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Abstract

Self-supervised learning of image representations
by predicting future frames is a promising direc-
tion but still remains a challenge. This is be-
cause of the under-determined nature of frame
prediction; multiple potential futures can arise
from a single current frame. To tackle this chal-
lenge, in this paper, we revisit the idea of stochas-
tic video generation that learns to capture un-
certainty in frame prediction and explore its ef-
fectiveness for representation learning. Specifi-
cally, we design a framework that trains a stochas-
tic frame prediction model to learn temporal in-
formation between frames. Moreover, to learn
dense information within each frame, we intro-
duce an auxiliary masked image modeling objec-
tive along with a shared decoder architecture. We
find this architecture allows for combining both
objectives in a synergistic and compute-efficient
manner. We demonstrate the effectiveness of our
framework on a variety of tasks from video la-
bel propagation and vision-based robot learning
domains, such as video segmentation, pose track-
ing, vision-based robotic locomotion, and manip-
ulation tasks. Code is available on the project
webpage: https://sites.google.com/view/2024rsp.

1. Introduction

Recently, generative pre-training on sequential data has
been extremely successful in learning models that can be
easily fine-tuned (Oord et al., 2016; Yang et al., 2019; Dai
et al., 2019; Radford et al., 2019) or achieve impressive
performance with few adaptations or even without adapta-
tion (Brown et al., 2020; Touvron et al., 2023). The core
idea behind these successes is training the model to predict
the future, i.e., learning the distribution of future outputs
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conditioned on past data consisting of words (Bengio et al.,
2000; Radford et al., 2019), audio signals (Oord et al., 2016;
Dhariwal et al., 2020), or state of the world (Chen et al.,
2021a), enabling the models to understand the temporal and
causal relationships within the data.

There also have been efforts to learn rich representations
in video domains by learning video prediction models (Sri-
vastava et al., 2015; Vondrick et al., 2016; Finn et al., 2016;
Yu et al., 2020b), for its promise of utilizing an abundance
of videos for learning representations that understand how
the world operates by predicting the future. However, it
has been less successful when compared to its counterparts
in image domains (Kingma & Welling, 2013; Donahue &
Simonyan, 2019; Chen et al., 2020a; Li et al., 2023) or other
self-supervised learning approaches that do not involve gen-
erative modeling of future frame (Wang & Gupta, 2015;
Misra et al., 2016; Sermanet et al., 2018; Han et al., 2020b).

In this paper, we argue that this challenge can be attributed
to the inherently under-determined nature of future frame
prediction, where multiple potential futures can arise from
a single current frame (Babaeizadeh et al., 2017; Denton &
Fergus, 2018). This issue makes it difficult for determin-
istic models to learn useful representations from complex
real-world videos because the model would struggle to ap-
proximate the multi-modal distribution of future frames. In
contrast, recent video generation models have achieved re-
markable successes in generating high-fidelity videos (Yan
et al., 2021; Villegas et al., 2022; Ho et al., 2022; Blattmann
et al., 2023a;b), where the core idea is to train a stochastic
generative model' that can capture the uncertainty in gener-
ating or predicting the videos, such as denoising diffusion
models (Ho et al., 2022; Yu et al., 2023) and autoregressive
models (Yan et al., 2021; Villegas et al., 2022). Inspired
by these successes, we aim to investigate how to adopt and
utilize the idea of training a stochastic generative model for
visual representation learning from videos.

Contribution We present visual Representation learning
with Stochastic frame Prediction (RSP), a framework for
visual representation learning from videos. Our key idea

'While a deterministic prediction model learns a deterministic
mapping from the current frame to the future frame, a stochastic
prediction model aims to learn a distribution over the future frame
conditioned on the current frame.
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(a) Stochastic frame prediction

(b) Masked autoencoding with shared decoder

Figure 1: Representation learning with stochastic frame prediction. (a) We train a stochastic frame prediction model,
which is built upon stochastic video generation model (Denton & Fergus, 2018), which consists of an encoder that extracts
representations, a posterior model with access to both current and future frames, a prior model with only access to the
current frame, and a decoder that generates frame conditioned on features from the current frame and a sample from either
posterior or prior distributions. We train the model to accurately generate the future frame while enforcing the posterior
and prior distributions to be close to each other, i.e., encourage the posterior distribution to be more predictable and the
prior distribution to predict the future. (b) We introduce an auxiliary masked autoencoding objective (He et al., 2022) with a
shared decoder architecture. Our decoder makes the [MASK] tokens attend to different inputs via the cross-attention layer,
enabling us to share the decoder parameters for different objectives.

is to learn image representations that capture temporal in-
formation between frames by learning a stochastic frame
prediction model with videos. To this end, we revisit the
idea of stochastic video generation (Denton & Fergus, 2018)
that trains a time-dependent prior over future frames to
capture uncertainty in frame prediction (see Figure 1a).
Specifically, our key contribution lies in exploring vari-
ous design choices and incorporating recent advances in
self-supervised learning into the video generation model
(Dosovitskiy et al., 2021; Hafner et al., 2021a; Gupta et al.,
2023), to re-configure it for representation learning. We find
that RSP allows for learning strong image representations
from complex real-world videos when compared to deter-
ministic prediction objectives. To learn dense information
within each frame, we further introduce an auxiliary masked
autoencoding objective (He et al., 2022), along with a shared
decoder architecture that enables us to incorporate the auxil-
iary objective in a synergistic manner (see Figure 1b).

Through extensive experiments, we show that RSP can effec-
tively learn image representations from a large real-world
video dataset. Pre-trained on Kinetics-400 dataset (Kay
et al., 2017), RSP achieves competitive or superior perfor-
mance to various self-supervised learning baselines on a
variety of tasks from vision-based robot learning bench-
marks (James et al., 2020; Majumdar et al., 2023) and video
label propagation benchmarks (Pont-Tuset et al., 2017; Zhou
et al., 2018; Jhuang et al., 2013). In particular, RSP achieves
a 36.0% average success rate in challenging robotic manip-
ulation tasks from RLBench (James et al., 2020), while
MAE baseline only achieves a 13.5% success rate. We
also provide extensive ablation studies and analyses on the
importance of various design choices in our framework.

2. Related Work

Image self-supervised learning Self-supervised learning
(SSL) from images has demonstrated remarkable success
in visual representation learning by exploiting the rich, in-
herent structure of visual data without human labels (Chen
et al., 2020b; He et al., 2020; Chen et al., 2021b; Caron
et al., 2021; He et al., 2022). Pioneer works for SSL pro-
pose pretext tasks (Doersch et al., 2015; Pathak et al., 2016;
Zhang et al., 2016; Noroozi & Favaro, 2016; Gidaris et al.,
2018), and recently, contrastive learning (Chen et al., 2020b;
He et al., 2020; Chen et al., 2021b; Caron et al., 2021) and
masked image modeling (Bao et al., 2021; He et al., 2022;
Xie et al., 2022; Li et al., 2023) have gained prominence.
In this paper, we show that integrating an understanding of
the temporal information between the frames can further
enhance image representation.

Video self-supervised learning Most prior researches on
SSL from videos aim to learn video representations captur-
ing spatiotemporal information from videos that could be
useful for video understanding tasks such as action recog-
nition (Xu et al., 2019; Benaim et al., 2020; Han et al.,
2020a;b; Feichtenhofer et al., 2021; Pan et al., 2021; Qian
et al., 2021; Ge et al., 2021; Guo et al., 2022; Tong et al.,
2022; Feichtenhofer et al., 2022). Our work differs in that
we focus on learning useful image representations from
videos. Similarly to our work, there have been approaches
that focus on enhancing image representations, by design-
ing pretext tasks for videos (Wang & Gupta, 2015; Misra
et al., 2016), extending contrastive learning to video frames
(Sermanet et al., 2018; Wang et al., 2019; Jabri et al., 2020;
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Xu & Wang, 2021), and masked visual modeling (Feichten-
hofer et al., 2022; Gupta et al., 2023). In particular, Gupta
et al. (2023) learns visual correspondence by predicting the
masked patches from the future frame. This is closely re-
lated to our work as it represents another approach to the
future frame prediction objective. However, unlike Gupta
et al. (2023), which resolves ambiguity about the future by
conditioning on unmasked patches from the future frame,
we aim to learn representations that capture the inherent
stochasticity of future frame prediction.

3. Method

In this section, we present Representation learning with
Stochastic frame Prediction (RSP), a framework that learns
visual representations from videos via stochastic future
frame prediction. We first describe how we revisit the idea of
stochastic video generation (Denton & Fergus, 2018) for rep-
resentation learning and improve it by incorporating a recent
recipe for self-supervised learning (see Section 3.1). We
then describe how we design a shared decoder architecture
to effectively incorporate an auxiliary masked autoencoding
objective (He et al., 2022) that learns dense information
within the static parts of each frame (see Section 3.2). We
provide the overview and pseudo-code of our framework in
Figure 1 and Algorithm 1, respectively.

3.1. Representation Learning from Videos with
Stochastic Frame Prediction

Our key idea is that learning a model that can predict multi-
ple possible future frames can induce representations that
capture temporal information between frames. To this end,
we build our framework upon the stochastic video genera-
tion (SVG; Denton & Fergus, 2018) model that captures un-
certainty in future prediction by learning a time-dependent
prior distribution over future frames. Our key contribution
lies in re-configuring SVG for representation learning by
exploring multiple design choices and adopting recent ad-
vances in architectures and training techniques (Dosovitskiy
et al., 2021; Hafner et al., 2021a; He et al., 2022; Gupta
et al., 2023), which we describe in the rest of this section.

Inputs and encoder Given a video x, we randomly sam-
ple two frames {x;,x:4x} where k is randomly chosen
from a fixed set of values by following Gupta et al. (2023).
Then we use the same vision transformer (ViT; Dosovit-
skiy et al., 2021) encoder fg"¢ that shares parameters for
encoding frames x; and x;1 . Specifically, we extract non-
overlapping patches from a frame, add 2D fixed sin-cos
positional embeddings (Chen et al., 2021b), and concate-
nate a [CLS] token to patches. We note that we separately
process each frame and do not concatenate patches from
both frames. We then process them through a series of Trans-

Algorithm 1 RSP: PyTorch-like Pseudocode

# £, g: encoder, decoder
# g, p: posterior, learned prior

# input: x1 (current frame), x2 (future
def rsp(xl, x2):
hl, h2 = f£(x1), f(perturb(x2)

frame)

istribution from both frames

g(cat (hl[:,0], h2[:,01))

# Posterior
post_logits

o

post_dist make_dist (post_logits)

post_z post_dist.rsample ()

# Prior distribution only from the current frame
prior_logits = p(hl[:,0]

prior_dist = make_dist (prior_logits)

pred_fut = g(g=<mask>, kv=cat (hl, post_z))
pred_loss = ((pred_fut - x2) xx 2).mean ()
kl_loss = kl(post_dist, prior_dist)

# Auxiliary MAE objective

hm, mask, ids_restore = f (x2, mask=0.75)

pred_mask = g(g=<mask>,

kv=restore (hm, ids_restore))
mae_loss = ((pred_mask - x2) #*x 2).mean (dim=-1)
mae_loss = (mae_loss x mask).sum() / mask.sum()

loss = pred_loss + kl_scale x kl_loss + mae_loss
return loss

former layers (Vaswani et al., 2017) to obtain to obtain h;
and h,; consisting of [CLS] and patch representations.

hip = f5" (Xetk)
hy = gnc(xt)

Encoder:

ey

Augmentations We apply the same augmentation i.e., ran-
dom resized crop and random horizontal flip, to both frames
x; and x;4 . This is because applying such a strong aug-
mentation differently to frames can sometimes make the
two frames be significantly different from each other (see
Table 4a for supporting experiments). We then add a small
Gaussian noise ¢ ~ N (0, o) to the future frame x;, to
discourage the model from finding a shortcut that simply
copies pixels from x;j for predicting X; .

Posterior and learned prior Following Denton & Fergus
(2018), our framework consists of two main components:
(i) a future frame prediction model that predicts X, con-
ditioned on h; and a latent variable z, ;, which captures
the uncertainty over future, from a posterior distribution
qo(z¢+k | By, hyy ) and (ii) a prior network that learns to ap-
proximate pg(z: | hy) without access to the future frame.

Posterior: Zivk ~ Qo(Zerr |y, hyty)

Zitk ~ Po(Zeyr | hy)

(@)

Learned prior:

In our implementation, we introduce two small 2-layer MLP
models that take [CLS] representations from both h; and
h; , for the posterior network and [CLS] representation
from h; for the prior network. For the latent variable z; ,
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we use a set of categorical variables by following Hafner
et al. (2021a) and use the straight-through estimator (Bengio
et al., 2013) for updating the parameters, which we find to be
more effective than using Gaussian distribution (see Table 3
for supporting experiments).

Decoder For decoding, we first project hy and z; ; with a
linear layer and concatenate them to [hy, z;1 % ]. Our decoder
block consists of a (i) cross-attention layer where [MASK]
tokens attend to tokens from [hy, z; ;] and (ii) self-attention
layer where [MASK] tokens attend to each other. After
processing the inputs through a series of decoder blocks, the
final projection layer maps the token representations into
normalized pixel patches X, (He et al., 2022).

Decoder: )A(t_A'_k ~ Do ()A(t_;,_k | hta Zt+k> (3)
Here, we note that our architecture resembles the cross-self
decoder (Gupta et al., 2023) where unmasked patches from
X+ attend to x; via cross-attention layers. But our design
differs in that there is no interaction between x; and X
in our cross-attention layer. We adopt this design to be able
to share the decoder parameters for multiple objectives by
making [MASK] tokens attend to different types of inputs
via cross-attention layers, which allows for effectively in-
corporating both frame prediction and MAE objectives into
our framework, which we describe in Section 3.2.

Objective We train the future frame prediction model to
provide accurate prediction X, while minimizing the KL
divergence between the prior distribution pg(z;1 | x;) and
the posterior distribution g (z:4k | X¢, X¢+k) as below:

‘C(G) = EQG(Zt+k|xt;xt+k) [ —1Inpy (Xt+k|xt’ Zt+k) @
+BRL [a0(Z1-1 1, X 10) || o (2241%0)]

where [ is a loss scale hyperparameter that adjusts the bal-
ance between decoding loss and KL loss. Intuitively, making
the prior distribution to be closer to the posterior distribu-
tion corresponds to learning the prior network to predict the
future. On the other hand, enabling the prediction model to
generate better frames while making the posterior distribu-
tion closer to the prior distribution corresponds to making
the latent variable more predictable by the prior network
(Denton & Fergus, 2018). We find that our objective allows
for learning strong representations from complex real-world
videos when compared to the deterministic frame prediction
model (see Table 3a for supporting experiments).

3.2. Auxiliary Representation Learning from Images

While stochastic future frame prediction can induce repre-
sentations capturing temporal information, it might focus
less on the static parts of frames as the model has full access

Figure 2: Examples of visual observations from Cor-
texBench (Majumdar et al., 2023), RLBench (James et al.,
2020), and FrankaKitchen (Gupta et al., 2019), which we
used for training imitation learning agents that learn a map-
ping from observations to expert actions. Learning such
agents requires representations that can understand both
temporal and dense information.

to the previous frame x; when predicting x; . To mitigate
this issue, we introduce an auxiliary masked autoencoding
(MAE; He et al., 2022) objective that focuses on learning the
dense information within each frame. Moreover, we design
our framework to share the decoder across the frame predic-
tion and MAE objectives, which enables both objectives to
be synergistic with a small computational overhead.

Masked autoencoding with shared decoder We mask
m% of the patches from x; and process them through
the encoder fg™¢ to obtain hﬁk consisting of [CLS] and
unmasked patch representations. We then project hy’; ; with
a linear layer, which is different from the linear layer used in
the frame prediction, and process them through the shared
decoder by making [MASK] tokens attend to hy"} ; via cross-
attention layers. Then the final projection layer maps the
outputs into normalized pixel patches X k.

Masking:  x}"; ~ p"**(X¢4k, m)
Encoder: Ve = forc(xihg) o)
Decoder: X1 ~ po(Xeyr | DY)

We note that this auxiliary objective effectively enhances
performance by complementing the frame prediction objec-
tive, with a negligible increase in training time. We also
empirically find that our shared decoder is crucial in making
two objectives synergistic; training with a parallel decoder
design achieves worse performance (see Table 3c for sup-
porting experimental results).

4. Experiments

In this section, we demonstrate the effectiveness of the pro-
posed framework through evaluations on a variety of vision-
based robot learning tasks including robotic manipulation
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Table 1: Results on vision-based robot learning. Performance of imitation learning agents on CortexBench (Majumdar
et al., 2023) and RLBench (James et al., 2020), which are trained upon representations from ViT-S/16 model pre-trained on
Kinetics-400 (Kay et al., 2017) dataset. We report the normalized score for DMC and success rates (%) for other tasks.

CortexBench RLBench
Method Adroit MetaWorld DMC Trifinger Button Saucepan Phone Umbrella Wine Rubbish
SimCLR (Chen et al., 2020b) 40.4 78.4 39.7 63.3 7.4 39.5 34.6 5.8 11.0 5.2
MoCo v3 (Chen et al., 2021b) 39.6 65.4 43.7 53.3 11.4 45.8 36.2 13.2 8.7 6.7
Dino (Caron et al., 2021) 45.6 82.4 50.9 64.2 24.7 57.9 32.0 28.1 314 12.9
MAE (He et al., 2022) 44.8 81.4 52.1 62.2 6.4 36.8 37.7 10.0 10.0 6.2
SiamMAE (Gupta et al., 2023)  44.0 81.1 56.0 52.1 6.1 22.5 54 4.0 8.7 3.5
RSP (Ours) 45.6 84.5 61.6 66.2 28.4 934 48.0 373 319 18.5
. . . ) 80
qnd locom'otlon (see Sectlon 4.2) angl video label propaga == RSP (Ours) Dino
tion tasks including video segmentation and pose tracking BN SiamMAE B MoCov3
(see Section 4.3). We also provide extensive ablation studies BE MAE BN SimCLR

and analysis on our design choices (see Section 4.4).

4.1. Experimental Setup

Pre-training For a fair comparison, we report all the ex-
perimental results using the ViT-S/16 model pre-trained on
Kinetics-400 datasets (Kay et al., 2017) for 400 epochs. We
use the repeated sampling of 2 and count the epochs as effec-
tive epochs (Hoffer et al., 2020; Feichtenhofer et al., 2022).
For sampling frames x; and x;, we follow Gupta et al.
(2023) that randomly samples k from 4 to 48. We imple-
ment our decoder block to sequentially have self-attention,
cross-attention, and feedforward layers. For the MAE ob-
jective, we use a 75% masking ratio (He et al., 2022). We
use AdamW optimizer (Loshchilov & Hutter, 2019) with
a batch size of 1536. For all baselines, we use the default
hyperparameters. We provide more details in Appendix A.

Baselines We first consider image representation learning
approaches, i.e., SImCLR (Chen et al., 2020b), MoCo v3
(Chen et al., 2021b), Dino (Caron et al., 2021) and MAE
(He et al., 2022), as our baselines to compare our framework
against standard image representation learning methods.
Moreover, we consider SiamMAE (Gupta et al., 2023) as
our baseline for its superior performance over other masked
visual modeling methods (Feichtenhofer et al., 2022; Tong
et al., 2022) and its resemblance to our approach. With
this comparison against SiamMAE, we evaluate the benefit
of our stochastic frame prediction framework compared to
the idea of predicting the masked patches of future frames
conditioned on the unmasked patches.

4.2. Vision-Based Robot Learning

We evaluate our framework on vision-based robot learning
benchmarks, where the goal is to train imitation learning
agents that solve target tasks by learning the mapping from
visual observations to expert actions via behavior cloning
(Pomerleau, 1988). We consider this setup because training

[0}
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Franka Kitchen

CortexBench

Figure 3: Aggregate results on vision-based robot learn-
ing. We report the interquartile mean (Agarwal et al., 2021)
over 20 vision-based robot learning tasks from CortexBench
(Majumdar et al., 2023), RLBench (James et al., 2020), and
Frana Kitchen (Gupta et al., 2019).

such agents requires representations that capture both tem-
poral and dense information from the visual observations
(see Figure 2 for examples of tasks used in our experiments).

Experimental setup We first consider 4 domains from
CortexBench (Majumdar et al., 2023) which includes loco-
motion and manipulation tasks from various benchmarks
(Rajeswaran et al., 2018; Yu et al., 2020a; Tassa et al., 2020;
Bauer et al., 2022). Moreover, we consider a more chal-
lenging setup by evaluating our framework on 6 manipu-
lation tasks from RLBench (James et al., 2020) which has
successfully served as a simulation for sim-to-real trans-
fer (Seo et al., 2023) or a proxy for real-robot experiments
(James et al., 2022; Shridhar et al., 2023). We train the
imitation learning agents using 100 demos for each task,
use keypoint augmentation (James & Davison, 2022) for
demonstrations, and use the end-effector controller with
path planning as an action mode. We use the front camera
of 224 x224 resolution without depth for the CortexBench
and RLBench. Furthermore, we evaluate RSP on 5 tasks
from Franka Kitchen (Gupta et al., 2019), following the
setup in Nair et al. (2022) that uses a left or right camera
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Table 2: Results on video label propagation. We report performances on video segmentation, video part segmentation,
and pose tracking tasks from DAVIS (Pont-Tuset et al., 2017), VIP (Zhou et al., 2018), and JHMDB (Jhuang et al., 2013)
benchmarks, respectively. For all methods, we report the performance with the representations pre-trained on the Kinetics-
400 (Kay et al., 2017) dataset for 400 epochs. We further provide the performance of representations pre-trained on the

ImageNet (Deng et al., 2009) dataset as a reference in Appendix D.

DAVIS VIP JHMDB
Method Architecture  J&F,, Jm Fm mloU PCK@0.1 PCK@0.2
SimCLR (Chen et al., 2020b) ViT-S/16 53.9 51.7 562 319 379 66.1
MoCo v3 (Chen et al., 2021b) ViT-S/16 57.7 546 608 324 38.4 67.6
Dino (Caron et al., 2021) ViT-S/16 59.5 56.5 625 334 41.1 70.3
MAE (He et al., 2022) ViT-S/16 53.5 504 567 325 43.0 71.3
SiamMAE (Gupta et al., 2023) ViT-S/16 58.1 56.6 59.6 333 44.7 73.0
RSP (Ours) ViT-S/16 60.1 574 628 338 44.6 73.4
RSP (Ours) ViT-B/16 60.5 57.8 632 34.0 46.0 74.6

of 224 x224 resolution without depth. For all the tasks, we
follow the setup in Majumdar et al. (2023) that trains the
agents upon [CLS] representation to predict expert actions.
We evaluate the model multiple times throughout training
with a pre-defined interval and report the best performance.

Results We provide the main experimental results for each
individual task (see Table 1) and aggregate performance (see
Figure 3). We first find that our framework outperforms all
the baselines by a significant margin, as shown in Figure 3
that reports interquartile mean (Agarwal et al., 2021) com-
puted over 25 tasks from the benchmarks. This demonstrates
that our framework indeed can induce representations that
could be useful for solving complex robot learning tasks
that require temporal understanding. We also observe that
overall success rates are low in RLBench, as we consider a
difficult setup of using only a single camera without depth
information. Nevertheless, we find our method consistently
achieves superior performance to all the baselines. In partic-
ular, RSP outperforms SiamMAE by a large margin in both
benchmarks, i.e., RSP achieves 35.6% while SiamMAE
achieves 6.0% success rates in RLBench. This highlights
the benefit of our approach that captures uncertainty over
the future for representation learning.

4.3. Video Label Propagation

To evaluate how learned representations can capture tempo-
ral information between frames, we report the performance
of three video label propagation tasks. The goal of these
tasks is, given a first frame with ground-truth annotations,
to predict the labels in each pixel from future frames.

Experimental setup We consider the video object seg-
mentation, video part segmentation, and pose tracking tasks
from DAVIS (Pont-Tuset et al., 2017), VIP (Zhou et al.,

2018), and JHMDB (Jhuang et al., 2013) benchmarks, re-
spectively. For evaluation, we follow the protocol of prior
work (Wang et al., 2019; Li et al., 2019; Lai & Xie, 2019;
Jabri et al., 2020) that uses a k-nearest neighbor inference,
maintain a queue of length m to provide a temporal con-
text and use a restricted set of source nodes with a spatial
radius r. Due to computational constraints, we compare
our framework against the baselines pre-trained under the
same budget using the same architecture of ViT-S/16. We
conduct a grid search on evaluation hyperparameters for
each method and report the best performance.

Results We provide the quantitative evaluation in Table 2
and qualitative results in Figure 4. As shown in Table 2, we
find that our framework achieves superior or competitive
performance to all the baselines in video label propagation
tasks. In particular, our framework, with both stochastic
frame prediction and auxiliary MAE objectives, outperforms
MAE by a large margin, i.e., 6.6%p. This highlights the
effectiveness of stochastic future frame prediction objectives
for temporal understanding. Moreover, similar to the trend
from robot learning experiments in Section 4.2, we find our
framework outperforms SiamMAE. This again demonstrates
the benefit of our approach over masked visual modeling
approaches for image representation learning from videos.

4.4. Ablation Study and Analysis

We provide extensive ablation studies and analysis to inves-
tigate the importance of our design choices for building our
framework upon prior work (Denton & Fergus, 2018). Due
to computational constraints, we report the performance on
the DAVIS benchmark.

Comparison with deterministic frame prediction To
investigate the importance of stochastic future prediction,
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Video object segmentation

_# 100%

Figure 4: Qualitative results. We provide examples of predicted propagation from RSP on video object segmentation
(Pont-Tuset et al., 2017), video part segmentation (Zhou et al., 2018), and pose tracking (Jhuang et al., 2013) benchmarks.
“ref” indicates the ground-truth annotations, and 25, 50, and 100% refers to the propagated ratio of the videos. We provide

additional qualitative results in Appendix E.

we compare our framework with deterministic frame predic-
tion model. For a fair comparison, we also use the auxiliary
MAE objective with the shared decoder for both methods.
In Table 3a, we find that the deterministic frame prediction
model significantly underperforms our framework, i.e., the
deterministic baseline achieves 54.4% while our stochastic
framework achieves 60.1%. This shows that determinis-
tic frame predictor struggles to learn useful representations
from complex large video datasets like Kinetics-400 (Kay
et al., 2017). On the other hand, our method can learn
such representations by learning to predict possible multiple
futures via stochastic frame prediction.

Latent variable design We explore two design choices
on the stochastic latent variable z;, . Specifically, we con-
sider two variants that employ Gaussian distribution or a
set of Categorical variables (Hafner et al., 2021a). Inter-
estingly, in Table 3b, we find that utilizing the Categorical
variable significantly outperforms the variant with Gaus-
sian distribution. We hypothesize this is because it is easier
to predict discrete labels compared to accurately approxi-
mating continuous Gaussian distribution. In addition, we
would like to note that Meyer et al. (2023) demonstrated
RL with discrete representations outperforms continuous

representations when the environment dynamics gets more
complex. This could also explain our observation because
the Kinetics-400 (Kay et al., 2017) dataset consists of com-
plex real-world videos. Given this result, it would be an
interesting future direction to design models with a more
expressive prior, e.g., autoregressive prior.

Auxiliary MAE objective with shared decoder One im-
portant design in our framework is introducing the auxil-
iary MAE objective to learn dense representation within the
frames, which might not be learned by the frame predic-
tion objective. In Table 3c, we observe that our framework
indeed outperforms a baseline that does not introduce the
auxiliary objective by a large margin (+2.4%p). Moreover,
to investigate the importance of having a shared decoder, we
design a parallel decoder baseline that has an additional, sep-
arate decoder for the auxiliary MAE objective. We find that
having a shared decoder is crucial for making both objec-
tives synergistic, i.e., our framework with the shared decoder
achieves 60.1% while the parallel decoder baseline achieves
58.1%. This result is intriguing because our shared decoder
design also has the benefit of being parameter-efficient com-
pared to the parallel decoder.
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Stochastic J&Fn JIm Fm
X 544  50.7 58.1
v 60.1 574 62.8

(a) Deterministic prediction. We find our stochastic future
frame prediction objective is crucial for representation learning
from complex real-world videos.

w/ MAE Decoder J&Fm JIm Fm
X - 57.7 549 60.5
v Separate  58.1 55.4 60.7
v Shared  60.1 57.4 62.8

(c) Auxiliary MAE objective with a shared decoder. We find
that training with the auxiliary MAE objective works better,
especially when combined with our shared decoder design.

Latent J&Fm JIm Fm
Gaussian 54.1 529 559
Categorical 60.1 57.4 62.8

(b) Stochastic latent variable. Using a set of categorical vari-
ables (Hafner et al., 2021a) for the latent variable outperforms
a baseline that employs Gaussian distribution.

KL scale J&Fnm JIm Fm
0.1 56.1 529 593
0.01 60.1 574 62.8
0.001 59.1 56.6 61.5

(d) KL objective scale. Training a model with too strong or
weak KL objectives leads to worse performance.

Table 3: Ablation studies. We report the performance of various variants of RSP on DAVIS benchmark. For all experiments,
we pre-train ViT-S/16 model on Kinetics-400 dataset for 400 epochs. Default settings are highlighted in gray .

Same aug J&Fm JTm Fm
X 53.7 522 552
v 60.1 574 62.8

(a) Applying the same augmentation. Applying augmenta-
tions (i.e., random resized crop and horizontal flip) differently
to current and future frames significantly degrades performance.

Future frame aug Scale J&Fn,, JTm Fm
None - 58.3 56.1 60.6
Masking 0.75 577 548 60.6
Masking 0.95 558 527 589
Noise 0.1 584 56.0 60.7
Noise 0.5 60.1 574 62.8
Noise 1.0 589 56.3 61.4

(b) Future frame augmentation. Applying a mild augmen-
tation to a future frame can enhance performance. But strong
augmentation such as masking degrades the performance.

Table 4: Effect of data augmentation. We investigate (a) the importance of applying the same augmentation to current and
future frames and (b) the effect of applying mild augmentation to the future frame. Default settings are highlighted in gray .

60 o

== KL scale 0.1

== KL scale 0.01
KL scale 0.001

100 200 300 400
Pretraining epochs

Figure 5: Effect of KL loss scale. We report the learning
curves of models trained with different KL loss scales (3).

o
o
L

J&F-mean

50

Effect of KL loss scale We also conduct analysis on the
effect of the KL loss scale () to provide a deeper under-
standing of the learning dynamics of our framework. In
Table 3d, we observe that too strong or weak KL loss scales
lead to worse performance. This is because high 5 makes it
difficult to learn good posterior by enforcing distributions
to be close too early, i.e., before the model starts to learn
a good posterior distribution, which leads to overall worse
performance as shown in Figure 5. On the other hand, low
8 makes the posterior distribution tend to ignore the prior
distribution, and this consequently makes it difficult for the
prior model to predict the posterior, which leads to lower
asymptotic performance as shown in Figure 5.

Applying the same augmentation As we previously men-
tioned in Section 3.1, applying the same augmentation to
both current and future frames is crucial for making the
frame prediction objective valid. For instance, applying the
random horizontal flipping augmentation differently to cur-
rent and future frames would make it impossible to predict
the future frame. In Table 4a, we indeed find that apply-
ing different augmentations to current and future frames
significantly degrades the performance.

Additional future frame augmentation We study the
effect of our design choice that augments the future frame
by adding a small Gaussian noise in Table 4b. We also
explore another augmentation scheme of applying masks to
future frames, similar to Gupta et al. (2023). We find that
applying masking augmentation degrades the performance,
exhibiting a similar trend in Table 4a. This is because the
prior have to also capture the stochasticity from aggressive
masking augmentation, which makes it difficult to learn
meaningful prior distribution. On the other hand, adding
a small Gaussian noise can effectively improve the perfor-
mance by delivering the benefit of augmentation, as it does
not change the semantic meaning of frames.
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5. Conclusion

In this work, we present RSP, a framework for visual repre-
sentation learning from videos, that learns representations
that capture temporal information between frames by train-
ing a stochastic future frame prediction model. Our key
contribution lies in re-visiting the idea of stochastic video
generation (Denton & Fergus, 2018) and re-designing it for
representation learning by exploring and adopting various
design choices. Our extensive experiments demonstrate that
our framework consistently achieves competitive or superior
performance to various baselines. We hope our work further
facilitates research on representation learning from videos
via future frame prediction.

Limitations and future directions One limitation of our
work is that the quality of generated frames is not of high
quality, though our focus is not on high-fidelity generation.
Given this, it would be an interesting direction to incor-
porate recent video generative models based on diffusion
models, similar to Hudson et al. (2023) that learns repre-
sentations via image diffusion models. Moreover, due to
computational constraints, our work does not include large-
scale experiments with longer training budgets and larger
models. Scaling up our approach would be an interesting
future direction. Finally, an extension of our framework to
multiple frames is a future direction we are keen to explore.

Impact Statement

This paper presents a framework for representation learning
via generative modeling of videos. Thus there is a risk of
potential misuse of our model for malicious purposes, e.g.,
generating fake videos. However, unlike other high-fidelity
generative models, our model generates outputs that are
clearly distinguishable from real frames. This significantly
reduces the risk of our model being used for generating fake
videos. Nonetheless, it is still important to recognize and
state such potential risk of misuse as the potential extension
of our work is likely to have the capability to learn strong
representations while generating high-quality videos.
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A. Implementation Details

We build our framework upon the official implementation of MAE (He et al., 2022).> We summarize our hyperparameters of
pre-training and video label propagation in Table 5. We follow Hafner et al. (2021b) for various design choices with regard
to stochastic latent variable. Specifically, we employ a set of 32 Categorical variables with 32 classes for the posterior and
prior distributions. Furthermore, to prevent over-regularizing the representations towards an inadequately trained prior, we
incorporate KL balancing with a ratio of o = 0.8, as introduced in Hafner et al. (2021b).

config value

optimizer AdamW (Loshchilov & Hutter, 2019)

optimizer momentum 81, P2 =0.9,0.95 (Chen et al., 2020a)

optimizer weight decay 0.05

learning rate 1.5e-4

learning rate scheduler Cosine decay (Loshchilov & Hutter, 2017)

warmup epochs (Goyal et al., 2017) 40

pre-train epochs 400

repeated sampling (Hoffer et al., 2020) 2

batch size 1536

frame sampling gap [4, 48]

augmentation hilip, crop [0.5, 1.0] config DAVIS VIP JHMDB

Discrete latent dimensions 32 top-k 7 7 10

Discrete latent classes 32 neighborhood size 30 5 5

KL balancing ratio 0.8 queue length 30 3 30
(a) Pre-training hyperparameters (b) Evaluation hyperparameters

Table 5: Hyperparameter details of pre-training and evaluation

Architectural details We use standard ViT-S/16 (Dosovitskiy et al., 2021) as our encoder. For the decoder, each block is
composed of cross-attention, self-attention, and feed-forward MLP layers. The hyperparameters for the decoder, including
embedding dimension, depth, and the number of heads, are aligned with those specified in He et al. (2022).

B. Additional Ablation Study and Analysis

We provide additional ablation studies and analysis to investigate the importance of our design choices. We report the
performance on the DAVIS benchmark in Table 6.

Projection J&Fm JIm Fm Concat TJ&Fm Im Fm
Same 56.6 543 589 Channel dim  54.1 529 559
Distinct 60.1 574 62.8 Tokens 60.1 574 62.8

(a) Encoder-decoder projection. We find that distinct pro-  (b) Concatenating latent variable and patch representations.

jections for stochastic frame prediction and auxiliary MAE  We find that concatenating the latent variable and patch rep-

objective is crucial for learning representation. resentations along the channel dimension works better than
concatenating them along the channel dimension.

Table 6: Ablation studies. We report the performance of various variants of RSP on DAVIS benchmark. For all experiments,
we pre-train ViT-S/16 model on Kinetics-400 dataset for 400 epochs. Default settings are highlighted in gray .

https://github.com/facebookresearch/mae
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C. Experimental Results with 95% Confidence Interval

We here provide the experimental results of Table 1 with 95% confidence intervals in Table 7.

Table 7: Results on vision-based robot learning. Performance of imitation learning agents on CortexBench (Majumdar
et al., 2023), RLBench (James et al., 2020), and Franka Kitchen (Gupta et al., 2019) with a 95% confidence interval. We
have 5, 4, and 4 runs for CortexBench, RLBench, and Franka Kitchen respectively.

(a) CortexBench

Method Adroit ~ MetaWorld DMC Trifinger
SimCLR 40.443.3  78.44£52 39.7429 63.3+33
MoCo v3 39.6+43  65448.0 437432 53.3£1.6
Dino 45.6£6.2 824+58 509+1.5 64.243.5
MAE 448+4.3  81.4+£63  52.1+3.7 622450
SiamMAE 44.0+6.6  81.1£63  56.0+2.9 52.14£7.6
RSP (Ours) 45.6+4.6 84.5+6.6 61.6+3.4 66.2+0.8
(b) RLBench
Method Button  Saucepan Phone Umbrella Wine Rubbish
SimCLR 74+2.6 39.5+2.2 34.6+6.6 58+3.3 11.0£2.1 5.2+£1.2
MoCo v3 114+4.1 458+£39 36.2£34 132+15 87+0.7 6.7+0.8
Dino 247415 579459 32.0£55 28.1+1.4 314415 129415
MAE 6.4+2.2 36.8+6.4 37.7£19 10.0+1.2 10.04+2.1 6.2£3.2
SiamMAE 6.1+2.3 225408 54+05 4.0+0.0 8.74+0.8 3.5£09
RSP (Ours) 28.44+3.0 934+1.8 48.0+4.6 37.3+3.0 31.9+£23 18.5+1.1
(c¢) Franka Kitchen
Method Knobl on  Lighton Sdooropen Ldooropen Micro open
SimCLR 25.3£2.1 55.8+6.4  72.3+2.8 17.0£2.9 23.3+2.8
MoCo v3 11.5£39 243450 66.5+3.2 10.3£2.1 14.3£2.5
Dino 27.0£3.2 443+6.5  77.0£5.0 16.5£2.5 28.5+4.8
MAE 12.0£3.3 243+42  71.5+43 12.8£3.9 10.0£2.8
SiamMAE 16.8+4.4 36.5+£7.0 68.0+7.9 17.3£3.7 13.5£4.8
RSP (Ours) 31.04+24 445456  82.5+2.7 28.8+4.8 30.3+5.6
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D. Comparison with ImageNet Pre-trained SSLs

Table 8: Results on video label propagation. We report performances on video segmentation, video part segmentation,
and pose tracking tasks from DAVIS (Pont-Tuset et al., 2017), VIP (Zhou et al., 2018), and JHMDB (Jhuang et al., 2013)
benchmarks, respectively. We compare the Kinetics-400 pre-trained approaches to the ImageNet pre-trained approaches as a
reference.

DAVIS VIP JHMDB
Method Architecture J&F,, JIm Fm mloU PCK@0.1 PCK@0.2
Kinetics-400 pre-trained
SimCLR (Chen et al., 2020b) ViT-S/16 53.9 51.7 562 319 37.9 66.1
MoCo v3 (Chen et al., 2021b) ViT-S/16 57.7 546 608 324 38.4 67.6
Dino (Caron et al., 2021) ViT-S/16 59.5 565 625 334 41.1 70.3
MAE (He et al., 2022) ViT-S/16 53.5 504 56.7 325 43.0 71.3
SiamMAE (Gupta et al., 2023) ViT-S/16 58.1 56.6 59.6 333 44.7 73.0
RSP (Ours) ViT-S/16 60.1 574 628 338 44.6 734
RSP (Ours) ViT-B/16 60.5 57.8 632 340 46.0 74.6
ImageNet pre-trained
Dino (Caron et al., 2021) ViT-S/16 61.8 60.2 634 362 45.6 75.0
MAE (He et al., 2022) ViT-B/16 53.5 52.1 550 28.1 44.6 73.4
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E. Additional Qualitative Results

Figure 6: Additional qualitative results. We provide more qualitative results of predicted propagation from RSP on DAVIS
video object segmentation (Pont-Tuset et al., 2017) benchmarks. “ref” indicates the ground-truth annotations, and 25, 50,
and 100% refers to the propagated ratio of the videos.
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