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Abstract

Selecting appropriate hyperparameters is crucial for unlocking the full potential
of advanced unsupervised domain adaptation (UDA) methods in unlabeled target
domains. Although this challenge remains under-explored, it has recently garnered
increasing attention with the proposals of various model selection methods. Reli-
able model selection should maintain performance across diverse UDA methods
and scenarios, especially avoiding highly risky worst-case selections—selecting
the model or hyperparameter with the worst performance in the pool. Are existing
model selection methods reliable and versatile enough for different UDA tasks? In
this paper, we provide a comprehensive empirical study involving 8 existing model
selection approaches to answer this question. Our evaluation spans 12 UDA meth-
ods across 5 diverse UDA benchmarks and 5 popular UDA scenarios. Surprisingly,
we find that none of these approaches can effectively avoid the worst-case selection.
In contrast, a simple but overlooked ensemble-based selection approach, which we
call EnsV, is both theoretically and empirically certified to avoid the worst-case
selection, ensuring high reliability. Additionally, EnsV is versatile for various
practical but challenging UDA scenarios, including validation of open-partial-set
UDA and source-free UDA. Finally, we call for more attention to the reliability of
model selection in UDA: avoiding the worst-case is as significant as achieving peak
selection performance and should not be overlooked when developing new model
selection methods. Code is available at https://github.com/LHXXHB/EnsV.

1 Introduction

Deep learning has achieved incredible advancements in various tasks through supervised learning
with large labeled datasets [1]. However, obtaining labels can be expensive, and deep models often
struggle to generalize to unlabeled data from unseen distributions [2]. Domain adaptation [3] tackles
this challenge by transferring knowledge from a labeled source domain to a target domain with limited
labels but a similar task. Unsupervised domain adaptation [4] (UDA), particularly, has garnered
significant attention due to its practical assumption that the target domain is entirely unlabeled,
witnessing the development of many effective methods [5–8] and practical settings [9–12].

However, successful applications of UDA methods across diverse tasks rely heavily on selecting ap-
propriate hyperparameters. Sub-optimal hyperparameters can cause state-of-the-art UDA methods to
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Table 1: Statistics for worst-case selections by various model selection methods are provided across
110 closed-set UDA tasks (potentially an additional 21 tasks on DomainNet [13]), 24 partial-set UDA
tasks, and 17 source-free UDA tasks (only for applicable methods). These statistics represent the
count of worst-case selections divided by the total count of tasks, with bold font indicating the best
worst-case avoidance. ‘n.a.’ indicates that certain methods are not applicable without source data.

Method Closed-set UDA Partial-set UDA Source-free UDA
SourceRisk [9] 16 / 110 2 / 24 n.a.
IWCV [14] 15 / 110 3 / 24 n.a.
DEV [15] 9 / 110 1 / 24 n.a.
RV [16] 2 / 110 1 / 24 n.a.
Entropy [17] 15 / 131 7 / 24 16 / 17
InfoMax [18] 9 / 131 12 / 24 16 / 17
SND [19] 33 / 131 3 / 24 11 / 17
Corr-C [20] 80 / 131 4 / 24 3 / 17
EnsV (Ours) 0 / 131 0 / 24 0 / 17

underperform compared to the source-trained model without target-domain adaptation [19, 18]. This
phenomenon emphasizes the significance of model selection, also called hyperparameter selection or
validation, in UDA. Taking the typical one-hyperparameter validation task of a given UDA method as
an example, we need to determine the optimal value of a hyperparameter η among a set of m different
candidate values {ηi}mi=1. By applying these different ηi with the same UDA method, we can obtain
a set of m different models with the parameter weights {θi}mi=1. The goal is to identify the candidate
model that exhibits the best performance on the unlabeled target domain and subsequently adopt
the associated hyperparameter value for η. This model selection problem remains challenging and
under-explored in UDA due to cross-domain distribution shifts and the absence of labeled target data.

Existing approaches can be categorized into two types. The first type involves leveraging labeled
source data for target-domain model selection [9, 14–16]. The second type designs unsupervised
metrics based on priors of the learned target-domain structure and utilizes the metrics for model
selection [17, 19, 18, 20]. It is natural to ask: Are these approaches reliable in model selection tasks,
i.e., can they maintain good performance for various practical UDA tasks?

To answer this question, we conduct an extensive empirical study to assess the performance of all
selection methods across various practical UDA settings, including closed-set UDA [21], partial-set
UDA [10], open-partial-set UDA [11], and source-free UDA [12, 22]. Notably, the model selection
problem of open-partial-set UDA has not been investigated before. Surprisingly, we find that despite
their specific designs, all these methods encounter challenges in avoiding the selection of poor
or even the worst models across various UDA methods and settings. This renders the adaptation
ineffective or even harmful, thereby constraining their adoption by researchers and practitioners in
the community [18]. For instance, Table 1 compares the worst-case selection statistics of all these
model selection methods across various practical UDA settings. These settings include standard
closed-set UDA and partial-set UDA, which have been extensively studied in prior works [15, 19],
and source-free UDA, where the model selection problem has not been widely investigated. The
comparison reveals that all the methods occasionally or even frequently suffer from worst-case model
selection situations, indicating high unreliability.

In contrast, we note that a simple ensemble-based validation baseline, dubbed EnsV, can effectively
avoid the worst-case selection. Through a straightforward theoretical analysis of the ensemble, we
observe that it is guaranteed to surpass the worst candidate model’s performance. Our introduced
EnsV takes a further simple step, utilizing the ensemble as a role model for directly assessing
candidate models during the model selection process. This strategy ensures the secure avoidance of
selecting the worst candidate model, thereby enhancing the reliability of model selection. Moreover,
EnsV only uses target-domain predictions inferred by all candidate models. This eliminates the need
for specific domain shift assumptions and access to source data, while also requiring no additional
effort, such as time and memory, as all models are provided within the given problem context. This
simplicity and versatility make EnsV suitable for various practical UDA scenarios, including the
unexplored challenges of validation for UDA with unknown open classes [19]. Despite EnsV not
being certified for peak-performance selection, we hope that, as the first to focus on the practical
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Table 2: Comparisons of unsupervised model selection approaches used for UDA.

Method covariate
shift

label
shift

w/o
source data

w/o extra
hyperparameter

w/o
extra training

worst-case
avoidance

SourceRisk [9] ✗ ✗ ✗ ✗ ✓ ✗
IWCV [14] ✓ ✗ ✗ ✗ ✗ ✗
DEV [15] ✓ ✗ ✗ ✗ ✗ ✗
RV [16] ✓ ✗ ✗ ✗ ✗ ✗
Entropy [17] ✓ ✗ ✓ ✓ ✓ ✗
InfoMax [18] ✓ ✗ ✓ ✓ ✓ ✗
SND [19] ✓ ✓ ✓ ✗ ✓ ✗
Corr-C [20] ✓ ✗ ✓ ✓ ✓ ✗
EnsV (Ours) ✓ ✓ ✓ ✓ ✓ ✓

aspect of worst-case avoidance in model selection, our empirical study and simple baseline can
inspire future efforts in developing more reliable model selection methods.

2 Related Work

Unsupervised domain adaptation (UDA) is initially studied in a closed-set setting (CDA) where
only covariate shift [14] is considered as the domain shift, and the two domains share the same
label set. Recent research has explored many real-world UDA scenarios by incorporating label
shift, where the two domains have distinct label sets. This includes partial-set UDA (PDA) [10],
where several source classes are missing in the target domain, open-set UDA (ODA) [23], where
the target domain contains samples from unknown classes, and open-partial-set UDA (OPDA) [11],
where there are only some overlaps in the label sets across domains. More recently, source-free
UDA settings (SFUDA) [24, 12] have been explored, where only the source model instead of source
data is available for target adaptation, potentially addressing privacy concerns in the source domain.
Subsequently, in the context of black-box domain adaptation [22], the privacy of the source domain
is fully safeguarded. Specifically, the research community has made significant efforts to develop
effective UDA methods in image classification [9, 6] and semantic segmentation [25, 26], which
can be seen through two distinct research directions. The first direction focuses on aligning the
distributions across domains by minimizing specific discrepancy measures [27, 28, 21, 29, 30]
or using adversarial learning to maximize domain confusion [9]. Especially, adversarial learning
has become a popular approach and has been explored at different levels for domain alignment,
including image-level [31], manifold-level [9, 32, 6], and prediction-level [5, 25, 26, 33]. The second
direction focuses on target-oriented learning, aiming to learn a good structure for the target domain.
This includes self-training approaches [34, 12, 35] and target-specific regularizations [7, 8, 36]. To
thoroughly assess the efficacy of model selection baselines, we opt for a diverse set of UDA methods
across various UDA scenarios in our model selection experiments and then utilize these baselines to
choose the appropriate hyperparameters for different UDA methods.

Model selection for out-of-distribution (OOD) testing data is crucial for practical model deployment,
but it remains challenging. Although the problem has attracted increasing attention in both domain
generalization (DG) [37, 38] and UDA [18, 19], it remains relatively under-explored. In DG, since
target data is not available for model selection, existing methods usually estimate the general OOD
performance with multiple source domains. Differently, in UDA, thanks to the transductive setting,
target data can be used for model selection in various ways. Efforts to address UDA model selection
can be broadly categorized into two lines. Early approaches focused on estimating the target domain
risk through labeled source data. SourceRisk [9] utilized a hold-out labeled source validation set
to guide model selection based on source risk. To mitigate the impact of domain shift on source
estimation, [14] introduced Importance-Weighted Cross-Validation (IWCV), which re-weights source
risk using a source-target density ratio estimated in the input space. Building upon this, [15] improved
IWCV by introducing Deep Embedded Validation (DEV), which estimates the density ratio in the
feature space and offers lower variance. [16] proposed a novel Reverse Validation approach (RV)
that leveraged reversed source risk for selection. However, source-based validation methods often
necessitate additional model training to handle domain shifts, rendering them cumbersome and
less reliable. In contrast, recent model selection methods have shifted their focus exclusively to
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Figure 1: Left: Depiction of the unsupervised model selection problem in domain adaptation
scenarios, where the objective is to identify the optimal model for the unlabeled target domain. Right:
Overview of our approach, EnsV, for model selection, which relies solely on predictions of target
data by all candidate models.

unlabeled target data, employing specifically designed metrics for model selection. For instance, [17]
introduced the mean Shannon’s Entropy of target predictions as a model selection metric, promoting
confident predictions. [18] proposed the use of Input-Output Mutual Information Maximization
(InfoMax)[39] as a metric, augmented with class-balance regularization over Entropy. [19] introduced
Soft Neighborhood Density (SND), a novel metric focusing on neighborhood consistency. [20]
presented Corr-C, a class correlation-based metric that evaluates both class diversity and prediction
certainty simultaneously. Our EnsV baseline aligns with the latter line of research. Importantly, it
operates without making any assumptions about cross-domain distribution shifts or the learned target-
domain structure, making it suitable for a variety of UDA scenarios. A comprehensive comparison,
as presented in Table 2, underscores that EnsV stands out as a simple and versatile approach.

Ensemble methods, which harness the collective power of a pool of models through prediction
averaging, have been extensively studied in the machine learning community for enhancing model
performance [40–43] and improving model calibration [44, 45]. In the era of deep learning, the
efficiency of ensembling has garnered significant attention due to the high training cost of deep
models. Efficient solutions have been proposed, such as using partially shared parameters [46–48]
and leveraging intermediate snapshots [49–51]. Recently, weight averaging has gained attention as
an efficient alternative to prediction averaging during inference [52–56]. In addition, diversity is
considered crucial for effective ensembles. Various approaches have been explored to achieve diverse
checkpoints, including bootstrapping [57], random initializations [58], tuning hyperparameters [59,
60, 53], and combining multiple strategies [61]. Different from mainstream ensemble applications, our
work innovatively and elegantly applies ensemble to help address the open problem of unsupervised
model selection in various domain adaptation scenarios. In addition, [62] leverages ensembles for
hyperparameter selection in CDA but directly uses prediction-based ensembling as the output, unlike
our EnsV, which includes a selection step.

3 Methodology

We consider a C-way image classification task to introduce the concept of unsupervised domain adap-
tation (UDA). In UDA, we typically have a labeled source domain Ds = {(xi

s, y
i
s)}

ns
i=1 comprising

ns annotated source images xs and their corresponding labels ys. Additionally, there is an unlabeled
target domain, Dt = {xi

t}
nt
i=1, containing only nt unlabeled target images xt. Despite the tasks being

similar, there exist data distribution shifts between the two domains. The primary objective of UDA
is to accurately predict the unavailable target labels, {yit}

nt
i=1, by leveraging a discriminative mapping

f(x, θ), which is learned using data from two domains. Here, θ ∈ Rd represents the parameter
weights of the trained UDA model. When presented with an input image x, the model generates a
probability prediction vector, p = f(x, θ), where p ∈ RC and

∑C
i=1 p

i = 1.

Model selection in UDA is essentially equivalent to the hyperparameter selection challenge. Here,
we aim to determine the optimal value for the hyperparameter η from a set of m candidate values
{ηi}mi=1. The hyperparameter η can encompass various aspects, including the learning rate, loss
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coefficients, architectural settings, training iterations, and more. By training UDA models using the
m different values of η, we obtain corresponding models with weights denoted as {θi}mi=1. In UDA,
the objective of model selection is to pinpoint the model θk that demonstrates the best performance
on the unlabeled target domain. Subsequently, we select the corresponding hyperparameter ηk as the
optimal choice for potential adaptation with unlabeled target samples from the exact target domain.
We illustrate the problem setting in Figure 1. Without loss of generality, in this paper, we assume m
is greater than 1, and candidate models have different weights θ, resulting in different discriminative
mappings of f(x, θ). For clarity, we treat both θ and the model interchangeably in the presentation.
This also applies to model selection, hyperparameter selection, and validation.

3.1 Ensemble: The Overlooked ‘Free Lunch’ in Model Selection

Model selection in UDA is challenging due to the absence of labeled target data for directly eval-
uating candidate models. Existing selection approaches typically address this challenge from two
perspectives: leveraging labeled source data [15] or designing unsupervised metrics based on specific
assumed priors [19]. Surprisingly, we’ve observed that all existing model selection methods treat
each candidate model independently, overlooking the collective potential offered by the off-the-shelf
ensemble created by these candidates. In this paper, unless otherwise specified, the ensemble refers
to prediction-based ensembling, which involves averaging probability predictions across all models
to obtain the averaged prediction, i.e., 1

m

∑m
i=1 f(x, θi) for a sample x.

In contrast, we first investigate the potential of the ensemble within the model selection problem.
When contemplating the use of the ensemble, two primary concerns often arise, one concerning
low efficiency due to training multiple models and the other related to the potential lack of diversity
among candidate models. Upon closer inspection of model selection, we observe that the problem
setting inherently offers a range of pre-existing candidate models, effectively addressing the efficiency
concern without requiring extra model training. Furthermore, all candidate models are trained using
a UDA method with varying hyperparameter values, resulting in diverse yet effective discriminative
abilities. This naturally mitigates the diversity concern. Interestingly, the ensemble emerges as a ‘free
lunch’ in UDA model selection, a previously overlooked insight. To delve deeper into the effectiveness
of the ensemble, we present a theoretical analysis grounded in the proposition below.

Proposition 1 Given negative log-likelihood (NLL) as the loss function, defined as l(p, y) = − log py ,
and considering a random sample x with label y, the following inequality can be established between
the loss of the ensemble 1

m

∑m
i=1 f(x, θi), the averaged loss of all models {θi}mi=1, and the loss of

the worst one θworst:

l(
1

m

m∑
i=1

f(x, θi), y) <
1

m

m∑
i=1

l(f(x, θi), y) < l(f(x, θworst), y).

Kindly refer to the Appendix for the proof. This proposition theoretically guarantees that the ensemble
strictly outperforms the worst candidate model.

3.2 Ensemble-based Validation (EnsV): Ensemble as A Role Model for Model Selection

Intuitively, we employ the previously mentioned off-the-shelf ensemble as a reliable role model and
select the model that generates predictions closest to this role model among all candidates. To begin
with, for each unlabeled target sample x, we consider the ensemble 1

m

∑m
i=1 f(x, θi) as a reliable

estimation of its unavailable ground truth. This enables us to obtain reliable predictions for all target
data, denoted as { 1

m

∑m
i=1 f(xj , θi)}nt

j=1. These ensembles can be viewed as the output of a reliable
role model, aiding in accurate model selection in the subsequent step. We then utilize the role model
to assess all candidate models and select the one with the highest similarity. For simplicity, EnsV
involves direct measurement of accuracy between the role model output { 1

m

∑m
i=1 f(xj , θi)}nt

j=1 and
the predictions made by each candidate model, such as {f(xj , θi)}nt

j=1 for the model with weights
θi. We select the model θk with the highest accuracy and determine the optimal value ηk for the
hyperparameter η. Figure 1 provides a vivid illustration of our approach, EnsV. Guided by a reliable
role model, EnsV can safely avoid selecting the worst candidate model, a distinct advantage over all
existing model selection approaches.
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Table 3: Validation accuracy (%) of CDA on Office-Home (Home). bold: Best value.

Method ATDOC [35] BNM [8] CDAN [6]
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg

SourceRisk [9] 66.63 52.54 78.57 76.61 68.59 62.44 50.74 77.53 74.76 66.37 55.00 42.65 69.50 68.81 58.99
IWCV [14] 67.97 54.03 78.31 79.26 69.89 66.56 48.16 74.09 73.28 65.52 61.31 41.24 67.17 71.93 60.41
DEV [15] 67.39 54.23 77.78 79.39 69.70 65.76 56.39 73.92 77.59 68.41 67.23 57.04 68.76 76.91 67.49
RV [16] 68.68 56.13 78.93 79.64 70.85 68.25 56.75 78.08 78.67 70.44 67.66 56.74 76.01 77.68 69.52
Entropy [17] 63.67 55.83 76.54 78.36 68.60 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
InfoMax [18] 63.67 55.63 77.61 78.36 68.82 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
SND [19] 63.67 55.63 76.54 77.54 68.34 66.28 54.49 74.15 77.64 68.14 67.94 57.56 76.96 77.68 70.04
Corr-C [20] 63.51 50.39 73.89 73.88 65.42 58.10 45.37 68.97 70.59 60.76 53.84 41.21 64.96 67.65 56.91
EnsV 68.70 58.05 79.81 80.41 71.74 68.61 57.38 78.08 79.54 70.90 67.88 57.56 77.39 78.19 70.25
Worst 62.89 50.39 73.89 73.88 65.26 58.10 45.37 68.96 70.59 60.75 53.80 41.21 64.78 67.65 56.86
Best 68.97 58.35 80.27 80.58 72.04 68.93 57.51 78.43 79.57 71.11 68.19 57.90 77.44 78.19 70.43

Method MCC [36] MDD [33] SAFN [7] Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

SourceRisk [9] 66.57 56.53 79.55 80.90 70.89 62.53 54.43 75.27 75.55 66.94 63.54 51.34 73.66 74.54 65.77 66.26
IWCV [14] 68.69 58.93 80.37 80.08 72.02 64.20 56.50 73.78 74.28 67.19 64.31 52.36 72.31 74.29 65.82 66.81
DEV [15] 68.81 58.07 78.54 80.10 71.38 64.42 56.94 76.85 75.94 68.54 63.15 50.47 71.20 74.54 64.84 68.39
RV [16] 70.40 58.80 80.63 80.39 72.56 66.57 55.75 76.60 76.90 68.96 64.31 50.13 73.77 74.93 65.78 69.68
Entropy [17] 69.29 59.33 80.63 80.96 72.55 66.54 57.63 77.27 77.45 69.72 59.85 46.41 72.51 73.18 62.99 68.63
InfoMax [18] 66.58 58.48 79.12 80.81 71.25 66.54 57.74 77.27 77.45 69.75 64.56 49.71 73.77 73.18 65.31 68.84
SND [19] 69.05 55.61 79.72 79.10 70.87 51.34 38.01 77.61 68.46 58.86 57.90 46.41 67.04 68.18 59.88 66.02
Corr-C [20] 69.05 55.61 79.72 79.10 70.87 47.79 31.69 63.40 60.63 50.88 62.66 46.41 68.83 68.18 61.52 61.06
EnsV 69.92 59.50 80.30 80.86 72.65 66.46 57.81 77.61 76.51 69.60 65.91 52.18 74.51 75.57 67.04 70.36
Worst 62.72 54.63 76.19 78.19 67.93 47.79 31.69 63.40 60.63 50.88 57.90 46.41 67.04 68.18 59.88 60.26
Best 70.68 59.95 80.93 81.02 73.14 66.75 58.36 77.61 77.45 70.04 66.59 53.14 74.90 75.57 67.55 70.72

4 Experiments

4.1 Setup

Datasets Our experiments encompass diverse and widely-used image classification benchmarks:
(i) Office-31 [63] with 31 classes and 3 domains (Amazon (A), DSLR (D), and Webcam (W)); (ii)
Office-Home [64] with 65 classes and 4 domains (Art (Ar), Clipart (Cl), Product (Pr), and Real-
World (Re)); (iii) VisDA [65] with 12 classes and 2 domains (training (T) and validation (V)); and
(iv) DomainNet-126 [13, 5] with 126 classes and 4 domains (Real (R), Clipart (C), Painting (P),
and Sketch (S)). Additionally, we conduct experiments in synthetic-to-real semantic segmentation,
specifically targeting the transfer from GTAV [66] to Cityscapes [67].

UDA methods In our experiments, we assess all the model selection approaches listed in Table 2.
Kindly refer to the Appendix for detailed introductions of them. With these approaches, we perform
model selection for various UDA methods across different UDA settings. For CDA of image
classification, we consider ATDOC [35], BNM [8], CDAN [6], MCC [36], MDD [33], and SAFN [7].
For PDA, we consider PADA [10] and SAFN [7]. For OPDA, we consider DANCE [11]. For
SFUDA, we consider the white-box method SHOT [12] and the black-box method DINE [22]. For
domain adaptive semantic segmentation, we consider AdaptSeg [25] and AdvEnt [26]. Following
previous model selection studies [15, 19], we primarily focus on one-hyperparameter validation and
present the comprehensive hyperparameter settings for all UDA methods in the Appendix. For each
hyperparameter, we generally explore 7 candidate values. Additionally, we perform two types of
challenging two-hyperparameter validation tasks. For classification tasks, we select the bottleneck
dimension as the second hyperparameter from 4 options: 256, 512, 1024, 2048 in MCC and MDD. For
segmentation tasks, following SND [19], we select the training iteration as the second hyperparameter
from 8 options, ranging from 16,000 to 30,000 iterations at intervals of 2,000 iterations, in AdaptSeg
and AdvEnt.

Implementation details For all UDA methods, we train UDA models using the Transfer Learning
Library* or the official GitHub code on a single RTX TITAN 16GB GPU with a batch size of 32
and a total number of iterations of 5000. Unless specified, checkpoints are saved at the last iteration.
We adopt ResNet-101 [68] for VisDA and segmentation tasks, ResNet-34 [68] for DomainNet, and
ResNet-50 [68] for other benchmarks. We assess the selection performance of all model selection
methods on our trained models for fair comparisons. As a result, comparing our reported values with
those from the original papers [15, 19] would be inappropriate. We repeat trials with three random
seeds and report the mean for results. Source-based validation methods allocate 80% of the source
data for training and the remaining 20% for validation.

*https://github.com/thuml/Transfer-Learning-Library
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Table 4: Validation accuracy (%) of CDA on Office-31 (Office) and VisDA.

Method ATDOC [35] BNM [8] CDAN [6]
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V

SourceRisk [9] 72.56 88.96 87.80 83.11 67.79 72.92 90.36 89.43 84.24 70.51 63.90 91.16 89.06 81.37 64.50
IWCV [14] 72.56 86.14 86.54 81.75 67.79 72.92 85.54 89.43 82.63 76.94 63.90 69.08 58.74 63.91 64.50
DEV [15] 72.56 86.14 86.54 81.75 70.34 72.92 85.54 89.43 82.63 76.94 63.90 91.16 88.30 81.12 64.50
RV [16] 74.93 89.96 87.23 84.04 77.37 70.71 88.55 89.43 82.90 74.58 73.27 91.16 88.30 84.24 76.02
Entropy [17] 73.29 86.14 87.80 82.41 62.85 72.67 85.54 83.14 80.45 58.36 71.62 91.16 89.06 83.95 80.46
InfoMax [18] 73.29 86.14 87.80 82.41 76.49 70.52 85.54 83.14 79.73 58.36 71.62 91.16 88.30 83.69 80.46
SND [19] 73.29 92.37 87.80 84.49 77.37 74.44 85.54 83.14 81.04 69.65 71.55 92.37 88.55 84.16 80.46
Corr-C [20] 71.05 90.96 84.40 82.14 67.79 67.16 84.34 78.99 76.83 70.51 58.29 67.67 59.62 61.86 64.50
EnsV 74.83 90.96 87.80 84.53 73.36 74.87 90.36 89.43 84.89 74.58 73.20 92.77 88.55 84.84 79.05
Worst 71.05 86.14 84.40 80.53 62.85 67.16 84.34 78.99 76.83 23.08 58.29 67.67 57.11 61.02 64.50
Best 75.31 92.37 87.80 85.16 77.37 75.52 90.36 89.43 85.10 76.94 73.38 92.77 89.06 85.07 80.46

Method MCC [36] MDD [33] SAFN [7] Office VisDA
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V AVG AVG

SourceRisk [9] 73.11 90.96 91.07 85.05 80.46 75.72 91.06 86.23 84.34 72.25 69.20 83.73 87.17 80.03 70.71 83.02 71.04
IWCV [14] 73.11 91.16 88.55 84.27 81.48 75.49 91.16 89.18 85.28 72.25 69.32 86.55 80.38 78.75 66.33 79.43 71.55
DEV [15] 72.70 89.16 93.08 84.98 81.48 75.65 91.16 89.18 85.33 72.25 68.21 86.55 80.38 78.38 66.33 82.36 71.97
RV [16] 73.97 89.06 93.08 85.37 82.22 74.46 92.57 86.79 84.61 77.23 68.69 90.83 87.17 82.23 66.33 83.90 75.62
Entropy [17] 73.93 90.56 93.46 85.98 82.22 76.31 92.57 90.82 86.57 78.95 68.23 91.57 85.66 81.82 70.20 83.53 72.17
InfoMax [18] 73.93 89.16 88.55 83.88 81.48 76.50 92.57 90.82 86.63 78.95 68.23 91.57 87.42 82.41 70.20 83.13 74.32
SND [19] 73.93 91.97 93.46 86.45 69.35 76.50 92.17 90.82 86.50 78.95 68.23 89.96 85.66 81.28 58.15 83.99 72.32
Corr-C [20] 73.93 91.37 93.46 86.25 69.35 74.25 91.57 85.66 83.83 72.25 68.39 86.75 80.38 78.51 62.52 78.24 67.82
EnsV 73.75 90.56 91.45 85.25 82.22 75.92 92.57 90.82 86.44 77.23 69.67 90.96 87.17 82.60 73.96 84.76 76.73
Worst 70.56 86.75 87.17 81.49 69.35 73.06 87.35 85.66 82.02 72.25 67.27 83.73 80.38 77.13 58.15 76.50 58.36
Best 74.42 91.97 93.46 86.62 82.23 76.52 92.57 92.20 87.10 78.95 70.06 91.57 87.42 83.02 75.30 85.34 78.54

Table 5: Validation accuracy (%) of PDA on Office-Home.
Method SAFN [7] PADA [10] Home

→ Ar → Cl → Pr → Re avg → Ar → Cl → Pr → Re avg AVG
SourceRisk [9] 66.82 54.71 74.41 76.48 68.11 57.21 41.90 64.48 71.89 58.87 63.49
IWCV [14] 69.36 53.91 71.78 76.38 67.86 59.65 50.51 66.84 72.96 62.49 65.18
DEV [15] 69.36 54.94 73.95 76.06 68.58 66.88 49.29 72.40 70.46 64.76 66.67
RV [16] 68.98 52.74 72.83 77.14 67.92 57.79 40.87 63.87 70.83 58.34 63.13
Entropy [17] 71.75 55.62 76.36 76.59 70.08 60.08 46.51 53.16 62.47 55.56 62.82
InfoMax [18] 63.67 51.74 69.64 73.62 64.67 60.08 51.40 60.20 66.67 59.59 62.13
SND [19] 71.75 51.74 76.36 78.36 69.55 67.80 50.71 59.46 67.13 61.27 65.41
Corr-C [20] 71.23 55.70 76.94 79.13 70.75 61.34 45.65 54.90 62.25 56.04 63.40
EnsV 70.98 56.12 75.67 78.48 70.31 68.54 55.60 69.86 78.23 68.06 69.19
Worst 62.48 49.91 68.50 73.62 63.63 56.29 39.76 50.49 59.31 51.46 57.55
Best 73.37 58.09 77.35 79.33 72.03 69.33 55.86 74.55 79.59 69.83 70.93

4.2 Comprehensive Comparison of All Model Selection Methods

Following prior studies [15, 19, 18], we extensively compare our EnsV with 8 other methods in
standard UDA settings, including CDA and PDA. Averaged results are presented for UDA tasks
sharing the same target domain. For example, results of ‘Cl→Ar’, ‘Pr→Ar’, and ‘Re→Ar’ on
Office-Home are averaged and reported under the column labeled ‘→ Ar’. In addition, the column
‘avg’ signifies the averaged results for each UDA method while the ‘AVG’ row represents the
averaged results across different UDA methods. ‘Worst’ refers to the worst candidate model with the
lowest target-domain performance, while ‘Best’ indicates the best candidate model with the highest
performance. Kindly refer to the Appendix for full results.

CDA We provide model selection results for 6 typical closed-set UDA methods on Office-Home,
Office-31, and VisDA in Tables 3 and 4. EnsV consistently outperforms other validation methods
in terms of the average selection accuracy on each benchmark and consistently achieves near-best
model selection results. Among existing methods, we find the reverse validation (RV) approach is
consistently the best among the three benchmarks. However, RV requires extra model re-training,
making it impractical when compared to the efficient target-specific model selection methods.

PDA For partial-set UDA with label shift of missing source-domain classes, we conduct hyper-
parameter selections for two different UDA methods on Office-Home (Table 5). Notably, existing
methods, except for DEV and SND, suffer from frequent low-accuracy selections. In contrast, EnsV
consistently achieves high-accuracy selections and, on average, outperforms both DEV and SND.

4.3 Comparison of Target-specific Model Selection Methods

Recent advancements in UDA model selection [19, 18] indicate that validation using only unlabeled
target data can achieve superior performance compared to source-based methods, with increased
simplicity. Eliminating the reliance on source data facilitates easy application in various real-world
UDA scenarios, extending beyond conventional closed-set settings. We particularly compare EnsV
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Table 6: Validation accuracy (%) of CDA on DomainNet-126 (DNet).

Method CDAN [6] BNM [8] ATDOC [35] DNet
→ C → P → R → S avg → C → P → R → S avg → C → P → R → S avg AVG

Entropy [17] 67.09 65.80 74.42 59.34 66.66 63.36 64.28 74.31 48.69 62.66 63.75 61.85 79.60 52.17 64.34 64.55
InfoMax [18] 67.09 65.80 74.42 59.34 66.66 67.05 64.28 74.31 55.67 65.33 63.75 61.85 79.60 52.17 64.34 65.44
SND [19] 67.09 64.68 74.42 59.34 66.38 56.56 54.50 74.31 42.37 56.93 63.75 61.85 79.60 47.00 63.05 62.12
Corr-C [20] 57.35 62.88 74.42 54.63 62.32 59.75 63.41 77.62 42.37 60.79 59.98 62.27 74.42 53.69 62.59 61.90
EnsV 65.88 65.27 74.44 57.42 65.75 67.86 66.06 77.62 57.69 67.31 70.30 68.44 80.01 61.73 70.12 67.73
Worst 57.35 60.76 73.44 51.41 60.74 55.79 54.50 74.31 42.37 56.74 59.98 61.85 74.42 47.00 60.81 59.43
Best 67.09 65.80 74.44 59.34 66.66 67.86 66.50 78.68 58.49 67.88 70.30 68.44 80.38 62.23 70.34 68.29

with other target-specific validation methods on the large-scale benchmark DomainNet-126 and in
two extra practical UDA settings: OPDA and SFUDA.

CDA We compare all target-specific validation methods on the large-scale benchmark DomainNet-
126 (Table 6). EnsV consistently keeps the leading validation performance, while other approaches
exhibit high variance.

Table 7: H-score [69, 70] (%) of an OPDA method DANCE [11] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
Entropy [17] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.53 25.39 33.75 39.37 34.27
InfoMax [18] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.33 25.39 33.75 39.37 34.25
SND [19] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 25.39 0.00 28.40 14.98
Corr-C [20] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 69.02 0.00 28.40 18.62
EnsV 38.40 76.96 66.57 71.76 75.17 69.99 77.42 48.15 69.40 81.84 67.54 84.31 68.96
Worst 1.00 0.00 12.73 0.00 17.10 1.95 19.77 11.99 35.69 25.39 0.00 28.40 12.84
Best 67.00 76.96 66.57 71.76 75.17 69.99 77.42 64.32 72.87 81.84 67.54 84.31 72.98

OPDA In open-partial-set UDA with label shift of unknown classes, we choose a representative
method DANCE for validation on Office-Home (Table 7) and measure the H-score [70, 69]. Previous
validation works have not studied this challenging setting [19], and all of them encounter issues with
poor model selections. In contrast, EnsV consistently achieves high-accuracy selections.

Table 8: Validation accuracy (%) of SFUDA on Office-Home, Office-31, and VisDA.
Method SHOT [12] SHOT [12] DINE [22]

→Ar →Cl →Pr →Re avg →A →D →W avg T→V
Entropy [17] 63.38 50.45 77.35 77.65 67.21 71.67 90.76 88.68 83.70 71.99
InfoMax [18] 63.38 50.45 77.35 77.65 67.21 71.67 90.76 88.68 83.70 71.99
SND [19] 64.58 54.17 78.23 77.65 68.66 71.67 90.76 88.68 83.70 74.43
Corr-C [20] 69.13 56.32 79.29 79.14 70.97 71.58 90.76 90.19 84.18 71.99
EnsV 69.58 56.78 80.40 80.76 71.88 74.85 94.78 91.82 87.15 74.43
Worst 63.38 50.45 77.35 77.65 67.21 71.56 90.76 88.68 83.67 71.99
Best 69.83 57.08 80.55 80.76 72.05 75.06 94.78 93.33 87.72 76.17

SFUDA In source-free UDA, where source-based model selection methods are not applicable due to
no access to source data, we select SHOT for the white-box setting on Office-31 and DINE for the
black-box setting on VisDA (Table 8). EnsV consistently maintains near-best selections, while other
target-based approaches frequently make worst-case selections.

Table 9: Worst-case selections of various target domain-specific model selection approaches, which
are reported as the H-score (%) for OPDA and accuracy (%) for other UDA settings.

Method
CDA PDA OPDA SFUDA

ATDOC ATDOC BNM BNM MDD SAFN PADA PADA DANCE DANCE SHOT DINE
Cl→Ar C→S Ar→Pr R→S Pr→Cl Pr→Cl Ar→Re Re→Ar Re→Ar Pr→Re D→A T→V

Entropy [17] 59.25 46.43 67.04 40.95 55.85 43.30 55.94 70.52 25.39 45.53 71.21 71.99
InfoMax [18] 59.25 46.43 67.04 54.93 55.85 43.30 78.02 70.52 25.39 45.53 71.21 71.99
SND [19] 59.25 46.43 67.04 40.95 21.60 43.30 55.94 74.66 25.39 35.69 71.21 74.43
Corr-C [20] 59.37 54.71 67.06 40.95 21.60 43.30 55.94 71.26 69.02 35.69 71.21 71.99
EnsV 66.25 62.11 77.00 57.65 57.02 49.69 86.53 76.86 81.84 69.40 75.15 74.43
Worst 59.25 46.43 67.04 40.95 21.60 43.30 55.94 70.52 25.39 35.69 71.21 71.99
Best 66.91 63.12 77.00 58.50 57.02 50.52 86.53 76.86 81.84 72.87 75.15 76.17

Worst-model selection comparisons For empirical evidence of the superiority of EnsV, we compare
EnsV with other target-specific methods, specifically focusing on worst-case avoidance, through
specific examples presented in Table 9. In short, EnsV consistently avoids the worst selections, while
other methods often encounter significant challenges.
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Table 10: CDA accuracy (%) on Office-Home when two hyperparameters are validated.
Method MDD [33] MCC [36]

Ar → Cl Cl → Pr Pr → Re Re → Ar avg Ar → Cl Cl → Pr Pr → Re Re → Ar avg AVG
SourceRisk 55.99 73.15 78.77 69.39 69.33 57.91 76.84 81.13 72.89 72.19 70.76
IWCV [14] 37.89 72.92 80.42 58.43 62.42 46.09 77.74 80.68 74.45 69.74 66.08
DEV [15] 52.60 72.11 53.36 67.70 61.44 59.47 76.84 81.94 74.08 73.08 67.26
RV [16] 57.59 72.25 80.83 70.79 70.37 59.13 76.84 82.03 71.98 72.50 71.44
Entropy [17] 57.21 73.19 80.06 72.31 70.69 59.75 77.77 82.37 74.33 73.56 72.13
InfoMax [18] 57.59 72.92 80.06 72.31 70.72 59.70 78.73 82.58 70.33 72.84 71.78
SND [19] 38.10 56.45 70.03 65.10 57.42 53.49 74.97 77.25 74.12 69.96 63.69
Corr-C [20] 30.17 44.74 57.15 50.76 45.71 44.90 56.75 74.32 67.61 60.90 53.31
EnsV-P 56.91 72.74 80.93 71.16 70.44 60.39 78.71 82.28 74.91 74.07 72.26
Worst 30.17 39.81 53.36 50.76 43.53 43.02 56.75 73.47 67.24 60.12 51.83
Best 57.59 73.35 80.93 72.52 71.10 61.10 78.94 83.04 75.36 74.61 72.86

4.4 Further Analysis

Validation with two hyperparameters We conduct two-hyperparameters model selection experi-
ments with a large pool of model candidates, i.e., 28 models for image classification (Table 10) and
48 models for image segmentation (Table 11). EnsV consistently achieves near-optimal selections in
both scenarios, surpassing other versatile validation methods such as Entropy and SND.

Table 11: Segmentation mIoU (%) of AdaptSeg
and AdvEnt on GTAV → Cityscapes when two
hyperparameters are validated.

Method AdaptSeg [25] AdvEnt [26]
SourceRisk [9] 39.52 39.08
Entropy [17] 39.47 38.41
SND [19] 40.69 40.02
EnsV 40.69 40.67
Worst 35.32 34.22
Best 42.20 41.78

Table 12: CDA accuracy (%) of
BNM with ViT as the backbone.

Method BNM [8]
Entropy [17] 28.21
InfoMax [18] 28.21
SND [19] 52.42
Corr-C [20] 28.21
EnsV 55.16
Worst 28.21
Best 55.16

Robustness to architectures In our experiments, we evaluate the robustness of EnsV across various
ResNet backbone variants, observing consistent success across different scales. We also conduct
validation experiments using the ViT-B architecture [71] on the R→S task with BNM. The validation
results, presented in Table 12, demonstrate that EnsV achieves the best selection. However, all other
target-based methods except SND make the worst selection.

0 5 10 15 20 25

# of models (ascending accuracy)

30

35

40

45

50

55

Ac
cu

ra
cy

(%
)

Worst
Best
Median

SND
Ensemble
EnsV (Ours)

Figure 2: For the 28 candidate models available in the two-hyperparameter selection task with MDD
on Ar→Cl, we first rank them based on their respective actual target-domain accuracy. We then start
with only the best candidate model in the pool and gradually add increasingly inferior models in
ascending order of their accuracy. The figure illustrates how adding more inferior models affects the
performance of the ensemble and model selection.
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Robustness to poor candidates Ensuring the ensemble’s resilience to poor models is crucial for
its broad effectiveness. We assess this by conducting a two-hyperparameters model selection task
for MDD on Ar→Cl. We consider a challenging scenario where only the best candidate model is
initially in the pool, gradually adding an increasing number of inferior models. This setup allows us
to examine how the ensemble performs when dominated by inferior models. From the results shown
in Figure 2, we find that both Ensemble and EnsV still consistently achieve performance above the
median, demonstrating their resilience. In contrast, SND [19], a state-of-the-art method, struggles to
surpass the median accuracy.

5 Discussions

Limitations EnsV selects the candidate model that most closely matches the ensemble’s performance.
While EnsV consistently avoids selecting the worst-performing models, its performance can be
suboptimal if the ensemble (role model) itself is suboptimal. EnsV may face challenges in the
following scenarios:

• Single high-performing vs. poor model: when the model pool contains only one high-
performing model and one poor model, EnsV may struggle. In such cases, the ensemble of
just these two models might not accurately reflect the quality of the good model.

• Small performance differences: if the performance differences among all candidate models
are small, EnsV may have difficulty distinguishing between them. In such scenarios, using
ensemble results for model selection may not provide the fine-grained control needed to
accurately differentiate between the candidates.

• Predominantly poor models: when the majority of models in the pool are poor, with only
a few having normal or good performance, EnsV may encounter issues. An ensemble
composed mostly of poor models may produce results that are closer to the poor models,
leading to a final selection of a suboptimal candidate.

Takeaways Following a thorough empirical comparison of existing UDA model selection approaches,
several key conclusions emerge:

• The significance of model selection in influencing the deployment performance of UDA
methods becomes evident. Relying on fixed hyperparameters or limited analyses is inad-
equate. We emphasize the importance of increased attention and transparent reporting of
validation methods, consistent with recommendations in [15, 19, 18].

• Among existing validation methods, we recommend the reverse validation (RV) approach,
which, despite being overlooked in previous studies [15, 19, 18], proves to be the most
reliable method for widely studied closed-set UDA scenarios when source data is available.
However, it requires additional model re-training, making it less lightweight compared to
target-based validation methods. Moreover, all existing model selection methods demon-
strate unreliability across diverse UDA methodologies and real-world settings such as
open-set and source-free UDA. These methods struggle to maintain effectiveness, posing a
significant risk to the successful application of UDA in various scenarios.

• Regarding our proposed baseline, EnsV, we believe it is a simple and versatile model
selection method that is certified to avoid worst-case selections. While it may not always
achieve peak performance, especially when the ensemble result is suboptimal, EnsV offers
valuable insights for future explorations in reliable model selection methods.
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A Proof of Proposition 1

We first prove the first inequality using Jensen’s inequality, which states that for a real-valued, convex
function φ with its domain as a subset of R and numbers t1, . . . , tn in its domain, the inequality
φ
(
1
n

∑n
i=1 ti

)
≤ 1

n

∑n
i=1 φ(ti) holds. Given that − log is convex, and assuming m > 1 with

candidate models having different parameter weights θ, resulting in distinct discriminative mappings
of f(x, θ), we can strictly obtain l( 1

m

∑m
i=1 f(x, θi), y) <

1
m

∑m
i=1 l(f(x, θi), y) without the equal

situation. Next, we leverage the property of inequalities to prove the second inequality. Here, θworst

denotes the worst candidate model, i.e., the model with the largest loss. For any other candidate
model θi, we have l(f(x, θi), y) < l(f(x, θworst), y). This ensures that 1

m

∑m
i=1 l(f(x, θi), y) <

1
m

∑m
i=1 l(f(x, θworst), y), or explicitly, 1

m

∑m
i=1 l(f(x, θi), y) < l(f(x, θworst), y). Substituting

the NLL loss with any strongly convex loss function would still uphold the proposition.

B Model Selection Baselines

Let {pit}
nt
i=1 represent the output probability vectors of all nt target samples, and let P ∈ Rnt×C

denote the total probability matrix. We introduce the respective computation involved in the existing
model selection approaches.

Source risk. The SourceRisk approach [9] utilizes a held-out validation set from the source
domain to select the model θk that performs best on this set as the final decision. However, this
method has limited effectiveness in scenarios with severe domain shifts between the source and
target domains. Additionally, it introduces additional hyperparameters for dataset splitting, which
can further complicate the model selection process.

Importance-weighted source risk. Directly taking source risk as target risk is unreliable due to
domain distribution shifts between domains. To address this challenge, [14] propose Importance-
Weighted Cross Validation (IWCV), which re-weights the source risk using a source-target density
ratio estimated in the input space. [15] further enhance IWCV by introducing Deep Embedded
Validation (DEV), which estimates the density ratio in the feature space using a domain discriminator
and controls the variance. Both IWCV and DEV rely on the importance weighting technique [72],
which assumes that the target distribution is included in the source distribution [14], making the
weighting unreliable in scenarios with severe covariate shift and label shift. In addition, both IWCV
and DEV involve hyperparameters and extra model training during the density ratio estimation
process.

Reversed source risk. Building upon the concept of reverse cross-validation [73], [16] propose a
novel Reverse Validation approach (RV). This method first conducts source-to-target adaptation to
obtain a UDA model, which enables the acquisition of pseudo labels for the target unlabeled data.
Subsequently, Reverse Validation performs a reversed adaptation from the pseudo-labeled target
to the source and utilizes the source risk in this reversed adaptation task for validation. Reverse
Validation relies on the symmetry between domains and cannot handle label shifts. Additionally, this
approach involves hyperparameters for dataset splitting.

Entropy. [17] propose using the mean Shannon’s Entropy of target-domain predictions as a
validation metric, prioritizing predictions with high certainty. The underlying intuition is that a good
decision boundary should avoid crossing high-density regions in the target structure [74, 75]. Lower
Entropy scores indicate better model performance for this metric.

Entropy = − 1

nt

nt∑
i=1

C∑
j=1

Pij logPij

Information maximization. The Entropy score only considers sample-wise certainty, which can be
misleading when high-certainty predictions are biased towards a small fraction of classes [19]. To
address this challenge, [18] utilize input-output mutual information maximization (InfoMax) [39] as a
validation metric. In contrast to Entropy, InfoMax includes an additional class-balance regularization
by encouraging the averaged prediction p̄ = 1

nt

∑nt
i=1 Pij , p̄ ∈ RC to be even. Higher InfoMax

16



scores indicate better model performance according to this metric.

InfoMax = −
C∑

j=1

p̄ log p̄+
1

nt

nt∑
i=1

C∑
j=1

Pij logPij

Neighborhood consistency. [19] introduce Soft Neighborhood Density (SND), a novel metric
that focuses on the property of neighborhood consistency. SND leverages softmax predictions as
features and constructs a sample-to-sample similarity matrix. This matrix is transformed into a
probabilistic distribution using the softmax function: S = softmax(PPT /τ), S ∈ Rnt×nt . Here,
τ is a small temperature parameter that sharpens the distribution, enabling the difference between
nearby and distant samples. SND favors high neighborhood consistency by prioritizing samples
whose predictions are similar to other samples within the same neighborhood, resulting in higher
SND scores.

SND = − 1

nt

nt∑
i=1

nt∑
j=1

Sij logSij

Class correlation. [20] introduce Corr-C, a class correlation-based metric that evaluates both class
diversity and prediction certainty. Corr-C calculates the cosine similarity between the class correlation
matrix and an identity matrix. Lower Corr-C scores are indicative of better model performance based
on this metric.

Corr-C =
sum(diag(PTP ))

∥PTP∥F

We can generally classify model selection baselines into two categories: source domain-based meth-
ods, including SourceRisk, IWCV, DEV, and RV, and target domain-specific methods, encompassing
Entropy, InfoMax, SND, and Corr-C. Recent model selection studies [19, 18, 20] predominantly align
with the target domain-specific approach. This trend arises because access to source data restricts
UDA to closed-set UDA and often involves additional model training, making the validation process
even more complex than UDA model training. In contrast, target domain-specific methods are more
straightforward and effective [19]. EnsV, our proposed method, also falls within the category of target
domain-specific methods, but fortunately with enhanced reliability due to a theoretical guarantee
designed to avert worst-case model selection scenarios.

C Hyperparameter Configurations

In our main experiments, we adopt the setting of previous studies [15, 19] by tuning a single
hyperparameter for various UDA methods. The comprehensive hyperparameter settings can be found
in Table 13.

D Full Model Selection Results

For a comprehensive study, we further consider the parameter weight-based ensemble [53] as our role
model, and the EnsV variant based on this role model is denoted as ‘EnsV-W’. While the parameter
weight-based ensemble also shows competitiveness, it requires all candidate models to share the same
architecture and lacks a theoretical guarantee of the ensemble performance. Thus, we recommend the
simple and generic prediction-based ensemble, i.e., the default ‘EnsV’.

In our experiments, we perform hyperparameter selection for both classification and segmentation
tasks. For open-partial-set UDA experiments, we utilize the H-score (%) [69, 70] metric, which
combines the accuracy of known classes and unknown samples. For semantic segmentation tasks,
we employ the mean intersection-over-union (mIoU) (%) [25, 26] metric. As for other classification
tasks, we adopt the accuracy (%) metric. Kindly refer to Table 14 to Table 29 for the complete model
selection results.
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Table 13: Hyperparameter settings for all considered UDA methods. The settings are partially based
on [19], with an expanded search space size from 5 to 7 and the inclusion of additional UDA methods
across diverse UDA scenarios.

UDA method UDA type Hyperparameter Search space Default value

ATDOC [35] CDA loss coefficient {0.02, 0.05, 0.1,
0.2self-training λ 0.2, 0.5, 1.0, 2.0}

BNM [8] CDA loss coefficient {0.02, 0.05, 0.1,
1.0output regularization λ 0.2, 0.5, 1.0, 2.0}

CDAN [6] CDA loss coefficient {0.05, 0.1, 0.2,
1.0feature alignment λ 0.5, 1.0, 2.0, 5.0}

MCC [36] CDA temperature {1.0, 1.5, 2.0,
2.5output regularization T 2.5, 3.0, 3.5, 4.0}

MDD [33] CDA margin factor {0.5, 1.0, 2.0,
4.0output alignment γ 3.0, 4.0, 5.0, 6.0}

SAFN [7] CDA/PDA loss coefficient {0.002, 0.005, 0.01,
0.05feature regularization λ 0.02, 0.05, 0.1, 0.2}

PADA [10] PDA loss coefficient {0.05, 0.1, 0.2,
1.0feature alignment λ 0.5, 1.0, 2.0, 5.0}

DANCE [11] OPDA loss coefficient {0.02, 0.05, 0.1,
0.05self-supervision η 0.2, 0.5, 1.0, 2.0}

SHOT [12] white-box SFUDA loss coefficient {0.03, 0.05, 0.1,
0.3hypothesis transfer β 0.3, 0.5, 1.0, 3.0}

DINE [35] black-box SFUDA loss coefficient {0.05, 0.1, 0.2,
1.0knowledge distillation β 0.5, 1.0, 2.0, 5.0}

AdaptSeg [25] segmentation loss coefficient {0.0001, 0.0003, 0.001,
0.0002output alignment λ 0.003, 0.01, 0.03}

AdvEnt [26] segmentation loss coefficient {0.0001, 0.0003, 0.001,
0.001output alignment λ 0.003, 0.01, 0.03}

Table 14: Validation accuracy (%) of a closed-set UDA method ATDOC [35] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 51.41 77.31 78.17 66.87 74.36 75.60 61.85 48.04 76.06 71.16 58.14 84.05 68.59
IWCV [14] 55.88 76.57 78.88 66.25 74.50 78.33 65.60 48.04 80.58 72.06 58.14 83.87 69.89
DEV [15] 51.41 76.55 78.88 66.25 74.36 77.67 64.77 51.29 81.62 71.16 59.98 82.43 69.70
RV [16] 56.38 76.12 80.01 66.25 76.80 78.33 67.82 55.62 80.58 71.98 56.40 83.87 70.85
Entropy [17] 55.88 74.14 78.88 59.25 74.52 77.67 64.19 54.39 78.54 67.57 57.23 80.96 68.60
InfoMax [18] 55.88 74.14 78.88 59.25 77.74 77.67 64.19 54.39 78.54 67.57 56.61 80.96 68.82
SND [19] 55.88 74.14 78.88 59.25 74.52 75.21 64.19 54.39 78.54 67.57 56.61 80.96 68.34
Corr-C [20] 51.41 72.00 76.04 59.37 69.36 69.54 61.85 48.04 76.06 69.30 51.71 80.31 65.42
EnsV-W 57.85 76.57 81.04 66.25 79.48 78.52 67.94 55.62 82.17 71.9 59.24 84.03 71.72
EnsV 57.85 76.57 80.54 66.25 78.82 78.52 67.94 57.07 82.17 71.9 59.24 84.03 71.74
Worst 51.41 72.00 76.04 59.25 69.36 69.54 61.85 48.04 76.06 67.57 51.71 80.31 65.26
Best 58.01 77.31 81.04 66.91 79.48 78.52 67.94 57.07 82.17 72.06 59.98 84.03 72.04

Table 15: Validation accuracy (%) of a closed-set UDA method BNM [8] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 56.93 77.00 77.74 57.64 73.33 69.36 56.45 42.38 77.19 73.22 52.90 82.26 66.37
IWCV [14] 46.46 77.00 79.30 63.86 61.34 62.54 63.95 42.38 78.01 71.86 55.65 83.92 65.52
DEV [15] 57.75 71.62 79.30 57.64 67.90 75.46 66.21 54.04 78.01 73.42 57.37 82.25 68.41
RV [16] 58.67 77.00 79.30 65.68 73.33 75.46 65.64 52.05 81.25 73.42 59.54 83.92 70.44
Entropy [17] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
InfoMax [18] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
SND [19] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
Corr-C [20] 46.46 67.04 74.82 49.73 61.34 62.54 56.45 42.38 74.41 68.11 47.26 78.51 60.76
EnsV-W 58.67 77.00 80.61 66.21 73.33 76.75 66.21 53.93 81.25 73.42 57.59 83.92 70.74
EnsV 58.67 77.00 80.61 66.21 73.33 76.75 66.21 53.93 81.25 73.42 59.54 83.92 70.90
Worst 46.46 67.04 74.82 49.73 61.34 62.54 56.45 42.38 74.41 68.11 47.26 78.51 60.75
Best 58.67 77.00 80.61 67.16 74.16 76.75 66.21 54.04 81.36 73.42 59.82 84.12 71.11

Table 16: Validation accuracy (%) of a closed-set UDA method CDAN [6] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 43.41 62.51 75.51 43.96 61.59 57.70 53.75 37.50 73.22 67.28 47.01 84.39 58.99
IWCV [14] 43.14 62.51 77.81 44.71 54.58 56.14 65.14 37.50 81.85 74.08 43.02 84.39 60.41
DEV [15] 57.16 71.75 77.81 62.46 55.64 71.08 65.14 56.54 81.85 74.08 57.43 78.89 67.49
RV [16] 57.16 71.75 77.78 63.62 72.92 73.40 65.14 54.50 81.85 74.21 58.56 83.37 69.52
Entropy [17] 57.55 72.43 77.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 69.76
InfoMax [18] 57.55 72.43 77.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 69.76
SND [19] 57.55 72.43 77.78 64.61 73.73 73.40 65.14 56.66 81.85 74.08 58.47 84.73 70.04
Corr-C [20] 43.14 63.05 73.61 43.96 54.58 56.12 51.75 37.50 73.22 65.80 43.00 77.25 56.91
EnsV-W 57.18 73.30 77.78 63.37 73.89 73.38 65.14 55.44 81.36 73.88 58.56 84.39 69.81
EnsV 57.55 73.71 78.33 64.61 73.73 74.39 65.14 56.56 81.85 73.88 58.56 84.73 70.25
Worst 43.14 62.51 73.61 43.96 54.58 56.12 51.63 37.50 73.22 65.80 43.00 77.25 56.86
Best 57.55 73.71 78.33 64.61 73.89 74.39 65.76 56.66 81.85 74.21 59.50 84.73 70.43
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Table 17: Validation accuracy (%) of a closed-set UDA method MCC [36] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 57.23 78.19 81.75 60.65 76.50 78.79 64.15 53.15 82.17 74.91 59.20 83.96 70.89
IWCV [14] 60.02 78.15 81.34 68.73 78.51 77.85 64.15 57.85 81.04 73.18 58.92 84.46 72.02
DEV [15] 57.16 78.15 81.34 69.10 73.01 76.80 64.15 57.85 82.17 73.18 59.20 84.46 71.38
RV [16] 59.34 78.53 80.70 69.10 77.83 78.22 67.20 57.85 82.24 74.91 59.20 85.54 72.56
Entropy [17] 59.31 78.53 81.59 66.87 77.83 78.79 67.20 57.85 82.51 73.79 60.82 85.54 72.55
InfoMax [18] 60.02 74.66 81.75 64.98 78.24 78.49 64.15 54.52 82.19 70.62 60.89 84.46 71.25
SND [19] 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 70.87
Corr-C [20] 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 70.87
EnsV-W 59.31 77.86 81.59 69.10 78.51 78.79 66.87 57.85 82.19 73.79 61.35 85.22 72.70
EnsV 59.31 77.86 81.59 69.10 77.83 78.79 66.87 57.85 82.19 73.79 61.35 85.22 72.65
Worst 53.56 73.44 79.25 60.65 73.01 75.76 59.74 53.15 79.55 67.78 57.18 82.11 67.93
Best 60.02 78.53 81.75 69.22 78.51 78.79 67.90 58.49 82.51 74.91 61.35 85.74 73.14

Table 18: Validation accuracy (%) of a closed-set UDA method MDD [33] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 54.85 73.35 77.05 58.76 69.95 72.23 60.03 51.02 77.36 68.81 57.42 82.50 66.94
IWCV [14] 56.40 69.52 76.59 58.76 67.40 69.43 61.89 56.43 76.82 71.94 56.68 84.43 67.19
DEV [15] 57.71 75.42 77.05 58.76 72.99 70.51 63.95 56.43 80.26 70.54 56.68 82.14 68.54
RV [16] 58.05 75.42 76.59 63.54 69.95 73.74 63.95 51.02 80.38 72.23 58.17 84.43 68.96
Entropy [17] 57.73 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 84.28 69.72
InfoMax [18] 58.05 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 84.28 69.75
SND [19] 58.05 75.42 77.05 44.99 72.99 48.06 37.08 21.60 80.26 71.94 34.39 84.43 58.86
Corr-C [20] 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 64.22 61.31 34.39 75.87 50.88
EnsV-W 54.89 75.42 78.01 61.89 72.99 72.23 63.08 56.43 79.66 72.23 60.02 83.96 69.23
EnsV 56.40 75.42 77.05 64.07 72.99 72.23 63.08 57.02 80.26 72.23 60.02 84.43 69.60
Worst 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 64.22 61.31 34.39 75.87 50.88
Best 58.05 75.42 78.22 64.07 72.99 73.74 63.95 57.02 80.38 72.23 60.02 84.43 70.04

Table 19: Validation accuracy (%) of a closed-set UDA method SAFN [7] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 50.78 69.72 76.06 59.66 70.29 69.86 60.90 46.07 77.71 70.05 57.16 80.96 65.77
IWCV [14] 50.24 69.72 77.28 62.63 67.24 69.86 58.84 49.69 75.72 71.45 57.16 79.97 65.82
DEV [15] 51.07 69.72 76.64 59.66 67.24 71.26 58.84 49.69 75.72 70.95 50.65 76.64 64.84
RV [16] 51.07 71.41 76.64 62.63 68.44 70.44 58.84 44.49 77.71 71.45 54.82 81.46 65.78
Entropy [17] 45.93 69.72 75.49 55.29 67.22 68.35 54.26 43.30 75.69 70.00 49.99 80.60 62.99
InfoMax [18] 50.47 69.72 75.49 62.46 70.98 68.35 61.23 43.30 75.69 70.00 55.37 80.60 65.31
SND [19] 45.93 64.36 70.60 55.29 60.13 62.50 54.26 43.30 71.43 64.15 49.99 76.64 59.88
Corr-C [20] 45.93 69.72 70.60 55.29 60.13 62.50 61.23 43.30 71.43 71.45 49.99 76.64 61.52
EnsV-W 51.73 72.07 76.64 64.65 70.98 71.26 63.66 50.52 77.48 70.99 57.16 81.46 67.38
EnsV 51.07 72.27 77.30 63.58 70.29 71.70 62.71 49.69 77.71 71.45 55.78 80.96 67.04
Worst 45.93 64.36 70.60 55.29 60.13 62.50 54.26 43.30 71.43 64.15 49.99 76.64 59.88
Best 51.73 72.27 77.30 64.65 70.98 71.70 63.66 50.52 77.71 71.45 57.16 81.46 67.55

Table 20: Validation accuracy (%) of closed-set UDA methods on Office-31.

Method ATDOC [35] BNM [8] CDAN [6]
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

SourceRisk [9] 88.96 87.80 73.65 71.46 80.47 90.36 89.43 73.13 72.70 81.41 91.16 89.06 66.33 61.46 77.00
IWCV [14] 86.14 86.54 73.65 71.46 79.45 85.54 89.43 73.13 72.70 80.20 69.08 58.74 66.33 61.46 63.90
DEV [15] 86.14 86.54 73.65 71.46 79.45 85.54 89.43 73.13 72.70 80.20 91.16 88.30 66.33 61.46 76.81
RV [16] 89.96 87.23 74.28 75.58 81.76 88.55 89.43 74.90 66.52 79.85 91.16 88.30 76.18 70.36 81.50
Entropy [17] 86.14 87.80 73.87 72.70 80.13 85.54 83.14 71.07 74.26 78.50 91.16 89.06 72.88 70.36 80.87
InfoMax [18] 86.14 87.80 73.87 72.70 80.13 85.54 83.14 71.07 69.97 77.43 91.16 88.30 72.88 70.36 80.68
SND [19] 92.37 87.80 73.87 72.70 81.69 85.54 83.14 74.62 74.26 79.39 92.37 88.55 72.88 70.22 81.01
Corr-C [20] 90.96 84.40 71.88 70.22 79.37 84.34 78.99 67.80 66.52 74.41 67.67 59.62 58.15 58.43 60.97
EnsV-W 92.37 87.80 74.65 75.01 82.46 88.55 89.43 75.43 75.29 82.18 92.77 88.55 76.18 70.22 81.93
EnsV 90.96 87.80 74.65 75.01 82.11 90.36 89.43 75.43 74.30 82.38 92.77 88.55 76.18 70.22 81.93
Worst 86.14 84.40 71.88 70.22 78.16 84.34 78.99 67.80 66.52 74.41 67.67 57.11 58.15 58.43 60.34
Best 92.37 87.80 75.04 75.58 82.70 90.36 89.43 75.75 75.29 82.71 92.77 89.06 76.18 70.57 82.15

Table 21: Validation accuracy (%) of closed-set UDA methods on Office-31.

Method MCC [36] MDD [33] SAFN [7]
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

SourceRisk [9] 90.96 91.07 73.33 72.89 82.06 91.06 86.23 76.68 74.76 82.18 83.73 87.17 68.96 69.44 77.33
IWCV [14] 91.16 88.55 73.33 72.89 81.48 91.16 89.18 76.68 74.30 82.83 86.55 80.38 68.96 69.68 76.39
DEV [15] 89.16 93.08 73.33 72.06 81.91 91.16 89.18 76.68 74.62 82.91 86.55 80.38 68.96 67.45 75.84
RV [16] 89.06 93.08 74.42 73.52 82.52 92.57 86.79 73.91 74.97 82.07 90.83 87.17 68.76 68.62 78.85
Entropy [17] 90.56 93.46 74.83 73.02 82.97 92.57 90.82 78.03 74.58 84.00 91.57 85.66 67.20 69.26 78.42
InfoMax [18] 89.16 88.55 74.16 73.70 81.39 92.57 90.82 78.03 74.97 84.10 91.57 87.42 67.20 69.26 78.86
SND [19] 91.97 93.46 74.83 73.02 83.32 92.17 90.82 78.03 74.97 84.00 89.96 85.66 67.20 69.26 78.02
Corr-C [20] 91.37 93.46 74.83 73.02 83.17 91.57 85.66 73.91 74.58 81.43 86.75 80.38 67.09 69.68 75.98
EnsV-W 90.56 91.07 74.16 73.70 82.37 92.57 90.82 77.53 74.30 83.80 91.57 87.17 70.22 69.12 79.52
EnsV 90.56 91.45 73.80 73.70 82.38 92.57 90.82 77.53 74.30 83.80 90.96 87.17 70.22 69.12 79.37
Worst 86.75 87.17 71.18 69.93 78.76 87.35 85.66 73.91 72.20 79.78 83.73 80.38 67.09 67.45 74.66
Best 91.97 93.46 74.83 74.01 83.57 92.57 92.20 78.03 75.01 84.45 91.57 87.42 70.43 69.68 79.78
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Table 22: Validation accuracy (%) of a closed-set UDA method CDAN [6] on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [17] 58.04 64.78 74.42 69.39 68.65 60.63 62.94 65.55
InfoMax [18] 58.04 64.78 74.42 69.39 68.65 60.63 62.94 65.55
SND [19] 58.04 64.78 74.42 69.39 68.65 60.63 60.70 65.23
Corr-C [20] 58.04 57.73 74.42 56.98 65.07 51.23 60.70 60.60
EnsV-W 55.15 60.98 73.86 60.99 65.07 55.50 60.27 61.69
EnsV 56.73 64.67 74.44 67.08 67.97 58.12 62.57 64.51
Worst 51.59 57.73 73.44 56.98 63.06 51.23 58.46 58.93
Best 58.04 64.78 74.44 69.39 68.65 60.63 62.94 65.55

Table 23: Validation accuracy (%) of a closed-set UDA method BNM [8] on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [17] 56.42 61.57 74.31 65.15 65.15 40.95 63.42 61.00
InfoMax [18] 56.42 68.95 74.31 65.15 65.15 54.93 63.42 64.05
SND [19] 43.78 61.57 74.31 51.55 54.40 40.95 54.59 54.45
Corr-C [20] 43.78 60.03 77.62 59.47 67.19 40.95 59.64 58.38
EnsV-W 58.48 68.42 77.62 66.05 67.79 57.65 64.34 65.76
EnsV 57.73 69.63 77.62 66.10 67.79 57.65 64.34 65.84
Worst 43.78 60.03 74.31 51.55 54.40 40.95 54.59 54.23
Best 58.48 69.63 78.68 66.10 67.79 58.50 65.20 66.34

Table 24: Validation accuracy (%) of a closed-set UDA method ATDOC [35] on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [17] 46.43 65.98 79.60 61.52 64.24 57.92 59.46 62.16
InfoMax [18] 46.43 65.98 79.60 61.52 64.24 57.92 59.46 62.16
SND [19] 46.43 65.98 79.60 61.52 64.24 47.58 59.46 60.69
Corr-C [20] 54.71 60.63 74.42 59.33 64.58 52.66 59.95 60.90
EnsV-W 63.12 69.57 78.33 67.93 69.32 60.85 66.33 67.92
EnsV 62.11 71.14 80.01 69.45 69.79 61.35 67.10 68.71
Worst 46.43 60.63 74.42 59.33 64.24 47.58 59.46 58.87
Best 63.12 71.14 80.38 69.45 69.79 61.35 67.10 68.90

Table 25: Validation accuracy (%) of a partial-set UDA method PADA [10] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 45.03 68.85 81.89 43.25 46.83 57.26 57.21 36.42 76.53 71.26 44.30 77.76 58.87
IWCV [14] 55.58 65.10 84.54 51.42 61.29 53.01 56.93 35.16 81.34 70.52 60.78 74.12 62.49
DEV [15] 54.81 78.15 78.02 58.13 61.29 50.14 67.86 35.16 83.21 74.66 57.91 77.76 64.76
RV [16] 43.22 65.10 81.89 42.70 48.74 52.79 57.21 35.16 77.80 73.46 44.30 77.76 58.34
Entropy [17] 40.12 40.11 55.94 52.43 37.25 50.14 57.30 47.22 81.34 70.52 52.18 82.13 55.56
InfoMax [18] 54.81 69.24 78.02 52.43 37.25 50.14 57.30 47.22 71.84 70.52 52.18 74.12 59.59
SND [19] 40.12 40.11 55.94 58.13 56.13 64.11 70.62 51.22 81.34 74.66 60.78 82.13 61.27
Corr-C [20] 40.12 40.11 55.94 54.18 46.89 53.01 58.59 38.93 77.80 71.26 57.91 77.70 56.04
EnsV-W 55.58 77.25 86.14 58.13 60.17 67.86 73.00 37.97 84.04 76.77 57.91 83.75 68.21
EnsV 54.81 69.24 86.53 58.13 56.13 64.11 70.62 51.22 84.04 76.86 60.78 84.20 68.06
Worst 40.12 40.11 55.94 41.41 37.25 50.14 56.93 34.87 71.84 70.52 44.24 74.12 51.46
Best 55.58 78.15 86.53 58.13 61.29 68.19 73.00 51.22 84.04 76.86 60.78 84.20 69.83

Table 26: Validation accuracy (%) of a partial-set UDA method SAFN [7] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 59.40 77.14 81.34 63.97 67.00 71.29 65.60 46.21 76.81 70.89 58.51 79.10 68.11
IWCV [14] 52.24 74.45 82.16 70.98 62.41 70.18 63.45 53.49 76.81 73.65 56.00 78.49 67.86
DEV [15] 55.22 74.45 80.07 70.98 67.00 71.29 63.45 51.70 76.81 73.65 57.91 80.39 68.58
RV [16] 53.67 71.60 81.34 67.58 67.00 73.27 65.70 48.54 76.81 73.65 56.00 79.89 67.92
Entropy [17] 58.93 74.90 80.73 70.98 74.12 69.80 70.16 50.09 79.24 74.10 57.85 80.06 70.08
InfoMax [18] 51.82 67.62 76.97 64.65 65.77 69.80 59.69 50.09 74.10 66.67 53.31 75.52 64.67
SND [19] 51.82 74.90 80.73 70.98 74.12 75.10 70.16 50.09 79.24 74.10 53.31 80.06 69.55
Corr-C [20] 59.40 77.20 82.16 67.58 72.89 75.10 70.16 55.70 80.12 75.94 52.00 80.73 70.75
EnsV-W 59.40 77.20 82.16 71.72 72.89 74.82 72.45 55.70 80.73 75.94 59.16 80.73 71.91
EnsV 55.22 76.30 81.28 67.58 70.31 74.05 70.16 54.63 80.12 75.21 58.51 80.39 70.31
Worst 51.52 67.62 76.97 61.07 62.35 69.80 59.69 46.21 74.10 66.67 52.00 75.52 63.63
Best 59.40 77.20 82.16 71.72 74.12 75.10 72.45 55.70 80.73 75.94 59.16 80.73 72.03

Table 27: H-score [69, 70] (%) of an open-partial-set UDA method DANCE [11] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
Entropy [17] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.53 25.39 33.75 39.37 34.27
InfoMax [18] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.33 25.39 33.75 39.37 34.25
SND [19] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 25.39 0.00 28.40 14.98
Corr-C [20] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 69.02 0.00 28.40 18.62
EnsV-W 67.00 75.15 66.57 67.87 67.35 59.05 66.41 62.59 69.40 59.86 67.54 73.40 66.85
EnsV 38.40 76.96 66.57 71.76 75.17 69.99 77.42 48.15 69.40 81.84 67.54 84.31 68.96
Worst 1.00 0.00 12.73 0.00 17.10 1.95 19.77 11.99 35.69 25.39 0.00 28.40 12.84
Best 67.00 76.96 66.57 71.76 75.17 69.99 77.42 64.32 72.87 81.84 67.54 84.31 72.98
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Table 28: Validation accuracy (%) of a white-box source-free UDA method SHOT [12] on Office-
Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
Entropy [17] 49.14 76.17 79.23 60.57 73.94 74.00 60.69 48.66 79.73 68.89 53.56 81.93 67.21
InfoMax [18] 49.14 76.17 79.23 60.57 73.94 74.00 60.69 48.66 79.73 68.89 53.56 81.93 67.21
SND [19] 49.14 76.17 79.23 60.57 76.59 74.00 64.28 54.55 79.73 68.89 58.81 81.93 68.66
Corr-C [20] 55.60 76.66 79.83 67.04 76.59 76.86 66.63 54.55 80.74 73.71 58.81 84.61 70.97
EnsV-W 56.36 77.81 81.36 68.27 78.78 78.91 65.80 54.52 82.01 73.01 59.45 84.61 71.74
EnsV 56.36 77.81 81.36 68.27 78.78 78.91 67.12 54.52 82.01 73.34 59.45 84.61 71.88
Worst 49.14 76.17 79.23 60.57 73.94 74.00 60.69 48.66 79.73 68.89 53.56 81.93 67.21
Best 56.36 77.95 81.36 68.27 79.05 78.91 67.33 55.33 82.01 73.88 59.54 84.66 72.05

Table 29: Validation accuracy (%) of a white-box source-free UDA method SHOT [12] on Office-31.

Method A → D A → W D → A W → A avg
Entropy [17] 90.76 88.68 71.21 72.13 80.69
InfoMax [18] 90.76 88.68 71.21 72.13 80.69
SND [19] 90.76 88.68 71.21 72.13 80.69
Corr-C [20] 90.76 90.19 71.21 71.96 81.03
EnsV-W 94.78 91.82 75.15 74.55 84.08
EnsV 94.78 91.82 75.15 74.55 84.08
Worst 90.76 88.68 71.21 71.92 80.64
Best 94.78 93.33 75.58 74.55 84.56
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