
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEYOND LINEAR APPROXIMATIONS: A NOVEL PRUN-
ING APPROACH FOR ATTENTION MATRIX

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown immense potential in enhancing var-
ious aspects of our daily lives, from conversational AI to search and AI assistants.
However, their growing capabilities come at the cost of extremely large model
sizes, making deployment on edge devices challenging due to memory and com-
putational constraints. This paper introduces a novel approach to LLM weight
pruning that directly optimizes for approximating the attention matrix, a core com-
ponent of transformer architectures. Unlike existing methods that focus on linear
approximations, our approach accounts for the non-linear nature of the Softmax
attention mechanism. We provide theoretical guarantees for the convergence of
our Gradient Descent-based optimization method to a near-optimal pruning mask
solution. Our preliminary empirical results demonstrate the effectiveness of this
approach in maintaining model performance while significantly reducing com-
putational costs. This work establishes a new theoretical foundation for pruning
algorithm design in LLMs, potentially paving the way for more efficient LLM
inference on resource-constrained devices.

1 INTRODUCTION

Large Language Models (LLMs) based on the transformer architecture (Vaswani et al., 2017), in-
cluding GPT-4o (OpenAI, 2024a), Claude (Anthropic, 2024), and OpenAI’s recent o1 (OpenAI,
2024b), have shown immense potential to enhance our daily lives. They revolutionize fields like
conversational AI (Liu et al., 2024), AI agents (Xi et al., 2023; Chen et al., 2024b), search AI (Ope-
nAI, 2024b), and AI assistants (Mahmood et al., 2023; Zhang et al., 2023; Kuo et al., 2024; Feng
et al., 2024). With their growing capabilities, LLMs are powerful tools shaping the future of tech-
nology. However, the current state-of-the-art LLM weights number is extremely large. For instance,
the smallest version of Llama 3.1 (Llama Team, 2024) needs 8 billion parameters, which takes more
than 16GB GPU memory with half float precision and requires significant inference time. Due to
large memory and high computational cost, deploying such models on edge devices such as smart-
phones becomes challenging.

To reduce the LLM model size, many studies work on pruning the LLMs model weights to relax
the device memory constraint and minimize response latency. The classical pruning problem in
LLMs can be formulated as follows. Given a weight matrix W ∈ Rd×d and some calibration data
X ∈ Rn×d, where n is input token length and d is feature dimension, the goal is to find a matrix
W̃ under some sparse constraint such that ∥XW − XW̃∥ being small under some norm function.
The above formulation has been widely used in many state-of-the-art pruning methods, such as
SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2024).

However, the current object functions only focus on the approximation of a linear function XW .
Their optimal solutions do not have a good approximation to the attention matrix (see Figure 2 for
details). Note that the attention mechanism is the kernel module of the transformer architecture.
The high-level insight of their bad performance is that the Softmax function is very sensitive to
the large positive values of the input due to its exp scaling effect while pruning mask based on
linear approximation cannot capture this sensitivity. Thus, in this work, we directly compute the
pruning mask on weights to approximate the attention matrix, which is a highly non-linear function,
Softmax(XWX⊤) ∈ Rn×n. To the best of our knowledge, this paper is the first work studying
attention weight pruning to directly approximate the attention matrix. We provide a theoretical

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑋!𝑊𝑋 × ×Softmax 𝑀 ◦n

d

d d n

d d d

×𝑋n

d

𝑊"𝑀" ◦
d d

d d×𝑋n

d

𝑊#𝑀# ◦
d d

d d

Figure 1: Comparison of our Attention Weights Pruning method and Linear Pruning method such
as Wanda and SparseGPT. The top figure illustrates our proposed method of the attention matrix
approximation, where pruning is applied directly to the fused attention weight matrix W , using only
one pruning mask M . The bottom figure describes the Linear Pruning method of the linear function
approximation, where pruning is applied separately to the query weight matrix WQ and key weight
matrix WK , using two different pruning masks MQ and MK , respectively.

guarantee that optimization based on Gradient Descent (GD) on our loss function can converge to a
good pruning mask solution (Theorem 1.3). Furthermore, we preliminarily verified the effectiveness
of our method with empirical support (Section 6). Our theoretical foundation may pave the way for
more efficient LLM inference on resource-constrained devices.

In the following, we introduce some key backgrounds and our contributions in detail.

1.1 KEY BACKGROUND

We define the attention matrix in self-attention mechanism as below:

Definition 1.1 (Attention Matrix). Let X ∈ Rn×d be the input. Given query and key weights matrix
WQ,WK ∈ Rd×d, we define W := WQW

⊤
K . Then, we have the Softmax attention matrix being

Softmax(XWX⊤) = D−1 exp(XWX⊤),

where (1) D := diag(exp(XWX⊤) · 1n), (2) exp denotes the exponential function and is applied
entry-wisely, (3) diag() operation takes a vector and outputs a diagonal matrix with the entries of
that vector, and (4) 1n denotes the length-n all ones vector.

Further, we introduce the problem setup of our Attention Weights Pruning. By selectively reducing
the number of non-zero elements in the attention weight matrix W in Definition 1.1, we can preserve
model performance while lowering computational cost and GPU memory usage. Below, we formally
define the Attention Weights Pruning problem and the corresponding loss function:

Definition 1.2 (Attention Weights Pruning). Let M ∈ [0, 1]d×d be the pruning mask. Let X,W

be defined in Definition 1.1. Let A := exp(XWX⊤) and Ã := exp(X(M ◦ W)X⊤), where ◦
is the Hadamard product. Let D := diag(A · 1n) and D̃ := diag(Ã · 1n). Let λ ∈ R+ be the
regularization parameter. We define Attention Weights Pruning loss function to be

L(M) :=
1

2
∥D−1A− D̃−1Ã∥2F +

1

2
λ∥M∥2F .

Thus, the Attention Weights Pruning optimization problem is minM L(M).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1.2 OUR CONTRIBUTIONS

This is the first work studying the Attention Weights Pruning problem, which is an approximation
problem to a non-linear function. We provide an algorithm to obtain the near-optimal pruning mask
based on Gradient Descent (GD) with convergence guarantee.
Theorem 1.3 (Main result, informal version of Theorem 4.1). For any ϵ > 0, our Algorithm 1
can converge to the near-optimal pruning mask for the Attention Weights Pruning problem (Defini-
tion 1.2) in O(dpoly(n)/ϵ) time with O(ξ+ ϵ) error, where ξ is a small term depending on intrinsic
property of the data and weights.

In the above theorem, ξ can be arbitrarily small as ξ → 0 when the regularization coefficient λ→ 0.
So our analysis shows that although the objective function is highly non-linear, the GD training can
converge to a near-optimal pruning mask solution, supported by our experiments in Section 6.

Our contributions are as follows:

• This is the first work that analyzes the weights pruning problem based on Softmax attention,
which is a non-linear function.

• We provide the closed form of the gradient of Attention Weights Pruning loss function
(Theorem 5.3), and Lipschitz of that gradient (Theorem 5.4),

• We provide Gradient Descent based Algorithm 1 to obtain the near-optimal pruning mask
and its convergence guarantee (Theorem 4.1).

• We conduct preliminary experiments to verify the effectiveness of our method (Section 6).

Roadmap. Our paper is organized as follows. In Section 2, we review the related work. Sec-
tion 3 introduces key concepts and definitions essential for the subsequent sections. In Section 4,
we present our main result. Section 5 offers a technical overview of the methods employed. Ex-
perimental results are discussed in Section 6. Finally, Section 8 summarizes our findings and offers
concluding remarks.

2 RELATED WORK

2.1 PRUNING AND COMPRESSION FOR LLMS

Model compression plays a critical role in improving the efficiency and deployment of large lan-
guage models (LLMs) (Zhu et al., 2023) for its effectiveness in reducing computational overhead
while preserving performance. Common compression techniques include quantization (Park et al.,
2024; Xiao et al., 2023; Hooper et al., 2024), pruning (Chen et al., 2021; Hoefler et al., 2021;
Hubara et al., 2021; Jin et al., 2022; Frantar & Alistarh, 2022; 2023; Sun et al., 2024; Li et al.,
2024a; Zandieh et al., 2024; Zhang et al., 2024b; Xia et al., 2023; Ashkboos et al., 2024; Chen
et al., 2024a), and knowledge distillation (Hsieh et al., 2023; Shridhar et al., 2023; Jiang et al.,
2023; Wang et al., 2023). Specifically, pruning techniques have been developed extensively, such
as unstructured pruning, which removes individual weights (Li et al., 2024a; Sun et al., 2024), and
structured pruning, which eliminates entire components like neurons or attention heads (Michel
et al., 2019; Ashkboos et al., 2024; Xia et al., 2024). Sun et al. (2024) proposed Wanda, a novel
unstructured pruning technique that uses weight-activation products to induce up to 50% sparsity
in LLMs without retraining, achieving competitive results with significantly lower computational
cost. SparseGPT (Frantar & Alistarh, 2023) introduced a one-shot pruning method that achieves
up to 60% sparsity in large GPT-family models with minimal impact on performance. A follow-up
work (Li et al., 2024a) improved the complexity analysis of SparseGPT, reducing the running time
from O(d3) to O(d2.53), enabling faster pruning on LLMs. These techniques together contribute
to more scalable and resource-efficient LLMs, maintaining competitive performance while having
substantial reductions in computational resources.

2.2 ATTENTION ACCELERATION

Attention mechanism has faced criticism due to its quadratic time complexity with respect to context
length (Vaswani et al., 2017). Addressing this criticism, a variety of approaches are employed, in-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

cluding sparse attention (Hubara et al., 2021; Kurtic et al., 2023; Frantar & Alistarh, 2023; Li et al.,
2024a), low-rank approximations (Razenshteyn et al., 2016; Li et al., 2016; Hu et al., 2022; Zeng &
Lee, 2024; Hu et al., 2024d), and kernel-based methods (Charikar et al., 2020; Liu & Zenke, 2020;
Deng et al., 2023a; Zandieh et al., 2023; Liang et al., 2024a), to reduce computational overhead and
improve scalability. Aggarwal & Alman (2022) enable the derivation of a low-rank representation of
the attention matrix, which accelerates both the training and inference processes of single attention
layer, tensor attention, and multi-layer transformer, achieving almost linear time complexity (Alman
& Song, 2023; 2024a;b; Liang et al., 2024e;b). Other approaches like Mamba (Gu & Dao, 2023;
Dao & Gu, 2024), Linearizing Transformers (Zhang et al., 2024a; Mercat et al., 2024), Hopfield
Models (Hu et al., 2023; Wu et al., 2024b; Hu et al., 2024c; Xu et al., 2024a; Wu et al., 2024a;
Hu et al., 2024a;b;e), and PolySketchFormer (Kacham et al., 2023) focus on architectural modifica-
tions and implementation optimizations to enhance performance. System-level optimizations such
as FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024) and block-wise parallel decod-
ing (Stern et al., 2018) further improve efficiency. Collectively, these innovations have significantly
augmented transformer models’ ability to handle longer input sequences, unlocking broader appli-
cations across multiple sectors (Chen et al., 2023; Peng et al., 2023; Ding et al., 2024; Ma et al.,
2024; Xu et al., 2024b; An et al., 2024; Jin et al., 2024; Li et al., 2024b; Liang et al., 2024c; Shi
et al., 2024a).

3 PRELIMINARY

In this section, we introduce some basic concepts and key definitions. In Section 3.1, we introduce
some basic notations we use in this paper. In Section 3.2, we provide the definition of attention
weights pruning.

3.1 NOTATIONS

For any positive integer n, we use [n] to denote set {1, 2, · · · , n}. For each a, b ∈ Rn, we use
a ◦ b ∈ Rn to denote the Hadamard product, i.e., the i-th entry of (a ◦ b) is aibi for all i ∈ [n].
For A ∈ Rm×n, let Ai ∈ Rn denote the i-th row and A∗,j ∈ Rm denote the j-th column of A,
where i ∈ [m] and j ∈ [n]. We use exp(A) to denote a matrix where exp(A)i,j := exp(Ai,j)
for a matrix A ∈ Rn×d. We use ∥A∥F to denote the Frobenius norm of a matrix A ∈ Rn×d, i.e.,
∥A∥F :=

√∑
i∈[n]

∑
j∈[d] |Ai,j |2. For a symmetric matrix A ∈ Rn×n, A ⪰ 0 means that A is

positive semidefinite (PSD), i.e., for all x ∈ Rn, we have x⊤Ax ≥ 0.

3.2 ATTENTION WEIGHTS PRUNING

We aim to determine a near-optimal pruning mask M for the attention weights in a self-attention
mechanism. Furthermore, we incorporate causal attention masking1 into our method to be more
aligned with the current decoder-only LLM architecture, while our analysis can be applied to any
general attention mask, e.g., block-wise attention mask. To formalize this, we provide the formal
definition of causal attention mask and attention weights pruning in this section.

The causal attention mask ensures that each token in the sequence can attend only to itself and
preceding tokens. Here, we provide the formal definition for the causal attention mask:
Definition 3.1 (Causal attention mask, Liang et al. (2024b)). We define the causal attention mask as
Mc ∈ {0, 1}n×n, where (Mc)i,j = 1 if i ≥ j and (Mc)i,j = 0 otherwise.

Now, we incorporate Attention Weights Pruning (see Definition 1.2) with causal attention mask Mc.
Definition 3.2 (Attention Weights Pruning with Causal Attention Mask). Let Mc ∈ {0, 1}n×n be
the causal attention mask defined in Definition 3.1. Let A := exp(XWX⊤) ◦ Mc and Ã :=

exp(X(M ◦W)X⊤) ◦Mc. Let D := diag(A · 1n) and D̃ := diag(Ã · 1n). We define Attention
Weights Pruning with Causal Attention Mask loss function to be

L(M) := Lattn(M) + Lreg(M)

1In this paper, we always use pruning mask to refer M ∈ Rd×d, which is our target, and use causal attention
mask to refer Mc ∈ Rn×n, which is a fixed mask for standard self-attention.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where

Lattn(M) :=
1

2
∥D−1A− D̃−1Ã∥2F and Lreg(M) :=

1

2
λ∥M∥2F .

Algorithm 1 Gradient Descent for Pruning Mask (Theorem 4.1). Let X1, X2, . . . , Xk ∈ Rn×d be
our calibration dataset of size k. We iteratively run our GD method on this dataset.

1: procedure PRUNEMASKGD(X1, X2, . . . , Xk ∈ Rn×d, W ∈ Rd×d, Mc ∈ {0, 1}d×d, ρ ∈
[0, 1], λ ∈ [0, 1], ϵ ∈ (0, 0.1)) ▷ Theorem 4.1

2: Initialize M ∈ {1}d×d

3: Initialize η, T by Theorem 4.1
4: for j = 1→ k do ▷ Iterate over the dataset
5: uj ← exp(XjWX⊤

j)

6: fj ← diag((uj ◦Mc) · 1n)
−1(uj ◦Mc)

7: end for
8: for i = 1→ T do ▷ Iterate over T steps
9: for j = 1→ k do ▷ Iterate over the dataset

10: ũj ← exp(Xj(M ◦W)X⊤
j)

11: f̃j ← diag((ũj ◦Mc) · 1n)
−1(ũj ◦Mc)

12: cj ← f̃j − fj
13: p1,j ← cj ◦ f̃j
14: p2,j ← diag(p1,j · 1n)f̃j
15: pj ← p1,j − p2,j
16: end for
17: M ←M − (η/k) · (W ◦ (

∑k
j=1 X

⊤
j pjXj) + λM) ▷ Gradient Descent

18: end for
19: m← vec(M) ▷ Flatten M into a vector
20: msorted ← sort(m) ▷ Sort the elements of M
21: τ ← msorted[⌊ρ · d2⌋] ▷ Get the ρ-th largest element

22: Mij ←
{
1 if Mij > τ

0 otherwise
▷ Set the top ρ entries to 1, others to 0

23: return M
24: end procedure

4 MAIN RESULTS

In this section, we provide our main results. We provide an Algorithm 1 for Attention Weights
Pruning problem based on Gradient Descent (GD). We also prove the convergence for our GD
algorithm in Theorem 4.1.

Theorem 4.1 (Main result, formal version of Theorem 1.3). Let M, X, W, D̃, Ã λ, L, Lattn be
defined in Definition 3.2. Assume XX⊤ ⪰ βI and mini,j∈[n](D̃

−1Ã)i,j ≥ δ > 0. Furthermore,

• Let µ = 2mini,j∈[d]{|Wi,j |} · β · δ.

• Let ξ = 12n−1.5 maxi,j∈[d]{|Wi,j |} · ∥X∥2F · λd/µ.

Then, for any ϵ > 0, provided η < 1/L where L is the Lipschitz constant for ∇ML(M) (see The-
orem 5.4), GD (Algorithm 1) with fixed step size η and run for T = 4L(M (0))/(ηµϵn2) iterations
results in the following guarantee,

1

n2
min
t<T
Lattn(M

(t)) +
λ2

µn2
∥M (t)∥2F ≤ (ξ + ϵ)/2.

Proof. Let g(M) = 2Lattn(M)+ 2λ2

µ ∥M∥
2
F . Note that L(M) satisfies the (g(M), n2ξ, 2, µ)-proxy

PL inequality (Lemma 5.5). Also, we have L(M) is non-negative and has L-Lipschitz gradients
Theorem 5.4. Thus, we finish the proof using Theorem 5.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Remark 4.2. The two assumptions in Theorem 4.1 are practical. The first assumption of the positive
definite matrix is widely used in theoretical deep learning analysis, e.g., Li & Liang (2018); Du et al.
(2019); Allen-Zhu et al. (2019b); Arora et al. (2019). The second assumption is natural, as D̃−1Ã
is the pruned attention matrix, where each entry is

exp(X(M ◦W)X⊤)i,j∑n
j=1 exp(X(M ◦W)X⊤)i,j

> 0,

which has a natural lower bound.

Our error upper bound in Theorem 4.1 is O(ξ + ϵ), where ϵ can be arbitrarily small. For ξ, we
can let it be small by choosing a proper λ, i.e., the ξ error term can be made arbitrarily small by
choosing small λ. However, if we choose a very small λ, the algorithm’s run time gets larger as
T ∝ 1/η ∝ L ∝ (λ + other terms). Thus, although the objective function is highly non-linear,
we can show that the Gradient Descent of our Algorithm 1 can converge to a good solution of the
Attention Weights Pruning problem.

After solving the optimization problem, we obtain a pruning mask with real-valued entries. In prac-
tice, however, this pruning mask must be converted into a binary form, specifically M ∈ {0, 1}d×d.
We define the pruning ratio ρ as the percentage of weights to be pruned. We apply this ratio by
setting the pruning mask entries to zero for weights that fall below the ρ-th percentile and to one for
those above. This ensures that only the specified proportion of weights are pruned.

5 TECHNIQUE OVERVIEW

In Section 5.1, we introduce some useful tools from previous work. In Section 5.2, we derive the
close form of the gradient of Attention Weights Pruning. In Section 5.3, we calculate the Lipschitz
constant of that gradient. In Section 5.4, we prove the PL inequality for our loss function.

5.1 PREVIOUS TOOLS ON CONVERGENCE OF GD

To analyze the convergence behavior of GD for our optimization problem (Definition 3.2), we first
introduce the concept of g-proxy, ξ-optimal Polyak–Łojasiewicz(PL) inequality (Polyak, 1963; Lo-
jasiewicz, 1963; Karimi et al., 2016), under which GD will converge:
Definition 5.1 (g-proxy, ξ-optimal PL inequality, Definition 1.2 in Frei & Gu (2021)). We say that a
function f : Rp → R satisfies a g-proxy, ξ-optimal Polyak–Łojasiewicz inequality with parameters
α > 0 and µ > 0 (in short, fsatisfies the (g, ξ, α, µ)-PL inequality) if there exists a function
g : Rp → R and scalars ξ ∈ R, µ > 0 such that for all w ∈ Rp,

∥∇f(w)∥α ≥ 1

2
µ(g(w)− ξ).

PL inequality is a powerful tool for studying non-convex optimization, and it has been used in
recent studies on provable guarantees for neural networks trained by gradient descent (Li & Liang,
2018; Allen-Zhu et al., 2019a;b;c; Frei et al., 2019; Cao & Gu, 2020; Ji & Telgarsky, 2019; Frei
et al., 2021; Shi et al., 2021; 2024b). It provides a proxy convexity property, although the objective
function is non-convex. In detail, for a function with good smoothness property, we can find some
proxy functions and show the convergence by utilizing these proxy functions.

Leveraging this PL inequality, Frei & Gu (2021) derives the following GD convergence guarantees.
Theorem 5.2 (Theorem 3.1 in Frei & Gu (2021)). Suppose f(w) satisfies the (g(·), ξ, α, µ)-proxy
PL inequality for some function g(·) : Rp → R. Assume that f is non-negative and has L-Lipschitz
gradients. Then for any ϵ > 0, provided η < 1/L, GD with fixed step size η and run for T =
2η−1(µϵ/2)−2/αf(w(0)) iterations results in the following guarantee,

min
t<T

g(w(t)) ≤ ξ + ϵ.

The above theorem establishes that under the (g, ξ, α, µ)-PL inequality and Lipschitz continuity of
the gradient, GD converges to a point where the proxy function g(w) is within ϵ of ξ. To apply this
result to our specific problem, we need to verify these conditions for our loss function L(M).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.2 CLOSED FORM OF GRADIENT

As a first step, we compute the close form of the gradient∇ML(M). The pruning mask M is inside
a non-linear function Softmax, which complicates our calculation. We defer the proof to Section B.
Theorem 5.3 (Closed form of gradient, informal version of Theorem C.5). Let L(M) be defined in
Definition 3.2. Let p be defined in Definition C.1. Let X ∈ Rn×d, M ∈ [0, 1]d×d, W ∈ Rd×d. Then,
we have

dL(M)

dM
= W ◦ (X⊤pX) + λM.

Based on Theorem 5.3, we calculate the gradient of the pruning mask from Line 10 to Line 15 in
our Algorithm 1.

5.3 LIPSCHITZ OF GRADIENT

Having obtained the close form of gradient, we proceed to investigate its Lipschitz continuity. We
aim to show that the gradient∇ML(M) is Lipschitz continuous with respect to M .
Theorem 5.4 (Lipschitz of the gradient, informal version of Theorem E.8). Let R be some fixed
constant satisfies R > 1. Let X ∈ Rn×d,W ∈ Rd×d. We have ∥X∥F ≤ R and ∥W∥F ≤ R. Let
L(M) be defined in Definition 3.2. For M,M̃ ∈ Rd×d, we have

∥∇ML(M)−∇ML(M̃)∥F ≤ (λ+ 30dn7/2R6) · ∥M − M̃∥F .

We defer the proof to Section E. Establishing the Lipschitz continuity of the gradient satisfies one of
the necessary conditions for applying Theorem 5.2. The above theorem implicates that the gradient
for M is upper bounded, providing a way to choose step size.

5.4 PL INEQUALITY OF GRADIENT

Next, we need to verify that our loss function satisfies the PL inequality with appropriate parameters.
To complete the verification of the conditions required for convergence, we demonstrate that L(M)
satisfies the PL inequality. We show that∇ML(M) satisfies the PL inequality in this lemma:

Lemma 5.5 (PL inequality, informal version of Lemma F.10). Let M,X,W, D̃, Ã, λ, L, Lattn be
defined in Definition 3.2. Assume that XX⊤ ⪰ βI and mini,j∈[n](D̃

−1Ã)i,j ≥ δ > 0. Also,

• Let µ = 2mini,j∈[d]{|Wi,j |} · β · δ.

• Let ξ = 12
√
nmaxi,j∈[d]{|Wi,j |} · ∥X∥2F · λd/µ.

We have

∥∇ML(M)∥2F ≥
1

2
µ(2Lattn(M) +

2λ2

µ
∥M∥2F − ξ).

We defer the proof to Section F. By confirming that L(M) satisfies the PL inequality and that its
gradient is Lipschitz continuous, we then apply Theorem 5.2 to conclude that GD will converge to a
solution within our desired error tolerance, and further prove Theorem 4.1.

To prove the PL inequality, we also need the following two key Lemmas, which introduce our two
assumptions in our Theorem 4.1, XX⊤ ⪰ βI and mini,j∈[n](D̃

−1Ã)i,j ≥ δ > 0.

Lemma 5.6 (Informal version of Lemma F.4). Let B ∈ Rn×n and X ∈ Rn×d. Assume that
XX⊤ ⪰ βI . Then, we have

∥X⊤BX∥F ≥ β∥B∥F .
Lemma 5.7 (Informal version of Lemma F.7). Let B ∈ Rn×n and each row summation is zero, i.e.,
B · 1n = 0n. Let B̃ ∈ [0, 1]n×n and each row summation is 1, i.e., B̃ · 1n = 1n. Assume that
mini,j∈[n] B̃i,j ≥ δ > 0. Then, we can show

∥B ◦ B̃ − diag((B ◦ B̃) · 1n)B̃∥F ≥ δ · ∥B∥F .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2 102 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 20 21 22 23 24
0.5

0.6

0.7

0.8

0.9

Re
la

ti
ve

 E
rr

or

k = 16, = 0.5, n = 128, d = 64

64128 256 512 1024
n

0.4

0.6

0.8

1.0

1.2
k = 16, = 0.5, = 0.04, d = 64

0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.6

0.8

1.0

1.2

1.4

1.6

k = 16, = 0.04, n = 128, d = 64

Ours
Wanda
SparseGPT

2 102 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 20 21 22 23 24

0.7

0.8

0.9

1.0

Re
la

ti
ve

 E
rr

or

k = 64, = 0.5, n = 128, d = 64

(a) Varying λ.

64128 256 512 1024
n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
k = 64, = 0.5, = 0.04, d = 64

(b) Varying n.

0.4 0.5 0.6 0.7 0.8 0.9

0.6

0.8

1.0

1.2

1.4

1.6

1.8
k = 64, = 0.04, n = 128, d = 64

Ours
Wanda
SparseGPT

(c) Varying ρ.

Figure 2: The comparison among our Algorithm 1, Wanda, and SparseGPT. The y-axis is a relative

error, which is defined as ∥D̃−1Ã−D−1A∥2
F

∥D−1A∥2
F

, where D−1A is original attention matrix and D̃−1Ã is
approximated attention matrix based on three methods. We always use d = 64. We use k = 16 for
the first row and k = 64 for the second row. The x-axis is (a) regularization coefficient λ for the left
column; (b) input sequence length n for the middle column; (c) pruning ratio ρ for the right column.

6 EXPERIMENT

In this section, we discuss the experiments conducted to illustrate the effectiveness of our Algo-
rithm 1. We first introduce our settings in Section 6.1. Then, we present our results in Section 6.2.

6.1 SETTINGS

Method and evaluation. We implement our method following the pseudocode in Algorithm 1, us-
ing NumPy and JAX for acceleration. We evaluate our method on unstructured sparsity, meaning
that zeros can occur anywhere within the attention weight matrix W . Specifically, we use Defini-
tion 3.2 as our loss function, optimizing over the pruning mask M using gradient descent based on
the closed-form expression derived in Theorem 5.3. To accelerate convergence, we leverage mo-
mentum into the optimization process and fix the momentum parameter at 0.9. After obtaining the
optimal pruning mask, we convert M to a binary pruning mask to prune W , maintaining sparsity at
the desired pruning ratio ρ. We use the relative error as our evaluation metric, which is defined as

∥D̃−1Ã−D−1A∥2F
∥D−1A∥2F

, (1)

where D̃, Ã, D, A are defined in Definition 3.2.

Baselines. We compare our method with two linear pruning approaches, namely Wanda (Sun et al.,
2024) and SparseGPT (Frantar & Alistarh, 2023). Wanda is a pruning method that removes weights
with the smallest magnitudes multiplied by the corresponding input activations, achieving sparsity
without requiring retraining or weight updates. SparseGPT is a second-order pruning method that
utilizes the Hessian matrix to prune a portion of the weight matrix while simultaneously updating
the remaining parameters. We implement Wanda and SparseGPT as described in their respective
papers. Notably, since the settings of SparseGPT and Wanda are linear, we do not prune the fused
weight matrix W directly; instead, we prune WQ and WK separately (see Figure 1).

Data. In order to assess the efficacy of different methods in approximating the attention matrix,
we construct the data via a carefully defined generating process. Specifically, we create multiple

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

independent random Gaussian matrices G ∈ Rd×d, where each entry of G drawn from a normal
distribution i.e., Gi,j ∼ N (0, 1) for i, j ∈ [d]. Then, we perform singular value decomposition
(SVD) on matrix G, i.e., U, S, V ⊤ = SVD(G). We retain the first four singular values in S and set
others to zero, constraining the rank to four. Our WQ and WK are then constructed as U diag(S)V ⊤.
The weight matrix W used in our setting is formed by taking the product W = WQW

⊤
K . For

X ∈ Rn×d, we generate it as a full-rank Gaussian random matrix.

Setup. In our experiments, the weight matrix dimension d = 64 is kept as constant across all
figures, and we simulate two datasets of size k = 16 and k = 64. We set the input sequence
length n = 128 for experiments (a) and (c) in Figure 2. The pruning ratio ρ = 0.5 is set for
experiments (a) and (b) in Figure 2. For our method, the regularization coefficient λ := λ̃/n where
we abuse the notation to denote λ̃ as the same used in Definition 3.2 and λ here is the parameter
we really control in experiments. λ is set as 0.04 for experiments (b) and (c) in Figure 2 (intuition
drawn from experiment (a)). The total number of epochs is set as T = 100. The step size is set as
η = 0.1/λ because Theorem 4.1 indicates that η is inversely proportional to λ with some constant,
i.e., η ∝ 1/L ∝ 1/(λ+ other terms).

6.2 RESULTS

Overall, the results in Figure 2 show that our Algorithm 1 outperforms Wanda and SparseGPT with
a large margin, which supports our theoretical analysis in Theorem 4.1. In the following, we will
discuss each setting in detail.

Relation with regularization coefficient λ. The leftmost column of Figure 2 investigates the impact
of the regularization coefficient λ on relative error. As λ increases from very small values, the
relative error initially decreases sharply for our algorithm, reaching a minimum before gradually
rising again, which forms a U shape curve. This behavior indicates that there is an optimal λ where
our algorithm achieves its best performance around 2−4. The U-shape curve phenomena are well-
known in most hyper-parameter choosing, e.g., regularization coefficient.

Relation with input sequence length n. The center column of Figure 2 explores how the relative
error changes with respect to the input sequence length n. As n increases, the relative error for
all three methods grows, though at different rates. Our method demonstrates a slower increase,
maintaining a significant margin over both Wanda and SparseGPT, particularly for larger values of
n. Wanda, while showing better performance than SparseGPT for larger sequence lengths, becomes
comparable to SparseGPT as n is relatively small.

Relation with pruning ratio ρ. The rightmost column of Figure 2 illustrates the relationship be-
tween the relative error and the pruning ratio ρ for the three methods under comparison: our algo-
rithm, Wanda, and SparseGPT. As the pruning ratio ρ increases, all methods exhibit a rise in relative
error, indicating a degradation in approximation accuracy. However, our algorithm consistently out-
performs both Wanda and SparseGPT across the range of ρ, with a lower relative error. SparseGPT
and Wanda follow a similar trend, closely tracking each other.

7 EXPERIMENT ON REAL DATASET AND LLMS

In this section, we discuss the new experiments conducted on the real dataset and LLMs to illustrate
the effectiveness of our method.

7.1 SETTINGS

Method and evaluation. We implement our method using PyTorch. We evaluate our method on
unstructured sparsity, meaning that zeros can occur anywhere within the attention weight matrices
WQ and WK . Specifically, we use the loss function defined below:

L(MQ,MK) :=
1

2
∥D−1A− D̃−1Ã∥2F +

1

2
(∥MQ∥2F + ∥MK∥2F) (2)

where D and A are the original attention matrix, MQ,MK are pruning masks, and

Ã := exp(X(MQ ◦WQ)(MK ◦WK)⊤X⊤), D̃ := diag(Ã · 1n).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

26 27 28 29 210 211 212

n

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 = 0.7, = 0.05, d = 2048

0.4 0.5 0.6 0.7 0.8

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
 = 0.005, n = 512, d = 2048

Ours
Wanda
SparseGPT

Figure 3: The comparison among our algorithm, Wanda, and SparseGPT on Llama 3.2-1B.

After obtaining the optimal pruning mask, we convert the pruning mask to a binary pruning mask to
prune WQ and WK , maintaining sparsity at the desired pruning ratio ρ. We use the relative error as
our evaluation metric, which is defined as Eq. (1).

Baselines. The pruning is performed on the last attention layer of the pretrained model Llama
3.2-1B Meta (2024). The baselines are Wanda and SparseGPT, the same as Section 6.1, and we
reimplement them on PyTorch.

Data. To simulate real-world large language models, we utilize the Colossal Clean Crawled Corpus
(C4 Dataset) Raffel et al. (2020), which is also used as the calibration dataset in our baselines Wanda
and SparseGPT. Additionally, with a primary focus on pruning the attention matrix, we extract the
input hidden states corresponding to the target attention matrix from the pretrained Llama 3.2 model
using a customized hook function and use these as our input X .

Setup. The weight matrix dimension is d = 2048 in Llama 3.2-1B. For all the experiments, we
set the regularization coefficient λ as 0.05 and the learning rate η as 0.005. For the varying n
experiment, we set the pruning ratio ρ as 0.7. For the varying ρ experiment, we set the input sequence
length n as 512.

7.2 RESULTS

Overall, the results in Figure 3 show that our algorithm outperforms Wanda and SparseGPT in real
world LLMs, which supports our theoretical analysis in Theorem 4.1 and enhance our preliminary
experiment in Section 6. In the following, we will discuss each setting in detail.

Relation with input sequence length n. The left column of Figure 3 shows that our algorithm
outperforms the baselines in different sequence lengths continuously.

Relation with pruning ratio ρ. The right column of Figure 3 illustrates that as the pruning ratio
ρ increases, all methods exhibit a rise in relative error. But our algorithm consistently outperforms
both Wanda and SparseGPT across the range of ρ with a much lower increasing rate.

Assumptions verification. Notice that Theorem 4.1 relies on two assumptions: XX⊤ ⪰ βI and
mini,j∈[n](D̃

−1Ã)i,j ≥ δ > 0. We verify these assumptions using the C4 dataset, obtaining β ≈
0.034 and δ ≈ 0.0025, thereby demonstrating the practicality of our theoretical framework.

8 CONCLUSION

This paper introduced a novel approach to LLM weight pruning that directly optimizes for approxi-
mating the attention matrix. We provided theoretical guarantees for the convergence of our Gradient
Descent-based algorithm to a near-optimal pruning mask solution. Preliminary results demonstrated
the method’s effectiveness in maintaining model performance while reducing computational costs.
This work establishes a new theoretical foundation for pruning algorithm design in LLMs, poten-
tially enabling more efficient inference on resource-constrained devices.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity Con-
ference, pp. 1–23, 2022.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, 2019b.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In NeurIPS, 2019c.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong.
Training-free long-context scaling of large language models. arXiv preprint arXiv:2402.17463,
2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In The
Twelfth International Conference on Learning Representations, 2024.

Yuan Cao and Quanquan Gu. Generalization error bounds of gradient descent for learning over-
parameterized deep relu networks. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 3349–3356, 2020.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 172–183. IEEE, 2020.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse attention
acceleration. arXiv preprint arXiv:2410.10165, 2024a.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. Advances in Neural Information Processing Systems, 34:19637–19651, 2021.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024b.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Yichuan Deng, Zhao Song, Zifan Wang, and Han Zhang. Streaming kernel pca algorithm with small
space. arXiv preprint arXiv:2303.04555, 2023a.

Yichuan Deng, Zhao Song, Shenghao Xie, and Chiwun Yang. Unmasking transformers: A theoret-
ical approach to data recovery via attention weights. arXiv preprint arXiv:2310.12462, 2023b.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv
preprint arXiv:2402.13753, 2024.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In ICLR. arXiv preprint arXiv:1810.02054, 2019.

Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, and
Jiaxuan You. How far are we from agi. arXiv preprint arXiv:2405.10313, 2024.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Spencer Frei and Quanquan Gu. Proxy convexity: A unified framework for the analysis of neural
networks trained by gradient descent. Advances in Neural Information Processing Systems, 34:
7937–7949, 2021.

Spencer Frei, Yuan Cao, and Quanquan Gu. Algorithm-dependent generalization bounds for over-
parameterized deep residual networks. Advances in neural information processing systems, 32,
2019.

Spencer Frei, Yuan Cao, and Quanquan Gu. Provable generalization of sgd-trained neural networks
of any width in the presence of adversarial label noise. In International Conference on Machine
Learning, pp. 3427–3438. PMLR, 2021.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. In Findings of the Association
for Computational Linguistics: ACL 2023, pp. 8003–8017, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In Forty-first
International Conference on Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. arXiv preprint arXiv:2404.03900, 2024b.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024c.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits
of low-rank adaptation (lora) for transformer-based models. arXiv preprint arXiv:2406.03136,
2024d.

Jerry Yao-Chieh Hu, Dennis Wu, and Han Liu. Provably optimal memory capacity for modern hop-
field models: Tight analysis for transformer-compatible dense associative memories. In Advances
in Neural Information Processing Systems (NeurIPS), volume 37, 2024e.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accel-
erated sparse neural training: A provable and efficient method to find n: m transposable masks.
Advances in neural information processing systems, 34:21099–21111, 2021.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve arbi-
trarily small test error with shallow relu networks. arXiv preprint arXiv:1909.12292, 2019.

Yuxin Jiang, Chunkit Chan, Mingyang Chen, and Wei Wang. Lion: Adversarial distillation of
proprietary large language models. In The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. Llm maybe longlm: Self-extend llm context window without tuning. arXiv
preprint arXiv:2401.01325, 2024.

Tian Jin, Michael Carbin, Dan Roy, Jonathan Frankle, and Gintare Karolina Dziugaite. Pruning’s
effect on generalization through the lens of training and regularization. Advances in Neural In-
formation Processing Systems, 35:37947–37961, 2022.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Machine Learning and Knowl-
edge Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pp. 795–811. Springer, 2016.

Tzu-Sheng Kuo, Aaron Lee Halfaker, Zirui Cheng, Jiwoo Kim, Meng-Hsin Wu, Tongshuang Wu,
Kenneth Holstein, and Haiyi Zhu. Wikibench: Community-driven data curation for ai evaluation
on wikipedia. In Proceedings of the CHI Conference on Human Factors in Computing Systems,
pp. 1–24, 2024.

Eldar Kurtic, Denis Kuznedelev, Elias Frantar, Michael Goin, and Dan Alistarh. Sparse finetuning
for inference acceleration of large language models. arXiv preprint arXiv:2310.06927, 2023.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of sparsegpt.
arXiv preprint arXiv:2408.12151, 2024a.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Fine-grained attention i/o
complexity: Comprehensive analysis for backward passes. arXiv preprint arXiv:2410.09397,
2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in neural information processing systems, 31, 2018.

Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of weighted low-rank ap-
proximation via alternating minimization. In International Conference on Machine Learning, pp.
2358–2367. PMLR, 2016.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mechanisms in
neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024b.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in trans-
former. arXiv preprint arXiv:2406.14036, 2024c.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Unraveling the smoothness properties of
diffusion models: A gaussian mixture perspective. arXiv preprint arXiv:2405.16418, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024e.

Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kaijiang Chen, and Ming Cui. From llm to conversa-
tional agent: A memory enhanced architecture with fine-tuning of large language models. arXiv
preprint arXiv:2401.02777, 2024.

Tianlin Liu and Friedemann Zenke. Finding trainable sparse networks through neural tangent trans-
fer. In International Conference on Machine Learning, pp. 6336–6347. PMLR, 2020.

AI @ Meta Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Stanislaw Lojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les équations
aux dérivées partielles, 117(87-89):2, 1963.

Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke
Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and inference
with unlimited context length. arXiv preprint arXiv:2404.08801, 2024.

Amama Mahmood, Junxiang Wang, Bingsheng Yao, Dakuo Wang, and Chien-Ming Huang. Llm-
powered conversational voice assistants: Interaction patterns, opportunities, challenges, and de-
sign guidelines. arXiv preprint arXiv:2309.13879, 2023.

Jean Mercat, Igor Vasiljevic, Sedrick Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and Thomas
Kollar. Linearizing large language models. arXiv preprint arXiv:2405.06640, 2024.

Meta. Llama 3.2: Revolutionizing edge ai and vision with
open, customizable models. https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/, 2024. Accessed:
2024-11-21.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances
in neural information processing systems, 32, 2019.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024a. Accessed:
May 14.

OpenAI. Introducing openai o1-preview. https://openai.com/index/
introducing-openai-o1-preview/, 2024b. Accessed: September 12.

Gunho Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung Kwon, Byeong-
wook Kim, Youngjoo Lee, Dongsoo Lee, et al. Lut-gemm: Quantized matrix multiplication based
on luts for efficient inference in large-scale generative language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

14

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://openai.com/index/hello-gpt-4o/
 https://openai.com/index/introducing-openai-o1-preview/
 https://openai.com/index/introducing-openai-o1-preview/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

Boris T Polyak. Gradient methods for the minimisation of functionals. USSR Computational Math-
ematics and Mathematical Physics, 3(4):864–878, 1963.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approximations with
provable guarantees. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pp. 250–263, 2016.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2021.

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv preprint
arXiv:2409.17422, 2024a.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. Provable guarantees for neural networks via gradient
feature learning. Advances in Neural Information Processing Systems, 36, 2024b.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities into
smaller language models. In The 61st Annual Meeting Of The Association For Computational
Linguistics, 2023.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
In The 61st Annual Meeting Of The Association For Computational Linguistics, 2023.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval with
larger capacity for modern hopfield models. In Forty-first International Conference on Machine
Learning (ICML), 2024a.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024b.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei
Lin, and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large gen-
erative model inference with unstructured sparsity. Proceedings of the VLDB Endowment, 17(2):
211–224, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In The Twelfth International Conference on Learning
Representations, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng Goan,
and Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized sparse
modern hopfield model. In Forty-first International Conference on Machine Learning (ICML),
2024a.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-
shot adaptation of foundation models via multitask finetuning. arXiv preprint arXiv:2402.15017,
2024b.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In ICML. arXiv preprint arXiv:2302.02451, 2023.

Amir Zandieh, Majid Daliri, and Insu Han. Qjl: 1-bit quantized jl transform for kv cache quantiza-
tion with zero overhead. arXiv preprint arXiv:2406.03482, 2024.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, 2024.

Jieyu Zhang, Ranjay Krishna, Ahmed H Awadallah, and Chi Wang. Ecoassistant: Using llm assistant
more affordably and accurately. arXiv preprint arXiv:2310.03046, 2023.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the por-
cupine: Expressive linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347,
2024a.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Sun Yunyun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse llms. In
The Twelfth International Conference on Learning Representations, 2024b.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

1 Introduction 1

1.1 Key Background . 2

1.2 Our Contributions . 3

2 Related Work 3

2.1 Pruning and Compression for LLMs . 3

2.2 Attention Acceleration . 3

3 Preliminary 4

3.1 Notations . 4

3.2 Attention Weights Pruning . 4

4 Main Results 5

5 Technique Overview 6

5.1 Previous Tools on Convergence of GD . 6

5.2 Closed Form of Gradient . 7

5.3 Lipschitz of Gradient . 7

5.4 PL Inequality of Gradient . 7

6 Experiment 8

6.1 Settings . 8

6.2 Results . 9

7 Experiment on Real Dataset and LLMs 9

7.1 Settings . 9

7.2 Results . 10

8 Conclusion 10

A Preliminary 19

A.1 Notations . 19

A.2 Facts . 19

B Gradient Calculation 22

B.1 Definitions . 22

B.2 Gradient for Each Row of X(M ◦W)X⊤ . 24

B.3 Gradient for Each Row of ũ(M) . 25

B.4 Gradient for Each Entry of α̃(M) . 25

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.5 Gradient for Each Entry of f̃(M) . 26

B.6 Gradient for Each Entry of c(M) . 27

B.7 Gradient for Lattn(M) . 27

B.8 Gradient for Lreg(M) . 28

B.9 Gradient for L(M) . 29

C Matrix Form 29

C.1 Matrix Form of B(M) . 29

C.2 Matrix Form of d
dML(M) . 33

D Bounds for Basic Functions 33

D.1 Basic Assumptions . 33

D.2 Bounds for Basic Functions . 34

D.3 Bounds for Gradient of f̃(M) . 36

E Lipschitz of Gradient 36

E.1 Useful Facts . 36

E.2 Lipschitz of f̃(M) . 37

E.3 Lipschitz of c(M) . 38

E.4 Lipschitz of f̃(M) ◦ c(M) . 38

E.5 Lipschitz of diag((f̃(M) ◦ c(M)) · 1n) . 38

E.6 Lipschitz of diag((f̃(M) ◦ c(M)) · 1n)f̃(M) . 39

E.7 Lipschitz of Gradient . 40

F Convergence of Gradient Descent 41

F.1 Helpful Statements . 41

F.2 Lower Bound on Frobenius Norm . 42

F.3 Sandwich Lower Bound on Frobenius Norm . 42

F.4 Lower Bound on Hadamard Product Between Two Matrices 43

F.5 Final Bound . 43

F.6 PL Inequality . 44

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Roadmap. The appendix is organized as follows. In Section A, we give the preliminary of our
paper. In Section B, we provide detailed gradient analysis of loss function. In Section C, we provide
details about how we integrate the gradient of loss function into matrix form. In Section D, we bound
some basic functions to be used later. In Section E, we provide proof for the Lipschitz property of
the gradient of the loss function. In Section F, we provide proof of convergence for GD.

A PRELIMINARY

In Section A.1, we introduce some notations we use in this paper. In Section A.2, we provide some
basic facts.

A.1 NOTATIONS

For any positive integer n, we use [n] to denote set {1, 2, · · · , n}. For two vectors x ∈ Rn and
y ∈ Rn, we use ⟨x, y⟩ to denote the inner product between x, y, i.e., ⟨x, y⟩ =

∑n
i=1 xiyi. For each

a, b ∈ Rn, we use a◦ b ∈ Rn to denote the Hadamard product, i.e. the i-th entry of (a◦ b) is aibi for
all i ∈ [n]. We use ei to denote a vector where only i-th coordinate is 1, and other entries are 0. We
use 1n to denote a length-n vector where all the entries are ones. We use ∥x∥p to denote the ℓp norm
of a vector x ∈ Rn, i.e. ∥x∥1 :=

∑n
i=1 |xi|, ∥x∥2 := (

∑n
i=1 x

2
i)

1/2, and ∥x∥∞ := maxi∈[n] |xi|.
For A ∈ Rm×n, let Ai ∈ Rn denote the i-th row and A∗,j ∈ Rm denote the j-th column of
A, where i ∈ [m] and j ∈ [n]. For a square matrix A, we use tr[A] to denote the trace of A, i.e.,
tr[A] =

∑n
i=1 Ai,i. For two matrices X,Y ∈ Rm×n, the standard inner product between matrices is

defined by ⟨X,Y ⟩ := tr[X⊤Y]. We use exp(A) to denote a matrix where exp(A)i,j := exp(Ai,j)
for a matrix A ∈ Rn×d. For k > n, for any matrix A ∈ Rk×n, we use ∥A∥ to denote the spectral
norm of A, i.e. ∥A∥ := supx∈Rn ∥Ax∥2/∥x∥2. We use ∥A∥∞ to denote the ℓ∞ norm of a matrix
A ∈ Rn×d, i.e. ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |. We use ∥A∥F to denote the Frobenius norm of

a matrix A ∈ Rn×d, i.e. ∥A∥F :=
√∑

i∈[n]

∑
j∈[d] |Ai,j |2. For a symmetric matrix A ∈ Rn×n,

we use A ⪰ 0 (positive semidefinite (PSD)), if for all x ∈ Rn, we have x⊤Ax ≥ 0. We use
λmin(A) and λmax(A) to denote the minimum and the maximum eigenvalue of the square matrix A,
respectively. Let A ∈ Rn×d. We use a := vec(A) to denote a length nd vector. We stack rows of
A into a column vector, i.e. vec(A) := [a⊤1 , a

⊤
2 , . . . , a

⊤
n]

⊤ where a⊤i is the i-th row of A, or simply
vec(A)j+(i−1)d := Ai,j for any i ∈ [n], j ∈ [d].

A.2 FACTS

Fact A.1 (Indexing). Suppose we have matrices U ∈ Rn×m, V ∈ Rm×d. We define

X︸︷︷︸
n×d

:= U︸︷︷︸
n×m

V︸︷︷︸
m×d

.

Then, we have the following:

• Indexing for one row: Xi = V ⊤Ui ∈ Rd, i.e. X⊤
i = U⊤

i V , for i ∈ [n].

• Indexing for one column: X∗,j = UV∗,j ∈ Rn for j ∈ [d].
Fact A.2. We have

Part 1.Suppose we have vectors u ∈ Rn, v ∈ Rn. For i ∈ [n], we define

xi := uivi.

Then we have the following:

• x︸︷︷︸
n×1

= u ◦ v︸︷︷︸
n×1

= diag(u)︸ ︷︷ ︸
n×n

v︸︷︷︸
n×1

= diag(v)︸ ︷︷ ︸
n×n

u︸︷︷︸
n×1

Part 2.Suppose we have matrix W ∈ Rn×n, vector u ∈ Rn. For i ∈ [n], we define

X∗,j = W∗,juj .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Then we have the following:

• X = W diag(u)

Fact A.3 (Calculus). We have

Part 1. (Scalar calculus) For any t ∈ R, function f : R→ R, we have

• dfn(t)
dt = nfn−1(t)df(t)dt .

Part 2. (Vector calculus) For any x, y ∈ Rn, t ∈ R, we have

• d(x◦y)
dt = dx

dt ◦ y +
dy
dt ◦ x. (Product rule of vector Hadamard product)

• d⟨x,y⟩
dt = ⟨dxdt , y⟩+ ⟨x,

dy
dt ⟩. (Product rule of inner product)

• dx
dxi

= ei.

Part 3. (Matrix calculus) For any X,Y ∈ Rn×m, Z ∈ Rm×d, t ∈ R which is independent of Z,
function f : R→ Rn×d, functions f1(t), f2(t), . . . , fn(t) : R→ Rn×d, we have

• d(X◦Y)
dt = dX

dt ◦ Y + dY
dt ◦X . (Product rule of matrix Hadamard product)

• d exp(f(t))
dt = exp(f(t)) ◦ df(t)

dt , where exp(·) is applied entry-wise.

• d(XZ)
dt = dX

dt Z.

• d(ZX⊤)
dt = Z dX⊤

dt .

• d
dt

∑n
i=1 fi(t) =

∑n
i=1

dfi(t)
dt .

•
dX

dXi,j︸ ︷︷ ︸
n×m

= ei︸︷︷︸
n×1

e⊤j︸︷︷︸
1×m

.

Fact A.4 (Basic algebra). Let u ∈ Rn, v ∈ Rn, w ∈ Rn, X ∈ Rn×d, Y ∈ Rn×d, and Z ∈ Rn×n.
Then, we have

• ⟨u, v⟩ = ⟨v, u⟩ = u⊤v = v⊤u

• u ◦ v = v ◦ u = diag(u)v = diag(v)u

• ⟨u, v⟩ = ⟨u ◦ v,1n⟩

• ⟨u ◦ v, w⟩ = ⟨u ◦ w, v⟩ = ⟨w ◦ v, u⟩

• u⊤(v ◦ w) = u⊤ diag(v)w

• (X ◦ Y)⊤ = X⊤ ◦ Y ⊤

• X ◦ eie⊤j = Xi,jeie
⊤
j

• diag(u)Z diag(v) = (uv⊤) ◦ Z

• XY ⊤ =
∑

i∈[d] X∗,iY
⊤
∗,i

• Xi,jYi,j = (X ◦ Y)i,j

•
∑

j∈[n] u ◦A∗,j = u ◦
∑

j∈[n] A∗,j

• ∥X∥2F = tr[XX⊤]

• tr[XY ⊤] = tr[Y ⊤X]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• ∥ diag(u)∥F = ∥u∥2
Fact A.5 (Norm bounds). For a ∈ R, u ∈ Rd, X,Y ∈ Rn×d, Z ∈ Rd×m we have

• ∥aX∥F = |a|∥X∥F (absolute homogeneity).

• ∥X + Y ∥F ≤ ∥X∥F + ∥Y ∥F (triangle inequality).

• |⟨X,Y ⟩| ≤ ∥X∥F · ∥Y ∥F (Cauchy–Schwarz inequality).

• ∥X⊤∥F = ∥X∥F .

• ∥Xu∥2 ≤ ∥X∥ · ∥u∥2

• ∥X ◦ Y ∥F ≤ ∥X∥F · ∥Y ∥F .

• For any i ∈ [n], j ∈ [d], we have |Xi,j | ≤ ∥X∥F .

• ∥X∥ ≤ ∥X∥F ≤
√
k∥X∥ where k is the rank of X .

• ∥Y · Z∥F ≤ ∥Y ∥F · ∥Z∥F .

Fact A.6. For matrices A,B ∈ Rm×n, we have

∥A+B∥2F = ∥A∥2F + ∥B∥2F + 2⟨A,B⟩.

Proof. We can show

∥A+B∥2F = tr[(A+B)⊤(A+B)]

= tr[A⊤A+A⊤B +B⊤A+B⊤B]

= tr[A⊤A] + tr[B⊤B] + 2 tr[A⊤B]

= ∥A∥2F + ∥B∥2F + 2 tr[A⊤B]

= ∥A∥2F + ∥B∥2F + 2⟨A,B⟩

where the first step follows from tr[A⊤A] = ∥A∥2F for matrix A ∈ Rm×n, the second step follows
from the basic algebra, the third follows from tr[X⊤Y] = tr[XY ⊤] for matrices X,Y ∈ Rm×n,
the fourth step follows from tr[A⊤A] = ∥A∥2F for matrix A ∈ Rm×n, and the last step follows from
definition of inner product of matrices.

Lemma A.7. Let M ∈ Rn×n. Let X ∈ Rn×n be independent of M . We have

d(M ◦X)

dMi,j
= Xi,jeie

⊤
j

Proof. We can show

d(M ◦X)

dMi,j
=M ◦ dX

dMi,j
+X ◦ dM

dMi,j

= X ◦ dM

dMi,j

= X ◦ (eie⊤j)
= Xi,jeie

⊤
j

where the first step, the second step and the third step follow from Fact A.3, the fourth step follows
from Fact A.4.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B GRADIENT CALCULATION

B.1 DEFINITIONS

In this section, we introduce some definitions we used to compute dL(M)
dM . First, we introduce the

exponential function.

Definition B.1 (Exponential function u, ũ). If the following condition hold

• Let X ∈ Rn×d.

• Let W ∈ Rd×d.

• Let M ∈ [0, 1]d×d.

• Let i0 ∈ [n].

We define u ∈ Rn×n as follows

u := exp(XWX⊤).

We define ũ(M) ∈ Rn×n as follows

ũ(M) := exp(X(M ◦W)X⊤).

We define i0-th row of ũ(M) as follows

ũ(M)i0 := exp(X(M ◦W)X⊤)i0 .

Then, we introduce the sum function.

Definition B.2 (Sum function of softmax α, α̃). If the following condition hold

• Let M ∈ [0, 1]d×d.

• Let Mc ∈ {0, 1}n×n be the causal attention mask defined in Definition 3.1.

• Let u, ũ(M) be defined as Definition B.1.

• Let i0 ∈ [n].

We define α ∈ Rn as follows

α := (u ◦Mc) · 1n.

We define α̃(M) ∈ Rn as follows

α̃(M) := (ũ(M) ◦Mc) · 1n.

We define i0-th entry of α̃(M) as follows

α̃(M)i0 := ⟨(ũ(M) ◦Mc)i0 ,1n⟩

Then, we introduce the Softmax probability function.

Definition B.3 (Softmax probability function f , f̃). If the following conditions hold

• Let M ∈ [0, 1]d×d.

• Let Mc ∈ {0, 1}n×n be the causal attention mask defined in Definition 3.1.

• Let u, ũ(M) be defined as Definition B.1.

• Let α, α̃(M) be defined as Definition B.2.

• Let i0, j0 ∈ [n].

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We define f ∈ Rn×n for each j ∈ [n] as follows

f := diag(α)−1(u ◦Mc).

We define f̃(M) ∈ Rn×n for each j ∈ [n] as follows

f̃(M) := diag(α̃(M))−1(ũ(M) ◦Mc).

We define i0-th row of f̃(M) as follows

f̃(M)i0 := α̃(M)−1
i0

(ũ(M) ◦Mc)i0 .

We define the entry in i0-th row, j0-th column of f̃(M) as follows

f̃(M)i0,j0 := α̃(M)−1
i0

(ũ(M) ◦Mc)i0,j0 .

Then, we introduce the one unit loss function.
Definition B.4 (One unit loss function c). If the following conditions hold

• Let f , f̃ be defined in Definition B.3.

• Let M ∈ [0, 1]d×d.

• Let i0, j0 ∈ [n].

We define c(M) ∈ Rn×n as follows

c(M) := f̃(M)− f

We define i0-th row of c(M) as follows

c(M)i0 := f̃(M)i0 − fi0

We define j0-th column of c(M) as follows

c(M)∗,j0 := f̃(M)∗,j0 − f∗,j0

We define the entry in i0-th row, j0-th column of c(M) as follows

c(M)i0,j0 := f̃(M)i0,j0 − fi0,j0

Then, we introduce the reconstruction error.
Definition B.5 (Reconstruction Error Lattn). If the following conditions hold

• Let M ∈ [0, 1]d×d.

• Let c(M) be defined in Definition B.4.

We define Lattn(M) ∈ R as follows

Lattn(M) :=
1

2
∥c(M)∥2F =

1

2

n∑
i0=1

n∑
j0=1

c(M)2i0,j0 .

Then, we introduce the regularization term.
Definition B.6 (Regularization Term Lreg). If the following conditions hold

• M ∈ [0, 1]d×d.

We define Lreg(M) ∈ R as follows

Lreg(M) :=
1

2
λ∥M∥2F .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Finally, we introduce the overall loss function.
Definition B.7 (Overall loss function L). If the following conditions hold

• Let M ∈ [0, 1]d×d.

• Let Lattn(M) be defined in Definition B.5.

• Let Lreg(M) be defined in Definition B.6.

• Let λ ∈ R+ be the regularization parameter.

We define L(M) as follows

L(M) := Lattn(M) + Lreg(M)

B.2 GRADIENT FOR EACH ROW OF X(M ◦W)X⊤

We introduce the Lemma of gradient for each row of X(M ◦W)X⊤.
Lemma B.8. Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], we have

d(X(M ◦W)X⊤)i0
dMi1,j1︸ ︷︷ ︸

n×1

= Wi1,j1︸ ︷︷ ︸
scalar

Xi0,i1︸ ︷︷ ︸
scalar

X∗,j1︸ ︷︷ ︸
n×1

Proof. We can simplify the derivative expression

d(X(M ◦W)X⊤)i0
dMi1,j1

=
dX(X(M ◦W))i0

dMi1,j1

=
dX(M ◦W)⊤Xi0

dMi1,j1

= X
d(M ◦W)⊤

dMi1,j1

Xi0 (3)

where the first and second step follows from Fact A.1, the third step follows from Fact A.3.

We further compute Eq. (3):

d(M ◦W)⊤

dMi1,j1

=
dM⊤ ◦W⊤

dMi1,j1

=
dM⊤ ◦W⊤

d(M⊤)j1,i1

= (W⊤)j1,i1ej1e
⊤
i1

=Wi1,j1ej1e
⊤
i1 (4)

where the first follows from Fact A.4, the second step follows from for any matrix X , Xi,j =
(X⊤)j,i, the third step follows from Fact A.7, and the fourth step follows from for any matrix X ,
Xi,j = (X⊤)j,i.

Finally, we have

d(X(M ◦W)X⊤)i0
dMi1,j1

= XWi1,j1ej1e
⊤
i1Xi0

= Wi1,j1(Xej1)(e
⊤
i1Xi0)

= Wi1,j1X∗,j1Xi0,i1

where the first step follows from Eq. (3) and Eq. (4), and the second step and the third step follows
from basic algebra.

We introduce the Lemma of gradient for each row of ũ(M).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B.3 GRADIENT FOR EACH ROW OF ũ(M)

Lemma B.9. If the following condition hold:

• Let ũ(M) be defined in Definition B.1.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], we have

dũ(M)i0
dMi1,j1︸ ︷︷ ︸

n×1

= ũ(M)i0︸ ︷︷ ︸
n×1

◦(Wi1,j1︸ ︷︷ ︸
scalar

Xi0,i1︸ ︷︷ ︸
scalar

X∗,j1︸ ︷︷ ︸
n×1

)

Proof. We have

dũ(M)i0
dMi1,j1︸ ︷︷ ︸

n×1

=
d exp(X(M ◦W)X⊤)i0

dMi1,j1︸ ︷︷ ︸
n×1

= exp(X︸︷︷︸
n×d

(M ◦W)︸ ︷︷ ︸
d×d

X⊤︸︷︷︸
d×1

)i0 ◦
d(X(M ◦W)X⊤)i0

dMi1,j1︸ ︷︷ ︸
n×1

= ũ(M)i0︸ ︷︷ ︸
n×1

◦ d(X(M ◦W)X⊤)i0
dMi1,j1︸ ︷︷ ︸

n×1

= ũ(M)i0︸ ︷︷ ︸
n×1

◦(Wi1,j1︸ ︷︷ ︸
scalar

Xi0,i1︸ ︷︷ ︸
scalar

X∗,j1︸ ︷︷ ︸
n×1

)

where the first step follows from Definition B.1, the second step follows from Fact A.3, the third
step follows from Definition B.1, and the fourth step follows from Lemma B.8.

B.4 GRADIENT FOR EACH ENTRY OF α̃(M)

We introduce the Lemma of gradient for each entry of α̃(M).

Lemma B.10. If the following conditions hold:

• Let ũ(M) be defined in Definition B.1.

• Let α̃(M) be defined in Definition B.2.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], we have

dα̃(M)i0
dMi1,j1︸ ︷︷ ︸
scalar

= ⟨ũ(M)i0 ◦ (Mc)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

Proof. We have

dα̃(M)i0
dMi1,j1︸ ︷︷ ︸
scalar

=
d⟨(ũ(M) ◦Mc)i0 ,1n⟩

dMi1,j1︸ ︷︷ ︸
scalar

= ⟨d(ũ(M) ◦Mc)i0
dMi1,j1

,1n⟩

= ⟨dũ(M)i0
dMi1,j1

◦ (Mc)i0 ,1n⟩

= ⟨ũ(M)i0 ◦ (Wi1,j1Xi0,i1X∗,j1) ◦ (Mc)i0 ,1n⟩

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

= ⟨ũ(M)i0 ◦ (Mc)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

where the first step follows from Definition B.2, the second step follows from product rule of inner
product in Fact A.3, the third step follows from product rule of Hadamard product in Fact A.3, the
fourth step follows from Lemma B.9, and the last step follows from Fact A.4.

B.5 GRADIENT FOR EACH ENTRY OF f̃(M)

We introduce the Lemma of gradient for each entry of f̃(M).

Lemma B.11. If the following conditions hold:

• Let ũ(M) be defined in Definition B.1.

• Let α̃(M) be defined in Definition B.2.

• Let f̃(M) be defined in Definition B.3.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], j0 ∈ [n], we have

df̃(M)i0,j0
dMi1,j1

= f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

Proof. We have

df̃(M)i0,j0
dMi1,j1

=
dα̃(M)−1

i0
(ũ(M) ◦Mc)i0,j0
dMi1,j1

=
dα̃(M)−1

i0

dMi1,j1

(ũ(M) ◦Mc)i0,j0 +
d(ũ(M) ◦Mc)i0,j0

dMi1,j1

α̃(M)−1
i0

(5)

where the first step follows from Definition B.3, and the second step follows from Fact A.3.

In the following part, we compute the two terms separately.

For the first term above, we have

dα̃(M)−1
i0

dMi1,j1

(ũ(M) ◦Mc)i0,j0

= (ũ(M) ◦Mc)i0,j0(−1)α̃(M)−2
i0

dα̃(M)i0
dMi1,j1

= − (ũ(M) ◦Mc)i0,j0⟨ũ(M)i0 ◦ (Mc)i0 ,Wi1,j1Xi0,i1X∗,j1⟩/α̃(M)2i0

= − (α̃(M)−1
i0

(Mc)i0,j0 ũ(M)i0,j0)⟨α̃(M)−1
i0

ũ(M)i0 ◦ (Mc)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

= − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩ (6)

where the first step follows from Fact A.3, the second step follows from Lemma B.10, the third step
follows from basic algebra, and the fourth step follows from Definition B.3.

For the second term above, we have

d(ũ(M) ◦Mc)i0,j0
dMi1,j1

α̃(M)−1
i0

=
dũ(M)i0,j0(Mc)i0,j0

dMi1,j1

α̃(M)−1
i0

= (Mc)i0,j0(
dũ(M)i0
dMi1,j1

)j0 α̃(M)−1
i0

= ((Mc)i0,j0 ũ(M)i0,j0 α̃(M)−1
i0

)Wi1,j1Xi0,i1Xj0,j1

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

= f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 (7)

where the first step and the second step follow from basic algebra, the third step follows from
Lemma B.9, and the fourth step follows from Definition B.3.

So, we have

df̃(M)i0,j0
dMi1,j1

=
dα̃(M)−1

i0

dMi1,j1

(ũ(M) ◦Mc)i0,j0 +
d(ũ(M) ◦Mc)i0,j0

dMi1,j1

α̃(M)−1
i0

= f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

where the first step follows from Eq. (5), and the second step follows from Eq. (6) and Eq. (7).

B.6 GRADIENT FOR EACH ENTRY OF C(M)

We introduce the Lemma of gradient for each entry of c(M).
Lemma B.12. If the following conditions hold:

• Let f̃(M), f be defined in Definition B.3.

• Let c(M) be defined in Definition B.4.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], j0 ∈ [n], we have

dc(M)i0,j0
dMi1,j1

= f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

Proof. We have

dc(M)i0,j0
dMi1,j1

=
d(f̃(M)i0,j0 − fi0,j0)

dMi1,j1

=
df̃(M)i0,j0
dMi1,j1

= f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

where the first step follows from Definition B.4, the second step follows from Fact A.3, and the third
step follows from Lemma B.11.

B.7 GRADIENT FOR Lattn(M)

We introduce the Lemma of gradient for Lattn(M).
Lemma B.13. If the following conditions hold:

• Let f̃(M) be defined in Definition B.3.

• Let c(M) be defined in Definition B.4.

• Let Lattn(M) be defined in Definition B.5.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], j0 ∈ [n], we have

dLattn(M)

dMi1,j1

=

n∑
i0=1

n∑
j0=1

B1(M) +B2(M)

where we have definitions:

• B1(M) := c(M)i0,j0 f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1

• B2(M) := −c(M)i0,j0 f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Proof. We have

dLattn(M)

dMi1,j1

=
1

2

d∥c(M)∥2F
dMi1,j1

=
1

2

d
∑n

i0=1

∑n
j0=1(c(M)i0,j0)

2

dMi1,j1

=
1

2

n∑
i0=1

n∑
j0=1

d(c(M)i0,j0)
2

dMi1,j1

=

n∑
i0=1

n∑
j0=1

c(M)i0,j0
dc(M)i0,j0
dMi1,j1

where the first step follows from Definition B.5, the second step follows from the definition of
Frobenius norm of matrix, the third step follows from Fact A.3, and the fourth step follows from
Fact A.3.

Following Lemma B.12, we have
n∑

i0=1

n∑
j0=1

c(M)i0,j0
dc(M)i0,j0
dMi1,j1

=

n∑
i0=1

n∑
j0=1

c(M)i0,j0(f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩)

= c(M)i0,j0 f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − c(M)i0,j0 f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

:=

n∑
i0=1

n∑
j0=1

B1(M) +B2(M)

where the second step follows from basic algebra.

B.8 GRADIENT FOR Lreg(M)

We introduce the Lemma of gradient for Lreg(M).
Lemma B.14. If the following condition hold:

• Let Lreg(M) be defined in Definition B.6.

Let i1 ∈ [d], j1 ∈ [d], we have

dLreg(M)

dMi1,j1

= B3(M)

where we have definition:

• B3(M) := λMi1,j1

Proof. We have

dLreg(M)

dMi1,j1

=
1

2
λ
d∥M∥2F
dMi1,j1

=
1

2
λ(

d

dMi1,j1

d∑
i0=1

d∑
j0=1

M2
i0,j0)

= λMi1,j1

:= B3(M)

where the first step follows from Definition B.6, the second step follows from the definition of
Frobenius norm of matrix, and the third step follows from Fact A.3.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

B.9 GRADIENT FOR L(M)

We introduce the Lemma of gradient for L(M).

Lemma B.15. If the following conditions hold:

• Let ũ(M) be defined in Definition B.1.

• Let α̃(M) be defined in Definition B.2.

• Let f̃(M) be defined in Definition B.3.

• Let Lattn(M) be defined in Definition B.5.

• Let Lreg(M) be defined in Definition B.6.

• Let L(M) be defined in Definition B.7.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], j0 ∈ [n], we have

dL(M)

dMi1,j1

=

n∑
i0=1

n∑
j0=1

(B1(M) +B2(M)) +B3(M)

where we have definitions:

• B1(M) := c(M)i0,j0 f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1

• B2(M) := −c(M)i0,j0 f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

• B3(M) := λMi1,j1

Proof.

dL(M)

dMi1,j1

=
dLattn(M) + Lreg(M)

dMi1,j1

=
dLattn(M)

dMi1,j1

+
dLreg(M)

dMi1,j1

=

n∑
i0=1

n∑
j0=1

(B1(M) +B2(M)) +B3(M)

where the first step follows from Definition B.7, the second step follows from Fact A.3, and the third
step follows from Lemma B.13 and Lemma B.14.

C MATRIX FORM

C.1 MATRIX FORM OF B(M)

Given the matrix form, we define p to simplify the calculation.

Definition C.1. If the following conditions hold

• Let X ∈ Rn×d.

• Let M ∈ [0, 1]d×d.

• Let W ∈ Rd×d.

• Let c(M) be defined in Definition B.4.

• Let f̃(M) be defined in Definition B.3.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

We define p1 as follows

p1 := c(M) ◦ f̃(M)

We define the j0-th column of p1 as follows

(p1)∗,j0 := (c(M) ◦ f̃(M))∗,j0

We define p2 as follows

p2 := diag(p1 · 1n)f̃(M)

We define the i0-th row of p2 as follows

(p2)i0 := 1⊤
n (p1)i0 f̃(M)i0 = f̃(M)i0c(M)⊤i0 f̃(M)i0

We define p as follows

p := p1 − p2 = c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M)

We introduce the matrix view of B1(M) and its summation.
Lemma C.2 (Matrix view of B1(M)). If we have the below conditions,

• Let B1(M, i1, j1) := c(M)i0,j0 f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 , which is defined in
Lemma B.15

• We define C1(M) ∈ Rd×d. For all i1, j1 ∈ [d], let C1(i1, j1) denote the (i1, j1)-th entry of
C1(M). We define C1(i1, j1) = B1(M, i1, j1).

Then, we can show that

• Part 1. For i0, j0 ∈ [n]

C1(M) = c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

(W ◦ (Xi0X
⊤
j0))

• Part 2.
n∑

i0=1

n∑
j0=1

C1(M) = W ◦ (X⊤p1X)

Proof. Part 1. We have

C1(i1, j1) = c(M)i0,j0 f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1

= c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

(Xi0︸︷︷︸
d×1

)i1(W∗,j1︸ ︷︷ ︸
d×1

)i1 (Xj0)j1︸ ︷︷ ︸
scalar

= c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

(diag(Xi0)W∗,j1︸ ︷︷ ︸
d×1

)i1 (Xj0)j1︸ ︷︷ ︸
scalar

where the first step follows from the definition of C1, the second step follows from Fact A.1, and
the third step follows from Fact A.2.

Following from Fact A.1, we can get j1-th column of C1

C1(∗, j1) = c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

diag(Xi0)︸ ︷︷ ︸
d×d

W∗,j1︸ ︷︷ ︸
d×1

(Xj0)j1︸ ︷︷ ︸
scalar

= c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

diag(Xi0)︸ ︷︷ ︸
d×d

(W︸︷︷︸
d×d

diag(Xj0)︸ ︷︷ ︸
d×d

)∗,j1

where the second step follows from Fact A.2.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Following from Fact A.1, we can get C1(M)

C1(M) = c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

diag(Xi0)︸ ︷︷ ︸
d×d

W︸︷︷︸
d×d

diag(Xj0)︸ ︷︷ ︸
d×d

= c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

(W ◦ (Xi0X
⊤
j0)) (8)

where the second step follows from Fact A.4.

Part 2. We further compute the summation of C1(M).
n∑

i0=1

n∑
j0=1

C1(M) =

n∑
i0=1

n∑
j0=1

c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

(W ◦Xi0X
⊤
j0)

=

n∑
i0=1

n∑
j0=1

(W ◦ (c(M)i0,j0 f̃(M)i0,j0Xi0X
⊤
j0))

= W ◦
n∑

i0=1

n∑
j0=1

c(M)i0,j0 f̃(M)i0,j0Xi0X
⊤
j0

= W ◦
n∑

j0=1

n∑
i0=1

((p1)∗,j0)i0Xi0X
⊤
j0

where the first step follows from Eq. (8), the second step follows from basic algebra, the third step
follows from Fact A.4, and the fourth step follows from Definition C.1.

Then following from Fact A.2, we have

W ◦
n∑

j0=1

n∑
i0=1

((p1)∗,j0)i0Xi0X
⊤
j0

= W ◦
n∑

j0=1

X⊤(p1)∗,j0X
⊤
j0

= W ◦ (X⊤p1X)

We introduce the matrix view of B2(M) and its summation.
Lemma C.3 (Matrix view of B2(M)). If we have the below conditions,

• Let B2(M, i1, j1) := −c(M)i0,j0 f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩ be defined in
Lemma B.15.

• We define C2(M) ∈ Rd×d. For all i1, j1 ∈ [d], let C2(i1, j1) denote the (i1, j1)-th entry of
C2(M). We define C2(i1, j1) = B2(M, i1, j1).

Then, we can show that

• Part 1. For i0, j0 ∈ [n]

C2(M) = − c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

W︸︷︷︸
d×d

diag(X⊤f̃(M)i0)︸ ︷︷ ︸
d×d

• Part 2.
n∑

i0=1

n∑
j0=1

C2(M) = −W ◦ (X⊤p2X)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Proof. Part 1. We have

−C2(i1, j1) = c(M)i0,j0 f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

= c(M)i0,j0 f̃(M)i0,j0 f̃(M)⊤i0︸ ︷︷ ︸
1×n

X∗,j1Wi1,j1Xi0,i1︸ ︷︷ ︸
n×1

= c(M)i0,j0 f̃(M)i0,j0 f̃(M)⊤i0︸ ︷︷ ︸
1×n

X∗,j1(Xi0)i1(W∗,j1)i1︸ ︷︷ ︸
n×1

= c(M)i0,j0 f̃(M)i0,j0 f̃(M)⊤i0︸ ︷︷ ︸
1×n

X∗,j1(diag(Xi0)W∗,j1)i1︸ ︷︷ ︸
n×1

where the first step follows from the definition of C2, the second step, the third step and the fourth
step follows from Fact A.4.

Following from Fact A.1, we can get j1-th column of C2

−C2(∗, j1) = diag(Xi0)︸ ︷︷ ︸
d×d

W∗,j1︸ ︷︷ ︸
d×1

c(M)i0,j0 f̃(M)i0,j0 f̃(M)⊤i0︸ ︷︷ ︸
1×n

X∗,j1︸ ︷︷ ︸
n×1

= c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

W∗,j1︸ ︷︷ ︸
d×1

f̃(M)⊤i0︸ ︷︷ ︸
1×n

X∗,j1︸ ︷︷ ︸
n×1

= c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

W∗,j1︸ ︷︷ ︸
d×1

(X⊤f̃(M)i0)j1︸ ︷︷ ︸
scalar

= c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

(W diag(X⊤f̃(M)i0)︸ ︷︷ ︸
d×d

)∗,j1

where the second step and the fourth step follows from Fact A.4, and the third step follows from
Fact A.1.

Following from Fact A.1, we can get C2.

−C2(M) = c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

W︸︷︷︸
d×d

diag(X⊤f̃(M)i0)︸ ︷︷ ︸
d×d

(9)

Part 2. We further compute the summation of C2

−
n∑

i0=1

n∑
j0=1

C2(M) =

n∑
i0=1

n∑
j0=1

c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

W︸︷︷︸
d×d

diag(X⊤f̃(M)i0)︸ ︷︷ ︸
d×d

=

n∑
i0=1

n∑
j0=1

c(M)i0,j0 f̃(M)i0,j0((Xi0 f̃(M)⊤i0X) ◦W)

= W ◦
n∑

i0=1

(Xi0 f̃(M)⊤i0X)

n∑
j0=1

((p1)i0)j0

where the first step follows from Eq. (9), the second step and the third step follows from Fact A.4.

Following from Fact A.2, we have

W ◦
n∑

i0=1

(Xi0 f̃(M)⊤i0X)

n∑
j0=1

((p1)i0)j0

= W ◦
n∑

i0=1

(Xi0 f̃(M)⊤i0X)1⊤
n (p1)i0

= W ◦ (X⊤ diag(p1 · 1n)f̃(M)X)

= W ◦ (X⊤p2X)

where the third step follows from Definition C.1.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

We introduce the matrix view of B3(M).
Lemma C.4 (Matrix view of B3(M)). If the following conditions hold

• Let B3(M, i1, j1) := λMi1,j1 be defined in Lemma B.15.

• We define C3(M) ∈ Rd×d. For all i1, j1 ∈ [d], let C3(i1, j1) denote the (i1, j1)-th entry of
C3(M). We define C3(i1, j1) = B3(M, i1, j1).

We can show that

C3(M) = λM.

Proof. The proof is straightforward. By the definition of C3(M), for all i1, j1 ∈ [d], the (i1, j1)-th
entry of C3(M) is given by C3(i1, j1) = B3(M, i1, j1) = λMi1,j1 . Thus, the entire matrix C3(M)
has entries that correspond to those of λM . Therefore, we can conclude that C3(M) = λM as
required.

C.2 MATRIX FORM OF d
dML(M)

We introduce the matrix form of overall loss function.
Theorem C.5 (Close form of gradient, formal version of Theorem 5.3). If the following conditions
hold

• Let L(M) be defined in Definition B.7.

• Let p be defined in Definition C.1.

• Let X ∈ Rn×d.

• Let M ∈ [0, 1]d×d.

• Let W ∈ Rd×d.

We can show that

dL(M)

dM
= W ◦ (X⊤pX) + λM.

Proof. We have

dL(M)

dM
=

n∑
i0=1

n∑
j0=1

(C1(M) + C2(M)) + C3(M)

= W ◦ (X⊤p1X)−W ◦ (X⊤p2X) + λM

= W ◦ (X⊤(p1 − p2)X) + λM

= W ◦ (X⊤pX) + λM

where the first step follows from Lemma B.15, the second step follows from Lemma C.2,
Lemma C.3, and Lemma C.4, the third step follows from basic algebra, and the fourth step fol-
lows from Definition C.1.

D BOUNDS FOR BASIC FUNCTIONS

D.1 BASIC ASSUMPTIONS

Here we introduce our bounded parameters assumption.
Assumption D.1 (Bounded parameters). We assume the following conditions

• Let R be some fixed constant satisfies R > 1.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

• Let X ∈ Rn×d,W ∈ Rd×d. We have ∥X∥F ≤ R and ∥W∥F ≤ R.

Here we present the lemma of bounds for M and Mc.

Lemma D.2 (Bounds for M and Mc). Let M ∈ [0, 1]d×d and Mc ∈ {0, 1}n×n be the causal
attention mask defined in Definition 3.1. For M , we have

∥M∥F ≤ d

For Mc, we have

∥Mc∥F ≤ n

Proof. This Lemma simply follows from the definition of Frobenius norm, given that the max value
of each entry in M and Mc is 1.

D.2 BOUNDS FOR BASIC FUNCTIONS

We first introduce the lemma of bounds for basic function.

Lemma D.3. Under Assumption D.1, for all i0 ∈ [n], j0 ∈ [n], i1 ∈ [d], j1 ∈ [d], we have the
following bounds

• Part 1.

∥f̃(M)∥F ≤
√
n

• Part 2.

∥c(M)∥F ≤ 2
√
n

• Part 3.

∥(c(M) ◦ f̃(M))∥F ≤ 2
√
n

• Part 4.

|f̃(M)i0,j0 | ≤ 1

• Part 5.

|Wi1,j1 | ≤ R

• Part 6.

|Xi0,i1 | ≤ R

• Part 7.

∥f̃(M)i0∥2 ≤ 1

• Part 8.

|f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 | ≤ R3

• Part 9.

|f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩| ≤ R3

• Part 10.

∥ diag((c(M) ◦ f̃(M)) · 1n)∥F ≤ 2n

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Proof. Proof of Part 1. Each entry in f̃(M) present a probability, thus for i0 ∈ [n], j0 ∈ [n], we
have

0 ≤ f̃(M)i0,j0 ≤ 1.

For any i0-th row of f̃(M), following from the definition of Softmax function, we know
n∑

j0=1

f̃(M)i0,j0 = 1.

So we have
n∑

j0=1

f̃(M)2i0,j0 ≤ 1

which follows from f̃(M)i0,j0 ≤ (f̃(M)i0,j0)
2. Then, we can show

∥f̃(M)∥F =

√√√√ n∑
i0=1

n∑
j0=1

f̃(M)2i0,j0 ≤
√
n

Proof of Part 2. Following from Part 1., we can show

∥f̃(M)∥F ≤
√
n

and

∥f∥F ≤
√
n.

Then we have

∥c(M)∥F = ∥f̃(M)− f∥F
≤ ∥f̃(M)∥F + ∥f∥F
≤ 2
√
n

where the first step follows from Definition B.4, the second step follows from triangle inequality.

Proof of Part 3. We have 0 ≤ f̃(M)i0,j0 ≤ 1, so we have

∥(c(M) ◦ f̃(M))∥F ≤ ∥c(M)∥F
≤ 2
√
n

where the second step follows from Part 2..

Proof of Part 4. See Proof of Part 1..

Proof of Part 5. The proof simply follows from Assumption D.1 and Fact A.5.

Proof of Part 6. The proof simply follows from Assumption D.1 and Fact A.5.

Proof of Part 7. See Proof of Part 1..

Proof of Part 8. The proof simply follows from Part 4., Part 5., Part 6. and Part 7..

Proof of Part 9. The proof simply follows from Part 4., Part 5., Part 6. and Part 7..

Proof of Part 10. We have

∥ diag((c(M) ◦ f̃(M)) · 1n)∥F = ∥(c(M) ◦ f̃(M)) · 1n∥2
≤ ∥1n∥2∥(c(M) ◦ f̃(M))∥F
=
√
n · 2
√
n

= 2n

where the first step follows from Fact A.4 the second step follows from Fact A.5, the third step
follows from Part 3., and the last step follows from simple algebra.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

D.3 BOUNDS FOR GRADIENT OF f̃(M)

We introduce the lemma of bounds for gradient of f̃(M).

Lemma D.4. If the following conditions hold

• Let f̃(M) be defined in Definition B.3.

• Assumption D.1 holds.

Then we have

∥d vec(f̃(M))

d vec(M)
∥F ≤ 2dnR3

Proof. We have

|df(M)i0,j0
dMi1,j1

|

= |f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩|

≤ |f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 |+ |f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩|
≤ 2R3

For d vec(f̃(M))
d vec(M) , we can show

∥d vec(f̃(M))

d vec(M)
∥F =

√√√√ n2∑
i2=1

d2∑
j2=1

|d vec(f̃(M))i0
d vec(M)j0

|

≤ 2ndR3

E LIPSCHITZ OF GRADIENT

E.1 USEFUL FACTS

Here we introduce the fact of mean value theorem for matrix function.

Fact E.1 (Mean value theorem for matrix function, Fact C.6 in Liang et al. (2024d)). If the following
conditions hold

• Let X,Y ∈ C ⊂ Rd×d where C is an open convex domain.

• Let g(X) : C → Rn×n be a differentiable matrix function on C.

• Let ∥d vec(g(X))
d vec(X) ∥F ≤ R for all x ∈ C.

We have

∥g(Y)− g(X)∥F ≤ R∥Y −X∥F .

Proof. For the convenience of proof, we define x and y as follows:

• x := vec(X) and y := vec(Y).

• h(x) := vec(g(X)) and h(y) := vec(g(Y)).

• h′(a) denotes a matrix which its (i, j)-th term is dh(a)j
dai

.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Assume we have 1-variable function γ(c) = f(x+ c(y − x)), we can apply Mean Value Theorem:

f(y)− f(x) = γ(1)− γ(0) = γ′(t)(1− 0) = ∇f(x+ t(y − x))⊤(y − x) (10)

where t ∈ [0, 1]. Let G(c) := (h(y)− h(x))⊤h(c), we have

∥g(Y)− g(X)∥2F = G(y)−G(x)

=∇G(x+ t(y − x))⊤(y − x)

= (h′(x+ t(y − x))︸ ︷︷ ︸
d2×n2

·h(y)− h(x)︸ ︷︷ ︸
n2×1

)⊤ · (y − x)

≤ ∥h′(x+ t(y − x))∥ · ∥h(y)− h(x)∥2 · ∥y − x∥2
where the second step follows from Eq. (10), the third step follows from chain rule, the fourth step
follows from Cauchy-Schwartz inequality.

By definition of matrix Frobenius norm and vector ℓ2 norm, we have
∥g(Y)− g(X)∥F = ∥h(y)− h(x)∥2

and
∥Y −X∥F = ∥y − x∥2

so, we can show
∥g(Y)− g(X)∥F ≤ R∥Y −X∥F

which follows from ∥d vec(g(X))
d vec(X) ∥F ≤ R for all x ∈ C.

Here we introduce the fact of Lipschitz for product of functions.
Fact E.2 (Lipschitz for product of functions, Fact H.2 in Deng et al. (2023b)). Under following
conditions

• Let {fi(x)}ni=1 be a sequence of function with same domain and range.

• For each i ∈ [n], we have

– fi(x) is bounded: ∀x, ∥fi(x)∥F ≤ Ri with Ri ≥ 1.
– fi(x) is Lipschitz continuous: ∀x, y, ∥fi(x)− fi(y)∥F ≤ Li∥x− y∥F .

Then we have

∥
n∏

i=1

fi(x)−
n∏

i=1

fi(y)∥F ≤ 2n−1 ·max
i∈[n]
{Li} · (

n∏
i=1

Ri) · ∥x− y∥F

E.2 LIPSCHITZ OF f̃(M)

We introduce the lemma about Lipschitz of f̃(M).

Lemma E.3 (Lipschitz of f̃(M)). Under the following conditions

• Assumption D.1 holds.

• Let f̃(M) be defined as Definition B.3.

For M,M̃ ∈ Rd×d, we have

∥f̃(M)− f̃(M̃)∥F ≤ 2dnR3∥M − M̃∥F

Proof. We have

∥f̃(M)− f̃(M̃)∥F ≤ ∥∇f̃(M)∥F · ∥M − M̃∥F
≤ 2dnR3 · ∥M − M̃∥F

where the first step follows from Fact E.1, the second step follows from Lemma D.4.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

E.3 LIPSCHITZ OF c(M)

We introduce the lemma about Lipschitz of c(M).
Lemma E.4 (Lipschitz of c(M)). Under the following conditions

• Assumption D.1 holds.

• Let c(M) be defined as Definition B.4.

For M,M̃ ∈ Rd×d, we have

∥c(M)− c(M̃)∥F ≤ 2dnR3∥M − M̃∥F

Proof. We have

∥c(M)− c(M̃)∥F ≤ ∥∇c(M)∥F · ∥M − M̃∥F
= ∥∇f̃(M)∥F · ∥M − M̃∥F
≤ 2dnR3 · ∥M − M̃∥F

where the first step follows from Fact E.1, the second step follows from Lemma B.12, the third step
follows from Lemma D.4.

E.4 LIPSCHITZ OF f̃(M) ◦ c(M)

We introduce the lemma about Lipschitz of f̃(M) ◦ c(M).

Lemma E.5 (Lipschitz of f̃(M) ◦ c(M)). Under the following conditions

• Assumption D.1 holds.

• Let c(M) be defined as Definition B.4.

• Let f̃(M) be defined as Definition B.3.

For M, M̃ ∈ Rd×d, we have

∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥F ≤ 6dn3/2R3∥M − M̃∥F

Proof. We have

LHS ≤ ∥f̃(M) ◦ c(M)− f̃(M) ◦ c(M̃)∥F + ∥f̃(M) ◦ c(M̃)− f̃(M̃) ◦ c(M̃)∥F
≤ ∥f̃(M)∥F · ∥c(M)− c(M̃)∥F + ∥c(M̃)∥F · ∥f̃(M)− f̃(M̃)∥F
≤
√
n · ∥c(M)− c(M̃)∥F + 2

√
n · ∥f̃(M)− f̃(M̃)∥F

≤
√
n · 2dnR3∥M − M̃∥F + 2

√
n · 2dnR3∥M − M̃∥F

where the first step follows from triangle inequality, the second step follows from Fact A.5, the third
step follows from Lemma D.3, the fourth step follows from Lemma E.4 and Lemma E.3.

So we have

∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥F ≤ 6dn3/2R3∥M − M̃∥F

E.5 LIPSCHITZ OF diag((f̃(M) ◦ c(M)) · 1n)

We introduce the lemma about Lipschitz of diag((f̃(M) ◦ c(M)) · 1n).

Lemma E.6 (Lipschitz of diag((f̃(M) ◦ c(M)) · 1n)). If the following conditions hold

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

• Assumption D.1 holds.

• Let c(M) be defined as Definition B.4.

• Let f̃(M) be defined as Definition B.3.

For M,M̃ ∈ Rd×d, we have

∥ diag((f̃(M) ◦ c(M)) · 1n)− diag((f̃(M̃) ◦ c(M̃)) · 1n)∥F ≤ 6dn2R3∥M − M̃∥F

Proof. We have

LHS = ∥(f̃(M) ◦ c(M)) · 1n − (f̃(M̃) ◦ c(M̃)) · 1n∥2
= ∥((f̃(M) ◦ c(M))− (f̃(M̃) ◦ c(M̃))) · 1n∥2
≤ ∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥ · ∥1n∥2
=
√
n∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥ (11)

where the first step follows from Fact A.4, the second step follows from basic algebra, the third step
follows from Fact A.5, and the fourth step follows from ∥1n∥2 =

√
n.

Then we have

∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥ ≤ ∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥F (12)

which follows from Fact A.5.

Following Eq. (11), Eq. (12) and Lemma E.5, we have

LHS ≤
√
n · 6dn3/2R3∥M − M̃∥F = 6dn2R3∥M − M̃∥F

E.6 LIPSCHITZ OF diag((f̃(M) ◦ c(M)) · 1n)f̃(M)

We introduce the lemma about Lipschitz of diag((f̃(M) ◦ c(M)) · 1n)f̃(M).

Lemma E.7 (Lipschitz of diag((f̃(M) ◦ c(M)) · 1n)f̃(M)). If the following conditions hold

• Assumption D.1 holds.

• Let c(M) be defined as Definition B.4.

• Let f̃(M) be defined as Definition B.3.

For M, M̃ ∈ Rd×d, we have

∥ diag((f̃(M) ◦ c(M)) · 1n)f̃(M)− diag((f̃(M̃) ◦ c(M̃)) · 1n)f̃(M̃)∥F ≤ 24dn7/2R3∥M − M̃∥F

Proof. Following Fact E.2, we have

∥ diag((f̃(M) ◦ c(M)) · 1n)f̃(M)− diag((f̃(M̃) ◦ c(M̃)) · 1n)f̃(M̃)∥F
≤ 21 ·max{6dn2R3, 6dn3/2R3} · (

√
n · 2n)∥M − M̃∥F

= 24dn7/2R3∥M − M̃∥F

where we have the upper bound in Lemma D.3, the Lipschitz of diag((f̃(M) ◦ c(M)) and f̃(M) in
Lemma E.3 and Lemma E.6.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

E.7 LIPSCHITZ OF GRADIENT

We introduce the lemma about Lipschitz of the gradient.
Theorem E.8 (Lipschitz of the gradient, formal version of Theorem 5.4). We can show ∇ML(M)
is L-Lipschitz.

If the following conditions hold

• Assumption D.1 holds.

• Let c(M) be defined as Definition B.4.

• Let f̃(M) be defined as Definition B.3.

For M,M̃ ∈ Rd×d, we have

∥∇ML(M)−∇ML(M̃)∥F ≤ (λ+ 30dn7/2R6) · ∥M − M̃∥F

Proof. We have

∥∇ML(M)−∇ML(M̃)∥F
= ∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag(c(M) ◦ f̃(M) · 1n)f̃(M)

− c(M̃) ◦ f̃(M̃) + diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃))X) + λM − λM̃∥F
≤ ∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag(c(M) ◦ f̃(M) · 1n)f̃(M)

− c(M̃) ◦ f̃(M̃) + diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃))X)∥F + ∥λ(M − M̃)∥F (13)

where the first step follows from Theorem C.5, and the second step follows from triangle inequality.
Now we proof these two terms separately.

For the first term, we have

∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag(c(M) ◦ f̃(M) · 1n)f̃(M)

− c(M̃) ◦ f̃(M̃) + diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃))X)∥F
≤ ∥W∥F · ∥X⊤(c(M) ◦ f̃(M)− diag(c(M) ◦ f̃(M) · 1n)f̃(M)

− c(M̃) ◦ f̃(M̃) + diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃))X∥F
≤ ∥W∥F · ∥X∥2F · ∥c(M) ◦ f̃(M)− diag(c(M) ◦ f̃(M) · 1n)f̃(M)

− c(M̃) ◦ f̃(M̃) + diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃)∥F
≤ ∥W∥F · ∥X∥2F · (∥c(M) ◦ f̃(M)− c(M̃) ◦ f̃(M̃)∥F

+ ∥ diag(c(M) ◦ f̃(M) · 1n)f̃(M)− diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃)∥F)

= R3 · (∥c(M) ◦ f̃(M)− c(M̃) ◦ f̃(M̃)∥F
+ ∥ diag(c(M) ◦ f̃(M) · 1n)f̃(M)− diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃)∥F)

where the first step and the second step follows from Fact A.5, the third step follows from triangle
inequality, and the fourth step follows from Assumption D.1.

Then we have

R3 · (∥c(M) ◦ f̃(M)− c(M̃) ◦ f̃(M̃)∥F
+ ∥ diag(c(M) ◦ f̃(M) · 1n)f̃(M)− diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃)∥F)

≤ R3 · (24dn7/2R3∥M − M̃∥F + 6dn3/2R3∥M − M̃∥F)

≤ R3 · (30dn7/2R3∥M − M̃∥F)

= 30dn7/2R6∥M − M̃∥F (14)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

where the first step follows from Lemma E.5 and Lemma E.7, the second step follows from n ≥ 1.

For the second term, we have

∥λ(M − M̃)∥F = λ∥M − M̃∥F (15)

which follows from Fact A.5.

Finally, we have

∥∇ML(M)−∇ML(M̃)∥F ≤ (λ+ 30dn7/2R6) · ∥M − M̃∥F
which follows from Eq. (13), Eq. (14), and Eq. (15).

F CONVERGENCE OF GRADIENT DESCENT

F.1 HELPFUL STATEMENTS

Here, we present useful fact that we use to prove our convergence result.
Fact F.1. We can show that for a, b ∈ R

• Part 1. √
a2 + b2 ≥ |a|+ |b|√

2

• Part 2. Suppose |a| > |b| √
|a| − |b| ≥

√
|a| −

√
|b|

Proof. Proof of Part 1. Square both side of the inequality in Part 1., we have

LHS = a2 + b2

and

RHS =
a2 + 2|a| · |b|+ b2

2
.

So we just need to prove

LHS− RHS = a2 + b2 − a2 + 2|a| · |b|+ b2

2

=
a2 + b2 − 2|a| · |b|

2

=
(|a| − |b|)2

2
≥0

which is hold because for any x ∈ R, x2 ≥ 0.

Proof of Part 2. Square both side of the inequality in Part 2., we have

LHS = |a| − |b|
and

RHS = |a|+ |b| − 2
√
|a||b|

So we just need to prove

LHS− RHS = |a| − |b| − |a| − |b|+ 2
√
|a||b|

= 2
√
|a||b| − 2|b|

= 2
√
|b|(

√
|a| −

√
|b|)

≥ 0

which is hold because |a| > |b| and |b| ≥ 0.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

F.2 LOWER BOUND ON FROBENIUS NORM

We present the lemma for the lower bound on the Frobenius norm in this section.
Lemma F.2. If the following conditions hold

• Let B ∈ Rd×d.

• Let M ∈ [0, 1]d×d.

• Let λ ∈ [0, 1] be some constant.

• Suppose that ∥B∥F ≤ R.

Then, we can show

• Part 1.
∥B + λM∥2F ≥ ∥B∥2F + λ2∥M∥2F − 2Rλd

• Part 2.

∥B + λM∥F ≥
1√
2
(∥B∥F + λ∥M∥F)−

√
2Rλd

Proof. Proof of Part 1. We can show that
∥B + λM∥2F = ∥B∥2F + λ2∥M∥2F + 2⟨B, λM⟩

≥ ∥B∥2F + λ2∥M∥2F − 2∥B∥F · ∥λM∥F
≥ ∥B∥2F + λ2∥M∥2F − 2Rλd (16)

where the first step follows from Fact A.6, the second step follows from Fact A.5, the third step
follows from the upper bound of ∥B∥F and ∥M∥F .

Proof of Part 2. Taking the square root on both sides, we get

∥B + λM∥F ≥
√
∥B∥2F + λ2∥M∥2F − 2Rλd

≥
√
∥B∥2F + λ2∥M∥2F −

√
2Rλd

≥ 1√
2
(∥B∥F + λ∥M∥F)−

√
2Rλd

where the first step follows from Eq. (16), the second step follows from Part 2. of Fact F.1, and the
third step follows from Part 1. of Fact F.1.

F.3 SANDWICH LOWER BOUND ON FROBENIUS NORM

Here, we introduce a sandwich trace fact.
Fact F.3. If A ⪰ βI , then tr[B⊤AB] ≥ β tr[B⊤B].

Proof. As A ⪰ βI , we have A − βI ⪰ 0. Multiplying both sides by B⊤ on the left and B on the
right (noting that these operations preserve the positive semidefiniteness), we have

B⊤(A− βI)B ⪰ 0.

Taking the trace and utilizing the property that the trace of a positive semidefinite matrix is non-
negative, we have

tr[B⊤AB − βB⊤B] ≥ 0,

which simplifies to

tr[B⊤AB]− β tr[B⊤B] ≥ 0.

This concludes the proof.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

We establish a sandwich lower bound on the Frobenius norm.

Lemma F.4 (Formal version of Lemma 5.6). If the following conditions hold

• Let B ∈ Rn×n and X ∈ Rn×d.

• Assume that XX⊤ ⪰ βI .

Then, we have

∥X⊤BX∥F ≥ β∥B∥F

Proof. We can show that

∥X⊤BX∥2F = tr[X⊤BXX⊤B⊤X]

≥ β · tr[X⊤BB⊤X]

= β · tr[B⊤XX⊤B]

≥ β2 · tr[B⊤B]

= β2 · ∥B∥2F
where the first step, the third step and the fifth step follows from Fact A.4, the second step and the
fourth step follows from Fact F.3 and XX⊤ ⪰ βI .

Taking the square root of both side, we finish the proof.

F.4 LOWER BOUND ON HADAMARD PRODUCT BETWEEN TWO MATRICES

We present the lemma for lower bound on Hadamard product between two matrices in this section.

Lemma F.5. If the following conditions hold

• Let B,W ∈ Rd×d.

Then, we have

max
i,j∈[d]

{|Wi,j |} · ∥B∥F ≥ ∥W ◦B∥F ≥ min
i,j∈[d]

{|Wi,j |} · ∥B∥F .

Proof. The proof directly follows from the definition of the Frobenius norm.

F.5 FINAL BOUND

We introduce some useful lemmas that we use to prove the final bound.

Lemma F.6. If the following conditions hold

• Let b ∈ Rn and ⟨b,1n⟩ = 0.

• Let f ∈ [δ, 1]n and ⟨f,1n⟩ = 1.

Then we have

∥(b− ⟨b, f⟩1n) ◦ f∥2 ≥ δ∥b∥2.

Proof. Note that ⟨b,1n⟩ = 0 so that b and 1n are orthogonal with each other. Then, we have

∥(b− ⟨b, f⟩1n) ◦ f∥2 ≥ δ∥b− ⟨b, f⟩1n∥2

= δ
√
∥b∥22 + ∥⟨b, f⟩1n∥22

≥ δ∥b∥2,

where the second step is from Pythagorean theorem.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

We present our final bound for proving the PL inequality.
Lemma F.7 (Formal version of Lemma 5.7). If the following conditions hold

• Let B ∈ Rn×n and each row summation is zero, i.e., B · 1n = 0n.

• Let f̃(M) ∈ [0, 1]n×n and each row summation is 1, i.e., f̃(M) · 1n = 1n.

• Assume that mini,j∈[n] f̃(M)i,j ≥ δ > 0.

Then, we can show

∥B ◦ f̃(M)− diag((B ◦ f̃(M)) · 1n)f̃(M)∥F ≥ δ · ∥B∥F

Proof. For any i ∈ [n], let Bi ∈ Rn be the i-th row of B, and we have ⟨Bi,1n⟩ = 0 by the first
condition.

For any i ∈ [n], let f̃(M)i ∈ Rn be the i-th row of f̃(M), and we have ⟨f̃(M)i,1n⟩ = 1 by the
second condition and f̃(M)i,j ∈ [δ, 1] by the third condition.

By Lemma F.6, for any i ∈ [n], we have

∥(Bi − ⟨Bi, f̃(M)i⟩1n) ◦ f̃(M)i∥2 ≥ δ∥Bi∥2.

Then, we have

∥B ◦ f̃(M)− diag((B ◦ f̃(M)) · 1n)f̃(M)∥2F
=

∑
i∈[n]

∥(Bi − ⟨Bi, f̃(M)i⟩1n) ◦ f̃(M)i∥22

≥
∑
i∈[n]

δ2∥Bi∥22

= δ2∥B∥2F .

F.6 PL INEQUALITY

Here we present the bound for one unit loss function.
Lemma F.8. If the following conditions hold

• Let c(M) be defined in Definition B.4.

We have

∥c(M)∥F ≤ 2
√
n.

Proof. We have

∥c(M)∥F ≤ ∥f̃(M)∥F + ∥f∥F
≤ 2
√
n,

where the first step follows from Definition B.4 and triangle inequality, the second step follows
x2
1 + · · ·+ x2

n ≤ (x1 + · · ·+ xn)
2 when xi ≥ 0 for any i ∈ [n].

We present the lemma for proving the PL inequality.
Lemma F.9. If the following conditions hold

• Let f̃(M) be defined in Definition B.3.

• Let c(M) be defined in Definition B.4.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

We have

∥ diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥F ≤
√
n.

Proof. We have

∥ diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥F ≤max
i∈n
{|(c(M)i ◦ f̃(M)i) · 1n|} · ∥f̃(M)∥F

≤ ∥f̃(M)∥F
≤
√
n,

where the first step is by Frobenius norm definition and the second step follows from ⟨f̃(M)i,1n⟩ =
1 and c(M)i ∈ [−1, 1]n for any i ∈ [n].

Finally, we can show the lemma for PL inequality.
Lemma F.10 (PL inequality, formal version of 5.5). If the following conditions hold,

• Let M ∈ [0, 1]d×d .

• Let λ ∈ [0, 1] be some constant.

• Assume that XX⊤ ⪰ βI .

• Assume that mini,j∈[n] f̃(M)i,j ≥ δ > 0.

• Let L(M) be defined in Definition B.7.

Furthermore,

• Let α = 2.

• Let µ = 2mini,j∈[d]{|Wi,j |} · β · δ.

• Let ξ = 12
√
nmaxi,j∈[d]{|Wi,j |} · ∥X∥2F · λd/µ.

We have

∥∇ML(M)∥αF ≥
1

2
µ(∥c(M)∥2F +

2λ2

µ
∥M∥2F − ξ).

Proof. We have f̃(M) · 1n = 1n and f · 1n = 1n by Definition B.3. Note that c(M) = f̃(M)− f
by Definition B.4. Thus, we have c(M) · 1n = 0n.

On the other hand, we have

∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M))X)∥F
≤ max

i,j∈[d]
{|Wi,j |} · ∥X⊤(c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M))X∥F

≤ max
i,j∈[d]

{|Wi,j |} · ∥X∥2F · ∥c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥F

≤ max
i,j∈[d]

{|Wi,j |} · ∥X∥2F · (∥c(M) ◦ f̃(M)∥F + ∥diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥F)

≤ max
i,j∈[d]

{|Wi,j |} · ∥X∥2F · (∥c(M)∥F + ∥ diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥F)

≤ max
i,j∈[d]

{|Wi,j |} · ∥X∥2F · (2
√
n+
√
n)

= max
i,j∈[d]

{|Wi,j |} · ∥X∥2F · 3
√
n

where the first and forth steps follow Lemma F.5, the second step follows from Frobenius norm
property, the third step follows from triangle inequality, the fifth step follows from Lemma F.8 and
Lemma F.9.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Let α = 2. We have the following

∥∇ML(M)∥2F
= ∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M))X) + λM∥2F
≥ ∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M))X)∥2F + λ2∥M∥2F − α1

≥ α2 · ∥X⊤(c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M))X∥2F + λ2∥M∥2F − α1

≥ α2 · α3 · ∥c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥2F + λ2∥M∥2F − α1

≥ α2 · α3 · α4 · ∥c(M)∥2F + λ2∥M∥2F − α1

=
1

2
µ(∥c(M)∥2F +

2λ2

µ
∥M∥2F − ξ),

where the second step follows from Lemma F.2 and α1 = 6
√
nmaxi,j∈[d]{|Wi,j |} · ∥X∥2F · λd,

the third step follows from Lemma F.5 and α2 = mini,j∈[d]{|Wi,j |}, the fourth step follows from
Lemma F.4 and α3 = β, the fifth step follows from Lemma F.7 and α4 = δ, and the last step follows
from µ = 2α2 · α3 · α4 and ξ = 2α1/µ.

46

	Introduction
	Key Background
	Our Contributions

	Related Work
	Pruning and Compression for LLMs
	Attention Acceleration

	Preliminary
	Notations
	Attention Weights Pruning

	Main Results
	Technique Overview
	Previous Tools on Convergence of GD
	Closed Form of Gradient
	Lipschitz of Gradient
	PL Inequality of Gradient

	Experiment
	Settings
	Results

	Experiment on Real Dataset and LLMs
	Settings
	Results

	Conclusion
	Preliminary
	Notations
	Facts

	Gradient Calculation
	Definitions
	Gradient for Each Row of
	Gradient for Each Row of
	Gradient for Each Entry of
	Gradient for Each Entry of
	Gradient for Each Entry of
	Gradient for
	Gradient for
	Gradient for

	Matrix Form
	Matrix Form of
	Matrix Form of

	Bounds for Basic Functions
	Basic Assumptions
	Bounds for Basic Functions
	Bounds for Gradient of

	Lipschitz of Gradient
	Useful Facts
	Lipschitz of
	Lipschitz of
	Lipschitz of
	Lipschitz of
	Lipschitz of
	Lipschitz of Gradient

	Convergence of Gradient Descent
	Helpful Statements
	Lower Bound on Frobenius Norm
	Sandwich Lower Bound on Frobenius Norm
	Lower Bound on Hadamard Product Between Two Matrices
	Final Bound
	PL Inequality

