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ABSTRACT

Safe reinforcement learning (SRL) problems are typically modeled as constrained
Markov Decision Process (CMDP), in which an agent explores the environment
to maximize the expected total reward and meanwhile avoids violating certain
constraints on a number of expected total costs. In general, such SRL problems
have nonconvex objective functions subject to multiple nonconvex constraints, and
hence are very challenging to solve, particularly to provide a globally optimal
policy. Many popular SRL algorithms adopt a primal-dual structure which utilizes
the updating of dual variables for satisfying the constraints. In contrast, we propose
a primal approach, called constraint-rectified policy optimization (CRPO), which
updates the policy alternatingly between objective improvement and constraint
satisfaction. CRPO provides a primal-type algorithmic framework to solve SRL
problems, where each policy update can take any variant of policy optimization
step. To demonstrate the theoretical performance of CRPO, we adopt natural
policy gradient (NPG) for each policy update step and show that CRPO achieves
an O(1/

√
T ) convergence rate to the global optimal policy in the constrained

policy set and an O(1/
√
T ) error bound on constraint satisfaction. This is the

first finite-time analysis of SRL algorithms with global optimality guarantee. Our
empirical results demonstrate that CRPO can outperform the existing primal-dual
baseline algorithms significantly.

1 INTRODUCTION

Reinforcement learning (RL) has achieved great success in solving complex sequential decision-
making and control problems such as Go Silver et al. (2017), StarCraft DeepMind (2019) and
recommendation system Zheng et al. (2018), etc. In these settings, the agent is allowed to explore the
entire state and action space to maximize the expected total reward. However, in safe RL, in addition
to maximizing the reward, an agent needs to satisfy certain constraints. Examples include self-driving
cars Fisac et al. (2018), cellular network Julian et al. (2002), and robot control Levine et al. (2016).
One standard model for safe RL is constrained Markov Decision Process (CMDP) Altman (1999),
which further requires the policy to satisfy the constraints on a number of accumulated costs. The
global optimal policy in this setting is the one that maximizes the reward and at the same time satisfies
the cost constraints. In general, it is very challenging to find the global optimal policy in CMDP, as
both the objective and constraints are nonconvex functions.

A commonly used approach to solve CMDP is the primal-dual method Chow et al. (2017); Tessler
et al. (2018); Ding et al. (2020a); Stooke et al. (2020), in which the constrained problem is converted
to an unconstrained one by augmenting the objective with a sum of constraints weighted by their
corresponding Lagrange multipliers. Usually, Lagrange multipliers are updated in the dual space
concurrently Tessler et al. (2018). Although it has been observed that primal-dual methods always
converge to the feasible set in the end Ray et al. (2019), such an approach is sensitive to the initializa-
tion of Lagrange multipliers and the learning rate, thus can incur extensive cost in hyperparameter
tuning Achiam et al. (2017); Chow et al. (2019). Another baseline approach is constrained policy
optimization (CPO), in which a linearized constrained problem is solved from scratch at each iteration
to obtain the policy in the next step. However, a successful implementation of CPO requires a feasible
initialization, which by itself can be very difficult especially with multiple constraints Ray et al.
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(2019). Other approaches such as Lyapunov method Chow et al. (2018; 2019), safety layer method
Dalal et al. (2018a) and interior point method Liu et al. (2019b) have also been proposed recently.
However, these methods do not have clear guidance in hyperparameter tuning, and thus suffer from
nontrivial cost to implement in practice Stooke et al. (2020).

Thus, one goal here is to design an easy-to-implement SRL algorithm that enjoys the ease as
uncontrained problems and readily approaches feasible points from random initialization.

In contrast to the extensive empirical studies of SRL algorithms, theoretical understanding of the
convergence properties of SRL algorithms is very limited. Tessler et al. (2018) provided an asymptotic
convergence analysis for primal-dual method and established a local convergence guarantee under
certain stability assumptions. Paternain et al. (2019) showed that the primal-dual method achieves
zero duality gap, which can imply the global optimality under certain assumptions. Recently, Ding
et al. (2020a) proposed a primal-dual type proximal policy optimization (PPO) and established the
regret bound for linear CMDP. The convergence rate of primal-dual method is characterized in a
concurrent work Ding et al. (2020b). So far, there exist no primal-type SRL algorithms that have been
shown to enjoy global optimality guarantee under general CMDP. Further, the finite-time performance
(convergence rate) has not been characterized for any primal-type SRL algorithm.

Thus, the second goal here is to establish global optimality guarantee and the finite-time con-
vergence rate for the proposed algorithm under general CMDP.

1.1 MAIN CONTRIBUTIONS

We propose a novel Constraint-Rectified Policy Optimization (CRPO) approach for CMDP, where
all updates are taken in the primal domain. CRPO applies unconstrained policy maximization update
w.r.t. the reward on the one hand, and if any constraint is violated, momentarily rectifies the policy back
to the feasible set along the descent direction of the violated constraint also by applying unconstrained
policy minimization update w.r.t. the constraint function. Hence, CRPO can be implemented as easy
as unconstrained policy optimization algorithms. It does not introduce heavy hyperparameter tuning
to enforce constraint satisfaction, nor does it require initialization to be feasible. CRPO provides
a primal-type framework for solving SRL problems, and its optimization update can adopt various
well-developed unconstrained policy optimization methods such as natural policy gradient (NPG)
Kakade (2002), trust region policy optimization (TRPO) Schulman et al. (2015), PPO, etc.

To provide the theoretical guarantee for CRPO, we adopt NPG as a representative optimizer and
investigate the convergence of CRPO in two settings: tabular and function approximation, where in
the function approximation setting the state space can be infinite. For both settings, we show that
CRPO converges to a global optimum at a convergence rate ofO(1/

√
T ). Furthermore, the constraint

satisfaction error converges to zero at a rate of O(1/
√
T ). To the best of our knowledge, CRPO is

the first primal-type SRL algorithm that has provably global optimality guarantee. This work also
provides the first finite-time analysis for SRL algorithm without restrictive assumptions on CMDP.

Our experiments demonstrate that CRPO outperforms the baseline primal-dual algorithm with higher
return reward and smaller constraint satisfaction error.

1.2 RELATED WORK

Safe RL and CMDP: Algorithms based on primal-dual methods have been widely adopted for
solving constrained RL problems, such as PDO Chow et al. (2017), RCPO Tessler et al. (2018),
OPDOP Ding et al. (2020a) and CPPO Stooke et al. (2020). The effectiveness of primal-dual methods
is justified in Paternain et al. (2019), in which zero duality gap is guaranteed under certain assumptions.
Constrained policy optimization (CPO) Achiam et al. (2017) extends TRPO to handle constraints,
and is later modified with a two-step projection method Yang et al. (2019a). Other methods have
also been proposed. For example, Chow et al. (2018; 2019) leveraged Lyapunov functions to handle
constraints. Yu et al. (2019) proposed a constrained policy gradient algorithm with convergence
guarantee by solving a sequence of sub-problems. Dalal et al. (2018a) proposed to add a safety layer
to the policy network so that constraints can be satisfied at each state. Liu et al. (2019b) developed an
interior point method for safe RL, which augments the objective with logarithmic barrier functions.
This paper proposes a CRPO algorithm, which can be implemented as easy as unconstrained policy
optimization methods and has global optimality guarantee under general CMDP.
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Finite-Time Analysis of Policy Optimization: The finite-time analysis of various policy optimiza-
tion algorithms have been well studied. The convergence rate of policy gradient (PG) and actor-critic
(AC) algorithms have been established in Shen et al. (2019); Papini et al. (2017; 2018); Xu et al.
(2020a; 2019); Xiong et al. (2020); Zhang et al. (2019) and Xu et al. (2020b); Wang et al. (2019);
Yang et al. (2019b); Kumar et al. (2019); Qiu et al. (2019), respectively, in which PG or AC algorithm
is shown to converge to a local optimal. In some special settings such as tabular and LQR, PG and AC
can be shown to convergence to the global optimal Agarwal et al. (2019); Yang et al. (2019b); Fazel
et al. (2018); Malik et al. (2018); Tu & Recht (2018); Bhandari & Russo (2019; 2020). Algorithms
such as NPG, NAC, TRPO and PPO explore the second order information, and achieve great success
in practice. These algorithms have been shown to converge to a global optimum in various settings,
where the convergence rate has been established in Agarwal et al. (2019); Shani et al. (2019); Liu et al.
(2019a); Wang et al. (2019); Cen et al. (2020); Xu et al. (2020c). However, all the above studies only
consider unconstrained MDP. A concurrent and independent work Ding et al. (2020b) established the
global convergence rate of primal-dual method for CMDP under weak Slater’s condition assumption.
So far the finite-time performance of primal-type policy optimization in general CMDP settings has
not been studied. Our work is the first one that establishes such a result.

2 PROBLEM FORMULATION AND PRELIMINARIES

2.1 MARKOV DECISION PROCESS

A discounted Markov decision process (MDP) is a tuple (S,A, c0,P, ξ, γ), where S and A are state
and action spaces; c0 : S×A×S → R is the reward function; P : S×A×S → [0, 1] is the transition
kernel, with P(s′|s, a) denoting the probability of transitioning to state s′ from previous state s given
action a; ξ : S → [0, 1] is the initial state distribution; and γ ∈ (0, 1) is the discount factor. A policy
π : S → P(A) is a mapping from the state space to the space of probability distributions over the
actions, with π(·|s) denoting the probability of selecting action a in state s. When the associated
Markov chain P(s′|s) =

∑
A P (s′|s, a)π(a|s) is ergodic, we denote µπ as the stationary distribution

of this MDP, i.e.
∫
S P(s′|s)µπ(ds) = µπ(s′). Moreover, we define the visitation measure induced by

the police π as νπ(s, a) = (1− γ)
∑∞
t=0 γ

tP(st = s, at = a).

For a given policy π, we define the state value function as V 0
π (s) = E[

∑∞
t=0 γ

tc0(st, at, st+1)|s0 =
s, π], the state-action value function as Q0

π(s, a) = E[
∑∞
t=0 γ

tc0(st, at, st+1)|s0 = s, a0 = a, π],
and the advantage function as A0

π(s, a) = Q0
π(s, a) − V 0

π (s). In reinforcement learning, we aim
to find an optimal policy that maximizes the expected total reward function defined as J0(π) =
E[
∑∞
t=0 γ

tc0(st, at, st+1)] = Eξ[V 0
π (s)] = Eξ·π[Q0

π(s, a)].

2.2 CONSTRAINED MARKOV DECISION PROCESS

A constrained Markov Decision Process (CMDP) is an MDP with additional constraints that restrict
the set of allowable policies. Specifically, when taking action at some state, the agent can incur
a number of costs denoted by c1, · · · , cp, where each cost function ci : S × A × S → R maps a
tuple (s, a, s′) to a cost value. Let Ji(π) denotes the expected total cost function with respect to ci
as Ji(π) = E[

∑∞
t=0 γ

tci(st, at, st+1)]. The goal of the agent in CMDP is to solve the following
constrained problem

max
π

J0(π), subject to Ji(π) ≤ di, ∀i = 1, · · · , p, (1)

where di is a fixed limit for the i-th constraint. We denote the set of feasible policies as ΩC ≡
{π : ∀i, Ji(π) ≤ di}, and define the optimal policy for CMDP as π∗ = arg minπ∈ΩC J0(π). For
each cost ci, we define its corresponding state value function V iπ , state-action value function Qiπ , and
advantage function Aiπ analogously to V 0

π , Q0
π , and A0

π , with ci replacing c0, respectively.

2.3 POLICY PARAMETERIZATION AND POLICY GRADIENT

In practice, a convenient way to solve the problem eq. (1) is to parameterize the policy and then
optimize the policy over the parameter space. Let {πw : S → P(A)|w ∈ W} be a parameterized
policy class, whereW is the parameter space. Then, the problem in eq. (1) becomes

max
w∈W

J0(πw), subject to Ji(πw) ≤ di, ∀i = 1, · · · , p, (2)

The policy gradient of the function Ji(πw) has been derived by Sutton et al. (2000) as∇Ji(πw) =
E[Qiπw(s, a)φw(s, a)], where φw(s, a) := ∇w log πw(a|s) is the score function. Furthermore, the
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Algorithm 1 Constraint-Rectified Policy Optimization (CRPO)

1: Initialize: initial parameter w0, empty setN0

2: for t = 0, · · · , T − 1 do
3: Policy evaluation under πwt to obtain Q̄it(s, a) ≈ Qiπwt (s, a)

4: Sample (sj , aj) ∈ Bt, compute J̄i,Bt =
∑
j∈Bt ρj,tQ̄

i
t(sj , aj), for i = 0, · · · , p, (ρj,t is the weight)

5: if J̄i,Bt ≤ di + η for all i = 1, · · · , p, then
6: Add wt into setN0

7: Take one-step policy update towards maximize J0(wt): wt → wt+1

8: else
9: Choose any it ∈ {1, · · · , p} such that J̄it,Bt > dit + η

10: Take one-step policy update towards minimize Jit(wt): wt → wt+1

11: end if
12: end for
13: Output: wout randomly chosen fromN0 with uniform distribution

natural policy gradient was defined by Kakade (2002) as ∆i(w) = F (w)†∇Ji(πw), where F (w) is
the Fisher information matrix defined as F (w) = Eνπw [φw(s, a)φw(s, a)>].

3 CONSTRAINT-RECTIFIED POLICY OPTIMIZATION (CRPO) ALGORITHM

In this section, we propose the CRPO (see Algorithm 1) approach for solving CMDP problem in
eq. (2). The idea of CRPO lies in updating the policy to maximize the unconstrained objective
function J0(πwt) of the reward, alternatingly with rectifying the policy to reduce a constraint function
Ji(πwt) (i ≥ 1) (along the descent direction of this constraint) if it is violated. Each iteration of
CRPO consists of the following three steps.

Policy Evaluation: At the beginning of each iteration, we estimate the state-action value function
Q̄iπt(s, a) ≈ Qiπwt (s, a) (i = {0, · · · , p}) for both reward and costs under current policy πwt .

Constraint Estimation: After obtaining Q̄iπt , the constraint function Ji(wt) = Eξ·πwt [Q
i
wt(s, a)]

can then be approximated via a weighted sum of approximated state-action value function: J̄i,Bt =∑
j∈Bt ρj,tQ̄

i
t(sj , aj). Note this step does not take additional sampling cost, as the generation of

samples (sj , aj) ∈ Bt does not require the agent to interact with the environment.

Policy Optimization: We then check whether there exists an it ∈ {1, · · · , p} such that the approxi-
mated constraint J̄it,Bt violates the condition J̄it,Bt ≤ di + η, where η is the tolerance. If so, we take
one-step update of the policy towards minimizing the corresponding constraint function Jit(πwt) to
enforce the constraint. If multiple constraints are violated, we can choose to minimize any one of
them. If all constraints are satisfied, we take one-step update of the policy towards maximizing the
objective function J0(πwt). To apply CRPO in practice, we can use any policy optimization update
such as NPG, TRPO, PPO Schulman et al. (2017), ACKTR Wu et al. (2017), and SAC Haarnoja et al.
(2018), etc, in the policy optimization step (line 7 and line 10).

Differently from previous SRL algorithms, which usually take nontrivial costs to deal with the
constraints Chow et al. (2017); Tessler et al. (2018); Yang et al. (2019a); Chow et al. (2018; 2019);
Liu et al. (2019b); Dalal et al. (2018a), our CRPO algorithm essentially performs unconstrained policy
optimization alternatingly on different objectives during the training, and thus can be implemented
as easy as unconstrained policy optimization algorithms without introducing heave hyperparameter
tuning and additional initialization requirement.

CRPO algorithm is inspired by, yet very different from the cooperative stochastic approximation
(CSA) method Lan & Zhou (2016) in optimization literature. First, CSA is designed for convex
optimization subject to convex functional constraint, and is thus not capable of handling the more
challenging SRL problems eq. (2), which are nonconvex optimization subject to nonconvex functional
constraints. Second, CSA is designed to handle only a single constraint, whereas CRPO can handle
multiple constraints with guaranteed constraint satisfaction and global optimality. Third, CSA
assumes the accessibility of unbiased estimators of both gradient and constraint, while in our problem
both the NPG update and constraints are estimated through the random output from the critic, thus
requiring developing a new analysis framework to handle this more challenging setting.
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4 CONVERGENCE ANALYSIS OF CRPO
In this section, we take NPG as a representative optimizer in CRPO, and establish the global
convergence rate of CRPO in both the tabular and function approximation settings. Note that TRPO
and ACKTR update can be viewed as the NPG approach with adaptive stepsize. Thus, the global
convergence property we establish for NPG implies similar convergence guarantee of CRPO that
takes TRPO or ACKTR as the optimizer.

4.1 TABULAR SETTING

In the tabular setting, we consider the softmax parameterization. For any w ∈ R|S|×|A|, the
corresponding softmax policy πw is defined as

πw(a|s) :=
exp(w(s, a))∑

a′∈A exp(w(s, a′))
, ∀(s, a) ∈ S ×A. (3)

Clearly, the policy class defined in eq. (3) is complete, as any stochastic policy in the tabular setting
can be represented in this class.

Policy Evaluation: To perform the policy evaluation in Algorithm 1 (line 3), we adopt the temporal
difference (TD) learning, in which a vector θi ∈ R|S|×|A| is used to estimate the state-action value
function Qiπw for all i = 0, · · · , p. Specifically, each iteration of TD learning takes the form of

θik+1(s, a) = θik(s, a) + βk[ci(s, a, s
′) + γθik(s′, a′)− θik(s, a)], (4)

where s ∼ µπw , a ∼ πw(·|s), s′ ∼ P(·|s, a), a′ ∼ πw(·|s′), and βk is the learning rate. In line 3 of
Algorithm 1, we perform the TD update in eq. (4) for Kin iterations. It has been shown in Dalal et al.
(2018b) that the iteration in eq. (4) of TD learning converges to a fixed point θi∗(πw) ∈ R|S|×|A|.
Each component of the fixed point is the corresponding state-action value: θi∗(πw)(s, a) = Qiπw(s, a).
The following lemma characterizes the convergence rate of TD learning in the tabular setting.
Lemma 1 (Dalal et al. (2019)). Consider the iteration given in eq. (4) with arbitrary initialization
θi0. Assume that the stationary distribution µπw is not degenerate for all w ∈ R|S|×|A|. Let stepsize
βk = Θ( 1

tσ ) (0 < σ < 1). Then, with probability at least 1− δ, we have∥∥∥θiK − θi∗(πw)
∥∥∥
2

= O
(

log(|S|2 |A|2K2/δ)

(1− γ)Kσ/2

)
.

Note that σ can be arbitrarily close to 1. After performing Kin iterations of TD learning as eq. (4),
we let Q̄it(s, a) = θiKin

(s, a) for all (s, a) ∈ S ×A and all i = {0, · · · , p}. Lemma 1 implies that we
can obtain an approximation Q̄it such that

∥∥Q̄it −Qiπw∥∥2
= O(1/

√
Kin) with high probability.

Constraint Estimation: In the tabular setting, we let the sample set Bt include all state-action pairs,
i.e., Bt = S × A, and the weight factor be ρj,t = ξ(sj)πwt(aj |sj) for all t = 0, · · · , T − 1. Then,
the estimation error of the constraints can be upper bounded as |J̄i(θit)− Ji(wt)| = |E[Q̄it(s, a)]−
E[Qiπwt (s, a)]| ≤ ||Q̄i(θit)−Qiπw ||

2. Thus, our approximation of constraints is accurate when the
approximated value function Q̄it(s, a) is accurate.

Policy Optimization: In the tabular setting, the natural policy gradient of Ji(πw) is derived by
Agarwal et al. (2019) as ∆i(w)s,a = (1 − γ)−1Qiπw(s, a). Once we obtain an approximation
Q̄it(s, a) ≈ Qiπw(s, a), we can use it to update the policy in the upcoming policy optimization step:

wt+1 = wt + α∆̄t, (line 7) or wt+1 = wt − α∆̄t (line 10), (5)

where α > 0 is stepsize and ∆̄t(s, a) = (1− γ)−1Q̄0
t (s, a) (line 7) or (1− γ)−1Q̄itt (s, a) (line 10).

Recall that π∗ denotes the optimal policy in the feasible set ΩC . The following theorem characterizes
the convergence rate of CRPO in terms of the objective function and constraint error bound.
Theorem 1. Consider Algorithm 1 in the tabular setting with softmax policy parameterization
defined in eq. (3) and any initialization w0 ∈ R|S|×|A|. Suppose that the policy evaluation update
in eq. (4) takes Kin = Θ(T 1/σ(1 − γ)−2/σ log2/σ(T 1+2/σ/δ)) iterations. Let the tolerance η =

Θ(
√
|S| |A|/((1 − γ)1.5

√
T )) and perform the NPG update defined in eq. (5) with α = (1 −

γ)1.5/
√
|S| |A|T . Then, with probability at least 1− δ, we have

J0(π∗)− E[J0(wout)] ≤ Θ

( √
|S| |A|

(1− γ)1.5
√
T

)
and E[Ji(wout)]− di ≤ Θ

( √
|S| |A|

(1− γ)1.5
√
T

)

5



Under review as a conference paper at ICLR 2021

for all i = {1, · · · , p}, where the expectation is taken with respect to selecting wout from N0.

As shown in Theorem 1, starting from an arbitrary initialization, CRPO algorithm is guaranteed
to converge to the globally optimal policy π∗ in the feasible set ΩC at a sublinear rate O(1/

√
T ),

and the constraint satisfaction error of the output policy converges to zero also at a sublinear rate
O(1/

√
T ). Thus, to attain a wout that satisfies J0(π∗)− E[J0(wout)] ≤ ε and E[Ji(wout)]− di ≤ ε

for all 1 ≤ i ≤ p, CRPO needs at most T = O(ε−2) iterations, with each policy evaluation step
consists of approximately Kin = O(T ) iterations when σ is close to 1.

4.2 FUNCTION APPROXIMATION SETTING

In the function approximation setting, we parameterize the policy by a two-layer neural network
together with the softmax policy. We assign a feature vector ψ(s, a) ∈ Rd with d ≥ 2 for each state-
action pair (s, a). Without loss of generality, we assume that ‖ψ(s, a)‖2 ≤ 1 for all (s, a) ∈ S ×A.
A two-layer neural network f((s, a);W, b) with input ψ(s, a) and width m takes the form of

f((s, a);W, b) =
1√
m

m∑
r=1

br · ReLU(W>r ψ(s, a)), ∀(s, a) ∈ S ×A, (6)

where ReLU(x) = 1(x > 0) ·x, and b = [b1, · · · , bm]> ∈ Rm and W = [W>1 , · · · ,W>m ]> ∈ Rmd
are the parameters. When training the two-layer neural network, we initialize the parameter via
[W0]r ∼ Dw and br ∼ Unif[−1, 1] independently, where Dw is a distribution that satisfies d1 ≤
‖[W0]r‖2 ≤ d2 (where d1 and d2 are positive constants), for all [W0]r in the support of Dw. During
training, we only update W and keep b fixed, which is widely adopted in the convergence analysis of
neural networks Cai et al. (2019); Du et al. (2018). For notational simplicity, we write f((s, a);W, b)
as f((s, a);W ) in the sequel. Using the neural network in eq. (6), we define the softmax policy

πτW (a|s) :=
exp(τ · f((s, a);W ))∑
a′A exp(τ · f((s, a′);W ))

, ∀(s, a) ∈ S ×A, (7)

where τ is the temperature parameter, and it can be verified that πτW (a|s) = πτW (a|s). We define
the feature mapping φW (s, a) = [φ1

W (s, a)>, · · · , φmW (s, a)>]>: Rd → Rmd as

φrW (s, a)> =
br√
m
1(W>r ψ(s, a) > 0) · ψ(s, a),∀(s, a) ∈ S ×A, ∀r ∈ {1, · · · ,m}.

Policy Evaluation: To estimate the state-action value function in Algorithm 1 (line 3), we adopt
another neural network f((s, a); θi) as an approximator, where f((s, a); θi) has the same structure
as f((s, a);W ), with W replaced by θ ∈ Rmd in eq. (7). To perform the policy evaluation step,
we adopt the neural TD method proposed in Cai et al. (2019). Specifically, we choose the same
initialization as the policy neural work, i.e., θi0 = W0, and perform the neural TD iteration as

θik+1/2 = θik + β(ci(s, a, s
′) + γf((s′, a′); θik)− f((s, a); θik))∇θf((s, a); θik), (8)

θik+1 = arg min
θ∈B

∥∥∥θ − θik+1/2

∥∥∥
2
, (9)

where s ∼ µπW , a ∼ πW (·|s), s′ ∼ P(·|s, a), a′ ∼ πW (·|s′), β is the learning rate, and B is
a compact space defined as B = {θ ∈ Rmd :

∥∥θ − θi0∥∥2
≤ R}. For simplicity, we denote the

state-action pair as x = (s, a) and x′ = (s′.a′) in the sequel. We define the temporal difference
error as δk(x, x′, θik) = f(x′k, θ

i
k)− γf(xk, θ

i
k)− ci(xk, x′k), stochastic semi-gradient as gk(θik) =

δk(xk, x
′
k.θ

i
k)∇θf(xk, θ

i
k), and full semi-gradient as ḡk(θik) = EµπW [δk(x, x′, θik)∇θf(x, θik)]. We

then describe the following regularity conditions on the stationary distribution µπW and state-action
value function QiπW , which are also adopted in the analysis of neural TD learning in Cai et al. (2019).

Assumption 1. There exists a constant C0 > 0 such that for any τ ≥ 0, x ∈ Rd with ‖x‖2 = 1 and
πW , it holds that P

(∣∣x>ψ(s, a)
∣∣ ≤ τ) ≤ C0 · τ , where (s, a) ∼ µπW .

Assumption 2. We define the following function class:

FR,∞ =

{
f((s, a); θ) = f((s, a); θ0) +

∫
1(θ>ψ(s, a) > 0) · λ(θ)>ψ(s, a)dp(θ)

}
where f((s, a); θ0) is the two-layer neural network corresponding to the initial parameter θ0 = W0,
λ(θ) : Rd → Rd is a weighted function satisfying ‖λ(w)‖∞ ≤ R/

√
d, and p(·) : Rd → R is the

density Dw. We assume that QiπW ∈ FR,∞ for all πW and i = {0, · · · , p}.
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Assumption 3. For the visitation distribution of the global optimal policy ν∗, there exist a constants
CRN such that for all πW , the following holds∫

x

(
dν∗(x)

dµπW (x)

)2

dµπW (x) ≤ C2
RN . (10)

Assumption 1 implies that the distribution of ψ(s, a) has a uniformly upper bounded probability
density over the unit sphere. Assumption 2 is a mild regularity condition on QiπW , as FR,∞ is a
function class of neural networks with infinite width, which captures a sufficiently general family of
functions. We further make the following variance bound assumption of neural TD update.
Assumption 4. For any parameterized policy πW there exist a constant Cζ > 0 such that

EµπW
[
exp

(∥∥ḡk(θik)− gk(θik)
∥∥2

2
/C2

ζ

)]
≤ 1 for all k ≥ 0.

Assumption 4 implies that the expectation of variance error
∥∥ζk(θik)

∥∥2

2
is bounded, which has been

verified in (Cai et al., 2019, Lemma 4.5). The following lemma provides the convergence rate of
neural TD learning. Note that the convergence rate of neural TD in expectation has already been
establish in Cai et al. (2019); Wang et al. (2019). Here we characterize a stronger result on the
convergence rate in high probability, which is needed for the analysis of our algorithm.
Lemma 2 (Convergence rate of neural TD in high probability). Considering the neural TD iteration
defined in eq. (8). Let θ̄K = 1

K

∑K−1
k=0 θk be the average of the output from k = 0 to K − 1.

Let Q̄it(s, a) = f((s, a), θiKin
) be an estimator of QiπτtWt (s, a). Suppose Assumptions 1-4 hold,

assume that the stationary distribution µπW is not degenerate for all W ∈ B, and let the stepsize
β = min{1/

√
K, (1− γ)/12}. Then, with probability at least 1− δ, we have∥∥∥Q̄it(s, a)−QiπτtWt (s, a)

∥∥∥2
µπ
≤ Θ

(
1

(1− γ)2
√
K

√
log

(
1

δ

))
+Θ

(
1

(1− γ)3m1/4

√
log

(
K

δ

))
.

Lemma 1 implies that after performing the neural TD learning in eq. (8)-eq. (9) for Θ(
√
m) iterations,

we can obtain an approximation Q̄it such that ||Q̄it−QiπτtWt ||µπ = O(1/m1/8) with high probability.

Constraint Estimation: Since the state space is usually very large or even infinite in the function
approximation setting, we cannot include all state-action pairs to estimate the constraints as for the
tabular setting. Instead, we sample a batch of state-action pairs (sj , aj) ∈ Bt from the distribution
ξ(·)πWt

(·|·), and let the weight factor be ρj = 1/ |Bt| for all j. In this case, the estimation error of
the constrains

∣∣J̄i(θit)− Ji(wt)∣∣ is small when the policy evaluation Q̄it is accurate and the batch
size |Bt| is large. We assume the following concentration property for the sampling process in the
constraint estimation step, which has also been taken in Lan & Zhou (2016).
Assumption 5. For any parameterized policy πW there exists a constant Cf > 0 such that

Eξ·πW
[
exp([Q̄it(s, a)− Eξ·µπτtWt [Q̄it(s, a)]2/C2

f )
]
≤ 1 for all k ≥ 0.

Policy Optimization: In the neural softmax approximation setting, at each iteration t, an approxima-
tion of the natural policy gradient can be obtained by solving the following linear regression problem
Wang et al. (2019); Agarwal et al. (2019):

∆i(Wt) ≈ ∆̄t = arg min
θ∈B

EνπτtWt [(Q̄it(s, a)− φWt(s, a)>θ)2]. (11)

Given the approximated natural policy gradient ∆̄t, the policy update takes the form of

τt+1 = τt + α, τt+1 · wt+1 = τt · wt + α∆̄t (line 7) or τt+1 · wt+1 = τt · wt − α∆̄t (line 10). (12)

Note that in eq. (12) we also update the temperature parameter by τt+1 = τt + α simultaneously,
which ensures wt ∈ B for all t. The following theorem characterizes the convergence rate of
Algorithm 1 in terms of both the objective function and constraint error.
Theorem 2. Consider Algorithm 1 in the function approximation setting with neural softmax policy
parameterization defined in eq. (7). Suppose Assumptions 1-5 hold. Suppose the same setting of
policy evaluation step stated in Lemma 2 holds, and consider performing the neural TD in eq. (8) and
eq. (9) with Kin = Θ((1− γ)2

√
m) at each iteration. Let the tolerance η = Θ(m(1− γ)−1/

√
T +

7
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(1− γ)−2.5m−1/8) and perform the NPG update defined in eq. (12) with α = Θ(1/
√
T ). Then with

probability at least 1− δ, we have

J0(π∗)− E[J0(πτoutWout )] ≤ Θ
(

m

(1− γ)
√
T

)
+Θ

(
1

(1− γ)2.5m1/8
log

1
4

(
(1− γ)2T

√
m

δ

))
,

and for all i = 1, · · · , p, we have

E[Ji(πτoutWout )]− di ≤ Θ
(

m

(1− γ)
√
T

)
+Θ

(
1

(1− γ)2.5m1/8
log

1
4

(
(1− γ)2T

√
m

δ

))
.

where the expectation is taken only with respect to the randomness of selecting Wout from N0.

Theorem 2 guarantees that CRPO converges to the global optimal policy π∗ in the feasible set at a
sublinear rate O(1/

√
T ) with an optimality gap O(m−1/8), which vanishes as the network width

m increases. The constraint error bound of the output policy converges to zero also at a sublinear
rate O(1/

√
T ) with a vanishing optimality gap O(m−1/8) as m increases. The optimality gap

arises from both the policy evaluation and policy optimization due to the limited expressive power
of neural networks. To attain a wout that satisfies J0(π∗) − E[J0(πτoutWout)] ≤ ε + Θ(m−1/8) and
E[Ji(πτoutWout)]− di ≤ ε+ Θ(m−1/8), CRPO needs at most T = O(m2ε−2) iterations, with each
iteration contains Θ(

√
m) policy evaluation iterations. The convergence analysis in the function

approximation setting is more challenging than that in the tabular setting. Since the class of neural
softmax policy is not complete, we need to handle additional approximation errors introduced by the
neural network parameterization. It is worth noting that CRPO is the first SRL algorithm that has
global optimal guarantee in the function approximation setting over general CMDP.

5 EXPERIMENT

We conduct experiments based on OpenAI gym Brockman et al. (2016) that are motivated by SRL.
We consider two tasks with each having multiple constraints given as follows:

• Cartpole: The agent is rewarded for keeping the pole upright, but is penalized with cost if (1)
entering into some specific areas, or (2) having the angle of pole being large.

• Acrobot: The agent is rewarded for swing the end-effector at a specific height, but is penalized
with cost if (1) applying torque on the joint when the first link swings in a prohibited direction, or
(2) when the the second link swings in a prohibited direction with respect to the first link.

The detailed experimental setting is described in Appendix A. For both experiments, we use neural
softmax policy with two hidden layers of size (128, 128). In previous studies, PDO and CPO have
been widely adopted as baseline algorithms. Since we are considering multiple constraints and do
not assume the accessibility of a feasible policy as an initialization, baseline algorithm CPO is not
applicable here. Thus, we compare CRPO only with PDO in our experiments. For fair comparison,
we adopt TRPO as the optimizer for both CRPO and PDO. In PDO, we initialize the Lagrange
multiplier as zero in both tasks. The learning curves for CRPO and PDO are provided in Figure 1.
At each step we evaluate the performance based on two metrics: the return reward and constraint
value of the output policy. We show the learning curve of unconstrained TRPO (the green line),
which although achieves the best reward, but does not satisfy the constraints, i.e., the optimal policy
obtained by such an unconstrained method is infeasible. In both tasks, CRPO tracks the constraints
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(a) Cartpole
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(b) Acrobot
Figure 1: Average performance for CRPO, PDO, and unconstrained TRPO over 10 seeds. The red dot lines in
(a) and (b) represent the limits. In Cartpole, the limits of two constraints are 40 and 10, respectively. In Acrobot,
the limits of both constraints are 50.
return almost exactly to the limit, indicating that CRPO sufficiently explores the boundary of the
feasible set, which results in an optimal return reward. In contrast, although PDO also outputs a
constraints-satisfying policy in the end, it tends to over- or under-enforce the constraints, which
results in lower return reward and unstable constraint satisfaction performance.
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6 CONCLUSION

In this paper, we propose a novel CRPO approach for policy optimization in the CMDP setting, which
is easy to implement and has provable global optimality guarantee. We show that CRPO achieves
an O(1/

√
T ) convergence rate to the global optimum and an O(1/

√
T ) rate of vanishing constraint

error when NPG update is adopted as the optimizer. This is the first finite-time analysis for SRL
algorithms under general CMDP. In the future, it is interesting to incorporate various momentum
schemes to CRPO to improve its convergence performance.
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efficient safe exploration via primal-dual policy optimization. arXiv preprint arXiv:2003.00534,
2020a.

9



Under review as a conference paper at ICLR 2021

Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo Jovanovic. Natural policy gradient
primal-dual method for constrained Markov decision processes. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), 33, 2020b.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-
parameterized neural networks. In In Proc. International Conference on Learning Representations
(ICLR), 2018.

Maryam Fazel, Rong Ge, Sham M Kakade, and Mehran Mesbahi. Global convergence of policy
gradient methods for the linear quadratic regulator. arXiv preprint arXiv:1801.05039, 2018.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):2737–2752, 2018.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In In Proc. International
Conference on Machine Learning (ICML), pp. 1861–1870, 2018.

David Julian, Mung Chiang, Daniel O’Neill, and Stephen Boyd. Qos and fairness constrained
convex optimization of resource allocation for wireless cellular and ad hoc networks. In In Proc.
Conference of the IEEE Computer and Communications Societies, volume 2, pp. 477–486. IEEE,
2002.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proc. International Conference on Machine Learning (ICML), volume 2, pp. 267–274, 2002.

Sham M Kakade. A natural policy gradient. In Proc. Advances in Neural Information Processing
Systems (NIPS), pp. 1531–1538, 2002.

Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity of actor-critic
method for reinforcement learning with function approximation. arXiv preprint arXiv:1910.08412,
2019.

Guanghui Lan and Zhiqiang Zhou. Algorithms for stochastic optimization with functional or
expectation constraints. arXiv preprint arXiv:1604.03887, 2016.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural proximal/trust region policy optimization
attains globally optimal policy. In Proc. Advances in Neural Information Processing Systems
(NeuIPS), 2019a.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: interior-point policy optimization under constraints.
arXiv preprint arXiv:1910.09615, 2019b.

Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L Bartlett, and Martin J
Wainwright. Derivative-free methods for policy optimization: guarantees for linear quadratic
systems. arXiv preprint arXiv:1812.08305, 2018.

Matteo Papini, Matteo Pirotta, and Marcello Restelli. Adaptive batch size for safe policy gradients.
In Advances in Neural Information Processing Systems (NIPS), pp. 3591–3600, 2017.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochas-
tic variance-reduced policy gradient. In International Conference on Machine Learning (ICML),
pp. 4026–4035, 2018.

Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
reinforcement learning has zero duality gap. In In Proc. Advances in Neural Information Processing
Systems (NeurIPS), pp. 7555–7565, 2019.

10



Under review as a conference paper at ICLR 2021

Shuang Qiu, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. On the finite-time convergence of
actor-critic algorithm. In Optimization Foundations for Reinforcement Learning Workshop at
Advances in Neural Information Processing Systems (NeurIPS), 2019.

Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: replacing minimization
with randomization in learning. In Advances in Neural Information Processing Systems (NIPS), pp.
1313–1320, 2009.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In In Proc. International Conference on Machine Learning (ICML), pp.
1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization: Global
convergence and faster rates for regularized mdps. arXiv preprint arXiv:1909.02769, 2019.

Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, and Chao Mi. Hessian aided policy
gradient. In International Conference on Machine Learning (ICML), pp. 5729–5738, 2019.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods. In In Proc. International Conference on Machine Learning (ICML), 2020.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Proc. Advances in Neural
Information Processing Systems (NIPS), pp. 1057–1063, 2000.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. In In
Proc. International Conference on Learning Representations (ICLR), 2018.

Stephen Tu and Benjamin Recht. The gap between model-based and model-free methods on the
linear quadratic regulator: an asymptotic viewpoint. arXiv preprint arXiv:1812.03565, 2018.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150, 2019.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. In In Proc.
Advances in Neural Information Processing Systems (NIPS), pp. 5279–5288, 2017.

Huaqing Xiong, Tengyu Xu, Yingbin Liang, and Wei Zhang. Non-asymptotic convergence
of adam-type reinforcement learning algorithms under Markovian sampling. arXiv preprint
arXiv:2002.06286, 2020.

Pan Xu, Felicia Gao, and Quanquan Gu. An improved convergence analysis of stochastic variance-
reduced policy gradient. In Proc. International Conference on Uncertainty in Artificial Intelligence
(UAI), 2019.

Pan Xu, Felicia Gao, and Quanquan Gu. Sample efficient policy gradient methods with recursive
variance reduction. In Proc. International Conference on Learning Representations (ICLR), 2020a.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for actor-critic
algorithms. arXiv preprint arXiv:2004.12956, 2020b.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Non-asymptotic convergence analysis of two time-scale
(natural) actor-critic algorithms. arXiv preprint arXiv:2005.03557, 2020c.

11



Under review as a conference paper at ICLR 2021

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. In In Proc. International Conference on Learning Representations
(ICLR), 2019a.

Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. Provably global convergence of
actor-critic: A case for linear quadratic regulator with ergodic cost. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), pp. 8351–8363, 2019b.

Ming Yu, Zhuoran Yang, Mladen Kolar, and Zhaoran Wang. Convergent policy optimization for safe
reinforcement learning. In In Proc. Advances in Neural Information Processing Systems (NeurIPS),
pp. 3127–3139, 2019.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Başar. Global convergence of policy gradient
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