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Abstract

We present a novel approach for enhancing the res-
olution and geometric fidelity of 3D Gaussian Splatting
(3DGS) beyond native training resolution. Current 3DGS
methods are fundamentally limited by their input resolution,
producing reconstructions that cannot extrapolate finer de-
tails than are present in the training views. Our work breaks
this limitation through a lightweight generative model that
predicts and refines additional 3D Gaussians where needed
most. The key innovation is our Hessian-assisted sam-
pling strategy, which intelligently identifies regions that
are likely to benefit from densification, ensuring computa-
tional efficiency. Unlike computationally intensive GANs
or diffusion approaches, our method operates in real-time
(~0.015s per inference on a single consumer-grade GPU),
making it practical for interactive applications. Compre-
hensive experiments demonstrate significant improvements
in both geometric accuracy and rendering quality compared
to state-of-the-art methods, establishing a new paradigm
for resolution-free 3D scene enhancement.

Keywords: 3D Gaussian Splatting, Generative Model-
ing, Resolution-Free Refinement, Hessian-Based Sampling,
Real-Time Inference

1. Introduction

The advent of 3D Gaussian Splatting (3DGS) [4] has rev-
olutionized the synthesis of novel views in real time by
offering an explicit and differentiable representation that
combines the benefits of point-based rendering with neu-
ral scene optimization. However, despite its impressive ca-
pabilities, 3DGS inherits a fundamental limitation from its
image-based training paradigm: the reconstruction qual-
ity is strictly bounded by the resolution of the input im-
ages, the VRAM footprint of which scales quadratically
(Supp. 7). This constraint manifests itself in two critical
ways: Once trained on lower-resolution data, missing high-
frequency details cannot be recovered through traditional
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optimization, and existing methods provide no mechanism

to enhance Gaussians beyond their trained resolution with-

out access to higher-quality source imagery.

Current solutions [2, 3, 8] either require retraining with
higher-resolution inputs as a signal (using Single-Image Su-
per Resolution - SISR [12]) or apply 2D super-resolution as
a post-process [11], which often produces blurry results or
geometric inconsistencies. We instead propose to directly
refine the 3D Gaussian representation itself, enabling true
resolution-free enhancement. The core innovations of our
work include:

* The first resolution-free 3DGS refinement method that
enhances Gaussian representations beyond their trained
resolution without requiring higher-resolution input im-
ages

* A novel Hessian-guided importance sampling strategy
that focuses computational resources on regions with the
highest potential for quality improvement

* A highly efficient generative architecture capable of pre-
dicting new Gaussians in 15ms - two orders of magnitude
faster than conventional generative approaches while us-
ing a fraction of the compute resources

Our experiments demonstrate that the proposed method
successfully recovers details that would otherwise require
higher-resolution training data. The approach maintains full
compatibility with existing 3DGS pipelines and introduces
negligible overhead (<1% runtime impact) during render-
ing. This work opens new possibilities for enhancing legacy
captures (as a post-processing step), and adaptive level-of-
detail systems.

2. Related works

2.1. 3D Gaussian Splatting Enhancements

Recent advances in 3D Gaussian splatting (3DGS) have
generated multiple enhancement approaches. SuperGS [11]
pioneered super-resolution for 3DGS through joint opti-
mization with a 2D SR-CNN, achieving improvement, but
requiring paired multi-resolution training data. SRGS [2]
later proposed a diffusion-based up-sampler that gener-
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Figure 1. Model architecture: A transformer-based VAE with separate streams for geometry and appearance. Self-attention heads process
Gaussian lineages, while the Hessian-weighted loss prioritizes regions with high densification.

3D gaussians during training/densification steps

Figure 2. The value of lineage tracking: Selected Gaussians
visualized across training steps. (a) Without lineage awareness,
Gaussians may inconsistently appear/disappear across resolutions.
(b-e) Our approach enforces continuity, leading to stable extrapo-
lation and fewer artifacts when reconstructing (f).

ates new Gaussians conditioned on low-resolution ren-
ders, demonstrating superior quality but suffering genera-
tion times that are impractical for real-time applications.

2.2. Neural Radiance Field Super-Resolution

The broader field of neural representation enhancement of-
fers relevant insights. NeRF-SR [9] introduced frequency-
aware up-sampling through learned positional encoding ad-
justments, while Instant-NGP [6] demonstrated real-time
enhancement via hash-grid distillation. However, these im-
plicit methods struggle with explicit control over scene el-
ements. Point-based approaches present alternative strate-
gies: PointSR [5] used a diffusion model for point cloud
upsampling, and PU-GCN [7] incorporated geometric pri-
ors. Although effective for static point clouds, these meth-
ods cannot handle view-dependent effects critical for 3DGS
rendering.

3. Method

Our approach consists of a generative Variational Autoen-
coder (VAE) with a transformer-based architecture designed
to process and extrapolate the dynamic properties of 3D
Gaussians across varying resolutions. Below, we detail the
core components of our method, including pre-processing,
model architecture, and training strategy.

3.1. Pre-processing and Gaussian Lineage Tracking

The input to our system is a sequence of 3D Gaussian Splat-
ting (3DGS) reconstructions at different resolutions. Dur-
ing pre-processing, we extract the lineage of each Gaussian,
tracking its parametric evolution across densification steps
which will be used to extrapolate its properties to unseen
resolutions. This process, illustrated in Figure 7, is sim-
ilar to meta-learning, as the model learns to predict how
Gaussians evolve under resolution changes rather than re-
lying solely on direct observations. By treating Gaussian
lineages as temporal sequences, we enable the model to in-
fer structural and appearance continuities that are not ex-
plicitly present in any single resolution. We leave the pre-
processing steps to the supplementary section (8, 9).

3.2. Model Architecture

Our model is a Hessian-aware VAE with a transformer-
based encoder and a symmetric decoder (Figure 1). The
encoder processes Gaussian lineages as temporal data, em-
ploying a self-attention mechanism to capture long-range
dependencies. This is critical because the importance of a
Gaussian at one resolution may only become evident when
observing its behavior across multiple scales. The decoder
mirrors the encoder but reconstructs both geometry (posi-
tion, scale, rotation) and appearance (color, opacity) fea-
tures separately. This disentanglement ensures that geomet-
ric stability does not interfere with appearance refinement
and vice versa.

3.3. Training Strategy

Similar to language models [1], we train our system by
masking the final nodes in multi-step Gaussian lineages and
tasking the model with predicting the missing states. This
forces the model to learn robust representations of Gaussian
dynamics rather than memorizing fixed-resolution snap-
shots. We adopt a coarse-to-fine training regimen, where
the model first learns low-resolution Gaussian distributions
before progressively refining them. This hierarchical ap-
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Figure 3. Pipeline: Input Gaussians are tracked across resolution steps, their geometric properties (x: position, o: scale, R: rotation)
and their appearance properties (c: colour, s: spherical harmonics, a: opacity) are logged, and their lineages are extrapolated for missing
resolutions via learned interpolation. (C) The resulting Gaussians are extrapolated from the lineage.

proach improves convergence and stabilizes gradient flow.
Our Hessian-inspired objective, which identifies and prior-
itizes Gaussians in regions undergoing densification (Fig-
ure 2). By analyzing where the model allocates more Gaus-
sians, we implicitly learn which areas are perceptually or
structurally significant, effectively replicating the adaptive
densification behavior of traditional 3DGS pipelines, but
this time, without a training signal. Our approach enforces
continuity, leading to stable extrapolation and fewer arti-
facts when reconstructing. The model is trained in an end-
to-end manner.

3.4. Loss Functions

Our training objective combines multiple loss terms to en-
sure geometric consistency, appearance fidelity, and latent
space regularization. The total loss L is a weighted sum
of the following components:

Liow = AkiLxy,  +  AvseLmsg  + AchamferLehamfer (1)
N—— N—— N————
Latent regularization ~ Appearance matching ~ Geometric alignment
The weighting factors A¢kp msE,chamfery balance the con-
tribution of each term during training. We select le-6, 1.0
and 0.01 as our respective weighting factors. The KL diver-
gence weighting factor is set dynamically using a cyclic an-
nealing approach that cycles between fine-structural quality

and generalizability.

3.5. Integration with 3D Gaussian Splatting

As depicted in Figure 3, our method acts as a post-
processing step for conventional 3DGS models. Instead of
modifying the core splatting pipeline, we refine its output
by predicting Gaussian properties at untrained resolutions,
effectively inpainting missing information while preserving
the efficiency of the original pipeline. This positions our
work as a plug-in enhancement for existing systems.

Figure 4. Results: NeRF Synthetic/Blender dataset - Lego scene.
a) Image generated at 600p, b) Ours-V?+2, ¢) Image generated at
800p

a b c

Figure 5. Results: NeRF Synthetic/Blender dataset - Chair scene.
a) Image generated at 600p, b) Ours-V?+2, ¢) Image generated at
800p

Figure 6. Results: NeRF Synthetic/Blender dataset - Ficus scene.
a) Image generated at 600p, b) Ours-V2+2, ¢) Image generated at
800p

4. Experiments

Our experiments demonstrate significant improvements
over the 3DGS baseline in all evaluation metrics and scenes.



Table 1. Quantitative comparison of reconstruction quality across resolutions and methods using Chamfer distance. Lower values indicate
better performance. The rightmost column shows percentage improvement of our best result over the 600p 3DGS baseline. +1, +2, +3, +4
are each extrapolations/inferences from our trained model, which only sees images with a max resolution of 600p. Top three values are

highlighted using a green heatmap: dark green for the best,

for second-best, and for third-best.

Scene 3DGS Baseline Ours Ours-V? %1
600p 700p 800p +1 +2 +4 +1 +2 +3 +4
Materials  0.001290 0.001388 0.001390 0.001382 0.001389 0.001327 0.001326 0.001255 0.001203 7
Lego 0.149601 0.149734 0.149882 0.149735 0.149883 0.149876 0.149880 0.149434 0.149674 1
Mic 0.001159 0.001101 0.001164 0.001100 0.001163 0.001117 0.001110 0.001002  0.001025 14
Chair 0.004691 0.004695 0.004773 0.004696 0.004774 0.004664 0.004669 0.004643  0.004660 1
Ficus 0.000663 0.000639 0.000639 0.000639 0.000638 0.000671 0.000658 0.000566  0.000605 15
Drums 0.001393 0.001370 0.001380 0.001370 0.001380 0.001362 0.001362 0.001333 0.001322
Hotdog ~ 0.004187 0.004021 0.004068 0.004314 0.004020 0.004067 0.004066 0.003914 0.004008 6.5
Ship 0.002042 0.002026 0.002009 0.002025 0.002008 0.002007 0.002003 0.001957 0.001870 8

Table 2. Quantitative comparison using CenseoQoE metric (higher
is better) across different resolutions and methods. The rightmost
column shows percentage improvement of our best result over the
600p 3DGS baseline. Top three values are highlighted using a

green heatmap: dark green for the best, for second-
best, and for third-best.
B 2
Scene 3DGS Baseline Ours Ours-V %+
600p 700p 800p +1 42 43  +4 +1 42 43 +4

Materials 0.741 0.745 0.749 0.749 0.740 0.740 0.747 0.782 0.795 7
Lego  0.546 0.561 0.559 0.559 0.554 0.555 0.550 0.592 0579 8
Mic 0.711 0.707 0.719 0.719 0.722 0.710 0.721 0.729 0.712 3
Chair  0.612 0.607 0.603 0.602 0.603 0.603 0.597 0.639 0.627 4
Ficus  0.696 0.691 0.689 0.689 0.688 0.687 0.686 0.705 0.701 1
Drums  0.615 0.616 0.618 0.614 0.616 0.618 0.622 0.682 0.672 11
Hotdog  0.790 0.790 0.789 0.789 0.789 0.790 0.792 0.795 0813 3
Ship 0.701 0.692 0.699 0.699 0.695 0.699 0.700 0.708 0.689 0.731 4

We note that PSNR and SSIM rely on comparing outputs to
ground-truth images, which are unavailable in our case due
to extrapolation into unseen dimensions. Tables | and 2
report reconstruction and perceptual quality metrics across
multiple resolutions, with training stopped at 600p and eval-
uation extrapolated to higher resolutions (+1 to +4 steps,
each of which are sequential inferences from our trained
model). We compare our base method (Ours), which ex-
trapolates Gaussians across the entire scene to the more
targeted (Ours-V?), our Hessian-optimized variant, which
consistently yields better geometric fidelity and perceptual
quality. achieves up to 15% lower reconstruction error on
complex scenes like Ficus and 14% improvement on spec-
ular objects like Mic compared to the 600p 3DGS baseline,
while maintaining superior perceptual quality (11% higher
CenseoQoE scores for Drums). The resolution-agnostic na-
ture of our approach proves particularly effective, as evi-
denced by consistent performance when extrapolating be-
yond the training resolution (+1 to +4 steps beyond 800p),
whereas traditional 3DGS exhibits degradation during up-
sampling. Visual comparisons in Figures 4-6 corroborate
these findings, showing enhanced preservation of thin struc-
tures (chair legs), high-frequency textures (ficus leaves),
and specular highlights (Lego reflections). It is worth noting
that we use the NeRF synthetic dataset because the dataset

has a ground truth mesh we can use to compare against to
isolate the geometric contribution of our model. To quan-
tify the appearance, we use CenseoQoE metric which is a
non-reference metric to capture perceptual differences in
appearance [10]. Without ground truth references, these
metrics cannot provide meaningful evaluations and we thus
use Chamfer distance (Supp. 6) and CenseoQoE [10] (ap-
pearance) for our analysis

The success of our method stems from three key inno-
vations: (1) temporal modeling of Gaussian lineages en-
ables stable extrapolation across resolutions, (2) Hessian-
weighted optimization prioritizes geometrically significant
regions, and (3) dynamic pruning reduces memory over-
head without quality loss. While most scenes show sub-
stantial gains, the Lego and Chair scene’s minimal improve-
ment (1% error reduction) suggests limitations with homo-
geneous textures, likely due to insufficient lineage varia-
tion for our temporal attention mechanism. This edge case
notwithstanding, our approach consistently outperforms the
baseline in both geometric accuracy and perceptual quality,
validating the efficacy of treating Gaussian evolution as a
continuous temporal process rather than discrete resolution-
specific optimizations.

5. Conclusions

We presented a novel resolution-agnostic framework for
3D Gaussian Splatting that introduces lineage-aware Gaus-
sian modeling and a Hessian-weighted generative architec-
ture. Our key innovation lies in treating Gaussian evolution
across resolutions as a temporal sequence, enabling meta-
learning of continuous scale priors through transformer-
based VAEs with normalizing flow regularization. Ex-
periments demonstrate that our approach outperforms tra-
ditional per-resolution optimization both qualitatively and
quantitatively. As for limitations, our method assumes
smooth Gaussian property transitions across scales, which
may break for abrupt scene topology changes.
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6. Training Details

The training objective for our GaussianVAE framework in-
tegrates:

* KL Divergence Loss (Lk1): Regularizes the latent space
using a normalizing flow prior p,; (z) and cyclic annealing
to avoid posterior collapse. For a flow transformation z =
T, (€) where € ~ N(0,1):

Lxr = B(t) - De (q(z | 2) [| py(2)) ©)

—1

oT
det —¥

pul2) = N (0, 1) [det —

; 3)

where §(t) = min(a -t mod R, 1) is the cyclic anneal-
ing schedule with ramp length R and scaling factor o.
This schedule periodically increases 8 from 0 to 1 during
training to gradually introduce KL regularization.

e MSE Loss (Lysg): Supervises appearance attributes
(RGB colors c and opacities «):

Luse = |le =[5 + [l — &l3, S

where ¢, & are predicted values.

e Chamfer Loss (Lcpamrer): Measures geometric fidelity
between predicted (P) and ground-truth (Q) Gaussian
centers:

Lonanter = _ min[p = gl[3 + 3 minflg = pl3. )
pEP q€Q

7. Resolution scaling

Computational resources required to train 3DGS at higher
resolutions scales quadratically and training using commer-
cial hardware becomes infeasible.

Table 3. Video RAM (VRAM) requirements by output resolution

Resolution (p) VRAM (GB)
144 >0.6
240 >1.0
360 >1.5
480 >2.2
720 >4.0
1080 >8.0

1440 >14.0

8. Pre-processing

Table 4. Model comparison of size, training time, and inference
time

Model Size Training time (h) Inference time (s)
Geometric 0.5MB  coarse (0.5) + fine (2) 0.005
Appearance 1.0MB  coarse (2) + fine (0.5) 0.010

9. Feature composition

Table 5. Feature composition of geometric and appearance models

Model Total Features Breakdown

Position (3), Rotation (4), Scale (3), Exist (1)
SPH (45), RGB (3), Opacity (1), Exist (1)

Geometric 11
Appearance 50

10. 3DGS densification

Figure 7. 3DGS: The core 3DGS densification process uses a gra-
dient based threshold for increasing the density of Gaussians in
regions that require fine-detail.
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