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ABSTRACT

Recent approaches for automatic code summarization rely on fine-tuned
transformer-based language Models often injected with program analysis infor-
mation. We perform empirical studies to analyze the extent to which these models
understand the code they attempt to summarize. We observe that these models rely
heavily on the textual cues present in comments/function names/variable names
and that masking this information negatively impacts the generated summaries.
Further, subtle code transformations which drastically alter program logic have no
corresponding impact on the generated summaries. Overall, the quality of the gen-
erated summaries even from state-of-the-art (SOTA) models is quite poor, raising
questions about the utility of current approaches and datasets.

1 INTRODUCTION

Code summaries play an important role in program understanding, maintenance and debugging.
Recent work (Ahmad et al., 2021a; Wu et al., 2021; Zügner et al., 2021; Phan et al., 2021; Qi et al.,
2021; Elnaggar et al., 2021) towards automated code summarization adopts two primary approaches:
(i) Fine tuned Language Models (LM) or (ii) Deep models that inject Program Analysis Information
(PAI) claiming to facilitate better understanding of program semantics. In this paper, we perform
an empirical analysis to evaluate the code understanding capabilities of these models for summary
generation. We assume that code summary is a reflection of not only the textual cues present in
the code but also the underlying semantics of the code. Based on this assumption, we hypothesize
that any semantics preserving code transformations would have minimal effect on code summaries,
whereas code transformations that change the underlying logic of the input code would alter the
summaries meaningfully to reflect and capture the change in the logic. Conversely, our observations
lead to rejection of these hypotheses. Following observations of our studies may prove useful for
the code summarization research community:

1. The BLEU scores of existing code summarization models reported on public datasets are very
low (in the range of 11.17 to 26.53) (Wang et al., 2021), especially for out-of-domain data (in the
range of 5.45 to 7.85) where train and test codes belong to distinct projects (Liu et al., 2020). This
calls into question the utility of these models for real-life applications.

2. Testing the models on codes with semantic preserving transformations by replacing meaningful
function and variable names with generic vocabulary words, negatively impacts the BLEU score
(average drop of 7). This is not only true for the LM based models but also for the models which
claim to understand the program structure by injecting PAI. This likely points to prevailing summa-
rization models performing ‘short-cut’ learning by primarily relying on the inductive biases from
meaningful function and variable names. Such heavy reliance may be acceptable for domain spe-
cific application codes, where the developer ensures the usage of meaningful function and variables
names. However, when code summarization heavily depends upon the underlying algorithm or logic
implemented in the code such reliance would be detrimental for code comprehension.

3. Training with codes after semantic preserving transformations leads to no improvements in BLEU
over the original models. This indicates that the models are extremely reliant on textual cues and are
unable to understand the underlying logic of the code when these are removed. This highlights the
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Java
code

Original Function Function after SPT and SDT
private void append(StringBuilder buffer,double[] data,String prefix,
String separator,String suffix){

buffer.append(prefix);
for (int i=0; i < data.length; ++i) {

if (i > 0) {
buffer.append(separator);}

buffer.append(data[i]);}
buffer.append(suffix);}

private void func(StringBuilder var1,double[] var2,String var3
,String var4,String var5){

var1.append(var3);
for(int i=0;i > var2.length; −−i){

if (i < 0) {
var1.append(var4);}

var1.append(var2[i]);}
var1.append(var5);}

Summ.

Model SIT PLBART
GT append a text representation of an array to a buffer . append a text representation of an array to a buffer .

Original appends the given string representation of all elements.
a concatenates with the given prefix. appends the given double array to the given buffer.

EXP-Te-SPT compute the given string. func(double[] var1,double[] var2,string var3,string var0)
EXP-Tr-SPT append a string listing of format. appends a double array to the buffer.

EXP-TrTe-SPT append a string ref to the specified stringbuffer. appends a string representation of a double array to the string
builder.

EXP-Te-SDT appends the given string representation of all elements. appends the given double array to the given buffer.
Python
code

Original Function Function after SPT and SDT
def GetEntityViaMemcache(entity key):

entity = memcache.get(entity key)
if (entity is not None):

return entity
key = ndb.Key(urlsafe=entity key)

entity = key.get()
if (entity is not None):

memcache.set(entity key, entity)
return entity

def func(var1):
var2 = memcache.get(var1)
if (var2 is not None):

return var2
var3 = ndb.Key(urlsafe=var1)
var2 = var3.get()
if (var2 is not None):

memcache.set(var1, var2)
return var2

Summ.

Model SIT PLBART
GT get entity from memcache if available. get entity from memcache if available.
Original returns a key that can be used for entity. retrieves an entity from memcache.
EXP-Te-SPT returns an instance of c. return the value of var2.
EXP-Tr-SPT cache keys for azure entities. retrieves an entity from memcache.
EXP-TrTe-SPT cache keys in memcache. returns the value of a memcache key.
EXP-Te-SDT returns a key that can be used for entity. retrieves an entity from memcache.

Table 1: Example of transformed code from Python dataset (Wan et al., 2018) and TL-CodeSum
(Hu et al., 2018b). Summaries generated by SIT (Wu et al., 2021) and PLBART (Ahmad et al.,
2021b) with the transformations and experiments (Sections 4). GT: Ground-Truth summary,
EXP:Experiment, Te: Test set, Tr: Training set, SPT: Semantic Preserving Transformations, SDT:
Semantic Disrupting Transformations, FN: Function Name, VN: Variable Names, 1.SPT -FN
(Green), 2. SPT -V N (Blue), 3. SDT (Red).

need for designing better training strategies to facilitate the understanding of the code logic, such as
self-supervision with both semantic preserving and disrupting transformations.

4.Transformations which change the semantics of the code in terms of perturbing the operators in
expressions (arithmetic and logic) and thus impacting the high-level logic of the code, have very
minimal impact on the BLEU scores (average drop of 0.13), demonstrating that the models are not
paying much attention to code semantics while generating the summaries.

5. Getting rid of the leakages in the datasets in terms of having exactly same code-summary pairs in
the splits leads to a large drop in the BLEU scores (average 11), highlighting the need for carefully
designing datasets. Datasets should completely avoid code overlaps across the splits not only in
terms of codes having same surface forms but also codes which belong to a same project sharing
semantics. Datasets should also facilitate learning of code semantics and prevent over reliance on
textual correlations.

2 RELATED WORK

2.1 CODE SUMMARIZATION DATASETS

Publicly available datasets such as TL-CodeSum (Hu et al., 2018b), Python (Wan et al., 2018),
Funcom (LeClair et al., 2019), CCSD (Liu et al., 2020), CodeSearchNet (Husain et al., 2019) and
CodeXGLUE (Lu et al., 2021) have function-summary pairs collected from open source GitHub1

repositories. These datasets have the following lacuna:

1.Having code comments as a part of the source code: CodeSearchNet (Husain et al., 2019) have
code comments in the codes and need pre-processing to avoid biases. For example, the code-

1https://github.com/
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Dataset Language Train Valid Test
Python (Wan et al., 2018) Python 57,203 19,067 19,066
TL-CodeSum (Hu et al., 2018b) Java 69,708 8,714 8,714
CodeSearchNet (Husain et al., 2019) Python 251,820 13,914 14,918
CodeSearchNet (Husain et al., 2019) Java 164,923 5,183 10,955

Table 2: Dataset statistics

summary pair of Java in CodeSearchNet depicted in example (a) of Table 3, has comments in the
code which have textual correlations with the summary.

2. Data leakage: TL-CodeSum (Hu et al., 2018b) and Python (Wan et al., 2018) datasets have data
leakages with duplicate code-summary pairs across train and test splits. Examples (b) and (c) in
Table 3 depict example Java and Python code-summary pairs present in the train and test splits of
the mentioned datasets.

3. Meaningful function and variable names having textual correlations with the words in the sum-
mary: As depicted in Table 1, the code snippets in the current datasets have meaningful function and
variable names that have textual correlations with the Ground Truth (GT) summaries, leading to an
inductive bias.

4. Highly abstract summaries that are divorced from the code logic: As collected from Github
repositories, the summaries of existing datasets (Table 1) are in the form of code-comment pairs
where the code snippets are at function-level. For models to learn the underlying program logic, we
need the code-summary pairs in the form of complete code with more abstract code-level summaries.
For example the code-summary pair from CodeNet(Puri et al., 2021) in example (d) in Table 3,
provides a problem description of the complete code summarizing the underlying logic of the code.

5. Domain specific summaries that are not obtainable from code requiring external knowledge
beyond the code logic for summary generation: In the CodeNet dataset the problem descriptions
come from a variety of domains. Thus, it is impossible to predict the domain-specific components of
the summaries from the codes as an input, which require external domain knowledge. For example,
from the code illustrated in example (d) of Table 3, to generate the illustrated GT summary external
domain knowledge in terms of the meaning of ‘parallel lines’ (lines having same slope and the
definition of slope computation) is required.

6. No out-of-domain splits: As the existing datasets may not have domain overlaps, models trained
on one dataset do not perform well on the other (out-of-domain data) as depicted by the codes in
examples (e) Python and (f) Java in Table 3 from CodeNet and the corresponding GT and predicted
summaries by PLBART trained on CodeSearchNet. Since there no domain overlap between these
datasets, the predicted summaries do not match with the GT summary and most of the time are
meaningless.

7. No datasets for legacy programming languages like COBOL: The above listed code-summary
dataset addresses only high-resource programming languages such as Python, Java, Javascript, PHP,
Ruby, Go and C#. For practical applications, where there is a need to maintain and debug legacy
codes we need datasets that would facilitate summarization of legacy languages such as COBOL.

We perform our analysis on CodeSearchNet, TL-CodeSum and Python datasets for Python and Java
programming languages. The data statistics are provided in Table 2.

2.2 CODE SUMMARIZATION APPROACHES

Neural code summarization approaches utilize one of the following : (i) Language Models (LM)
pre-trained with monolingual programming data and further fine-tuned with code summary pairs
or (ii) Deep models (Transformers, LSTMs, Graph Neural Networks) exploiting program analysis
information in terms of Abstract Syntax Trees (ASTs), data dependencies and/or control flows to
incorporate code semantics.

LM based approaches such as PLBART (Ahmad et al., 2021b), CodeT5 (Wang et al., 2021), CoText
(Phan et al., 2021), ProphetNet-Code (Qi et al., 2021), CodeTrans (Elnaggar et al., 2021), and Code-
BERT (Feng et al., 2020), pre-train a LM on mono-lingual programming language data collected
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Example Example (a)
Java Code with Comments from CodeSearchNet

Example (b)
Java Code-Summary pair present in both Train & Test set of TLCodeSum

Code

static String normalizePath(String path) {
StringBuilder sb = new StringBuilder(path.length());
int queryStart = path.indexOf(’?’);
String query = null;
if (queryStart != -1) {

query = path.substring(queryStart);
path = path.substring(0, queryStart);

}
// Normalize the path. we need to decode path segments, normalize
//and rejoin in order to
// 1. decode and normalize safe percent escaped characters. e.g. %70 ->’p’
// 2. decode and interpret dangerous character sequences. e.g. /%2E/ ->’/./’ ->’/’
// 3. preserve dangerous encoded characters. e.g. ’/%2F/’ ->’///’ ->’/%2F’
List<String>segments = new ArrayList<>();
for (String segment : SLASH SPLITTER.split(path)) {

// This decodes all non-special characters from the path segment.
//so if someone passes
// /%2E/foo we will normalize it to /./foo and then /foo
String normalized =

UrlEscapers.urlPathSegmentEscaper().escape(lenientDecode
(segment, UTF 8, false));

if (”.”.equals(normalized)) {
// skip

} else if (”..”.equals(normalized)) {
if (segments.size() >1) {

segments.remove(segments.size() - 1);}
} else {

segments.add(normalized);}
}
SLASH JOINER.appendTo(sb, segments);
if (query != null) {

sb.append(query);}
return sb.toString();}

private static char[] zzUnpackCMap(String packed){
char[] map=new char[0x10000];
int i=0;
int j=0;
while (i <112) {

int count=packed.charAt(i++);
char value=packed.charAt(i++);
do map[j++]=value;
while (–count >0);

}
return map;

}

Summary Normalizes a path by unescaping all safe, percent encoded characters. Unpacks the compressed character translation table.

Example Example (c)
Python Code Summary pair present in both train and test set of Python dataset

Example (d)
C Code-Summary pair from CodeNet

Code

def query yes no(question, default=u’yes’):
valid = {u’yes’: u’yes’, u’y’: u’yes’, u’ye’: u’yes’, u’no’: u’no’,
u’n’: u’no’}
prompt = {None: u’[y/n]’, u’yes’: u’[Y/n]’, u’no’: u’[y/N]’}.
get(default, None)
if (not prompt):

raise ValueError((u”invalid default answer: ’%s’” % default))
while 1:

sys.stdout.write((colorize(question, colors.PROMPT) + prompt))
choice = raw input().lower()
if (default and (not choice)):

return default
elif (choice in valid):

return valid[choice]
else:

printFailure(u”Please respond with ’yes’ or ’no’ (or ’y’ or ’n’).\n”)

#include <stdio.h>
int main(void)
{ int n;

int ii;
int i;
float k1, k2;
float x[4], y[4];
scanf(”%d”, &n);
for (ii = 0; ii <n; ii++){

for (i = 0; i <4; i++){
scanf(”%f %f”, &x[i], &y[i]);}

k1 = (y[1] - y[0]) / (x[1] - x[0]);
k2 = (y[3] - y[2]) / (x[3] - x[2]);
if (k1 == k2){

printf(”YES\n”); }
else {

printf(”NO\n”);} }
return (0);}

Summary Ask a yes/no question via raw input() and return their answer .

There are four points: A(x1, y1), B(x2, y2), C(x3, y3), and
D(x4, y4). Write a program which determines whether the
line AB and the line CD are parallel. If those two lines are
parallel, your program should prints ”YES” and if not prints ”NO”.

Example Example (e)
Python Code-Summary from CodeNet and summary generated by PLBART

Example (f)
Java Code-Summary from CodeNet and summary generated by PLBART

Code

while True:
t = int(input())
if t == 0:

break
tmp = [int(input()) for i in range(t)]
res = [tmp[0]]
for i in range(1,t):

res.append(max(tmp[i], tmp[i]+res[i-1]))
print(max(res))

public class Main{
public static void main(String[] args) {

Scanner scan = new Scanner(System.in);
String str = scan.nextLine();
str = str.toUpperCase();
System.out.println(str);

}
}

Summary

Given a sequence of numbers a1, a2, a3, ...,an, find the maximum
sum of a contiguous subsequence of those numbers. Note that,
a subsequence of one element is also a contiquous subsequence.
The input end with a line consisting of a single 0.

Write a program which replace all the lower-case
letters of a given text with the corresponding
captital letters. Print the converted text.

PLBART
Summary Reads input and prints the maximum value of t . The main entry point for this class .

Table 3: Code-Summary Examples depicting lacuna of existing datasets (CodeSearchNet (Husain
et al., 2019), TL-CodeSum (Hu et al., 2018b), Python (Wan et al., 2018) and CodeNet (Puri et al.,
2021)). (a) Red color demonstrates the lexical match between the words in the code with the words
in the ground-truth summary (b) and (c) shows example Java and python code-summary pairs which
are present in both train and test splits of the mentioned datasets depicting leakage (d) Blue color
demonstrates code logic implemented to detect parallel lines (e) and (f) showcases examples from
CodeNet dataset and respective summary generated by PLBART model trained on CodeSearchNet,
showcasing out-of-distribution performance (For details refer to Section 2.1)

from Github and/or StackOverflow2 with pre-training objectives such as token masking, deletion, or
infilling (Lewis et al., 2019). They are further fine-tuned on code-summary pairs to learn code-text
alignment and infer summaries for unseen codes.

2https://stackoverflow.com/

4



Published at Deep Learning for Code workshop at ICLR 2022

Approaches exploiting Program Analysis Information (PAI) use LSTMs (Hu et al., 2018a; Alon
et al., 2018; LeClair et al., 2019), Transformers (Ahmad et al., 2020; Wu et al., 2021; Zügner et al.,
2021; LeClair et al., 2019; Zhang et al., 2020), Graph Neural Networks (GNNs) (Liu et al., 2020;
LeClair et al., 2020; Wang et al., 2020) or a combination of these (Choi et al., 2021; Shi et al., 2021)
and inject PAI in the form of Abstract Syntax Trees (ASTs), data dependencies and/or control flows.
The PAI is provided in the form of flattened ASTs using pre-ordered or structure based traversal (Hu
et al., 2018a; Alon et al., 2018; LeClair et al., 2019), pre-defined adjacency matrices with the edges
as an inductive bias for the attention between nodes (tokens) (Wu et al., 2021), relative positional
encodings between adjacent nodes (Ahmad et al., 2020; Zügner et al., 2021) or feeding the Code
Property Graphs (CPGs) to the model (Liu et al., 2020). Some studies also enhance these models by
incorporating information retrieval techniques (Li et al.; Zhang et al., 2020; Liu et al., 2020), where
the prototype summaries of similar codes are retrieved from a database and are edited by using an
encoder-decoder setting. For our analysis, we include one model from each of the above categories,
namely PLBART (Ahmad et al., 2021b) and Structure Induced Transformers (SIT) (Wu et al., 2021).

2.3 ADVERSARIAL PROGRAM PERTURBATIONS

This section throws some light on the literature which explores the idea of investigating adversarial
program perturbations to break the AI models built for code intelligence tasks. For program syn-
thesis task, with NL as an intent Liguori et al. (2021), shows that parsing NL with generic variable
names achieves better synthesis. Karmakar & Robbes (2021) probe the codes to evaluate if the code
representations provided by the pre-trained models encode the surface level, syntactic, structural
and semantic code characteristics and points at the need for designing better pre-training strategies.
Yefet et al. (2020); Rabin et al. (2021) defines an approach which learns adversarial examples hav-
ing semantic preserving transformations, specifically variable renaming and adding dead code to the
original program to attack the trained neural model to make incorrect predictions for the tasks of
bug finding and predicting method names. Bielik & Vechev (2020) checks the robustness of neural
models trained for predicting program properties by creating adversarial examples. As opposed to
these approaches, we experiment with semantic preserving transformations for the code summariza-
tion task to evaluate the model dependency on meaningful function and variable names for summary
generation. Srikant et al. (2021) identify the perturbations in terms of replacing the existing code
tokens and the sites in the program to apply the perturbations to break sequence-to-sequence code
summarization models. However, the summaries taken into consideration are of only few (∼ 1-3)
words. On the other hand, we aim at exploring the effect of semantic preserving along with semantic
disrupting transformations on the predicted summaries, which are more elaborate in terms of token
lengths. Based on the assumption that the summaries require the models to understand the underly-
ing logic of the code and can not just rely on exploiting the inductive bias created by the meaningful
function and variable names, we hypothesize that the semantic preserving transformations should
have no major effect on the generated summaries, whereas the semantic disrupting transformations
should negatively affect the summaries.

3 TRANSFORMATIONS

We perform causal analysis by tweaking the code using the following transformations to preserve
or change code semantics and then observe the effect on the resulting summary and BLEU scores.
Table 1 demonstrates the transformations.

SPT are the set of Semantic P reserving T ransformations, which include (i) CC removing the Code
Comments from 17% of the codes in CodeSearchNet (ii) FN replacing meaningful user-defined
Function Names with more generic (but unique) function names, and (iii) V N replacing meaningful
user defined local Variable Names with more generic variable names, unique per existing variable
name, such that data-dependencies are preserved. Generic names carry no semantics and are selected
from the existing model vocabulary. FN and V N are applicable to all codes in all the datasets.

SDT s are the set of Semantic Disrupting T ransformations, which include (i) replacing an arith-
metic and relational operator with its inverse (For example, replacing + with − or equality ==
with inequality ! =, etc) and (ii) replacing a logical operator with its complement (For example,
replacing AND with OR) such that the code execution is not hampered but the semantics of the
code is disrupted. Changing the operators would bring in change in the control flow dependencies
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PL & Dataset Python Java TL-CodeSum Python CSN Java CSN
Model SIT PLBART SIT PLBART PLBART PLBART Avg

DropMethod BLEU Drop BLEU Drop BLEU Drop BLEU Drop BLEU Drop BLEU Drop
Original 34.11* - 25.53 - 45.76* - 20.61 - 19.30# - 18.45# - -
EXP-Te-DL 23.61 10.5 22.99 2.54 19.34 26.42 16.08 4.53 19.30 0.00 18.45 0.00 10.99
EXP-Te-SPT 15.35 8.26 16.10 6.89 10.46 8.88 11.11 4.97 11.95 7.35 12.25 6.20 7.09
SPT − FN 18.26 5.35 16.61 6.38 12.81 6.53 12.64 3.44 15.27 4.03 14.26 4.19 4.99
SPT − V N 18.39 5.22 21.20 1.79 14.08 5.26 14.96 1.12 17.15 2.15 16.91 1.54 2.85
SPT − CC 23.61 0.00 22.80 0.19 19.34 0.00 16.08 0.00 17.61 1.69 18.22 0.23 0.35
EXP-Tr-SPT 18.25 5.36 20.68 2.31 13.77 5.57 14.68 1.40 18.44 0.86 18.25 0.20 2.62
EXP-TrTe-SPT 20.78 2.83 18.63 4.36 16.76 2.58 13.17 2.91 15.43 3.87 15.40 3.05 3.27
EXP-Te-SDT 23.57 0.04 22.98 0.01 19.29 0.05 16.00 0.08 18.92 0.38 18.24 0.21 0.13
EXP-Tr-SDT 15.33 8.28 23.20 -0.21 19.41 -0.07 00.05 15.58 20.13 -0.83 15.07 3.38 4.36

Table 4: Results on Python (Wan et al., 2018), TL-CodeSum (Hu et al., 2018b) and CSN: Code-
SearchNet (Husain et al., 2019). PL: Programming Languages, EXP:Experiment, Te: Test set, Tr:
Training set, SPT: Semantic Preserving Trans, SDT: Semantic Disrupting Trans, DL: Data Leakage,
FN: Function Name, VN: Variable Names, CC: Code Comments. *Results from Wu et al. (2021),
#Results from Ahmad et al. (2021a).

of the code and thus would lead to structural code changes. ∼78%, 68%, 40% and 43% of codes in
CodeSearchNet-Java and Python, TLCodeSum and Python datasets, respectively, are modified with
SDT . The intent is to observe the change in BLEU, by comparing the summaries generated by
the models with the transformed and original codes, against the original GT summaries, which are
retained for both the transformations.

4 EXPERIMENTAL SETUP

This section explains the performed experiments and the corresponding hypotheses in detail.

EXP-Te-DL We address the Data Leakage (DL) in the datasets by removing 38.49% Java and
21.66% Python code snippets from the Test Set of TL-CodeSum and Python datasets, that exactly
matches with the code snippets in the train set resulting in inflated BLEU scores. We expect a drop
in average BLEU scores after filtering these samples from the test set. We use this filtered test set
for the following experiments.

EXP-Te-SPT Models trained on the original train data are tested on the SPT transformed Test Set.
We hypothesize that the model BLEU scores should not change from unmodified trainset-testset
scores as SPT s are semantic preserving.

EXP-Tr-SPT Models trained with the SPT transformed Train Set are tested on the original test
data. Since the model can no longer exploit function and variable names to generate summaries, this
experiment should test whether the model is capable of understanding the program logic and if so,
we hypothesize that the BLEU scores should improve.

EXP-TrTe-SPT Models trained with the SPT transformed Train Set are tested on the SPT trans-
formed Test Set. Along similar lines of EXP-Tr-SPT, we expect improvements in the BLEU scores
over unmodified trainset-testset results indicating that the model better understands code.

EXP-Te-SDT Models trained on the original train data are tested on the SDT transformed Test Set.
As the SDT changes the semantics of the programs, based on the assumption that the model uses
code semantics for summarization, we hypothesize that the generated summaries are different from
the original GT summaries, leading to a drop in the BLEU scores.

EXP-Tr-SDT Models trained on the SDT transformed Train Set retaining the original GT sum-
maries are tested on the original Test Set. As SDT changes the code semantics, mapping such
programs to the original summaries lead to noisy training. Thus, we hypothesize that the generated
summaries on the original Test Set would be noisy leading to some drop in the BLEU scores.

EXP-TrTe-SDT Models trained with the SDT transformed Train Set and Tested with SDT trans-
formed Test Set, both retaining the original GT summaries. Both Train and Test sets being noisy, this
set-up does not provide any insights about change in the model performance after probing. Hence
we do not perform this experiment.
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To programmatically transform the codes, we use javalang3 and ast4 packages. We detect the func-
tion and variable names by AST construction. The logical and arithmetic operators are detected by
using regex5. SIT6 is trained on TL-CodeSum and Python dataset and PLBART on CodeSearchNet.
For having comparisons across the models, we fine-tune pre-trained PLBART7 with TL-CodeSum
and Python, where the codes are tokenized using the Tree-sitter tokenizer 8. For fair comparison, we
retain the hyper-parameter settings (Ahmad et al., 2021a; Wu et al., 2021) and run the experiments
on one Nvidia Tesla V100 32 GB GPU. SIT and PLBART take ∼34 and 8 hours to train. Exper-
iments on CodeSearchNet are performed with only PLBART as the program analysis information
required for the SIT model is not available for this dataset.

5 RESULT AND ANALYSIS

Table 1 illustrates the examples of Java and Python codes from TL-CodeSum and Python datasets
and the corresponding transformed code with SPT and SDT . However, it should be noted that, we
never perform both transformations simultaneously. EXP-Te-SPT summaries do not match with the
GT and are inferior to the original model summaries, showcasing the negative influence of SPT .
EXP-Tr-SPT and EXP-TrTe-SPT summaries are closer to the GT as compared to EXP-Te-SPT
demonstrating the positive effect of an SPT transformed train set. Subtle change in the operators of
‘for loop’ in the Java code with EXP-Te-SDT as demonstrated in Table 1, completely disrupts the
code logic. However, no change in the corresponding summaries showcase no influence of SDT .

Table 4 illustrates the smoothed BLEU-4 scores for all the experiments. As expected, EXP-Te-DL
showcases substantial drop in BLEU (average 11) after removing data leakage. Comparable BLEU
scores for SIT and PLBART models questions the benefit of infusing PAI into the model as opposed
to using a fine tuned LM. As CodeSearchNet has no data leakage, there are no drops in the BLEU
with EXP-Te-DL. With EXP-Te-DL, the overall BLEU scores are in the range of 16-24, questioning
their utility for real-life applications9.

There is a further drop in BLEU (7.09) with EXP-Te-SPT showcasing the huge role comments and
meaningful function/variable names are playing in summary generation. The ablation experiments
demonstrate that function names have the most impact on generation followed by variable names
and comments leading to 4.99, 2.85 and 0.35 average drops in BLEU score. The drops in the BLEU
scores with EXP-Tr-SPT (2.62) and EXP-TrTe-SPT (3.27) are less as compared to that of with the
EXP-Te-SPT proving that training with more generic function and variable names is helping the
model to better understand the semantics. However, no improvements in BLEU over EXP-Te-DL
demonstrates the need for designing better pre-processing and training strategies for the task. With
EXP-Te-SDT the drops in BLEU are very minor (0.13) showcasing that the transformations which
change the semantics of the code (SDT ) have no effect on the summaries and thus it is questionable
if the models are paying any attention to the logic/semantics of the code. With EXP-Tr-SDT the
model trained with noisy pairs of data (SDT transformed code with original summary) showcase
random behaviour with drop in BLEU for most of the cases, whereas for others we can observe a
very slight increase in BLEU.

We perform qualitative analysis for the sampled test cases fed to the SIT model trained on Python
dataset Table 5. High drop in BLEU for EXP-Te-SPT and EXP-TrTe-SPT is due to (i) GT summary
having textual correlations with the function and variable names in the code. Training with original
data leads to reliance on such correlations which are not available to exploit due to SPT transformed
test data (Example A) (ii) Model trained with SPT transformed training data removes the bias of
textual correlations. Such model, during inference, tends to copy the summary of a syntactically
similar transformed code from the training set (Example B). No drop in BLEU for EXP-Te-SDT is
due to GT summary having high reliance on textual cues in the code leading to model not learning
to pay attention to the operators present in the code (Example C).

3https://github.com/c2nes/javalang
4https://docs.python.org/3/library/ast.html#
5https://github.com/python/cpython/blob/3.10/Lib/re.py
6https://github.com/gingasan/sit3
7https://github.com/wasiahmad/PLBART
8https://github.com/tree-sitter/tree-sitter
9https://cloud.google.com/translate/automl/docs/evaluate#bleu
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Example A Qualitative analysis for EXP-Te-SPT

Python
code from
Test set

Original Function
def normalize(x):

if x:
def removeescape(matchobj):

return matchobj.group(0)[1:]
x = simpleescapes(removeescape, x)
return x.lower()

else:
return x

Function after SPT
def func(var1):

if var1:
def removeescape(matchobj):

return matchobj.group(0)[1:]
var1 = simpleescapes(removeescape, var1)
return var1.lower()

else:
return var1

Summary GT normalizes x . GT normalizes x .
Original normalize x . EXP-Te-SPT return zero if value is a x .

BLEU 70.71 21.10
Example B Qualitative analysis for EXP-TrTe-SPT

Python
code from
Test set

Original Function
def test prewitt h mask():

np.random.seed(0)
result = filters.prewitt h(np.random

.uniform(size=(10, 10)), np.zeros((10, 10), bool))
assert allclose(result, 0)

Function after SPT
def func():

np.random.seed(0)
var1 = filters.prewitt h(np.random

.uniform(size=(10, 10)), np.zeros((10, 10), bool))
assert allclose(var1, 0)

Summary GT horizontal prewitt on a masked array should be zero . GT horizontal prewitt on a masked array should be zero .
Original horizontal prewitt on a masked array should be zero . EXP-TrTe-SPT vertical sobel on a masked array should be zero .

BLEU 100.0 78.60

Python
code from
Train set

Original Function
def test sobel v mask():

np.random.seed(0)
result = filters.sobel v(np.random

.uniform(size=(10, 10)), np.zeros((10, 10), bool))
assert allclose(result, 0)

Function after SPT
def func():

np.random.seed(0)
var1 = filters.sobel v(np.random

.uniform(size=(10, 10)), np.zeros((10, 10), bool))
assert allclose(var1, 0)

Summary GT vertical scharr on a masked array should be zero . GT vertical scharr on a masked array should be zero .
Example C Qualitative analysis for EXP-Te-SDT

Python
code from
Test set

Original Function
def inplace swap column(X, m, n):

if (m < 0):
m += X.shape[1]

if (n < 0):
n += X.shape[1]

if isinstance(X, sp.csc matrix):
return inplace swap row csr(X, m, n)

elif isinstance(X, sp.csr matrix):
return inplace swap row csc(X, m, n)

else:
raise typeerror(X)

Function after SDT
def inplace swap column(X, m, n):

if (m > 0):
m -= X.shape[1]

if (n > 0):
n -= X.shape[1]

if isinstance(X, sp.csc matrix):
return inplace swap row csr(X, m, n)

elif isinstance(X, sp.csr matrix):
return inplace swap row csc(X, m, n)

else:
raise typeerror(X)

Summary GT swaps two columns of a csc/csr matrix in-place . GT swaps two columns of a csc/csr matrix in-place .
Original swaps two rows of a csc/csr matrix in-place . EXP-Te-SDT swaps two rows of a csc/csr matrix in-place .

BLEU 70.71 70.71

Table 5: Qualitative Analysis with the SIT model trained on Python dataset. FN, VN, Operators

We understand that BLEU score, though widely used as a metric for code summarization (Shia et al.,
2022), is not an appropriate metric to to measure the quality of the code summaries (Allamanis et al.,
2018). BLEU only assigns credit to exact n-gram overlaps and does not take the sentence structure
and the semantics into account. More importantly, BLEU is uncorrelated with the programmers
comprehension of the source code (Stapleton et al., 2020) and the program correctness (Austin et al.,
2021; Chen et al., 2021; Hendrycks et al., 2021). BERTscore (Zhang et al., 2019) or BARTscore
(Yuan et al., 2021) metrics take sentence fluency and semantics into consideration. However, these
metrics have not been evaluated in the context of source code summarization. The above analysis can
be better supported by human evaluation (Shia et al., 2022; Zhu & Pan, 2019). However, considering
the size of the test data (Table 2) and the experiments performed (Table 4), human evaluation is
infeasible. Thus, the choice of BLEU score as the evaluation metric is the limitation of this paper.
This points to the need of an appropriate evaluation metric for the task. We also plan to perform
human evaluation on sampled data as the future work.

6 CONCLUSION

Through empirical studies of SOTA code summarization models, we demonstrate the negative im-
pact of semantics preserving code transformations on the generated summaries. Additionally, we
demonstrate that semantic disrupting transformations leave the generated summaries largely un-
changed. This questions the code understanding capabilities of these models and points to the need
for better training strategies and well-curated datasets to facilitate code understanding. The SPT and
SDT transformations devised here offer some ideas for potential self supervised strategies to better
train these models. The current analysis is restricted to a subset of code-summary datasets, program-
ming languages, neural models and the illustrated transformations. We are working on extending it
to generalize our observations.
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