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ABSTRACT

Program synthesis has traditionally excelled in tasks with precise specifications
such as input-output examples and formal constraints by using structured and al-
gorithmic approaches based on enumerative search and type inference. However,
traditional synthesis techniques have no mechanism of incorporating real-world
knowledge, which is commonplace in software engineering. Motivated by this,
we introduce a new synthesis task known as specification reification: synthesizing
concrete realizations of vague, high-level application specifications. We focus on
a specific instance of this: generating object models from natural language ap-
plication descriptions. Towards this goal, we present three approaches for object
model synthesis that leverage domain knowledge from the GPT-3 language model.
In addition, we design a scoring metric to evaluate the success of synthesized ob-
ject models on seven sample tasks such as classroom management and pet store
applications. We demonstrate that our language-model-based synthesizers gener-
ate object models that are comparable in quality to human-generated ones.

1 INTRODUCTION

The goal of program synthesis is to generate programs from various types of specifications such
as input-output examples, abstract properties about inputs and outputs, and formal logical specifica-
tions. Traditionally, program synthesis has been principally algorithmic, using methods like enumer-
ative search, constraint-based sketching, or type-driven synthesis to generate programs. While these
algorithms have been successful at synthesizing functions with well defined input/output behavior,
creating software requires much more than implementing functions from well defined specifications.
In particular, an important part of software development is leveraging domain knowledge to turn
high-level application requirements into a detailed description of all the components and interfaces
that will make up the application.

In this paper, we introduce specification reification as a new challenge for program synthesis. Spec-
ification reification refers to the previously mentioned process of taking a high-level, potentially
vague specification of a problem and reifying it into a more concrete form. For example, consider
a developer who is designing a classroom management application in an object-oriented language.
Traditional program synthesis could help implement specific functions in this application—for ex-
ample, a function to search for students who have not submitted an assignment—but before a devel-
oper gets to that point, they first need to design the application itself. This involves deciding which
objects they need, and for each object deciding on their fields and methods, and for each method
deciding what its specification should be. Specification reification is the process of deriving this
design from the high-level description of the application.

We consider a specific sub-problem of specification reification: the task of synthesizing object mod-
els from natural language specifications. More concretely, we present a system that takes as input
a description of an application—e.g. “I want a classroom management app that tracks students,
the assignments they’ve submitted, and the grades they’ve earned on those assignments”—and from
this description synthesizes an object model consisting of a set of objects and their fields. A sample
object model that one may wish to synthesize is shown in Figure 1.

We emphasize two challenges of the task at hand:
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student submission assignment teacher
- name - student - title - name
- email address - assignment - description - students
- teacher - grade - due date - submissions
- grade
- assignments
- submissions

Figure 1: A sample object model for a classroom management application

1. First, it is challenging to automatically inferring objects and fields. In Figure 1, the teacher
and submission objects are not given in the prompt; nor are the name and submissions fields
for the student table—both need to be inferred. A successful system for this task should be
able to infer related objects directly from the prompt.

2. Second, many objects refer to other objects in their fields: for example, the student object
references the teacher object, the assignment object, and the submission object as fields.
This highlights that a system should understand how various objects are related.

Towards this goal, our contributions are as follows:

1. We introduce and highlight a new task in program synthesis: specification reification. We
also introduce the object model synthesis task as an important sub-problem of specification
reification.

2. We introduce a new evaluation metric and benchmark for object model synthesis. First, we
gather a small dataset of hand-written object models for seven prompts as gold-standard ob-
ject models. Next, we propose a similarity metric that quantifies the closeness between two
object models. Finally, we define a scoring function that measures how well a generated
object model fits a particular prompt.

3. We present three approaches for tackling the object model synthesis problem. The key
innovation in all these algorithms is the use of GPT-3, a large language model which has
background knowledge about the world. The first is a zero-shot approach, in which we di-
rectly ask GPT-3 what objects and fields a desired application has. The second is a one-shot
approach, where we give GPT-3 an example of a successfully synthesized object model and
ask it to generate an object model for a different prompt. The final is a more structured hier-
archical approach, starting from the objects in the initial prompt and recursively prompting
GPT-3 for related objects and fields. For most prompts, we observe that all three proposed
approaches generate object models at a level similar to user-generated models and perform
much better than randomly sampled models of different prompts.

2 RELATED WORK

Program synthesis: The field of program synthesis has had a long history, with a variety of ap-
proaches summarized in the survey (Gulwani et al., 2017). The first line of approaches to appear
mostly focused on inductive synthesis (matching a set of input-output examples) approaches such
as bottom-up search (Alur et al., 2015), top-down search (Feser et al., 2015), type-directed search
(Osera & Zdancewic, 2015), and constraint-solving (Singh & Solar-Lezama, 2016). Later, however,
richer forms of program specifications were used for synthesis.

In recent years, with new developments in machine learning, there have been more and more works
exploring the potential of augmenting traditional synthesis techniques with neural networks; (Chaud-
huri et al., 2021) provides a complete survey. These include approaches to learn abstractions and
libraries from scratch (Ellis et al., 2020; Wong et al., 2021; Nye et al., 2020b), execution-guided
approaches that evaluate partial program states (Nye et al., 2020a; Gupta et al., 2020; Chen et al.,
2018), and approaches guided by natural language information (Wong et al., 2021; Ye et al., 2020b;a;
Nye et al., 2019; Polosukhin & Skidanov, 2018).

Ontologies and Knowledge Graphs: There has also been a body of work that aims to build on-
tologies and knowledge graphs of natural language concepts, such as Yago (Suchanek et al., 2007),
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WordNet (Miller, 1995), and DBpedia (Auer et al., 2007). While these knowledge graphs have
been applied in traditional NLP tasks such as question answering (Boiński et al., 2020), they are
unable to provide specific insights for our synthesis task such as synthesizing fields for a certain
object. As an example, when searching for nearest neighbors related to student, WordNet comes up
with synonyms such as pupil, educatee, and scholar, while Yago provides a Wikipedia page for a
student, a definiton of a student in Spanish, and an image containing many students. In addition, our
synthesis task is very contextual: the fields of a student object would be very different if we were
designing an app for teachers to manage the classroom vs a social app for students to make friends
with one another. It is difficult to capture this form of context via ontologies and knowledge graphs.

Large Language Models: Recent years has also seen the birth of new works leveraging large
language models (LLMs) like GPT-3 (Brown et al., 2020) to perform program synthesis. A few
months ago, GitHub released a powerful code autocompletion tool called GitHub Copilot which uses
context such as natural language comments and previous code in order to generate code. Copilot is
built off of OpenAI’s powerful machine learning model Codex (Chen et al., 2021), which translates
natural language to code in almost a dozen programming languages. CodeBERT (Feng et al., 2020)
learns representations of code and natural language for downstream tasks like code search and code
documentation generation. Heyman et al. (2021) use GPT-2 trained on a corpus of well-documented
and commented code to synthesize programs for data science and machine learning. Building off of
LLMs, Austin et al. (2021) incorporate human feedback to repair generated code.

There have been other works combining traditional program synthesis techniques with large lan-
guage models. Verbruggen et al. (2021) uses traditional inductive synthesis techniques with GPT-3
to learn small intermediate functions that cannot be represented symbolically. Jigsaw (Jain et al.,
2021) uses LLMs to synthesize code but use program analysis techniques to do post-processing.
Rahmani et al. (2021) take a component-based synthesis approach guided by LLMs which, for ex-
ample, help rank candidate programs.

3 THE SYSTEM

Problem Definition and Notation: We begin by formalizing the object model generation task. The
input to this task is a natural language specification of an application, e.g. “I want a classroom
management app that tracks students, the assignments they’ve submitted, and the grades they’ve
earned on those assignments.” The goal is to generate a realistic object model of this application,
where each object consists of a name and a set of fields. Formally, an object model consists of n
objects o1, o2, · · · , on. Each object oi consists of a pair (namei, fi) consisting of an object name
and a set of mi field names fi ≜ {f j

i }
mi
j=1. For example, the student and submission objects from

Figure 1 might be represented as follows:
o1 = (student, {name, email address, teacher, grade, assignments, submissions})
o2 = (submission, {student, assignment, grade})

For all of our algorithms, our system uses the GPT-3 Q&A API with the text-davinci-001 model and
default parameters from the OpenAI web API1: a temperature of 0 (greedy decoding), frequency
penalty of 0, and presence penalty of 0.

Zero-shot GPT Generation: Our first approach is a zero-shot approach, in which the system
prompts GPT-3 with our input specification and directly asks what objects and fields the desired
application has (when evaluating this method, we manually parse the GPT-3 output into its objects
and fields). A sample of the input and output of our zero-shot approach is shown in Figure 2.

One-shot GPT Generation: Our second approach is a one-shot approach, in which the system
prompts GPT-3 with a complete object model for a classroom management app and asks it to gen-
erate an object model for a new prompt. In Figure 3, we show the input and outputs of GPT-3. The
tables and fields are explicitly provided so that GPT-3’s few-shot generation system learns a desired
format. In practice, GPT outputs always conform to this specification format, so we write a parser
that automatically convert these outputs into explicit object models.

Hierarchical GPT generation: The final approach we use is a hierarchical approach. At a high
level, our algorithm follows an iterative depth first search, keeping a stack of all the objects we’ve

1https://beta.openai.com/playground
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Input: “I want a pet store app tracking customers. The pet store app should also keep the
store’s inventory of pets and allow customers to buy and sell pets.

Q: What objects and fields does this application have?”

GPT-3 Output: “A: The application has the following objects: customer, pet, and inven-
tory. The customer object has the following fields: name, address, and phone number. The
pet object has the following fields: name, type, and description. The inventory object has
the following fields: type, quantity, and price.”

Figure 2: Sample input and output for our zero-shot object model generation algorithm

Input: Q: Design a schema for the following prompt: ”I want a classroom management
app that tracks students, the assignments they’ve submitted, and the grades they’ve earned
on those assignments.

A: Table: assignment
Fields: title (string), description (string), due date (datetime)

Table: student
Fields: name (string), email address (string), phone number (string), teacher (teacher),
grade (int), assignments (List[assignment]), submissions (List[submission])

Table: teacher
Fields: name (string), students (List[student]), submissions (List[submission])

Table: submission
Fields: student (student), assignment (assignment), grade (int)

Q: Design a schema for the following prompt: ”I want a pet store app tracking customers.
The pet store app should also keep the store’s inventory of pets and allow customers to
buy and sell pets.”

GPT-3 Output:
A: Table: customer
Fields: name (string), email address (string), phone number (string), pet (pet), quantity
(int), price (float)

Table: pet
Fields: name (string), type (string), description (string), quantity (int), price (float)

Table: inventory
Fields: pet (pet), quantity (int), price (float)

Figure 3: Sample input and output for our one-shot object model generation algorithm

encountered so far. We begin by extracting all the noun phrases from the prompt using a purely
symbolic approach leveraging Stanford’s CoreNLP parser (Manning et al., 2014), which we de-
note by extract noun phrases(prompt). We treat these noun phrases as a set of initial
objects. From these initial objects, we recursively get a set of fields for each object, denoted by
extract object fields(object). For each of these fields, which we consider as new po-
tential objects, we first check if we have encountered the field before. If not, we then test to see if
the field should additionally be treated as a new object, and if so, add it to the stack. We do this
via a terminal(new object) check to ensure that we are only adding objects to the stack. In
pseudocode, our algorithm is as follows:

def generate_object_model(prompt):
initial_objects = extract_noun_phrases(prompt)
stack = initial_objects
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object_fields = {}
visited = {}
while stack is not empty:

object = stack.pop()
visited[object] = true
object_fields[object] = extract_object_fields(object)
for new_object in object_fields[object]:

if visited[new_object] = false and not terminal(new_object):
stack.append(new_object)

return object_fields

Extracting Object Fields: Now, we explain extract object fields(object). Our key
insight is that GPT-3 can generate these relevant objects and fields from its domain knowledge.
Specifically, given an object, this function asks GPT-3 what fields the object has via questions in the
form “Q: What attributes does a classroom management application have?”. Remarkably, it would
answer “A classroom management app has a list of students, a list of assignments, and a list of
grades.”. Next, the system parses this response to understand that a classroom management appli-
cation object has students, assignments, and grades as fields. In order to avoid duplicate objects, we
also ensure all object names are in singular form when prompting, like student instead of students.

Checking for Terminal Objects: The terminal(object) function helps the system discriminate
which fields should be further treated as objects. While a student having a name is important, a name
object having a list of characters is irrelevant. We once again use GPT-3 by prompting it with Q&A
pairs like ”Q: What does a grade have?” and ”A: A grade has nothing because it is an integer.”.
The full prompt is deferred to Appendix B. This prompting mechanism helps GPT-3 learn that some
objects have no fields, and the terminal function returns true if GPT says the object has nothing.

4 EVALUATION

We also define an evaluation procedure to quantify the correctness of a generated object model. This
is tricky because for a single natural language description, there are many object models fitting the
given description. First, in Section 4.1, we describe a data collection process to obtain gold standard
models. Then, in Section 4.2, we present our full evaluation and scoring metric using these models.

4.1 DATA COLLECTION

To obtain a set of gold-standard models, we set up an experimental testbed, asking participants to
design object models from seven prompts simulating the following applications: pet store, restau-
rant, hotel, dating, library, company, and concert. The full prompts are in Appendix A. To help
participants understand the task, we gave them an example of a full object model for a classroom
application but emphasized that there is no correct answer. We included the example to demonstrate
that participants should include objects and fields that weren’t explicitly mentioned in the prompt.

As shown in Figure 4, the participant was shown a prompt at random and instructed to create an
object model corresponding to the prompt. The users were given freedom over the number of objects
they created and the number of fields they used for each object. For each field, they were asked to
specify its name and its type. For types, we restricted participants to primitives, other objects they
created, and lists of either. In total, we received 35 object models. However, we deemed 2 to be of
extremely poor quality, leaving us with 33 gold-standard models.

4.2 SIMILARITY METRIC COMPONENTS

Now, we propose an evaluation metric to determine the similarity between two object models.
Intuitively, our metric works as follows: consider two object models O = {o1, · · · , on} and
O′ = {o′1, · · · , o′n′}. For each object in O, say oi, we find the most similar object in O′, measured
using an object similarity metric. We then average the similarities to get the overall object model
similarity. To compute how similar two objects oi and o′j are, we employ a similar process: for each
field fm

i , we find the field in o′j that is most similar to it via a field similarity metric, averaging the
similarities to get the overall object similarity. Below, we make this concrete and precise.
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Figure 4: The user interface for participants to design object models for our data collection effort.

Field similarity: To begin, we define the similarity between any two fields. When comparing two
fields, it’s important to consider the objects they were part of: many objects might have a “name”
field that refer to very different things. Therefore, we concatenate the object name and field name, eg
“pet name” or “customer name” when computing the similarity. Concretely, the similarity between
fields fa

i and f b
j is defined as

field sim(fa
i , f

b
j ) = phrase sim(concat(namei, f

a
i ), concat(namej , f

b
j )). (1)

Here, phrase sim is calculated by calling spacy’s built in .similarity() method on two phrases, which
is a word2vec-like similarity measure in [0, 1], 1 indicating perfect similarity.

Object similarity: Next, we define a metric to evaluate object similarity. For two objects oi, oj to
be similar, their object names and set of fields should both be similar. Overall, we define the object
similarity as a combination f of the two, where we use f(x, y) = xy:

o sim(oi, oj) = f(o name sim(oi, oj), o field sim(oi, oj)). (2)

First, we define the object name similarity similar to the field similarity, as

o name sim(oi, oj) = phrase sim(namei, namej). (3)

Next, we define the object field similarity. Intuitively, if two objects oi and oj have identical sets
of fields, there is a one-to-one mapping between each field in oi and each field in oj . If they aren’t
identical but similar, each field fa

i should still have fields that are roughly similar to fields in oj . For
example, oi might have a “name” field, but oj might have “first name” and “last name” as fields. In
this case, there would still be an approximate mapping between fields. We use this idea to define our
metric: for each field fa

i in object oi, we compute the maximum field similarity between fa
i and a

field f b
j in object oj . We then average them to define

o field sim’(oi, oj) =
1

mi

mi∑
a=1

max
b∈[mj ]

field sim(fa
i , f

b
i ). (4)

Observe that if the fields in object i are a strict subset of the fields in object j, then
obj field sim’(oi, oj) = 1, since each field in object i has a perfect match in object j. However,
o field sim’(oj , oi) will be smaller, since not every field in object j has a match in object i. There-
fore, to make our metric symmetric, we define the overall field similarity as

o field sim(oi, oj) =
1

2
(o field sim’(oi, oj) + o field sim’(oj , oi)). (5)

Object Model Similarity: Finally, we define a similarity function to evaluate how similar two full
object-oriented models are. Consider two object models O = {oi}ni=1 and O′ = {o′i}n

′

i=1. Similar to
our object similarity metric, we average the similarities from each object oi ∈ O to its most similar
object in O′. We define

om sim’(O,O′) =
1

n

n∑
i=1

max
j∈[n′]

o sim(oi, oj), (6)

om sim(O,O′) =
1

2
(om sim’(O,O′) + om sim’(O′, O)) . (7)
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Object Model Score: Finally, in order to evaluate an object model for a given prompt, we define
a scoring metric taking object models to [0, 1]. Consider an object model O for a prompt P for
which we wish to evaluate. Let O1, · · · , Ok be the gold-standard object models for P . Intuitively,
an object should have a high score if it is similar to any of the gold-standard models and have a
low score otherwise. Therefore, we define the score of an object model on a given prompt to be its
similarity to the most similar gold-standard model. Precisely,

scoreP (O) = max
i∈[k]

om sim(O,Oi). (8)

A more detailed motivation and evaluation of this metric is provided in Appendix C. As we will
show in 1, the score function defined above effectively discriminates between human-generated
object models, assigning high scores to human gold-standard models for the same domain, and low
scores to object model pair from different domains.

5 RESULTS AND DISCUSSION

5.1 QUANTITATIVE RESULTS

We present the scores of each of the generated object models for all seven prompts in Table 1 when
compared against our gold-standard benchmark. The hier, 1-shot, and 0-shot columns represent the
algorithms in Section 3. The similar column of a prompt P measures the average score of gold-
standard object models for that prompt when compared against the other gold-standard models.
When calculating the score for an object Oi, we remove Oi from the set of gold-standard models
to obtain a leave-one-out score because otherwise all the scores would be 1. The different column
measures the average score of gold-standard object models in prompt P when compared against
gold-standard models for the other prompts P ′ ̸= P . This measures the similarity between models
of a given prompt to gold-standard object models of other prompts. As we expect, these scores are
much lower, as object models of different prompts should be different.

prompt hier 1-shot 0-shot similar different
company 0.78 0.80 0.84 0.67 0.23
pet store 0.81 0.79 0.69 0.83 0.27

restaurant 0.86 0.89 0.77 0.81 0.31
hotel 0.81 0.88 0.90 0.92 0.21

dating 0.72 0.83 0.74 0.88 0.16
library 0.77 0.79 0.75 0.52 0.25
concert 0.75 0.80 0.68 0.76 0.26
average 0.78 0.83 0.77 0.77 0.24

Table 1: Scores for each of the three object model generation algorithms

5.2 QUALITATIVE RESULTS

In Figure 5, we show the three object models for the prompt ”I want a pet store app tracking
customers. The pet store app should also keep the store’s inventory of pets and allow customers to
buy and sell pets.” We include our full list of generated schemas for other prompts in Appendix D.
Each of the methods has its own merits and flaws. First, we notice that all three methods are able
to generate relevant information that isn’t explicitly provided in the prompt (such as a customer’s
name). Second, in the hierarchical table, we can see that each field is either a primitive (such as
name, address, phone number) or is the name of another object. However, in the 0-shot and 1-shot
table, there are tables that are never referenced, like inventory in the 1-shot case and purchase in the
0-shot case. Third, we note that in contrast to the other methods, the 1-shot method often generates
a more exhaustive list of fields.

6 CONCLUSION AND FUTURE WORK

In this work, we introduced a new class of important program synthesis problems known as speci-
fication reification, focused on incorporating domain knowledge into traditional program synthesis.
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Hierarchical (Score: 0.81)
customer store pet pet store app purchase
- name - name - name - customer - customer
- email address - address - description - pet - pet
- phone number - pet - price - purchase - price
- pet - purchase - purchase - store
- purchase

1-shot (Score: 0.79)
customer pet inventory
- name - name - pet
- email address - type - quantity
- phone number - description - price
- pet - age
- purchased - gender
- sold - purchased

- sold

0-shot (Score: 0.69)
customer pet inventory purchase
- first name - name - type - customer
- last name - type - age - pet
- email - age - gender - inventory
- phone - gender

Figure 5: Hierarchical, 1-shot, and 0-shot object models for a pet store application

First, we presented one specific instance of this task, object model synthesis, and designed a metric
to evaluate performance on this task. Then, we demonstrated three different algorithms to solve this
task, showing that we are able to synthesize, to some extent, object models satisfying the specifica-
tion. These object models include fields and tables not explicitly mentioned in the original prompt.
Evaluating these algorithms on our metric is a first step towards showing that our generated object
models are similar to human gold-standard models.

We believe that specification reification is an important problem and welcome researchers to intro-
duce other synthesis problems fitting this framework. We identify many attractive directions for
future investigation: first, there is significant room for the discovery novel approaches that improve
upon the three we present. Second, we encourage a more rigorous data collection effort and investi-
gation of our evaluation procedure: the quantity of object models we collected is likely too small to
fully cover the set of possible gold-standard models. Third, GPT often gives misleading or incorrect
information, so one way of correcting this is to explore how human interactivity can be incorporated
to correct and augment the synthesized object model. Finally, since software engineers often spend
time designing what methods to implement, it would be interesting to extend the object model to
include these method names, types, and descriptions, e.g., turning in assignments for a classroom
application.
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A PROMPTS

We used the following seven prompts throughout:

• I want a company management app where I can track my employees, their schedules, and
their compensation.

• I want a pet store app tracking customers. The pet store app should also keep the store’s
inventory of pets and allow customers to buy and sell pets.

• I want a restaurant management app tracking customers, their reservations, their orders,
and menu items.

• I want a hotel app tracking guests, their reservations. The hotel app should also track which
guests occupy which rooms.

• I want a dating app where students can indicate other students they are interested in, and
the dating app will match them.

• I want a library app to track books. The customers can borrow books and return books from
the library.

• I want a concert management app that lists concerts, their dates, and their locations. The
customers can also buy tickets to concerts.

B 1-SHOT GPT PROMPT

Below, we include the full prompt we provide to GPT-3 in the 1-shot setting:

I want a classroom management app that tracks students, the assignments they’ve submitted, and
the grades they’ve earned on those assignments.

Q: What does a classroom management app have?

A: A classroom management app has a list of students, a list of assignments, and a list of grades.

Q: What does an assignment have?

A: An assignment has a title, a description, a due date, and a list of grades.

Q: What does a student have?

A: A student has a name, an email address, a phone number, a list of assignments, and a list of
grades.

Q: What does a grade have?

A: A grade has nothing because it is an integer.

Q: What does a title have?

A: A title has nothing because it is a string.

Q: What does a description have?

A: A description has nothing because it is a string.

Q: What does a due date have?

A: A due date has nothing because it is a string.

Q: What does a name have?

A: A name has nothing because it is a string.

Q: What does a email address have?

A: An email address has nothing because it is a string.

Q: What does a phone number have?

A: A phone number has nothing because it is a string.
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C META-METRIC

In Section 4.2, we defined a framework to capture the similarity between two object models. Since
such a metric has not been established before, it is important to ensure that the metric faithfully
captures the similarity between two object models. Therefore, we define a meta-metric to capture
the faithfulness of a metric. The methodology in this section can be applied to future work in other
instances of specification reification.

Consider two different prompts P and Q. An important desideratum for an evaluation metric is that
the similarity between object models for the same prompt should be closer than object models for
different prompts. To that extent, let OP

1 , · · · , OP
k be gold-standard object models for prompt P and

OQ
1 , · · · , O

Q
l be gold-standard object models for prompt Q. For a given similarity metric, we define

µPQ =
1

2k

∑
i∈[k]

µQ(O
P
i ) +

1

2l

∑
i∈[l]

scoreP (O
Q
i ),

µPP =
1

k

∑
i∈[k]

scoreP (OP
i ), µQQ =

1

l

∑
i∈[l]

scoreQ(O
Q
i )

In a similar spirit to contrastive learning, we want µPP and µQQ to be close to 1, while we want

µPQ to be close to 0. This motivates the meta-metric |
µPP +µQQ

2 −µPQ|
1+|µPP−µQQ| which takes values in [0, 1].

In the best case scenario where µPP = µQQ = 1 and µPQ = 0, the metric has a value of 1. In
the worst case scenario where µPP = µQQ = µPQ, signifying that the metric cannot differentiate
between object models of different prompts, the metric has a value of 0.

Recall that in Eq. 2, the function f(·, ·) calculates the similarity between two objects as a combi-
nation of the object names and object fields. We considered two ways to combine: f(x, y) = xy,
capturing the fact that object names and object fields should be similar, and f(x, y) = λx+(1−λ)y,
representing a relative weighting between the two aspects. Apart from f , we also considered replac-
ing the max in Eq. 4.2 with an average.

In Table 2, we show the different values of the meta-metric for various combinations of λ, f , and
aggregation strategy. In the f column, “ws” represents the weighted sum combination f(x, y) =
λx + (1 − λ)y, while “prod” represents the product f(x, y) = xy. In the “agg” column, max
represents using scoreP (O) = maxi∈[k] om sim(O,Oi), while avg represents using scoreP (O) =
1
k

∑
i∈[k] om sim(O,Oi). We found that using f(x, y) = xy and max aggregation worked best.
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λ f agg score
0 ws max 0.25

0.1 ws max 0.27
0.2 ws max 0.29
0.3 ws max 0.31
0.4 ws max 0.34
0.5 ws max 0.36
0.6 ws max 0.38
0.7 ws max 0.39
0.8 ws max 0.41
0.9 ws max 0.43
1 ws max 0.45
0 ws avg 0.24

0.1 ws avg 0.26
0.2 ws avg 0.28
0.3 ws avg 0.30
0.4 ws avg 0.31
0.5 ws avg 0.33
0.6 ws avg 0.35
0.7 ws avg 0.36
0.8 ws avg 0.38
0.9 ws avg 0.40
1 ws avg 0.41

N/A prod max 0.46
N/A prod avg 0.41

Table 2: The meta-metric score (0–1, with 1 being the best) for different possible similarity metrics
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D SAMPLES OF GENERATED SCHEMAS

In this section, we provide a full list of GPT generated schemas.

D.1 OBJECT MODELS FOR A DATING APPLICATION

Prompt: I want a dating app where students can indicate other students they are interested in, and
the dating app will match them.

Hierarchical (Score: 0.72)
dating app student other student
- student - name - name

- students they are interested in - email address - email address
- students they are matched with - phone number - phone number

- students they are interested in - students they are interested in
- students they are matched with - students they are matched with

students they are interested in students they are matched with
- name - name

- email address - email address
- phone number - phone number

- students they are matched with - students they are matched with

1-shot (Score: 0.83)
student match
- name - student1

- email address - student2
- phone number - grade

- gender - date
- grade

- interested in

0-shot (Score: 0.74)
student match date

- firstName - student 1 - date
- lastName - student 2 - time

- email - date - location
- yearInSchool

Figure 6: Hierarchical, 1-shot, and 0-shot object models for a dating application
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D.2 OBJECT MODELS FOR A CONCERT MANAGEMENT APPLICATION

Prompt: I want a concert management app that lists concerts, their dates, and their locations. The
customers can also buy tickets to concerts.

Hierarchical (Score: 0.75)
customer concert management app ticket concert
- name - concert - number - name

- email address - customer - customer - date
- phone number - ticket - date - location

- concert - location - ticket

1-shot (Score: 0.80)
concert customer ticket
- name - name - customer
- date - email address - concert

- location - phone number - price
- price - address - quantity

- city
- state

- country

0-shot (Score: 0.68)
concert date location
- name - date - name
- date - time - address

- location - location - city
- tickets - state

- zip

Figure 7: Hierarchical, 1-shot, and 0-shot object models for a concert management application
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D.3 OBJECT MODELS FOR A LIBRARY APPLICATION

Prompt: I want a library app to track books. The customers can borrow books and return books from
the library.

Hierarchical (Score: 0.77)
library app library customer book
- customer - customer - name - title

- book - book - email address - description
- books borrowed - books borrowed - phone number - due date

- books borrowed - books borrowed
- books returned

1-shot (Score: 0.79)
customer book library
- name - title - name

- email address - author - customers
- phone number - pages - books

- books - due date

0-shot (Score: 0.75)
customer book book loan
- name - title - customer

- address - author - book
- phone number - ISBN - due date

Figure 8: Hierarchical, 1-shot, and 0-shot object models for a library application
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D.4 OBJECT MODELS FOR A HOTEL APPLICATION

Prompt: I want a hotel app tracking guests, their reservations. The hotel app should also track which
guests occupy which rooms.

Hierarchical (Score: 0.81)
reservation hotel app guest room date

- guest - guest - name - number - year
- room - reservation - email address - description - month
- date - room - phone number - guest - day
- date - reservation - reservation

- room

1-shot (Score: 0.88)
guest reservation room

- name - guest - number
- email address - room number - description
- phone number - check-in date - guests
- room number - check-out date
- check-in date - status
- check-out date

0-shot (Score: 0.90)
guest reservation room

- name - date - number
- email - time - name

- phone number - room

Figure 9: Hierarchical, 1-shot, and 0-shot object models for a hotel application

17



Under review as a conference paper at ICLR 2022

D.5 OBJECT MODELS FOR A RESTAURANT APPLICATION

Prompt: I want a restaurant management app tracking customers, their reservations, their orders,
and menu items.

Hierarchical (Score: 0.86)
reservation customer restaurant management app order menu item

- date - name - customer - date - name
- time - phone number - reservation - time - description

- table number - reservation - order - table number - price
- customer - order - menu item - menu item - order

- customer

1-shot (Score: 0.89)
customer reservation order menu item
- name - customer - customer - name

- email address - reservation date - order date - description
- phone number - reservation time - order time - price

- reservation date - table number - menu item
- reservation time - quantity

- table number - price
- order date
- order time
- menu item
- quantity

0-shot (Score: 0.77)
customer reservation menu

- first name - date - name
- last name - time - description

- email - number of people - price
- phone number - menu items - quantity

- address - notes
- city
- state

- zip code

Figure 10: Hierarchical, 1-shot, and 0-shot object models for a restaurant application
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D.6 OBJECT MODELS FOR A PET STORE APPLICATION

Prompt: I want a pet store app tracking customers. The pet store app should also keep the store’s
inventory of pets and allow customers to buy and sell pets.

Hierarchical (Score: 0.81)
customer store pet pet store app purchase
- name - name - name - customer - customer

- email address - address - description - pet - pet
- phone number - pet - price - purchase - price

- pet - purchase - purchase - store
- purchase

1-shot (Score: 0.79)
customer pet inventory
- name - name - pet

- email address - type - quantity
- phone number - description - price

- pet - age
- purchased - gender

- sold - purchased
- sold

0-shot (Score: 0.69)
customer pet inventory purchase

- first name - name - type - customer
- last name - type - age - pet

- email - age - gender - inventory
- phone - gender

Figure 11: Hierarchical, 1-shot, and 0-shot object models for a pet store application
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D.7 OBJECT MODELS FOR A COMPANY MANAGEMENT APPLICATION

Prompt: I want a company management app where I can track my employees, their schedules, and
their compensation.

Hierarchical (Score: 0.78)
schedule employee company management app

- title - name - employee
- description - email address - schedule
- start date - phone number - compensation
- end date - schedule

- compensation

1-shot (Score: 0.80)
employee schedule pay

- name - day - day
- position - time - position
- schedule - position - hours

- pay

0-shot (Score: 0.84)
employee schedule compensation

- name - date - type
- contact info - time - amount

- schedule - location - date
- compensation

Figure 12: Hierarchical, 1-shot, and 0-shot object models for a company management application
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