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Abstract

The crystallization of modeling methods
around the Transformer architecture has been a
boon for practitioners. Simple, well-motivated
architectural variations that transfer across
tasks and scale, increasing the impact of mod-
eling research. However, with the emergence
of state-of-the-art 100B+ parameters models,
large language models are increasingly expen-
sive to accurately design and train. Notably,
it can be difficult to evaluate how modeling
decisions may impact emergent capabilities,
given that these capabilities arise mainly from
sheer scale. Targeting a multilingual language
model in the 100B+ parameters scale, our goal
is to identify an architecture and training setup
that makes the best use of our 1,000,000 A100-
GPU-hours budget. Specifically, we perform
an ablation study comparing different modeling
practices and their impact on zero-shot gener-
alization. We perform all our experiments on
1.3B models, providing a compromise between
compute costs and the likelihood that our con-
clusions will hold for the target 100B+ model.
In addition, we study the impact of various
popular pretraining corpora on zero-shot gen-
eralization. We also study the performance of
a multilingual model and how it compares to
the English-only one. Finally, we consider the
scaling behaviour of Transformers to chose the
target model size, shape, and training setup.

1 Introduction

Recent years have seen the advent of large language
models with emergent capabilities (e.g., zero-shot
generalization) arising from sheer scale alone (Rad-
ford et al., 2019; Brown et al., 2020). Scaling
LLMs produces a predictable increase in perfor-
mance; simple scaling laws connect the number of
parameters, pretraining dataset size, and compute
budget (Kaplan et al., 2020; Ganguli et al., 2022),
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Figure 1: Smooth scaling of language modeling loss as
compute budget and model size increase. We observe
a power-law coefficient αC ∼ 0.046, in-line with pre-
vious work. We use this to estimate the optimal model
size and number of tokens for the available budget.

providing a clear path towards more capable mod-
els. This paradigm shift can be attributed to the
wide adoption of the Transformer (Vaswani et al.,
2017), providing a scalable basis for practitioners
to build upon.

In this paper, we design an architecture and
training setup for a multilingual 100B+ parame-
ters model, seeking to best use a fixed 1,000,000
A100-hours budget. Many promising additions
and tweaks have been proposed to the Transformer
architecture (Press et al., 2022; Shazeer, 2020;
Dettmers et al., 2021) but there is a lack of sys-
tematic investigation to identify which will best
transfer to increased scales, and which are idiosyn-
crasies of specific setups.

Contributions. We study the impact of pretrain-
ing corpora, positional embeddings, activation
functions, and embedding norm on zero-shot gener-
alization. We base our study on the popular GPT-3
architecture (Brown et al., 2020), with experiments
at the 1.3B parameters scale. We consider the im-
pact of massive multilinguality, and, finally, we



study the scaling of our models, and draft an archi-
tecture for a 176B model1

2 Methods

We first justify our choice to base our model on
the popular recipe of combining a decoder-only
model with an autoregressive language modeling
objective, and introduce our experimental setup.
We then discuss our evaluation benchmarks, and
motivate our choice of zero-shot generalization as
our key metric. Finally, we introduce the baselines
we compare to throughout the paper.

2.1 Architecture and Pretraining Objective

In this paper, we base all models on a decoder-only
Transformer pretrained with an autoregressive lan-
guage modeling objective. This is a popular choice
for large language models (Brown et al., 2020; Rae
et al., 2021; Thoppilan et al., 2022), possibly be-
cause it lends itself to zero-shot application to many
downstream tasks (Radford et al., 2019). Alterna-
tives include encoder-decoder models trained with
a span-corruption objective (e.g., T5 Raffel et al.
(2019)), as well as non-causal decoders models
with visibility over a prefix (so-called PrefixLMs,
Liu et al. (2018); Dong et al. (2019)).

Our decision is motivated by the findings
of Anonymous (2022), which showed that decoder-
only models combined with an autoregressive lan-
guage modelling objective provide the best zero-
shot generalization abilities right after pretraining.
Although multitask finetuning (Sanh et al., 2021;
Wei et al., 2021) will favor an encoder-decoder
with span corruption for best zero-shot generaliza-
tion, they also found a compromise between these
two practices. Following autoregressive pretrain-
ing, decoder-only models can be efficiently adapted
into non-causal decoders, simply by extending pre-
training with span corruption. This adaptation pro-
duces a second model, which can provide excellent
zero-shot generalization after multitask finetuning.
Accordingly, we follow their recommendation, and
train an autoregressive decoder-only model which
we will later consider adapting and finetuning.

1We base this model size on Kaplan et al. (2020). However,
after this paper was accepted for publication but before it
came out, Hoffmann et al. (2022) provided an alternative
approach for selecting the model size. For the purposes of
this paper we follow Kaplan et al. (2020), but recognize that
Hoffmann et al. (2022) could have lead to a different model
size recommendation.

2.2 Experimental Setup

We follow the architecture and hyperparameters of
GPT-3 (Brown et al., 2020). For learning rate, we
use a maximum value of 2 × 10−4, with a linear
warm-up over 375M tokens, followed by cosine de-
cay to a minimum value of 1× 10−5. We use a 1M
tokens batch size, with linear ramp-up over the first
4B tokens, and a sequence length of 2,048. For op-
timization, we use Adam (Kingma and Ba, 2014),
with β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8, weight
decay 0.1, and gradient clipping to 1.0. We also
tie the word embedding and softmax matrix (Press
and Wolf, 2017). Unless noted otherwise, we con-
duct our experiments with 1.3B parameters models,
pretraining on 112B tokens.

We picked this size and dataset size as a compro-
mise between compute cost and the likelihood that
our conclusions would transfer to the target 100B+
model. Notably, we needed to be able to reliably
measure zero-shot generalization above random
chance. We note that training for 112B tokens our
models bring them significantly above the optimal-
ity threshold identified by Kaplan et al. (2020), and
was enough to yield non-random chance zero-shot
results.

The main architectural difference with GPT-3 is
that all our layers use full attention, while GPT-3
uses alternating sparse attention layers (Child et al.,
2019). The main value of sparse attention layers is
to save compute with long sequence lengths. How-
ever at the 100B+ scale, sparse attention layers
provide negligible compute savings, as the vast
majority of the compute is spent on the large feed-
forward layers. Kaplan et al. (2020) estimated the
amount of compute per token to be:

Cforward = 2× (12nlayerd
2 + nlayernctxd),

where Cforward is the cost for the forward pass,
nlayer is the number of layers, d is the hidden di-
mension, and nctx is the sequence length. This
means if 12d >> nctx, the second nlayernctxd term
is negligible, which is the case for our final model
where d > 10, 000 and nctx = 2048.

FLOPS or FLOPS? We report throughput per
GPU in FLOPS and total budgets in PF-days (i.e.
one PFLOPS sustained for a day). It is important
to highlight that FLOPS are never directly mea-
sured, but always estimated, with widely different
practices across papers. We refer to model FLOP
the estimates based the C = 6ND formula from



Model Parameters Pretraining tokens

Dataset 112B 250B 300B

OpenAI — Curie 6.7B 49.28
OpenAI — Babbage 1.3B 45.30
EleutherAI — GPT-Neo 1.3B The Pile 42.94

Ours

13B OSCAR 47.09
1.3B The Pile 42.79 43.12 43.46
1.3B C4 42.77
1.3B OSCAR 41.72

Table 1: Pretraining datasets with diverse cross-domain high-quality data significantly improves zero-shot
generalization. Average accuracy on EAI harness (higher is better) using different pretraining corpora and
comparison with baseline models. Bold is best 1.3B model for amount of tokens seen, underline is best overall.

Kaplan et al. (2020), where C is the total compute,
N the model size, and D the number of tokens
processed. These are the FLOP actually used to
train the model, and which are used for scaling
laws. We refer to hardware FLOP the estimates
reported by our codebase, using the formula from
Narayanan et al. (2021). This notably includes
gradient checkpointing and a more thorough ac-
counting of operations depending on model shape.

2.3 Evaluation Benchmarks
We measure upstream performance with the lan-
guage modeling loss on an held out sample of the
pretraining dataset. For downstream performance,
we could use zero/few-shot generalization, with or
without task-specific finetuning.

Upstream performance is not always aligned
with downstream performance, and they are some-
times even at odds (Tay et al., 2021). It is also not
always possible to compare losses across architec-
tures, objectives, and tokenizers. Given that we
mainly care about downstream task performance,
we base our evaluation on a diverse set of tasks.

Specifically, we choose to measure zero-shot
generalization on this set of tasks. Few-shot and
zero-shot results are strongly correlated: we found
a Pearson correlation coefficient of 0.93 between
zero-shot and few-shot performance across model
sizes in Brown et al. (2020). We do not rely on
finetuning as it is not how the main final model is
likely to be used, given its size and the challenges
associated with finetuning at the 100B+ scale.

We use the popular EleutherAI Language Model
Evaluation Harness (EAI harness, Gao et al.
(2021)), evaluating models across 27 diverse tasks
that are similar to those used in Brown et al. (2020)

(see Appendix A for details). Prompts used in the
EAI harness reproduce as closely as possible the
evaluation setup of GPT-3.

2.4 Baselines
We use GPT-Neo (Black et al., 2021), a 1.3B
decoder-only auto-regressive language model
trained on the Pile (Gao et al., 2020), and GPT-
3 (Brown et al., 2020), which we access via the
OpenAI API. We evaluate two models, Babbage
and Curie. We believe Babbage is 1.3B while Curie
is 6.7B based on how close our computed results
are to those reported in the original paper.

3 Impact of Pretraining Data

We first study the impact of pretraining data on
zero-shot generalization. More diverse pretraining
data, ideally curated from a cross-domain collec-
tion of high-quality datasets, has been suggested to
help with downstream task performance and zero-
shot generalization (Rosset, 2020; Gao et al., 2020).

3.1 Corpora
We evaluate three possible corpora, all commonly
used to train large language models:

• OSCAR v1 (Ortiz Suárez et al., 2019)2, a mul-
tilingual, filtered version of Common Crawl;

• C4 (Raffel et al., 2019), specifically its repli-
cation by AllenAI, a processed and filtered
version of Common Crawl;

• The Pile (Gao et al., 2020), a diverse pre-
training corpus that contains webscrapes from

2The recent release of OSCAR v2 is a better dataset but it
wasn’t available when we started this project.



Common Crawl in addition to high-quality
data from cross-domain sources such as aca-
demic texts and source code.

For each pretraining corpus, we train a 1.3B pa-
rameter model for 112B tokens. For the Pile specif-
ically, motivated by good early results at 112B
tokens, we train up to 300B tokens, to compare
with GPT-3 models and validate against GPT-Neo.

3.2 Results
Evaluation results are outlined in Table 1. We find
that training on the Pile produces models that are
better at zero-shot generalization, with C4 a close
second, and OSCAR significantly behind.

Importantly, this finding transfers to larger
scales: as part of engineering test runs, a 13B
model was trained on OSCAR for 300B tokens.
We found this 13B model to underperform the 6.7B
model from OpenAI API which we attribute to the
low quality of the English data in OSCAR.

We also note that our model trained on The Pile
outperforms the 1.3B GPT-Neo trained on the same
dataset. Finally, our 1.3B model still underper-
forms the 1.3B model from the OpenAI API by by
1.6%. It seems most likely that the difference is
that of data, but we cannot investigate this further
as the GPT-3 training dataset is neither publicly
available nor reproducible.

Finding 1. Diverse cross-domain pretraining
data combining web crawls with curated high-
quality sources significantly improves zero-
shot generalization over pretraining datasets
constructed from Common Crawl only.

4 Architecture Ablations

We now consider ablation studies to better iden-
tify the best positional embedding, activation func-
tion, and embedding normalization placement. We
note that considerations around pretraining objec-
tives and architecture were taken from Anonymous
(2022) rather than independently replicated (sec-
tion 2.1).

4.1 Positional Embeddings
One aspect of the Transformer architecture that
has attracted recent significant interest is the way
position information is captured within the model.
Positional embeddings are important because with-
out positional embeddings, Transformers cannot
order tokens against one another.

Background The Transformer paper Vaswani
et al. (2017) proposed two options: static sinusoidal
position embeddings and learned position embed-
dings (i.e., the position of each token is associated
with a learned embedding vector). Learned posi-
tion embeddings are popular in large language mod-
els, and are used for GPT-3. Su et al. (2021) later
proposed the rotary position embedding method,
where the query and key representations inside the
self-attention mechanism is modified such that the
attention computation captures relative distances
between keys and queries. Recently, Press et al.
(2022) proposed a position method which does not
use embeddings, and instead directly attenuates the
attention scores based on how far away the keys
and queries are.

Results We compare learned, rotary, and ALiBi
position embeddings, and include a baseline with-
out position embeddings. Our results are presented
in Table 2. Although learned positional embed-
dings outperforms rotary embeddings, ALiBi yield
significant better results than all other alternatives.
We also confirm the discovery of Biderman (2021),
that the baseline without explicit position informa-
tion shows competitive performance. While bidi-
rectional models require positional embeddings to
determine the location of tokens, we find autore-
gressive models can simply leverage the causal
attention masking.

Finding 2. ALiBi positionnal embeddings
significantly outperforms other embeddings
for zero-shot generalization.

4.2 Activation Functions
Background. Large language models by and
large still mostly use the GELU activation
(Hendrycks and Gimpel, 2016). We evaluate a
recently proposed alternative, SwiGLU (Shazeer,
2020), which combines both Gated Linear Units

Positional Embedding Average EAI Results

None 41.23
Learned 41.71
Rotary 41.46
ALiBi 43.70

Table 2: ALiBi significantly outperforms other em-
beddings for zero-shot generalization. All models are
trained on the OSCAR dataset for 112 billion tokens.



(Dauphin et al., 2016) with the Swish activation
function (Ramachandran et al., 2017).

With x the input of the layer, we have:

GELU(x) = xΦ(x)

Swish(x) = xσ(x)

SwiGLU
([

x1
x2

])
= x1Swish(x2)

SwiGLU uses 50% extra parameters in the feed
forward layers. As suggested in Shazeer (2020),
we compensate for this by reducing the hidden size
of the feed forward layer.

Results. We present our results in Table 3.
SwiGLU produces slightly better results than
GELU; however this comes at a cost of reducing
the throughput by approximately a third.

This overhead may primarily be associated with
the change in the hidden size of the feedforward
network. Indeed, this new size, 5,456, is divisible
by neither the warp size of the GPU (Lashgar et al.,
2013) nor the number of streaming multiproces-
sors, resulting in both tile and wave quantization.
Further hyperparameter tuning could yield better
throughputs. In our final model, we use GELU, but
recommend further benchmarks around GELU and
SwiGLU.

4.3 Embedding Norm
Dettmers et al. (2021) suggests that greater stability
of training can be achieved by including an extra
layer normalization (Ba et al., 2016) after the em-
bedding layer. We evaluate the performance impact
of such a modification in Table 4. We note that this
incurs a significant reduction in the performance
of the model. However, models above 100 billion
parameters are notoriously unstable and require
considerable engineering efforts in order to be kept
stable. If this addition provides increased stability
when training, it may be valuable.

Activation function Average EAI Results

GELU 42.79
SwiGLU 42.95

Table 3: SwiGLU slightly outperforms GELU for
zero-shot generalization. Models trained on The Pile
for 112 billion tokens.

Finding 3. Adding layer normalization af-
ter the embedding layer incurs a significant
penalty on zero-shot generalization.

5 Multilinguality

The majority of 100B+ language models have been
trained exclusively on English data, with notable
exceptions in (monolingual) models trained in Chi-
nese (Zeng et al., 2021; Wu et al., 2021) and Ko-
rean (Kim et al., 2021). Smaller massively mul-
tilingual models have seen wider adoption (Xue
et al., 2020), but these models are not suitable for
zero-shot tasks. Recent zero-shot results on large
GPT-like multilingual models are promising, but
English-only performance is usually disappointing
(Lin et al., 2021).

Training data. We train a multilingual language
model in order to evaluate the effectiveness and
potential impacts of this practice. We use the OS-
CAR dataset (Ortiz Suárez et al., 2019) for train-
ing, but here we include multiple languages, not
only English as in the earlier experiments. The
languages we include are Arabic, Basque, Bengali,
Chinese, Catalan, English, French, Hindi, Indone-
sian, Portuguese, Spanish, Urdu, and Vietnamese.
We sample each language with a different sampling
probability that downsamples the most frequent lan-
guages and upsamples the least frequent ones, so
that all languages are represented. We estimate the
sampling probabilities similar to Xue et al. (2021).

English-only evaluation. We first evaluate our
multilingual model on the same set of English
benchmarks we have used previously, results are
presented in Table 5. The multilingual model has
significantly lower accuracy than the English-only
model on the English benchmark, which is in line
with the results from Lin et al. (2021).

Multilingual evaluation. Zero-shot multilingual
evaluation is more challenging to setup because it

Embedding Norm Average EAI Results

No 43.46
Yes 42.24

Table 4: Layer normalization after the embedding
layer diminishes performance significantly. Models
trained on The Pile for 300 billion tokens.



requires writing new prompts for each new lan-
guage. Therefore, instead of manually writing
prompts for each language, we follow the strat-
egy proposed by Lin et al. (2021), using English
prompts for non-English examples–this can be
viewed as cross-lingual zero-shot generalization.
They validated this strategy by demonstrating its
ability to achieve zero-shot performance on par
with (and sometimes even better than) human-
written language-specific prompts. This is also
an indicator of the cross-lingual capabilities of the
model.

We evaluate on XNLI (Conneau et al.,
2018), a multilingual NLI dataset that cov-
ers 8 of the languages we use for training.
The task uses the following English cloze-
style prompt template across all languages:
[premise], right? [MASK], [hypothesis]

The prompt fields, [premise] and
[hypothesis], are filled with the
premise/hypothesis pairs in the target lan-
guage. For zero-shot evaluation, the [MASK]
token is replaced with “Yes” (for entailment), “No”
(for contradiction) and “Also” (for neutral). The
completion with the highest likelihood according
to the model is taken as its prediction.

Our evaluation is different from the zero-shot
evaluation of the XTREME benchmark (Hu et al.,
2020). XTREME first finetunes the model on the
English training data of each downstream task, then
evaluates on the non-English dataset, attempting
cross-lingual generalization. Our evaluation avoids
any finetuning, and instead relies entirely on zero-
shot generalization from pretraining.

Results. Table 6 shows the XNLI results of
our multilingual model and how it compares to
XGLM (Lin et al., 2021). We were able to repro-
duce the results of XGLM-7.5B which validates
our evaluation setup. Furthermore, the table shows
that the performance of our 1.3B is inline with the
XNLI 1.7B model, validating that our multilingual
setup achieves competitive results. It is worth not-

Pretraining Average EAI Results

English-only 41.72
Multilingual 38.55

Table 5: Multilingual pretraining very significantly
diminishes English zero-shot generalization. Both
models trained on OSCAR for 112B tokens.

ing that our 1.3B model is trained on only 112B
tokens from 13 languages while XGLM is trained
on 500B tokens from 30 languages. As far as we
are aware, this is the first independent replication
of the main results of Lin et al. (2021).

6 Scaling to 176B parameters

We are now ready to scale to the final model. We
have established that a curated high-quality cross-
domain pretraining dataset similar to (Gao et al.,
2020) will help boost zero-shot generalization;
adopted from Anonymous (2022) that it is best to
use a decoder-only model with an auto-regressive
language modeling objective; identified that ALiBi
positional embeddings should be used; decided that
a default GELU activation should be preferred; and
we have motivated the use of layer normalization
on the embeddings to help with model stability. We
should now determine which model architecture
(e.g., number of parameters, layers, width) will
result in the best model out of our compute budget.

Compute budget. We have been allocated 18
weeks of dedicated use of a cluster with 52 nodes
of 8 80GB A100 GPUs. We set four nodes
aside as spare, as this cluster is brand new and
may experience hardware failures. This amounts
to 1,161,216 A100-hours in total. Assuming a
throughput of 100 model TFLOPS, approximately
corresponding to state-of-the-art hardware FLOPS
of 150 (Narayanan et al., 2021), we have a compute
budget of 4,838 PF-days for the model training.
We round this down to 4,500 PF-days, this ∼ 10%
safety margin accounting for potential downtime
and inefficiencies (e.g., batch size ramp-up) during
training. To put this number in perspective, this is
∼ 23% more than the training budget of GPT-3.

6.1 Parameters, Tokens, and Shapes
Fitting scaling laws. We establish scaling
laws (Kaplan et al., 2020) to verify the scaling
behaviour of our model and codebase, and to help
decide on optimal model size. We use English
data from OSCAR (Ortiz Suárez et al., 2019) for
pretraining, and train 125M, 350M, 760M, 1.3B,
and 13B models for 100B to 300B tokens. Fig-
ure 1 shows the smooth decrease in loss against the
compute budget as the model size increases.

From Figure 1, we observe the following fit
L(C) = (Cc/C)αC with αC ≈ 0.046 and Cc ≈
253×108 PF-days. This scaling exponent αC is in-
line with the 0.050 reported in Kaplan et al. (2020)



Model Size EN ZH ES FR VI AR HI UR Average

XGLM (Lin et al.) 7.5B 54.5 45 38.2 50.7 47.5 47.5 43.4 42.7 46.19
XGLM (reprod.) 7.5B 53.85 45.21 41.7 49.82 47.35 46.37 43.19 42.3 46.22

XGLM 1.7B 49.68 44.63 37.39 47.94 42.75 45.65 44.35 43.19 44.45
Ours 1.3B 49.9 44.53 36.77 46.51 45.75 43.41 45.95 42.91 44.47

Table 6: Our multilingual 1.3B model achieves accuracy on zero-shot XNLI in line with XGLM Lin et al.
(2021). First row is the reported XGLM results, and the second is our reproduction of their results to validate our
multilingual evaluation setup. Last two rows show that our multilingual model matches the XGLM results.

Model Size Pretraining Budget Layers Hidden dim. Attention heads
[Bparams.] [Btokens] [PF-days] num. dim.

LaMDA (Thoppilan et al., 2022) 137 432 4,106 64 8,192 128 64
GPT-3 (Brown et al., 2020) 175 300 3,646 96 12,288 96 128
J1-Jumbo (Lieber et al., 2021) 178 300 3,708 76 13,824 96 144
PanGu-α (Zeng et al., 2021) 207 42 604 64 16,384 128 128
Yuan (Wu et al., 2021) 245 180 3,063 76 16,384
Gopher (Rae et al., 2021) 280 300 4,313 80 16,384 128 128
MT-530B (Smith et al., 2022) 530 270 9,938 105 20,480 128 160

Table 7: State-of-the-art 100B+ models with publicly available details. Compute budget is expressed in model
PF-days required for training the models, from the C = 6ND approximation of Kaplan et al. (2020). Number of
tokens for LaMDA is inferred from reported compute budget and size. Yuan did not report attention head details.

and the 0.048 reported at larger scale in Henighan
et al. (2020). This is a remarkably close fit given
that we are using different datasets, codebases, and
hyperparameters. Given how close our fits are, for
the rest of this section, we are going to use the co-
efficients derived in Kaplan et al. (2020), as they
are derived from a larger set of runs.

One caveat is that these scaling coefficients are
estimated on the OSCAR pretraining data, but we
will apply them to the training of a multilingual
model on a dataset that was not developed by the
time these experiments were performed. Compar-
ing the loss curves of the English and multilingual
1.3B models, we observe similar scaling and con-
vergence trends. This suggests that the capacity
of the model is the same whether it is trained on
English or multilingual text. Therefore, we expect
English-based scaling laws coefficients to still ap-
ply for a multilingual model. We additionally con-
jecture that they will transfer to our final dataset.

Optimality vs. convergence. From the scaling
laws (Kaplan et al., 2020), it is possible to derive
a Pareto frontier describing the optimal allocation
of the compute budget between model size and
number of tokens seen. This optimal allocation
achieves the lowest possible loss for a given com-
pute budget. It is notable that this Pareto optimal
frontier describes very large models trained on few

tokens; we call this training to optimality. This is
in stark contrast with the common practice of train-
ing much smaller models on many more tokens to
convergence. For instance, for a 1.3B parameters
model, Kaplan et al. (2020) predicts optimality at
20B tokens; any additional pretraining compute
budget would be better allocated to a larger model.

However, this only provides a partial view. Scal-
ing laws focus on the upstream performance (pre-
training loss) as the main evaluation metric, assum-
ing that it directly translates to downstream perfor-
mance. However, prior work showed that this is
not always the case (Tay et al., 2021). Addition-
ally, Table 1 shows that zero-shot generalization
continues improving significantly past optimality.

Scaling laws also neglect inference cost. A larger
model is necessarily more expensive to serve, and
inference costs at scale can rapidly catch up with
training costs (Patterson et al., 2022). Finally, in
the context of multilinguality, we note that most
multilingual models are also trained for more to-
kens (e.g. XGLM on 500B tokens Lin et al. (2021))
than a similarly sized monolingual model, as the
pretraining dataset will otherwise include very few
tokens from low-resource languages.

Accordingly, we choose to use the optimality
front as an upper bound on model size and a lower
bound on number of training tokens. Given our



compute budget, scaling laws predict an optimal
allocation for training a 392B parameter model
for 165B tokens. Consequently, we will use these
as constraints: the largest model we can afford
is 392B parameters, and the minimum number of
tokens to use is 165B tokens.

Prior models. We outline in Table 7 the archi-
tectures of all publicly detailed 100B+ parameters
models. We note that most of these models are
trained significantly beyond their respective opti-
mality threshold, in the 300-400B tokens range.
PanGu-α is the biggest exception, but this appears
to be due to hardware availability constraints rather
than actively motivated by a modeling decision.

Model shape. Kaplan et al. (2020) studied the
dependence of the loss with model shape, and
found only a limited impact within a wide range
of feed-forward ratios dff/dmodel, aspect ratios
dmodel/nlayer, and attention head dimensions. No-
tably, for a 1.5B parameters model, aspect ratios
from 10-250 and head dimensions from 15 to 250
all results in less than 1% change to the final loss.

Levine et al. (2020) proposed a theoretically mo-
tivated and empirically backed law describing the
optimal compromise between width and depth. No-
tably, for models past 100B+ parameters, they pre-
dict that models such as GPT-3 are too deep, while
models in the 10B or smaller range are usually
too shallow. For a GPT-3-sized model with 175B
parameters, they predict an ideal depth of 80 layers.

6.2 Final Model Architecture

From the observations above, we identify three
main guidelines for our final model:

• 300-400B tokens. We want to guarantee our
model will train on around 300-400B tokens of
data. This is in the upper range for models in
the size range we are pursuing, ensuring that low-
resource languages will not be allocated too few
tokens. Using the C = 6ND approximation
(Kaplan et al., 2020), with C = 4, 500 PF-days
and D = 300-400B tokens, this constrains the
model size to be around 160-200B parameters.

• 70-80 layers. From Levine et al. (2020) and the
size constraint above, we estimate that our model
should have between 70 and 80 layers.

• Maximum throughput. Finally, we want the
final architecture to have as high of a throughput

per GPU as possible, as more compute will trans-
late directly into longer pretraining and thus a
better model. Engineering constraints also come
into light here: wide shallow models are typically
easier to parallelize across nodes, up to a point
where excessive tensor paralellism becomes nec-
essary due to memory constraints.

From these guidelines, we benchmark 20 model
configurations, detailed in Appendix B. Among
these configurations, we select three of particular
interest, outlined in Table 8. They best fit our guide-
lines above, and offer high throughput.

We discard configuration (1), as its attention
heads are much larger than other models in the
literature. Configuration (3) is shallower than rec-
ommended by Levine et al. (2020), but delivers
3% higher throughput compared to (2). Thus, we
choose configuration (3) and its better throughput,
and because a shallower model is easier to deal
with at inference time by introducing less latency.

7 Conclusion

Seeking to establish the best possible model archi-
tecture that can be accommodated within a fixed
1,000,000 GPU-hours compute budget, we have
presented an extensive study on principled model-
ing decisions for large language models.

First, we have found that complimenting Com-
mon Crawl data with high-quality cross-domain
curated data can boost zero-shot generalization,
validating previous suggestions (Rosset, 2020; Gao
et al., 2020). Through an ablation study, we have
identified ALiBi as the position embedding of
choice, confirmed the potential of SwiGLU, and
highlighted that stabilizing techniques such as em-
bedding normalization sometimes come at the ex-
pense of zero-shot generalization. Exploring multi-
linguality, we have found that multilingual models
significantly underperform their monolingual coun-
terpart on English zero-shot benchmarks.

Finally, we further provided insights into how
scaling laws can be used in practice in the design of
large language models. At variance with previous
works, we outlined the full reasoning behind every
architectural parameters, including model shape.

We hope our work can help practitioners better
understand modeling decisions, leading to better
language models, and that our transparency will
accelerate future similar work.



Model Size Layers Hidden dim. Attention heads Memory Performance
[params.] num. dim. [GB] [sec/iter.] [TFLOPs]

(1) 178 82
13,312

64 208 63 104 152
(2) 178 82 128 104 60 109 146
(3) 176 70 14,336 112 128 59 105 150

Table 8: We choose configuration (3) as the final configuration for our 176B model. (1) was rejected because of
high attention heads dimension, and (3) was favored over (2) because of higher throughput. Appendix B details all
20 final configurations benchmarked, only the best three are displayed here.
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A Evaluation details

Task Type Random baseline

ARC (Clark et al., 2018) Challenge Natural Language Inference 25.0
Easy 25.0

GLUE MRPC (Dolan and Brockett, 2005) Paraphrase Identification 50.0
QQP (Iyer et al., 2017) Paraphrase Identification 50.0

HellaSwag (Zellers et al., 2019) Sentence Completion 25.0
LAMBADA (Paperno et al., 2016) Sentence Completion 0.0
LogiQA (Liu et al., 2020) Multiple-Choice Question Answering 25.0
MathQA (Amini et al., 2019) Multiple-Choice Question Answering 20.1
MC-TACO (Ben Zhou and Roth, 2019) Multiple-Choice Question Answering 36.2
OpenBookQA (Mihaylov et al., 2018) Multiple-Choice Question Answering 25.0
PIQA (Bisk et al., 2020) Multiple-Choice Question Answering 50.0
PROST (Aroca-Ouellette et al., 2021) Multiple-Choice Question Answering 25.0
PudMedQA (Jin et al., 2019) Multiple-Choice Question Answering 33.3
QNLI (Rajpurkar et al., 2016; Wang et al., 2019) Sentence Completion 50.0
Race (Lai et al., 2017) Closed-Book Question Answering 25.0
SciQ (Johannes Welbl, 2017) Multiple-Choice Question Answering 25.0
SST (Socher et al., 2013) Sentiment 50.0
SuperGLUE Boolq (Clark et al., 2019) Multiple-Choice Question Answering 50.0

COPA (Gordon et al., 2012) Sentence Completion 50.0
MultiRC (Khashabi et al., 2018) Multiple-Choice Question Answering 5.8
RTE (Dagan et al., 2005) Natural Language Inference 50.0
WIC (Pilehvar and os’e Camacho-Collados, 2018) Word Sense Disambiguation 50.0
WSC (Levesque et al., 2012) Word Sense Disambiguation 50.0

TriviaQA (Joshi et al., 2017) Closed-Book Question Answering 0.0
WebQuestions (Berant et al., 2013) Closed-Book Question Answering 0.0
Winogrande (Sakaguchi et al., 2019) Coreference resolution 50.0
WNLI (Sakaguchi et al., 2019) Natural Language Inference 50.0

EAI harness 33.3

Table 9: Evaluation tasks considered in the EAI harness and random baselines.



B Architecture details

ARCHITECTURE PARALLELISM PERFORMANCE

Size Hidden dim. Layers Attention heads Data Tensor Pipeline MBS Memory Throughput
[Bparams.] num. dim. [GB] [s/iter.] [TFLOPs]

206 14,336 82 128 112 8 4 12 2 OOM

203 13,312 94 128 104 8 4 12 2 67 124,1 146,1

195 12,288 106

128 96

8 4 12

2 67 121,4 143,7

96 128 4 79 120,3 145,0
128 2 65 118,8 146,9

64 192 67 116,5 149,8

184 12,288 100 64 192
16 4

6

2 OOM
1 OOM

8 8 4 72 121,0 136,2
2 61 140,0 117,9

178 13,312 82

128 104
8 4

12

2 60 108,8 145,7
104 128 62 123,7 128,1

64 208 4 74 104,8 151,2
4 8 52 111,8 141,8
8 4 2 63 104,5 151,7

176 14,336 70

128 112

8 4 12
2 60 105,9 148,1

112 128 59 104,5 150,1

64 224
4 73 102,3 153,3

2 59 102,0 153,7
4 8 12 40 121,6 128,9

Table 10: Throughput and memory usage of considered models sizes. Note that pipeline parallelism here
considers equal "slots" for embeddings and Transformer layers. This is important to optimize pipeline use, as our
multilingual embeddings are quite large (250k).
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