k} = x\right] = O(|\Delta_k|^{p+1}). \quad (40)$$

1007  $\square$

1026 **Proposition 1** (Global state error). *Let the solver trajectories be*

$$1028 \quad X_{k+1}^* = S_{\Delta_k}[f^*](X_k^*), \quad \tilde{X}_{k+1} = S_{\Delta_k}[\tilde{f}](\tilde{X}_k), \quad X_0^* = \tilde{X}_0 = \mathbf{x}_t. \quad (41)$$

1029 *If  $f^*(\cdot, \tau)$  is Lipschitz in  $x$  and the solver is zero-stable, then there exist constants  $C, C'$  (independent  
1030 of  $h$ ) such that*

$$1032 \quad \mathbb{E}\|X_{k+1}^* - \tilde{X}_{k+1}\| \leq (1 + C|\Delta_k|) \mathbb{E}\|X_k^* - \tilde{X}_k\| + C'|\Delta_k|^{p+1}. \quad (42)$$

1034 *Consequently, over the finite horizon  $[0, T]$ ,*

$$1035 \quad \mathbb{E}\|X_K^* - \tilde{X}_K\| \leq C_T h^p, \quad (43)$$

1037 *where  $C_T$  depends on  $T$  and the Lipschitz/stability constants but not on  $h$ .*

1039 *Proof.* We start from the standard decomposition

$$1041 \quad X_{k+1}^* - \tilde{X}_{k+1} = (S_{\Delta_k}[f^*](X_k^*) - S_{\Delta_k}[f^*](\tilde{X}_k)) + (S_{\Delta_k}[f^*](\tilde{X}_k) - S_{\Delta_k}[\tilde{f}](\tilde{X}_k)). \quad (44)$$

1042 By Lipschitz regularity of  $f^*$  and zero-stability of the scheme, there exists  $C > 0$  such that

$$1044 \quad \|S_{\Delta_k}[f^*](x) - S_{\Delta_k}[f^*](y)\| \leq (1 + C|\Delta_k|) \|x - y\|, \quad \forall x, y \in \mathbb{R}^d. \quad (45)$$

1045 For instance, for explicit Euler  $S_{\Delta}[f](x) = x + \Delta f(x, \tau_k)$  and thus

$$1047 \quad \|S_{\Delta}[f^*](x) - S_{\Delta}[f^*](y)\| = \|(x - y) + \Delta(f^*(x, \tau_k) - f^*(y, \tau_k))\| \leq (1 + L_f|\Delta|)\|x - y\|. \quad (46)$$

1048 General one-step methods admit the same bound with a (method-dependent) constant  $C$ .

1049 By Lemma 2 and the law of total expectation,

$$1052 \quad \mathbb{E}\|S_{\Delta_k}[f^*](\tilde{X}_k) - S_{\Delta_k}[\tilde{f}](\tilde{X}_k)\| = O(|\Delta_k|^{p+1}). \quad (47)$$

1053 Combining the two parts and taking expectations yields the recursion

$$1055 \quad \mathbb{E}\|X_{k+1}^* - \tilde{X}_{k+1}\| \leq (1 + C|\Delta_k|) \mathbb{E}\|X_k^* - \tilde{X}_k\| + C'|\Delta_k|^{p+1}. \quad (48)$$

1057 Denote  $E_k := \mathbb{E}\|X_k^* - \tilde{X}_k\|$ ,  $a_k := C|\Delta_k|$ ,  $b_k := C'|\Delta_k|^{p+1}$ . Then

$$1059 \quad E_{k+1} \leq (1 + a_k)E_k + b_k. \quad (49)$$

1060 Unrolling the recursion gives

$$1062 \quad E_K \leq \left( \prod_{j=0}^{K-1} (1 + a_j) \right) E_0 + \sum_{i=0}^{K-1} \left( \prod_{j=i+1}^{K-1} (1 + a_j) \right) b_i. \quad (50)$$

1065 Since  $E_0 = 0$ , the first term vanishes. For the product term, use  $1 + x \leq e^x$  to obtain

$$1067 \quad \prod_{j=i+1}^{K-1} (1 + a_j) \leq \exp\left(\sum_{j=i+1}^{K-1} a_j\right) = \exp\left(C \sum_{j=i+1}^{K-1} |\Delta_j|\right) \leq \exp(CT) =: C_T. \quad (51)$$

1070 For the sum, note  $|\Delta_i|^{p+1} \leq h^p |\Delta_i|$ , hence

$$1072 \quad \sum_{i=0}^{K-1} b_i \leq C' \sum_{i=0}^{K-1} |\Delta_i|^{p+1} \leq C' h^p \sum_{i=0}^{K-1} |\Delta_i| = C' h^p (t - u) \leq C' T h^p. \quad (52)$$

1075 Combining the two bounds,

$$1077 \quad E_K \leq C_T \sum_{i=0}^{K-1} b_i \leq (C_T C' T) h^p =: \tilde{C}_T h^p, \quad (53)$$

1079 which proves the claim.  $\square$

1080 **Proposition 2** (Decoder discrepancy). *If  $\Phi_{\theta^-}(\cdot, u, s)$  is Lipschitz in  $x$  with constant  $L$ , then*

$$1082 \mathbb{E}\|\Phi_{\theta^-}(X_K^*, u, s) - \Phi_{\theta^-}(\tilde{X}_K, u, s)\| \leq L \mathbb{E}\|X_K^* - \tilde{X}_K\| = O(h^p), \quad (54)$$

1083 and, by Jensen and bounded moments,

$$1085 \mathbb{E}\|\Phi_{\theta^-}(X_K^*, u, s) - \Phi_{\theta^-}(\tilde{X}_K, u, s)\|^2 = O(h^{2p}). \quad (55)$$

1087 *Proof sketch.* Immediate from the Lipschitz property of  $\Phi_{\theta^-}$ , Proposition 1, and Jensen’s inequality.  $\square$

1089 **Proposition 3** (Objective gap). *Define*

$$1091 \mathcal{L}_{\text{ideal}}(\theta) := \mathbb{E}\|\Phi_{\theta}(x_t, t, s) - \Phi_{\theta^-}(X_K^*, u, s)\|^2, \quad (56)$$

$$1092 \mathcal{L}_{\text{prac}}(\theta) := \mathbb{E}\|\Phi_{\theta}(x_t, t, s) - \Phi_{\theta^-}(\tilde{X}_K, u, s)\|^2. \quad (57)$$

1093 *Then*

$$1095 |\mathcal{L}_{\text{prac}}(\theta) - \mathcal{L}_{\text{ideal}}(\theta)| = O(h^p). \quad (58)$$

1096 *Proof.* Subtracting the two objectives yields

$$1098 \mathcal{L}_{\text{prac}}(\theta) - \mathcal{L}_{\text{ideal}}(\theta) = \\ 1099 \mathbb{E}\left[\|\Phi_{\theta}(x_t, t, s) - \Phi_{\theta^-}(\tilde{X}_K, u, s)\|^2 - \|\Phi_{\theta}(x_t, t, s) - \Phi_{\theta^-}(X_K^*, u, s)\|^2\right]. \quad (59)$$

1101 Expanding the difference gives

$$1103 \|\Phi_{\theta}(x_t, t, s) - \Phi_{\theta^-}(\tilde{X}_K, u, s)\|^2 - \|\Phi_{\theta}(x_t, t, s) - \Phi_{\theta^-}(X_K^*, u, s)\|^2 = \\ 1104 \langle \Phi_{\theta^-}(X_K^*, u, s) - \Phi_{\theta^-}(\tilde{X}_K, u, s), \Phi_{\theta^-}(X_K^*, u, s) + \Phi_{\theta^-}(\tilde{X}_K, u, s) - 2\Phi_{\theta}(x_t, t, s) \rangle. \quad (60)$$

1106 Applying the Cauchy–Schwarz inequality yields

$$1108 |\mathcal{L}_{\text{prac}}(\theta) - \mathcal{L}_{\text{ideal}}(\theta)| \leq \\ 1109 \sqrt{\mathbb{E}\|\Phi_{\theta^-}(X_K^*, u, s) - \Phi_{\theta^-}(\tilde{X}_K, u, s)\|^2} \cdot \sqrt{\mathbb{E}\|\Phi_{\theta^-}(X_K^*, u, s) + \Phi_{\theta^-}(\tilde{X}_K, u, s) - 2\Phi_{\theta}(x_t, t, s)\|^2}. \quad (61)$$

1112 The second factor is  $O(1)$  uniformly in  $h$  by the bounded-moment assumption, while the first factor  
1113 is  $O(h^p)$  by Proposition 2. Hence the product is  $O(h^p)$ .  $\square$

1115 Combining Propositions 1–3 proves that

$$1117 |\mathcal{L}_{\text{prac}}(\theta) - \mathcal{L}_{\text{ideal}}(\theta)| = O(h^p). \quad (62)$$

1118 which is the claim of Theorem 1.  $\square$

## 1120 B.4 THEORETICAL RATIONALE FOR THE SCORE FUNCTION APPROXIMATION

1121 Theorem 1 formally establishes that replacing the true vector field  $f^*$  with the surrogate  $\tilde{f}$  changes  
1122 the learning objective only by  $O(h^p)$ . Here we complement this result with intuition, showing why  
1123 such an approximation is both natural and conceptually aligned with existing frameworks.

1125 The core challenge when training our GTP from scratch is providing stable, on-trajectory supervision.  
1126 The ideal consistency objective is to enforce that predictions from any two points on the same true  
1127 ODE trajectory are identical. In principle, the model could generate these points itself by acting as its  
1128 own “teacher” and numerically solving its learned ODE. However, when learning from scratch, this  
1129 self-supervision process is inherently unstable. The initially random model produces highly inaccurate  
1130 estimates of the underlying vector field, which are then used to generate its own supervision. This  
1131 creates a vicious cycle where flawed targets lead to poor updates, causing further error propagation.

1132 In contrast to our formulation with an explicit Inst Map, Consistency Training (Song et al., 2023)  
1133 compensates for the missing teacher by introducing a simple analytical supervision path (a straight  
line) from which paired samples can be drawn. The process, illustrated in Figure 4a, is as follows:

1134 1. A simple, straight-line supervision path (the white line) is constructed via  $\mathbf{x}_t = \mathbf{x}_0 + t \cdot \mathbf{z}$   
 1135 by sampling a data point  $\mathbf{x}_0$  and noise  $\mathbf{z}$ .  
 1136 2. A point  $\mathbf{x}_t$  is sampled from this path. The ideal objective would require us to pair it with the  
 1137 corresponding point  $\mathbf{x}_{t-\Delta t}$  on the same true ODE trajectory (the green curve). However,  
 1138 obtaining this point is intractable without a teacher model.  
 1139 3. To create a practical objective, Consistency Training instead samples the second point, which  
 1140 we denote  $\mathbf{x}'_{t-\Delta t}$ , directly from the simple white line.  
 1141 4. Each of these points now lies on its own true (but unknown) PF ODE trajectory. The green  
 1142 curve is the true trajectory passing through  $\mathbf{x}_t$  while the blue curve is the true trajectory  
 1143 passing through  $\mathbf{x}_{t-\Delta t}$ .  
 1144 5. The model  $\Phi$  is then tasked with predicting the data origin from each of these starting points,  
 1145 yielding  $\hat{\mathbf{x}}_0 = \Phi(\mathbf{x}_t, t, 0)$  and  $\hat{\mathbf{x}}'_0 = \Phi(\mathbf{x}_{t-\Delta t}, t - \Delta t, 0)$ . The consistency loss enforces  
 1146 that these two predictions must match, even though they originated from different points on  
 1147 different true trajectories:  
 1148

$$\mathcal{L}_{\text{CT}} = \mathbb{E}[||\hat{\mathbf{x}}_0 - \hat{\mathbf{x}}'_0||_2^2] \quad (63)$$

1150 The profound implication of this objective can be understood intuitively: the model is being asked to  
 1151 produce the same output ( $\mathbf{x}_0$ ) from two different inputs ( $\mathbf{x}_t$  and  $\mathbf{x}'_{t-\Delta t}$ ). For the model to succeed  
 1152 at this task across all possible data points  $\mathbf{x}_0$  and noise vectors  $\mathbf{z}$ , it cannot learn any specific set  
 1153 of curved trajectories. Its only viable strategy is to learn a vector field whose solution paths are,  
 1154 on average, straight lines that align with the simple  $\mathbf{x}_t = \mathbf{x}_0 + t \cdot \mathbf{z}$  supervision structure. This  
 1155 effectively "tames" the learning problem, forcing the model to learn a consistent mapping from any  
 1156 point on a noisy line back to its origin.  
 1157

1158 This leads to the deeper theoretical justification. A given noisy point  $\mathbf{x}_t$  is ambiguous; it could have  
 1159 been generated by many different pairs of  $(\mathbf{x}_0, \mathbf{z})$ . To minimize the consistency loss on average over  
 1160 the entire dataset, the model's output  $\Phi(\mathbf{x}_t, t, 0)$  cannot learn to predict any single  $\mathbf{x}_0$ . Instead, it is  
 1161 implicitly forced to learn the optimal Bayes estimator: the conditional expectation  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$ . This  
 1162 learned denoiser is precisely the component needed to define the true, underlying PF ODE. This  
 1163 process, where the model learns a single deterministic trajectory by averaging over all possible linear  
 1164 paths that could generate a point  $\mathbf{x}_t$ , is conceptually illustrated in Figure 3.

1165 To make this connection concrete, Figure 4b illustrates the training objective of our GTP framework.  
 1166 While Consistency Training supervises the model indirectly by enforcing agreement between pre-  
 1167 dictions from two noisy samples, our GTP formulation directly parameterizes the entire solution  
 1168 map  $\Phi(\mathbf{x}_t, t, s)$  and enforces its self-consistency across intervals. Conceptually, this is nothing  
 1169 but the same principle as in Consistency Training: both objectives ensure that different ways of  
 1170 tracing back a noisy point must yield the same underlying origin. The key difference is one of  
 1171 perspective—Consistency Training views the model as a local denoiser (learning the map to  $t = 0$ ),  
 1172 whereas GTP treats the model as the generator of a global trajectory solution (learning the map to  
 1173 any  $s$ ). Thus, the two formulations are theoretically equivalent in spirit, with GTP offering a more  
 1174 direct and integral-level realization of the same consistency idea.

1175 A subtle point concerns the role of the step size. In Consistency Training (Song et al., 2023), the  
 1176 theoretical justification is given in the limit  $\Delta t \rightarrow 0$ , ensuring locally correct supervision. In our  
 1177 setting, the step size parameter  $h$  is defined as the maximum interval between adjacent time points,  
 1178 so the requirement  $h \rightarrow 0$  is directly analogous to their  $\Delta t \rightarrow 0$  condition. The difference is that  
 1179 our Theorem 1 makes this correspondence explicit by proving that, even for finite  $h$ , the surrogate  
 1180 objective deviates from the ideal one only by  $O(h^p)$ . Thus the infinitesimal-step reasoning of  
 1181 Consistency Training can be viewed as a special case of our more general analysis.

1182 Finally, this principle is not an isolated finding but a direct instantiation of the same powerful idea that  
 1183 underpins the Flow Matching framework (Lipman et al., 2023). Both approaches learn the complex,  
 1184 non-linear vector field of the true ODE by supervising it with a target derived from the conditional  
 1185 expectation of simple, analytical paths. They differ only in what the neural network explicitly learns:  
 1186 while Flow Matching trains a network to regress against this expected velocity, our GTP framework  
 1187 learns to approximate the solution map  $\Phi(\mathbf{x}_t, t, s)$  itself (the integral). This deep connection confirms  
 1188 that our training strategy is not an ad-hoc simplification but a principled and theoretically sound  
 1189 method for learning the correct generative dynamics.

1188

1189



1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

Figure 3: Illustration of the learning process. A given point  $x_t$  can be formed by many different linear paths (corresponding to different pairs of  $(x_0, z)$ ). The model is trained to learn a single, deterministic "learned trajectory" that represents the conditional expectation of these paths. This forces the model to learn the true underlying generative dynamics.

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218



(a) Illustration of the Consistency Training objective. The process uses a simple, analytical supervision path (white line) defined by  $x_t = x_0 + t \cdot z$ . Two points,  $x_t$  and  $x'_{t-\Delta t}$ , are sampled from this path. Each lies on its own true (but unknown) PF ODE trajectory (green and blue curves). The consistency loss enforces that the model's predictions for the data origin,  $\hat{x}_0$  and  $\hat{x}'_0$ , must match, even when starting from different points on different trajectories.



(b) Illustration of the GTP Training objective. The process mirrors that of standard Consistency Training but is generalized for an arbitrary target time  $s$ . A student model's direct prediction from  $x_t$  to a target point  $x_s$  (green path) is trained to match a target model's two-step prediction via an intermediate point  $x_u$  (blue path). This generalization allows the model to learn the full solution map  $\Phi(x_t, t, s)$ , not just the specialized map to the origin.

1219

1220

1221

1222

Figure 4: Comparison of training objectives. (a) Standard Consistency Training supervises predictions back to the origin. (b) GTP extends this principle by enforcing self-consistency across arbitrary intervals, enabling direct learning of the solution map.

1223

1224

## B.5 DERIVATION OF THE ADVANTAGE-WEIGHTED OBJECTIVE

1225

This section provides the detailed theoretical derivation for the advantage-weighted learning objective presented in Section 4.2.

1226

1227

1228

1229

1230

Our starting point is a standard objective in offline RL that seeks to maximize the Q-function while regularizing the learned policy  $\pi$  to stay close to the dataset's behavior policy  $\pi_{BC}$  via a KL-divergence constraint:

1231

1232

1233

$$\max_{\pi} \mathbb{E}_{a \sim \pi(\cdot|s)} \left[ Q(s, a) - \frac{1}{\eta} D_{KL}(\pi(\cdot|s) || \pi_{BC}(\cdot|s)) \right] \quad (64)$$

1234

1235

1236

1237

As shown by prior work in variational RL (Peters et al., 2010; Abdolmaleki et al., 2018; Kumar et al., 2020), the optimal solution  $\pi^*$  for this problem takes the form of the behavior policy, re-weighted by the exponentiated Q-function. For greater conceptual clarity and numerical stability, this solution is typically expressed using the advantage function  $A(s, a) = Q(s, a) - V(s)$ :

1238

1239

1240

1241

$$\pi^*(a|s) = \frac{1}{Z(s)} \pi_{BC}(a|s) \exp(\eta A(s, a)), \quad (65)$$

where  $Z(s)$  is the state-dependent normalization term. This  $\pi^*$  represents the ideal, value-improved target policy we wish our model to learn. The task now becomes how to train our expressive generative

1242 policy  $\pi_\theta$  to match this optimal target  $\pi^*$ . The natural way to do so is to minimize the KL-divergence  
 1243 between them:

$$1244 \min_{\theta} D_{\text{KL}}(\pi^*(\cdot|s) \parallel \pi_\theta(\cdot|s)) = \max_{\theta} \mathbb{E}_{a \sim \pi^*(\cdot|s)} [\log \pi_\theta(a|s)] \quad (66)$$

1246 To compute this expectation, we use importance sampling to switch from the intractable target distribution  
 1247  $\pi^*$  to the tractable dataset distribution  $\pi_{\text{BC}}$ . The importance weight is  $\pi^*(a|s)/\pi_{\text{BC}}(a|s) = \exp(\eta A(s, a))/Z(s)$ . Substituting this into our objective gives:

$$1249 \max_{\theta} \mathbb{E}_{(s, a) \sim \mathcal{D}} \left[ \frac{\exp(\eta A(s, a))}{Z(s)} \log \pi_\theta(a|s) \right] \quad (67)$$

1252 Here we arrive at the final crucial step. The normalization term  $Z(s)$  is also independent of our  
 1253 optimization variable  $\theta$ . Therefore, when taking the gradient with respect to  $\theta$ ,  $Z(s)$  acts as a  
 1254 constant scaling factor and does not affect the location of the optimum. We can thus drop it from the  
 1255 optimization objective, which yields the final, practical form:

$$1256 \max_{\theta} \mathbb{E}_{(s, a) \sim \mathcal{D}} [\exp(\eta A(s, a)) \log \pi_\theta(a|s)] \quad (68)$$

1257 While we write the loss here in terms of log-likelihood for clarity, the same exponential advantage  
 1258 weighting directly applies to any generative training loss, including diffusion and flow-matching  
 1259 objectives. This confirms that applying an exponential advantage weight to the log-likelihood  
 1260 objective of our generative policy is the theoretically correct implementation of the variational policy  
 1261 optimization framework.

## 1263 B.6 ADDITIONAL DISCUSSION ON ACTOR LOSS FORMULATIONS

1264 In Section 5.3, we compared our variational guidance against a baseline that linearly combines the  
 1265 generative loss with a Q-learning actor loss. Here we provide a more detailed discussion.

1267 **Formulation.** The baseline takes the form

$$1269 \mathcal{L}_{\text{actor}} = \mathcal{L}_{\text{BC}} + \lambda \mathcal{L}_Q, \quad (69)$$

1270 while our method instead adopts a weighted behavior cloning objective:

$$1271 \mathcal{L}_{\text{weighted-BC}} = \mathbb{E}_{(s, a) \sim \mathcal{D}} [w(s, a) \mathcal{L}_{\text{BC}}], \quad (70)$$

1273 where  $w(s, a)$  is given in Equation 14.

1274 **Lemma 3.** When  $\mathcal{L}_{\text{BC}}(\pi; \pi_\beta)$  is instantiated as a KL divergence  $D_{\text{KL}}(\pi_\beta(\cdot|s) \parallel \pi(\cdot|s))$ , the linear-  
 1275 combination objective corresponds to a KL-regularized policy improvement whose optimizer

$$1276 \pi^*(a|s) = \frac{1}{Z(s)} \pi_\beta(a|s) \exp(\lambda Q(s, a)). \quad (71)$$

1277 Training a parametric policy  $\pi_\theta$  to match  $\pi^*$  then leads to a weighted-BC update

$$1279 \max_{\theta} \mathbb{E}_{a \sim \pi_\beta(\cdot|s)} [\exp(\lambda Q(s, a)) \log \pi_\theta(a|s)], \quad (72)$$

1280 i.e., weighted behavior cloning with weights  $w(s, a) \propto \exp(\lambda Q(s, a))$ .

1282 *Proof Sketch.* By definition,

$$1283 \mathcal{L}_{\text{actor}} = \mathcal{L}_{\text{BC}} + \lambda \mathcal{L}_Q. \quad (73)$$

1284 When  $\mathcal{L}_{\text{BC}}$  is instantiated as a KL divergence and  $\mathcal{L}_Q$  as the negative  $Q$ -expectation, this becomes

$$1286 \mathcal{L}_{\text{actor}} = \mathbb{E}_{s \sim \mathcal{D}} \left[ D_{\text{KL}}(\pi_\beta(\cdot|s) \parallel \pi(\cdot|s)) - \lambda \mathbb{E}_{a \sim \pi(\cdot|s)} [Q(s, a)] \right]. \quad (74)$$

1287 Optimizing over  $\pi$  yields

$$1289 \pi^*(a|s) = \frac{1}{Z(s)} \pi_\beta(a|s) \exp(\lambda Q(s, a)), \quad (75)$$

1290 which is exactly the same Boltzmann form derived in Appendix B.5. Minimizing the KL divergence  
 1291 between  $\pi^*$  and the parametric policy  $\pi_\theta$  is therefore equivalent to weighted BC with exponential  
 1292 weights.  $\square$

1294 *Remark.* Replacing  $Q(s, a)$  with the advantage  $A(s, a) = Q(s, a) - V(s)$  makes the weights  
 1295 invariant to affine shifts of  $Q$ ; the state-value term is absorbed into  $Z(s)$ , leaving the training  
 objective unchanged.



Figure 5: Illustration of weighted behavior cloning. The empirical dataset distribution (black) is reweighted into a value-guided distribution (red), which emphasizes high-value regions while remaining strictly within the data support.

**Discussion.** This result shows that, when the behavior cloning loss is instantiated as a KL divergence, the linear-combination baseline and our weighted-BC approach are consistent through the underlying KL-regularized policy improvement. For other choices of  $\mathcal{L}_{\text{BC}}$ , this connection is less direct. In practice, however, the raw linear form is highly sensitive to the scale of  $\lambda$  and critic values, whereas our normalized and clipped weighting provides stable and robust training across settings.

Beyond this theoretical connection, the linear combination can be viewed as a more direct engineering heuristic. Its practical challenge lies in the choice of  $\lambda$ , which controls the relative strength of the gradient signals. Since our  $\mathcal{L}_{\text{BC}}$  is already composed of multiple components, the magnitudes of  $\mathcal{L}_{\text{BC}}$  and  $\mathcal{L}_Q$  can differ by orders of magnitude. Stabilizing this baseline thus requires careful tuning of  $\lambda$ —often by matching empirical gradient norms during training—otherwise one may encounter exploding critic gradients or vanishing actor updates.

A further drawback is that the direct gradient from  $\mathcal{L}_Q$  can steer the policy toward out-of-distribution (OOD) actions because it relies on critic estimates for actions with little or no dataset support. In practice, this extrapolation error propagates through the bootstrapped TD targets, inflating temporal-difference residuals and often causing the critic loss to explode—a phenomenon we frequently observed in implementation. By contrast, our weighted-BC formulation never changes the data itself: the policy is always trained on in-distribution samples, but their effective frequency (or density) is adjusted according to value estimates. This reweighting not only shifts probability mass toward high-value regions of the dataset (Figure 5), but also makes gradient magnitudes easier to control, thereby greatly reducing the occurrence of critic loss explosions in practice.

## C IMPLEMENTATION DETAILS

### C.1 EXPERIMENTAL HYPERPARAMETERS

Unless otherwise noted, all ablation studies were executed on the RTX 4090 + i9-13900K workstation; the other machines were used for main-figure experiments. All experiments are implemented in Python and conducted on five machines: one with an RTX 4090 and i9-13900K CPU (24 cores / 32 threads); three with dual A40 GPUs and dual EPYC 7313 CPUs (16 cores / 32 threads each); and one with an RTX 3050 and i7-13700H CPU (14 cores / 20 threads). RAM ranges from 24 GB to 128 GB across machines.

### C.2 DYNAMIC Timestep SCHEDULING FOR ROBUST TRAJECTORY LEARNING

In our implementation, to address the trade-off between computational cost and approximation accuracy inherent in selecting the number of discretization steps  $N$ , we adopt a dynamic scheduling strategy inspired by Song & Dhariwal (2024). Rather than fixing  $N$ , the schedule gradually increases the number of steps as training progresses. This curriculum exposes the model to trajectories of varying resolutions, which prevents overfitting to a specific discretization and promotes a more faithful understanding of the underlying continuous-time dynamics. Consequently, the learned policy

1350 Table 4: The hyperparameters in offline (including BC,  $\eta = 0$ ) training on D4RL Gym, AntMaze,  
 1351 Adroit and Kitchen tasks.

| Tasks                        | Hyperparameters    |        |        |              |               |
|------------------------------|--------------------|--------|--------|--------------|---------------|
|                              | learning rate      | $\eta$ | Q norm | max Q backup | gradient norm |
| halfcheetah-medium-v2        | $3 \times 10^{-4}$ | 5.0    | False  | False        | 9.0           |
| hopper-medium-v2             | $3 \times 10^{-4}$ | 1.0    | False  | False        | 9.0           |
| walker2d-medium-v2           | $3 \times 10^{-4}$ | 5.0    | False  | False        | 1.0           |
| halfcheetah-medium-replay-v2 | $3 \times 10^{-4}$ | 5.0    | False  | False        | 2.0           |
| hopper-medium-replay-v2      | $3 \times 10^{-4}$ | 5.0    | False  | False        | 4.0           |
| walker2d-medium-replay-v2    | $3 \times 10^{-4}$ | 5.0    | False  | False        | 4.0           |
| halfcheetah-medium-expert-v2 | $3 \times 10^{-4}$ | 5.0    | False  | False        | 7.0           |
| hopper-medium-expert-v2      | $3 \times 10^{-4}$ | 5.0    | False  | False        | 5.0           |
| walker2d-medium-expert-v2    | $3 \times 10^{-4}$ | 5.0    | False  | False        | 5.0           |
| antmaze-umaze-v0             | $3 \times 10^{-4}$ | 5.0    | False  | False        | 2.0           |
| antmaze-umaze-diverse-v0     | $3 \times 10^{-4}$ | 1.0    | False  | True         | 3.0           |
| antmaze-medium-play-v0       | $1 \times 10^{-3}$ | 5.0    | False  | True         | 2.0           |

1367 becomes robust to the choice of inference steps, maintaining strong performance even with a small  
 1368 number of sampling steps at deployment.

1369 Formally, the number of steps at iteration  $k$  is given by:

$$1372 \quad N(k) = \min\left(s_0 \cdot 2^{\left\lfloor \frac{k}{K'} \right\rfloor}, s_1\right) + 1, \quad \text{where } K' = \left\lfloor \frac{K}{\log_2 \frac{s_1}{s_0} + 1} \right\rfloor. \quad (76)$$

1373 Here  $K$  is the total number of training iterations,  $s_0 = 10$  and  $s_1 = 1280$  are the minimum and  
 1374 maximum number of discretization steps, respectively. The schedule doubles the step count every  $K'$   
 1375 iterations until the maximum  $s_1$  is reached, starting with short, computationally efficient rollouts and  
 1376 progressively refining toward longer, more accurate trajectories.

## D ADDITIONAL RESULTS

### D.1 ABLATION STUDY: EFFECT OF SAMPLING HORIZON $T$

1380 Table 5: Comparison among diffusion- and flow-based offline RL methods on D4RL Gym (mean  $\pm$   
 1381 std over 5 seeds).

| Gym Tasks      | D-QL         | QGPO  | BDM         | C-AC        | GTP (T=5)                         | GTP (T=2)                         |
|----------------|--------------|-------|-------------|-------------|-----------------------------------|-----------------------------------|
| halfcheetah-m  | 51.1         | 54.1  | 57.0        | <b>69.1</b> | $53.9 \pm 0.1$                    | $53.1 \pm 0.5$                    |
| hopper-m       | <b>90.5</b>  | 98.0  | <b>98.4</b> | 80.7        | $90.3 \pm 2.7$                    | $87.8 \pm 2.3$                    |
| walker2d-m     | 87.0         | 86.0  | 87.4        | 83.1        | $89.5 \pm 0.6$                    | <b>90.5 <math>\pm 0.5</math></b>  |
| halfcheetah-mr | 47.8         | 47.6  | 51.6        | <b>58.7</b> | $50.8 \pm 0.4$                    | $48.7 \pm 0.2$                    |
| hopper-mr      | <b>101.3</b> | 96.9  | 92.7        | 99.7        | $101.7 \pm 0.3$                   | $101.6 \pm 0.5$                   |
| walker2d-mr    | <b>95.5</b>  | 84.4  | 89.2        | 79.5        | $94.2 \pm 0.3$                    | <b>94.3 <math>\pm 1.4</math></b>  |
| halfcheetah-me | <b>96.8</b>  | 93.5  | 93.2        | 84.3        | $93.8 \pm 0.8$                    | <b>96.2 <math>\pm 0.4</math></b>  |
| hopper-me      | 111.1        | 108.0 | 104.9       | 100.4       | <b><math>112.2 \pm 0.6</math></b> | $111.7 \pm 0.6$                   |
| walker2d-me    | 110.1        | 110.7 | 111.1       | 110.4       | <b><math>114.2 \pm 0.3</math></b> | <b><math>114.2 \pm 1.0</math></b> |
| <b>Average</b> | 87.9         | 86.6  | 87.3        | 85.1        | <b>89.0</b>                       | 88.7                              |

1399 The ablation results in Table 5 show that using a shorter sampling horizon ( $T = 2$ ) yields essentially  
 1400 the same performance in expectation as the default  $T = 5$  across all Gym tasks. While the  $T = 2$   
 1401 scores exhibit slightly higher variance, the means remain very close to those of  $T = 5$ , indicating no  
 1402 meaningful degradation in policy quality. Importantly, reducing the horizon from  $T = 5$  to  $T = 2$   
 1403 leads to a substantial improvement in efficiency, as it requires significantly fewer sampling steps while



Figure 6: Sensitivity analysis of GTP on `hopper-medium-expert-v2`. Shaded regions denote  $\pm$  one standard deviation over 5 seeds.

maintaining comparable returns. This demonstrates that GTP does not rely on long ODE trajectories for strong performance, and that a very short generative trajectory is sufficient for effective policy improvement in offline RL.

## D.2 ABLATION STUDY: SENSITIVITY ANALYSIS

To further examine the robustness of GTP, we conduct a sensitivity analysis with respect to the sampling horizon  $T$  and the advantage temperature  $\eta$  in the value-guided objective.

**Sampling horizon  $T$ .** Figure 6(a) plots the return on `hopper-medium-expert-v2` as a function of the sampling horizon  $T \in \{1, 2, 3, 4, 5\}$ . Performance improves substantially when increasing  $T$  from 1 to 2, but quickly saturates for  $T \geq 2$ , with nearly indistinguishable returns for  $T = 2, 3, 4, 5$ . This confirms that GTP does not rely on long ODE trajectories: a very short horizon ( $T = 2$ ) is already sufficient in practice.

**Advantage temperature  $\eta$ .** Figure 6(b) shows the effect of varying the advantage temperature  $\eta \in \{1, 2, 3, 5, 7, 10, 20\}$ . GTP is relatively stable for  $\eta$  in the range  $[1, 3]$ , with a mild peak around  $\eta = 1-2$ . Larger values of  $\eta$  slightly degrade performance due to over-emphasizing a small number of high-advantage samples, but the overall variation remains moderate. These results indicate that GTP is robust to the choice of  $\eta$  over a reasonably wide range and does not require fine-tuning of this hyperparameter.

## D.3 ABLATION STUDY: EFFICIENCY–PERFORMANCE TRADE-OFF AT INFERENCE

A core claim of our work is that GTP resolves the trade-off between expressiveness and efficiency. To validate this, we compare inference-time efficiency across different generative policy classes on `halfcheetah-medium-expert-v2`. Specifically, we sample 100 trajectories and report the average wall-clock time per inference step together with final policy performance. We benchmark GTP against diffusion policies with  $T = 5$  sampling steps and consistency models with  $T = 2$  steps, while also evaluating GTP with  $T = 5$  steps to ensure a fair comparison in terms of sampling cost.

**Results and Analysis.** Table 6 summarizes the results. We find that GTP with  $T = 5$  achieves slightly faster inference than diffusion with the same number of steps, while delivering substantially better performance. **Using a shorter sampling horizon also improves efficiency: GTP with  $T = 2$  uses fewer sampling steps while maintaining nearly the same performance as  $T = 5$ .** Compared to consistency models with  $T = 2$ , our method is moderately slower but significantly more expressive, closing the gap between efficiency and policy quality. **Together, these results show that GTP provides a flexible and favorable trade-off: it can match consistency-level efficiency when using  $T = 2$ , while retaining the strong performance benefits of the full GTP architecture.** This demonstrates that

1458 GTP provides a favorable balance between efficiency and performance, resolving a long-standing  
 1459 limitation of prior generative policies.  
 1460

1461 Table 6: Ablation results on `halfcheetah-medium-expert-v2`. Inference time is averaged  
 1462 over 100 sampled trajectories. GTP achieves a superior trade-off, being faster than diffusion while  
 1463 outperforming consistency.

| Method                        | Inference Time (ms) |
|-------------------------------|---------------------|
| Diffusion Policy ( $T = 5$ )  | 1.16                |
| Consistency Model ( $T = 2$ ) | 0.55                |
| GTP ( $T = 5$ )               | 0.94                |
| GTP ( $T = 2$ )               | 0.67                |

#### 1472 D.4 ABLATION ON ACTOR LOSS FORMULATION

1473 We further examined whether our explicit teacher is truly necessary by testing two teacher-free  
 1474 philosophies: (i) the self-consistency principle underlying Shortcut Models (Frans et al., 2025), and  
 1475 (ii) the identity-based formulation of continuous consistency models and Mean Flows (Lu & Song,  
 1476 2025; Geng et al., 2025). Both yield a continuous-time actor loss that is theoretically elegant and  
 1477 fully self-referential, requiring no external supervision.

1478 **Results and Analysis.** In practice, however, both variants were unsatisfactory. The identity-based  
 1479 loss demanded repeated JVPs in PyTorch, leading to prohibitive memory and runtime overhead.  
 1480 Despite multiple attempts and stabilization tricks, all identity-based runs eventually encountered  
 1481 severe divergence, with either actor loss blowing up or critic loss exploding due to OOD data.  
 1482 We nevertheless completed several such runs: one experiment took 6.03 hours to finish but still  
 1483 collapsed in performance. We suspect this discrepancy arises because the original Mean Flows were  
 1484 implemented on TPUs with specialized auto-differentiation, while PyTorch+GPU implementations  
 1485 incur heavy JVP costs and suffer from numerical instability—issues that are especially problematic  
 1486 in RL, where stable training is crucial. The self-consistency variant, while computationally lighter,  
 1487 also produced unstable targets and degraded policy quality.

1488 In contrast, our teacher-guided score approximation provided stable, efficient training and consistently  
 1489 stronger policies. These results highlight that while teacher-free objectives are conceptually appealing,  
 1490 they are not yet practical under standard GPU-based RL settings. We leave further improvements in  
 1491 this direction as an interesting avenue for future work.

#### 1493 D.5 VISUALIZING EXPRESSIVENESS AND EFFICIENCY IN MULTI-GOAL ENVIRONMENTS



1506 Figure 7: Policy visualization in a 2D multi-goal environment.  
 1507

1508 To provide an intuitive, visual confirmation of our claims, we design a 2D multi-goal environment  
 1509 where the optimal policy is inherently multi-modal. As shown in Figure 7, our GTP model accurately  
 1510 captures the four distinct modes of the data, learning a policy that successfully reaches all goals.  
 1511 In contrast, while Diffusion-QL also captures the modes, it does so at a higher computational cost.  
 Consistency-AC is faster but fails to capture all modes, suffering from degraded policy quality. This

1512 Table 7: Ablation results on hopper-medium-expert-v2 (mean  $\pm$  std over 5 random seeds).  
 1513 Teacher-free objectives are either too costly (Mean Flows) or unstable (Shortcut), while our teacher-  
 1514 based formulation achieves the best trade-off.

1515

1516

1517

1518

1519

1520

1521

1522

visualization provides a clear illustration of our method’s central achievement: successfully modeling  
 diverse, multi-modal behaviors without sacrificing computational efficiency.

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565