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Abstract

Inferring the synaptic plasticity rules that govern learning in the brain is a key chal-
lenge in neuroscience. We present a novel computational method to infer these
rules from experimental data, applicable to both neural and behavioral data. Our
approach approximates plasticity rules using a parameterized function, employing
either truncated Taylor series for theoretical interpretability or multilayer percep-
trons. These plasticity parameters are optimized via gradient descent over entire
trajectories to align closely with observed neural activity or behavioral learning
dynamics. This method can uncover complex rules that induce long nonlinear time
dependencies, particularly involving factors like postsynaptic activity and current
synaptic weights. We validate our approach through simulations, successfully re-
covering established rules such as Oja’s, as well as more intricate plasticity rules
with reward-modulated terms. We assess the robustness of our technique to noise
and apply it to behavioral data from Drosophila in a probabilistic reward-learning
experiment. Notably, our findings reveal an active forgetting component in reward
learning in flies, improving predictive accuracy over previous models. This mod-
eling framework offers a promising new avenue for elucidating the computational
principles of synaptic plasticity and learning in the brain.

1 Introduction

Synaptic plasticity, the ability of synapses to change their strength, is a key neural mechanism un-
derlying learning and memory in the brain. These synaptic updates are driven by neuronal activity,
and they in turn modify the dynamics of neural circuits. Advances in neuroscience have enabled
the recording of neuronal activity on an unprecedented scale (Steinmetz et al., 2018; Vanwalleghem
et al., 2018; Zhang et al., 2023), and connectome data for various organisms is becoming increas-
ingly available (Winding et al., 2023; Takemura et al., 2023; Hildebrand et al., 2017; Scheffer et al.,
2020). However, the inaccessibility of direct large-scale recordings of synaptic dynamics leaves
the identification of biological learning rules an open challenge. Existing neuroscience literature
(Citri & Malenka, 2008; Morrison et al., 2008) suggests that synaptic changes are functions of lo-
cal variables such as presynaptic activity, postsynaptic activity, and current synaptic weight, as well
as a global reward signal. Uncovering the specific form of this function in different brain circuits
promises profound biological insights and holds practical significance for developing more biologi-
cally plausible learning algorithms for AI, particularly with neuromorphic implementations (Zenke
& Neftci, 2021).
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Figure 1: Schematic overview of the proposed method. Animal-derived time-series data (yellow)
and a plasticity-regulated in silico model (blue) generate trajectories ooo(t) and mmm(t). A loss function
quantifies trajectory mismatch to produce a gradient, enabling the inference of the synaptic plasticity
rule gθ.

In this paper, we introduce a gradient-based method for inferring synaptic plasticity rules. Our
method optimizes parameterized plasticity rules to align with either neural and behavioral data,
thereby elucidating the mechanisms governing synaptic changes in biological systems. We utilize
interpretable models of plasticity, allowing direct comparisons with existing biological theories and
addressing specific questions, such as the role of weight decay in synaptic plasticity or postsynaptic
dependence. We validate our approach for recovering plasticity rules using synthetic neural activity
or behavior2. Finally, applying our model to behavioral data from fruit flies, we uncover an active
forgetting mechanism in the neural circuitry underlying decision making. This readily adaptable
modeling framework offers new opportunities for exploring the core mechanisms behind learning
and memory processes in a variety of experimental paradigms.

2 Method overview

Our goal is to infer the synaptic plasticity function by examining neural activity or behavioral tra-
jectories from an animal learning about its environment. Specifically, we aim to find a function that
prescribes changes in synaptic weights based on relevant biological variables. For simplicity, we
consider a model with plasticity localized to a single layer of a neural network:

yyy(t) = sigmoid
(
W (t)xxx(t)

)
, (1)

where the vector xxx(t) represents the input to the plastic layer (Figure 1, “stimulus”) and yyy(t) is the
resulting postsynaptic neuron activity at time t. The synaptic weight matrix W (t) is updated at
each time step based on a parameterized biologically plausible plasticity function gθ. The change in
synaptic weight between neurons i and j is given by

∆w
(t)
ij = gθ

(
x
(t)
j , y

(t)
i , w

(t)
ij , r(t)

)
, (2)

where θ are the (trainable) parameters of the function, x(t)
j is the presynaptic neural activity, y(t)i

the postsynaptic activity, w(t)
ij is the current synaptic weight between neurons i and j, and r(t) is a

global reward signal that influences all synaptic connections. However, it may be the case that we do
not have direct access to the neuronal firing rates yyy(t). We therefore further define a (fixed) readout
function f that determines the observable variables mmm(t) of the network, given by

mmm(t) = f(yyy(t)). (3)

2https://github.com/yashsmehta/MetaLearnPlasticity
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Figure 2: Recovery of Oja’s plasticity rule from simulated neural activity. (A) Schematic of the
models used to simulate neural activity and infer plasticity. (B) Mean-squared difference between
ground-truth and model synaptic weight trajectories over time (horizontal axis) over the course of
training epochs (vertical axis). (C) The evolution of θ during training. Coefficients θ110 and θ021,
corresponding to Oja’s rule values (1,−1), are highlighted in orange. (D) R2 scores over weights,
under varying noise and sparsity conditions in neural data. (E, F) Boxplots of distributions, across
50 seeds, corresponding to the first column (E) and row (F) in (D). (G) The evolution of learning rule
coefficients over the course of training showing inaccurate θ recovery under high noise and sparsity
conditions.

In the context of neural activity fitting, the readout is a subset of yyy(t), whereas for behavioral models
the readout aggregates yyy(t) to yield the probability of a specific action. We introduce our specific
choices for readout functions in the following sections.

We use stochastic gradient descent (Kingma & Ba, 2014) to optimize the parameters θ of the plas-
ticity rule gθ. At each iteration, we use the model (Equation 1-3) to generate a length-T trajectory
mmm(1), . . . ,mmm(T ) (Figure 1, blue traces), driven by input stimuli xxx(1), . . . ,xxx(T ) (Figure 1, black box).
We then use backpropagation through time to compute the gradient of the loss (Figure 1, purple)
between the model trajectory and the corresponding experimental observations ooo(1), . . . , ooo(T ) (Fig-
ure 1, orange) generated using the same input stimulus:

L(θ) = 1

T

T∑
t=1

ℓ(mmm(t), ooo(t)), (4)

where the choice of ℓ depends on the particular modeling scenario, specified in the following sec-
tions. In practice, Equation 4 may also be summed over multiple trajectories to generate a mini-
batch.

3 Inferring a plasticity rule from neural activity
To validate our approach on neural activity, we generate synthetic neural trajectories of observed
outputs ooo(t) from a single-layer feedforward network that undergoes synaptic plasticity according
to the well-known Oja’s rule (Oja, 1982). At each timestep, the weight updates depend on pre- and
post-synaptic neuronal activity, as well as the strength of the synapse itself (Figure 2A, top),

∆wij = xjyi − y2iwij , (5)
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where we omit the time index t for brevity (see subsection A.3 for details). To infer the plasticity
rule, we use a model network with an architecture identical to the ground-truth network (Figure 2A,
bottom). While the exact circuit architecture may not always be known in biological data (par-
ticularly when studying mammalian brains), this assumption was made to show that our approach
accurately infers plasticity rules in a scenario where generative and predictive circuit architectures
were matched. Increasingly available connectomic information in biological systems can be used
to design sufficiently accurate model architectures for our approach to work, as we will show later
on in this paper (Bentley et al., 2016; Hildebrand et al., 2017; Scheffer et al., 2020). However, it is
to be noted that connectomes can miss important information relevant to plasticity and may cause
mismatches between model and generative architectures that could lead the model to incorrect out-
comes (Liang & Brinkman, 2024). This should be kept in mind when interpreting the plasticity rules
estimated by our approach.

Following previous work (Confavreux et al., 2020), we parameterize the model’s plasticity function
with a truncated Taylor series,

gTaylor
θ =

2∑
α,β,γ=0

θαβγx
α
i y

β
j w

γ
ij , (6)

where the coefficients θαβγ are learned. Note that Oja’s rule can be represented within this family
of plasticity rules by setting θ110 = 1, θ021 = −1, and all others to zero. Finally, we compute the
loss as the mean squared error (MSE) between the neural trajectories produced by the ground truth
network and the model:

ℓMSE(mmm
(t), ooo(t)) = ||ooo(t) −mmm(t)||2, (7)

where we let mmm(t) = yyy(t), assuming all neurons in the circuit are recorded (but see next section for
analysis of sparse recordings).

3.1 Recovering Oja’s rule

Despite the fact that the model is optimized using neuronal trajectories, the error of the synap-
tic weight trajectories decreases over the course of training (Figure 2B), indicating that the model
successfully learns to approximate the ground-truth plasticity rule. More explicitly examining the
coefficients θαβγ over the course of training illustrates the recovery of Oja’s rule as θ110 and θ021
approach 1 and −1, respectively, and all others go to zero (Figure 2C).

To evaluate the robustness of our method, we assess how both noise and sparsity affect the model’s
performance (Figure 2D). We first consider the case where all neurons in the circuit are recorded,
and we vary the degree of additive Gaussian noise in the recorded neurons. We find that the model’s
performance (R2 score between the ground-truth and model synaptic weight trajectories calculated
on a separate held-out test set) decreases with increasing noise variance (Figure 2E). To simulate
varying sparsity levels, we consider the readout mmm(t) = f(yyy(t)) = (y

(t)
k1

, . . . , y
(t)
kn

) to be the activ-
ity of a random subset n of all N postsynaptic neurons yyy(t), and we use the corresponding subset
õ(t) = (o

(t)
k1
, . . . , o

(t)
kn
) of recorded neurons from the ground-truth network in Equation 7 to optimize

the plasticity rule. Our model maintains a high level of accuracy even when data is available from
only 50% of the neurons (Figure 2F). This resilience to sparsity and noise is beneficial given that
experimental neural recordings often suffer from these issues. However, we note that the model
struggles to learn a sparse set of parameters for the plasticity rule when faced with both high record-
ing sparsity and noise. The evolution of the plasticity parameters during training in this case is
illustrated in Figure 2G. Together, these results show that our approach can accurately infer learning
rules from neural trajectories in a wide array of recording conditions.

4 Inferring plasticity rules from behavior

Our approach can also be applied to behavioral data. This is particularly important because behav-
ioral experiments are more widely available and easier to conduct than those that directly measure
neural activity. We first validate the method on simulated behavior, mimicking decision-making
experiments in which animals are presented with a series of stimuli that they choose to accept or
reject. The animals’ choices result in rewards and subsequent synaptic changes at behaviorally rel-
evant synapses.

4



Choice
Behavior

Choice
Behavior

Model
(Learned Rule)

Ground Truth
(Known Rule)

B C

D E F

A
1

0

0.5
 - 

Va
lu

e

  -
 V

al
ue

100

0

50

g or g

Sy
na

pt
ic

 W
ei

gh
t

Figure 3: Recovery of a reward-based plasticity rule from simulated behavior. (A) Schematic of
the models used to stimulate behavior and infer plasticity rules. (B) The evolution of the weight
of a single synapse, trained with gTaylor

θ and gMLP
θ , compared against weight from a known reward-

based update rule. (C) R2 distributions on the weights across 10 seeds, corresponding to varied
weight initializations and stimulus encodings. (D) The evolution of θ during training, with θ110,
corresponding to ground truth rule (value = 1), highlighted in red. (E) Distribution of final inferred
θ values across seeds, showing accurate identification of the relevant term from the ground truth
learning rule. (F) The goodness of fit between ground truth behavior and model predictions plotted
as the percent deviance explained.

For this proof-of-principle, our ground-truth network architecture (Figure 3A, top) is inspired by
recent studies that have successfully mapped observed behaviors to plasticity rules in the mushroom
body (MB), the learning and memory center of the fruit fly Drosophila melanogaster (Li et al.,
2020; Modi et al., 2020; Davis, 2023). Our neural network’s three layer structure mimics the MB’s
neural architecture (see subsection A.4 for details). The readout mmm(t) is a series of binary decisions
to either “accept” or “reject” the presented stimulus based on the average activity of the output
layer. A probabilistic binary reward R ∈ {0, 1} is provided based on the choice. The reward
signal is common to all synapses, which could be interpreted as a global neuromodulatory signal
like dopamine. This reward leads to changes in the plastic weights of the network, determined by
the underlying synaptic plasticity rule.

Plasticity occurs exclusively between the input and output layers. We simulate a covariance-based
learning rule (Loewenstein & Seung, 2006) known from previous experiments (Rajagopalan et al.,
2023). The change in synaptic weight ∆wij is determined by the presynaptic input xj , and a global
reward signal r. This reward signal is the deviation of the actual reward R from its expected value
E[R], which we calculate as a moving average over the last 10 trials. We neglect hypothetical
dependencies on yi because they are known to not impact reward learning in the fly mushroom body
(although see also Table 1 and Appendix Table 3 for experiments with alternative plasticity rules):

∆wij = xjr = xj(R− E[R]). (8)

We model a plastic layer of neural connections that gives rise to learned behavior. The synaptic
weights of the model are initialized randomly, reflecting the fact that the initial synaptic config-
urations are usually unknown a priori in real-world biological systems. We consider a plasticity
function parameterized through either a truncated Taylor series or a multilayer perceptron (MLP):

gTaylor
θ =

2∑
α,β,γ,δ=0

θαβγδx
α
j y

β
i w

γ
ijr

δ or gMLP
θ = MLPθ(xj , yi, wij , r), (9)
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Table 1: Assessment of various reward-based plasticity rules: R2 scores for weight and individual
neural activity trajectories, and the percentage of deviance explained for behavior. Refer to Ap-
pendix Table 3 for a comprehensive list of simulated plasticity rules.

Plasticity Rule
∆wij

MLP Taylor

R2 R2 %
Deviance

R2 R2 %
DevianceWeights Activity Weights Activity

xjr 0.85 0.96 64.76 0.78 0.94 61.91
xjr

2 − 0.05yi 0.97 0.97 34.55 0.96 0.97 34.36
xjr − 0.05wij 0.87 0.91 57.01 0.70 0.86 51.80

xjr
2 − 0.05xjwijr 0.85 0.96 53.04 0.78 0.92 51.30

xjyiwijr − 0.05r 0.27 0.34 79.92 0.41 0.51 84.22

where the ground truth reward r is used as the reward value in the weight update function. We
use Binary Cross-Entropy (BCE) as the loss function, which is proportional to the model’s negative
log-likelihood function, to quantify the difference between the observed decisions and the model’s
predicted probabilities of accepting a stimulus.

ℓBCE(mmm
(t), ooo(t)) = −ooo(t) log(mmm(t))− (1− ooo(t)) log(1−mmm(t)). (10)

Crucially, the training data only consists of these binary decisions (accept or reject), without direct
access to the underlying synaptic weights or neural activity.

4.1 Recovering reward-based plasticity from behavior

Figure 3B presents the weight dynamics of three networks: the ground-truth synaptic update mech-
anism, as well as those fitted with an MLP or a Taylor series. Both the ground-truth network and our
model use an architecture with 2 input neurons, 10 neurons in the hidden layer, and 1 output neuron
with a trajectory length of 240 time steps (see Appendix subsection A.4). Our evaluation metrics –
high R2 values for both synaptic weights and neural activity – affirm the robustness of our models in
capturing the observed data (Figure 3C). The method accurately discerns the plasticity coefficient of
the ground truth rule (Figure 3D,E), albeit with a reduced magnitude. The model also does a good
job at explaining the observed behavior (Figure 3F), where we use the percent deviance explained
(see Appendix subsection A.4) as the performance metric.

We also consider alternative plasticity rules in the ground-truth network. Table 1 summarizes the
recoverability of various reward-based plasticity rules for both MLP and Taylor series frameworks,
with results averaged over 3 random seeds. Note that solely reward-based rules (without E[R] or
w) are strictly potentiating, as they lack the capacity for bidirectional plasticity. This unidirectional
potentiation ultimately results in the saturation of the sigmoidal non-linearity. Therefore, it is pos-
sible to simultaneously observe high R2 values for neural activities with low R2 values for weight
trajectories.

We further investigate the scalability of our method by varying the length of the observed trajectory
and the number of neurons in the hidden layer (see Table 2). The model’s goodness-of-fit generally
improved with longer simulations, likely due to more data points for inferring the plasticity rule.
However, R2 values for activity and weights peaked before declining, suggesting potential overfit-
ting on very long trajectories. Model performance remained consistent when scaling to larger hidden
layers, assuming the same plasticity rule is shared by all synapses.

5 Application: inferring plasticity in the fruit fly

In extending our results to biological data, we explore its applicability to the decision-making be-
havior in Drosophila melanogaster that inspired our simulated behavior results. Recent research
(Rajagopalan et al., 2023) employed logistic regression to infer learning rules governing synaptic
plasticity in the mushroom body, identifying a rule that incorporates the difference between re-
ceived and expected reward information when modulating synaptic plasticity. However, logistic
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Table 2: Scalability analysis with respect to trajectory length (with a hidden layer size of 10) and
hidden layer size (with a trajectory length of 240), assuming the ground-truth learning rule of
∆wij = xjr = xj (R− E[R]) and using the Taylor series parameterization. Results are aver-
aged over three runs with different random seeds.

Trajectory Length Hidden Layer Size

30 60 120 240 480 960 1920 10 50 100 500 1000

R2 Weights 0.79 0.74 0.70 0.78 0.72 0.53 0.64 0.78 0.75 0.79 0.79 0.79
R2 Activity 0.92 0.91 0.91 0.94 0.95 0.87 0.92 0.94 0.94 0.95 0.95 0.95
% Deviance 39.52 40.14 48.06 61.91 76.90 73.78 79.66 61.91 62.29 62.25 62.27 62.26

regression cannot be used to infer plasticity rules that incorporate recurrent temporal dependencies,
such as those that depend on current synaptic weights. Our method offers a more general approach.
Specifically, we apply our model to behavioral data obtained from flies engaged in a two-alternative
choice task, as outlined in Figure 4A. This allows us to investigate two key questions concerning the
influence of synaptic weight on the plasticity rules governing the mushroom body.

5.1 Experimental setup and details

In the experimental setup, individual flies are placed in a symmetrical Y-arena where they are pre-
sented with a choice between two odor cues. Each trial starts with the fly in an arm filled with clean
air (Fig. 4A, left). The remaining two arms are randomly filled with two different odors, and the
fly was free to navigate between the three arms. When the fly enters the ‘reward zone’ at the end
of an odorized arm, a choice was considered to have been made (Fig. 4A, right). Rewards are then
dispensed probabilistically, based on the odor chosen. For model fitting, we use data from 18 flies,
each subjected to a protocol that mirrors the trial and block structures in the simulated experiments
presented previously. Over time, flies consistently showed a preference for the odor associated with
a higher probability of reward, and this preference adapted to changes in the relative value of the
options (Fig. 4B; example fly (Rajagopalan et al., 2023)).

5.2 Plasticity in the fruit fly includes a synaptic weight decay

Existing behavioral studies in fruit flies have shown that these insects can forget learned associations
between stimuli and rewards over time (Shuai et al., 2015; Aso & Rubin, 2016; Berry et al., 2018;
Gkanias et al., 2022). One prevailing hypothesis attributes this forgetting to homeostatic adjustments
in synaptic strength within the mushroom body (Davis & Zhong, 2017; Davis, 2023). However,
earlier statistical approaches aimed at estimating the underlying synaptic plasticity rule present in
the mushroom body were unable to account for recurrent dependencies such as synapse strength
(Rajagopalan et al., 2023). Here we explore two types of plasticity rules: one based solely on
reward and presynaptic activity, and another that incorporates a term dependent on current synaptic
weight - wij (θ001). Both rule types allocate significant positive weights to a term representing the
product of presynaptic activity and reward (Fig. 4C, gray). Our results indicate that the model with
a weight-dependent term offers a better fit to observed fly behavior (Wilcoxon signed-rank test: p =
5×10−5; Fig. 4D), whereas the model without it matched the performance reported in Rajagopalan
et al. (2023). Intriguingly, our analysis additionally reveals that the inferred learning rule assigns
a negative value to the weight-dependent term (Fig. 4C). This finding also held in a validation
experiment that assessed how well the inferred plasticity rule generalizes to unseen biological data
(Appendix subsection A.6). This negative sign aligns with the hypothesis that a weight-dependent
decay mechanism operates at these synapses. The relative-magnitude of this decay term compared
to the positive learning-related terms suggests that forgetting happens over a slightly longer-time
scale than learning, in agreement with observed time-scales of forgetting in behavioral experiments
Shuai et al. (2015); Davis & Zhong (2017) .
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Figure 4: Inferring principles of plasticity in the fruit fly. (A) Schematic of the experimental setup
used to study two-alternative choice behavior in flies. Left Design of arena showing odor entry ports
and location of the reward zones. Right Description of the trial structure, showing two example
trials. (B) The behavior of an example fly in the task. Top Schematics indicate the reward baiting
probabilities for each odor in the three blocks. Bottom Individual odor choices are denoted by
rasters, tall rasters - rewarded choices, short rasters - unrewarded choices. Curves show 10-trial
averaged choice (red) and reward (black) ratios, and horizontal lines the corresponding averages
over the 80-trial blocks. (C) Final inferred θ value distribution across 18 flies, comparing models
with and without a wij term and the method from Rajagopalan et al. (2023). Plasticity rule terms
are as follows: bias - (θ000), wij - (θ001), xj - (θ100), r - (θ010), xjr - (θ110) (D) Left Goodness
of fit between fly behavior and model predictions plotted as the percent deviance explained (n = 18
flies). Right Change in the percent deviance explained calculated by subtracting percent deviance
explained of model without a wij (θ001) term from that of a model with a wij (θ001) term. (E,F) Same
as (C,D), except comparing models that do or don’t incorporated reward expectation. Since these
models include weight dependence, they cannot be fit using Rajagopalan et al. (2023)’s method.

5.3 Incorporating reward expectation provides better fit than reward alone

Rajagopalan and colleagues used reward expectations (defined as the average reward received over
the last approximately ’n’ trials - see Appendix A.4.2) to generate bidirectional synaptic plasticity.
Our discovery of a negative weight-dependent component in the plasticity rule provides an alternate
mechanism for bidirectional plasticity, raising the question of whether the neural circuit really needs
to calculate reward expectation. Could a plasticity rule incorporating the product of presynaptic
activity and absolute reward combine with a weight-dependent homeostatic term to approximate a
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plasticity rule that involves reward expectation? To answer this, we contrast two models: one using
only the absolute reward and another using reward adjusted by its expectation, both complemented
by weight-dependent terms. Our analyses show that adding a weight-dependent term enhances
the predictive power of both models (Fig 4E,F). However, the model that also factors in reward
expectations provides a superior fit for the majority of flies in the data set (Wilcoxon signed-rank
test: p = 0.067; Fig 4F). These compelling preliminary findings reaffirm the utility of reward
expectations for fly learning, and larger behavioral datasets could increase the statistical significance
of the trend. Overall, our model-based inference approach, when applied to fly choice behavior,
suggests that synaptic plasticity rules in the mushroom body of fruit flies are more intricate than
previously understood. These insights could potentially inspire further experimental work to confirm
the roles of weight-dependent homeostatic plasticity and reward expectation in shaping learning
rules.

6 Related work

Recent work has begun to address the question of understanding computational principles governing
synaptic plasticity by developing data-driven frameworks to infer underlying plasticity rules from
neural recordings. Lim et al. (2015) infer plasticity rules, as well as the neuronal transfer function,
from firing rate distributions before and after repeated viewing of stimuli in a familiarity task. The
authors make assumptions about the distribution of firing rates, as well as a first-order functional
form of the learning rule. Chen et al. (2023) elaborate on this approach, fitting a plasticity rule
by either a Gaussian process or Taylor expansion, either directly to the synaptic weight updates or
indirectly through neural activity over the course of learning. Both approaches consider only the
difference in synaptic weights before and after learning. In contrast, our approach fits neural firing
rate trajectories over the course of learning and can be adapted to fit any parameterized plasticity
rule.

Other work infers learning rules based on behavior instead. Ashwood et al. (2020) uses a Bayesian
framework to fit parameters of learning rules in a rodent decision-making task. The authors ex-
plicitly optimize the weight trajectory in addition to parameters of the learning rules, requiring an
approximation to the posterior of the weights. Our approach directly optimizes the match between
the model and either neural or behavioral data, as defined by a pre-determined loss function. In-
terestingly, despite this indirect optimization, we see matching in the weight trajectories as well.
Rajagopalan et al. (2023) fit plasticity rules in the same fly decision-making task we consider here.
They assumed that the learning rule depended only on presynaptic activity and reward, which recasts
the problem as logistic regression and permits easy optimization. Our approach allows us to account
for arbitrary dependencies, such as on postsynaptic activities and synaptic weight values, and we
thereby identify a weight decay term that leads to active forgetting.

Ramesh et al. (2023) also consider optimization of plasticity rules based on neural trajectories.
Unlike our approach which uses an explicit loss function, the authors use a generative adversarial
(GAN) approach to construct a generator network, endowed with a plasticity rule, to produce neu-
ral trajectories that are indistinguishable by a discriminator network from ground-truth trajectories.
Although, in principle, this approach can account for arbitrary and unknown noise distributions, it
comes at a cost of high compute resources, a need for large amounts of data, and potential training
instability – all well-known limitations of GANs. In practice, it is common to make an assumption
about the noise model through an appropriately defined loss function (e.g. Gaussian noise for the
MSE loss we use here). Importantly, the authors note a degeneracy of plasticity rules – different
rules leading to similar neural dynamics. We see similar results, although we interpret this as “slop-
piness” (Gutenkunst et al., 2007) – overparameterized models being underconstrained by the data
(e.g. functions x and x2 are indistinguishable if the only values of x which are sampled are 0 and
1). We hypothesize that in the infinite data limit the fitted plasticity rules would, in fact, be unique.

Previous work has also considered inferring plasticity rules directly from spiking data (Stevenson &
Koerding, 2011; Robinson et al., 2016; Linderman et al., 2014; Wei & Stevenson, 2021) or selecting
families of plausible rules in spiking neural network models (Confavreux et al., 2024). Due to the
gradient-based nature of our optimization technique, our proposed approach can account for such
data by converting spike trains to a rate-based representation by smoothing. Alternatively, black-
box optimization techniques such as evolutionary algorithms can be used to circumvent the need

9



for computing gradients, allowing non-differentiable plasticity rules like spike-timing dependent
plasticity to be used as model candidates.

Alternatively, meta-learning techniques (Thrun & Pratt, 2012) can be used to discover synaptic
plasticity rules optimized for specific computational tasks (Tyulmankov et al., 2022; Najarro &
Risi, 2020; Confavreux et al., 2020; Bengio et al., 1990). The plasticity rules are represented as
parameterized functions of pre- and post-synaptic activity and optimized through gradient descent
or evolutionary algorithms to produce a desired network output. However, the task may not be well-
defined in biological scenarios, and the network’s computation may not be known a priori. Our
method obviates the need for specifying the task, directly inferring plasticity rules from recorded
neural activity or behavioral trajectories.

Finally, Nayebi et al. (2020) do not fit parameters of a learning rule at all, but use a classifier to
distinguish among four classes of learning rules based on various statistics (e.g. mean, variance)
of network observables (e.g. activities, weights). Similarly, Portes et al. (2022) propose a metric
for distinguishing between supervised and reinforcement learning algorithms based on changes in
neural activity flow fields in a recurrent neural network.

7 Limitations and future work

Despite its strengths, our model has several limitations that offer avenues for future research. One
such limitation is the lack of complex temporal dependencies in synaptic plasticity, neglecting bio-
logical phenomena like metaplasticity (Abraham, 2008). Extending our model to account for such
temporal dynamics would increase its biological fidelity. Another issue is the model’s “sloppiness”
in the solution space; it can fail to identify a unique, sparse solution even with extensive data. As
neural recording technologies like Neuropixels (Steinmetz et al., 2021, 2018) and whole-brain imag-
ing (Vanwalleghem et al., 2018) become more advanced, and connectome data for various organisms
become increasingly available (Bentley et al., 2016; Hildebrand et al., 2017; Scheffer et al., 2020;
Winding et al., 2023), there are exciting opportunities for validating and refining our approach. In-
corporating these high-resolution, large-scale datasets into our model is a crucial next step. In partic-
ular, future work could focus on scaling our approach to work with large-scale neural recordings and
connectomics, offering insights into the spatial organization of plasticity mechanisms. Such refine-
ments will be important when applying our approach to larger and more densely connected brains,
such as mammalian ones. Additional considerations for future research include the challenges posed
by unknown initial synaptic weights, the potential necessity for exact connectome information, and
the adequacy of available behavioral data for model fitting.
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Bullmore, Petra E Vértes, and William R Schafer. The multilayer connectome of caenorhabditis
elegans. PLoS computational biology, 12(12):e1005283, 2016.

Jacob A Berry, Anna Phan, and Ronald L Davis. Dopamine neurons mediate learning and forgetting
through bidirectional modulation of a memory trace. Cell Rep., 25(3):651–662.e5, October 2018.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Shirui Chen, Qixin Yang, and Sukbin Lim. Efficient inference of synaptic plasticity rule with gaus-
sian process regression. Iscience, 26(3), 2023.

Ami Citri and Robert C Malenka. Synaptic plasticity: multiple forms, functions, and mechanisms.
Neuropsychopharmacology, 33(1):18–41, January 2008.

Basile Confavreux, Friedemann Zenke, Everton Agnes, Timothy Lillicrap, and Tim Vogels. A
meta-learning approach to (re) discover plasticity rules that carve a desired function into a neural
network. Advances in Neural Information Processing Systems, 33:16398–16408, 2020.

Basile Confavreux, Poornima Ramesh, Pedro J Goncalves, Jakob H Macke, and Tim Vogels. Meta-
learning families of plasticity rules in recurrent spiking networks using simulation-based infer-
ence. Advances in Neural Information Processing Systems, 36, 2024.

Ronald L Davis. Learning and memory using drosophila melanogaster: a focus on advances made
in the fifth decade of research. Genetics, 224(4), August 2023.

Ronald L Davis and Yi Zhong. The biology of Forgetting-A perspective. Neuron, 95(3):490–503,
August 2017.

Evripidis Gkanias, Li Yan McCurdy, Michael N Nitabach, and Barbara Webb. An incentive circuit
for memory dynamics in the mushroom body of drosophila melanogaster. Elife, 11, April 2022.

Ryan N Gutenkunst, Joshua J Waterfall, Fergal P Casey, Kevin S Brown, Christopher R Myers, and
James P Sethna. Universally sloppy parameter sensitivities in systems biology models. PLoS
Computational Biology, 3(10):e189, October 2007. ISSN 1553-7358. doi: 10.1371/journal.pcbi.
0030189. URL http://dx.doi.org/10.1371/journal.pcbi.0030189.

David Grant Colburn Hildebrand, Marcelo Cicconet, Russel Miguel Torres, Woohyuk Choi,
Tran Minh Quan, Jungmin Moon, Arthur Willis Wetzel, Andrew Scott Champion, Brett Jesse
Graham, Owen Randlett, et al. Whole-brain serial-section electron microscopy in larval zebrafish.
Nature, 545(7654):345–349, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4abe0da25fba1a5b91f5d6c79bdc1964594437cd
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4abe0da25fba1a5b91f5d6c79bdc1964594437cd
http://github.com/google/jax
http://github.com/google/jax
http://dx.doi.org/10.1371/journal.pcbi.0030189


Feng Li, Jack W Lindsey, Elizabeth C Marin, Nils Otto, Marisa Dreher, Georgia Dempsey, Ildiko
Stark, Alexander S Bates, Markus William Pleijzier, Philipp Schlegel, Aljoscha Nern, Shin-Ya
Takemura, Nils Eckstein, Tansy Yang, Audrey Francis, Amalia Braun, Ruchi Parekh, Marta Costa,
Louis K Scheffer, Yoshinori Aso, Gregory Sxe Jefferis, Larry F Abbott, Ashok Litwin-Kumar,
Scott Waddell, and Gerald M Rubin. The connectome of the adult drosophila mushroom body
provides insights into function. Elife, 9, December 2020.

Tong Liang and Braden A W Brinkman. Statistically inferred neuronal connections in subsampled
neural networks strongly correlate with spike train covariances. Phys Rev E, 109(4-1):044404,
April 2024.

Sukbin Lim, Jillian L McKee, Luke Woloszyn, Yali Amit, David J Freedman, David L Sheinberg,
and Nicolas Brunel. Inferring learning rules from distributions of firing rates in cortical neurons.
Nature neuroscience, 18(12):1804–1810, 2015.

Scott Linderman, Christopher H Stock, and Ryan P Adams. A framework for studying synaptic
plasticity with neural spike train data. Advances in neural information processing systems, 27,
2014.

Yonatan Loewenstein and H Sebastian Seung. Operant matching is a generic outcome of synaptic
plasticity based on the covariance between reward and neural activity. Proceedings of the National
Academy of Sciences, 103(41):15224–15229, 2006.

Mehrab N Modi, Yichun Shuai, and Glenn C Turner. The drosophila mushroom body: From archi-
tecture to algorithm in a learning circuit. Annu. Rev. Neurosci., 43:465–484, July 2020.

Abigail Morrison, Markus Diesmann, and Wulfram Gerstner. Phenomenological models of synaptic
plasticity based on spike timing. Biological cybernetics, 98:459–478, 2008.

Elias Najarro and Sebastian Risi. Meta-learning through hebbian plasticity in random networks.
Advances in Neural Information Processing Systems, 33:20719–20731, 2020.

Aran Nayebi, Sanjana Srivastava, Surya Ganguli, and Daniel L Yamins. Identifying learning rules
from neural network observables. Advances in Neural Information Processing Systems, 33:2639–
2650, 2020.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology, 15:267–273, 1982.

Jacob Portes, Christian Schmid, and James M Murray. Distinguishing learning rules with brain
machine interfaces. Advances in neural information processing systems, 35:25937–25950, 2022.

Adithya E Rajagopalan, Ran Darshan, Karen L Hibbard, James E Fitzgerald, and Glenn C Turner.
Reward expectations direct learning and drive operant matching in drosophila. Proceedings of the
National Academy of Sciences, 120(39):e2221415120, 2023.

Poornima Ramesh, Basile Confavreux, Pedro J Goncalves, Tim P Vogels, and Jakob H Macke.
Indistinguishable network dynamics can emerge from unalike plasticity rules. bioRxiv, pp. 2023–
11, 2023.

Brian S Robinson, Theodore W Berger, and Dong Song. Identification of stable spike-timing-
dependent plasticity from spiking activity with generalized multilinear modeling. Neural com-
putation, 28(11):2320–2351, 2016.

Louis K Scheffer, C Shan Xu, Michal Januszewski, Zhiyuan Lu, Shin-ya Takemura, Kenneth J
Hayworth, Gary B Huang, Kazunori Shinomiya, Jeremy Maitlin-Shepard, Stuart Berg, et al. A
connectome and analysis of the adult drosophila central brain. Elife, 9:e57443, 2020.

Yichun Shuai, Areekul Hirokawa, Yulian Ai, Min Zhang, Wanhe Li, and Yi Zhong. Dissecting
neural pathways for forgetting in Drosophila olfactory aversive memory. Proceedings of the
National Academy of Sciences, 112(48):E6663–72, December 2015.

Nicholas A Steinmetz, Christof Koch, Kenneth D Harris, and Matteo Carandini. Challenges and
opportunities for large-scale electrophysiology with neuropixels probes. Current opinion in neu-
robiology, 50:92–100, 2018.

12



Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu, Marius
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A Appendix

A.1 Glossary

Backpropagation through time: An algorithm for training recurrent neural networks by unrolling
the network over time steps and applying the standard backpropagation algorithm, allowing the
network to learn from sequences of inputs and capture temporal dependencies.

Binary Cross-Entropy (BCE): A loss function commonly used in binary classification problems
that measures the difference between predicted probabilities and actual binary labels, encouraging
the model to output confident and accurate predictions.

Connectome: A comprehensive map of neural connections in the brain, detailing the structural con-
nectivity between neurons or brain regions, providing insights into brain organization and function.

Covariance-based learning rule: A learning rule that updates weights based on the covariance
between neural activity and reward, adjusting connection strengths to capture statistical relationships
in the data and potentially improving the network’s performance.

Deviance explained: A statistical measure of goodness of fit for generalized linear models, quanti-
fying the proportion of variability in the data that is accounted for by the model compared to a null
model.

Gaussian process: A statistical model used for regression and probabilistic classification, defining
a distribution over functions and allowing for flexible, non-parametric modeling with uncertainty
quantification.

Generative adversarial network (GAN) approach: A machine learning framework where two
neural networks compete to generate realistic data, with one network (the generator) creating syn-
thetic samples and another (the discriminator) trying to distinguish between real and fake data.

Homeostatic adjustments: Changes in neural systems that help maintain stability, including mech-
anisms like synaptic scaling and intrinsic plasticity that regulate neuronal activity and prevent ex-
cessive excitation or inhibition.

Logistic regression: A statistical method for predicting a binary outcome by modeling the proba-
bility of an event occurring as a function of input variables, using the logistic function to transform
linear combinations of features into probabilities.

Synaptic plasticity: The ability of synapses (connections between neurons) to change their strength
over time, forming the basis for learning and memory in the brain.

Truncated Taylor series: A mathematical method for approximating functions using polynomial
terms, where the series is cut off after a finite number of terms to balance accuracy and computational
tractability.

Meta-learning: A subfield of machine learning focused on improving the learning process itself,
developing algorithms that can learn how to learn and adapt quickly to new tasks or environments.

Metaplasticity: Higher-order plasticity where prior synaptic activity influences subsequent plastic-
ity, regulating the threshold and magnitude of future synaptic changes to maintain network stability
and optimize learning.

Multilayer perceptrons (MLPs): A type of artificial neural network with multiple layers of nodes,
including input, hidden, and output layers, capable of learning complex non-linear relationships in
data through backpropagation.

Mushroom body: A region in the insect brain involved in learning and memory, particularly impor-
tant for olfactory learning, sensory integration, and decision-making processes.

Neuromorphic: Referring to artificial systems that mimic biological neural systems, often imple-
mented in hardware to achieve brain-like computation with high efficiency and parallelism.

Neuropixels: A type of high-density neural recording probe that allows simultaneous recording
from hundreds of neurons across multiple brain regions with high spatial and temporal resolution.
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Oja’s rule: A famous local learning rule for neural networks that performs principal component
analysis, extracting the dominant features from input data by updating synaptic weights based on
the correlation between pre- and post-synaptic activity.

A.2 Implementation

In experimental contexts, the observed behavioral or neural trajectories ooo(t) can span extensive time
scales, often consisting of thousands of data points. Computing gradients over such long trajectories
is computationally demanding. Our framework is implemented in JAX (Bradbury et al., 2018) and
is designed to accommodate plasticity modeling across millions of synapses, anticipating future
integration with large-scale connectomics datasets. In terms of time, fitting Taylor coefficients on
a network with approximately 106 synapses and 1000-time step trajectories takes 2 hours on an
NVIDIA H100 GPU.

A.3 Additional detail: Inferring a plasticity rule from neural activity

To create a ground-truth system with a known plasticity rule, we use a single-layer neural network
with 100 input neurons and N = 1000 output neurons to generate synthetic data. The output layer
employs a sigmoid activation function, chosen for its differentiability and biologically plausible
output range of [0, 1]. We generate 50 training trajectories for the network. The input data is
sampled from a Gaussian distribution with zero mean and a variance of 0.1, independent of time.
A subset of neurons, determined by the sparsity factor, is selected for the readout. The simulation
runs over 50 time steps, calculating the neural activity of all output neurons at each step. To ensure
numerical stability and prevent exploding gradients, gradient clipping is applied with a threshold of
0.2.

The coefficients θαβγ of the Taylor series expansion representing the plasticity rule are learned,
initialized independently and identically distributed (i.i.d.) from a normal distribution with a mean
of 0 and a variance of 10−4. Both the ground-truth and model network weights are initialized using
Kaiming initialization from a zero-mean Gaussian distribution. Although these weights are drawn
from the same distribution, they are resampled, resulting in different initial values. No regularization
is applied during training. The Adam optimizer is used to train the weights of the plasticity model,
with default parameters.

A.4 Additional detail: Inferring plasticity rules from behavior

In the behavioral simulation experiments, the ground truth plasticity rule is denoted as xjr. We use
a network with a 2-10-1 architecture and a sigmoid non-linearity. The plasticity MLP has a size of
4-10-1. The default L1 regularization is set to 1e-2, the moving average window is 10, and the input
firing mean is 0.75.

Given the discrete nature of the observed behavior and the continuous output of the model, we
employ the percent deviance explained as a performance metric. The percent deviance explained
measures the model’s ability to account for the variability in observed binary choices compared to a
null model that assumes no plasticity (i.e., the weights remain at their initial random initialization).
It represents the reduction in deviance relative to this null model, expressed as a percentage. Higher
values indicate greater log-likelihoods, signifying a superior fit to the observed data.

Percent Deviance Explained = 100×
(
1− Deviancemodel

Deviancenull

)
(11)

Since there are 2 odors, they are encoded in a stimulus vector of dimension 2. Odor 1 corresponds
to the first dimension “firing”; for these experiments, we use a value of 0.75, which we call the input
firing mean (not 1 to allow the model to differentiate between x and x2 in the plasticity rule). There
is Gaussian noise with zero mean and a variance of 0.05 added to account for biological variability
in the signal. In one trajectory, traditionally there are 240 trials, consisting of 3 blocks with different
reward contingencies for odors in each block. The reward ratios are:
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Odor A Odor B
Block 1 0.2 0.8
Block 2 0.9 0.1
Block 3 0.2 0.8

Updates are performed on a single trajectory, with no batching. In our simulations, we use 18
trajectories for training (matching the size of our previous experimental data) and 7 for evaluation
for each seed. For each seed, results are reported as the median. Unless stated otherwise, all reported
results are averaged over 3 seeds.

A.5 Additional experimental parameters

In the following subsections we explore the effect of three factors (regularization, moving average
window, input firing mean) on model performance. Only the parameter being tested is varied while
the other parameters are held fixed at the previously defined values.

A.5.1 L1 regularization

We experiment with various values of the L1 regularization penalty applied to the Taylor coefficients.
This encourages sparse plasticity solutions and prevents the coefficients from exploding into NaNs
due to the learning of positive values that exponentially increase the synaptic weight as the number
of time points grows. We do not apply L1 regularization to the MLP parameters. The results of these
experiments supports our original choice of L1 regularization level (Fig. 5).
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Figure 5: Effect of L1 regularization on R2 of weights for Taylor plasticity rule

A.5.2 Moving average window

The moving average window refers to the window size used for calculating the expected reward. For
example, a moving average window of 10 would take the average of the rewards received over the
last 10 trials. Our exploration of window size suggests that smaller windows allow our model to more
accurately predict weights in behavioral simulation experiments (Fig. 6). This is to be expected as
shorter historical dependencies on past trials reduce the noisiness of the expected reward estimates.
Importantly however, our model still robustly identified learning rules when using out default choice
of 10 trials which was guided by experimental results from Rajagopalan et al. (2023) that suggested
that choice on a given trial was mediated by 10 past trials.
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Figure 6: Effect of moving average window (used for calculated expected reward) on the perfor-
mance of learned plasticity rule

A.5.3 Input firing mean

This is the firing mean encoding used for representing an odor. For example, a firing mean of 1
represents the odor as [1, 0], with additional Gaussian white noise fixed at a variance of 0.05. Our
model (specifically the MLP implementation) is able to account for a range of input firing means
(Fig. 7).
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Figure 7: Effect of input firing mean (used for odor representation) on the performance of learned
plasticity rule

A.6 Validation on held-out data

We ran a validation experiment to assess the extent to which the fitting procedure could generalize to
unseen biological data. Due to the sequential nature of the dataset, and that we are fitting our model
to individual flies’ behavioral trajectories (i.e., sequences of choices), we cannot perform classical
k-fold cross-validation in which a random subset of timepoints or trials are held out. Instead, we
train the model using the first x% of an individual fly’s trajectory, and then we test it on the last
(100− x)% (Figure 8). To ensure there is no data leakage from the training set, we re-initialize the
model’s synaptic weights at the beginning of each test sequence, although the test performance is
similar if the initial weights are carried over from the final timestep of the training sequence.
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Figure 8: Percent deviance explained on the training and test data, training on x% of the fly data
trajectory and testing on the remaining 100− x%.

Interestingly, we found that some flies had test performance close to training performance, whereas
others had poor test performance (Figure 8). The flies with good test performance (defined as having
a positive percent deviance explained on the test set) reaffirmed our conclusion that a weight decay
term enabled a quantitatively better description of fly behavior (Figure 9, top). The flies with poor
test performance (negative test percent deviance explained) also had negative plasticity coefficients
for the w term (θ001 in Equation 6), suggesting that the differences in test performance were not due
to different estimates of this coefficient (Figure 9, bottom). More analyses are required to determine
why some flies had markedly better test performance than others.

A.7 Additional plasticity rules

In these additional experiments, we maintain the reward term as the difference from the expected
reward. This approach facilitates bidirectional plasticity. Additionally, we incorporate a weight
decay term, experimenting with several coefficients, ultimately choosing a value of 0.05 as it seems
reasonable for our experimental configuration. Table 3 presents a comparison between the MLP
and the Taylor series, reporting the R2 over weights, R2 over activity, and the percent deviance
explained. At a high level, both methods appear to perform similarly. To gain deeper insights into
why certain rules are more “recoverable” than others, an examination of weight dynamics for each
method is necessary. The Taylor series model has 81 trainable parameters, while the MLP has 61.
Fitting the rules with a relevant subset of the Taylor series, selected through biological priors as done
in the Drosophila experimental data, is expected to result in better performance.
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Figure 9: Learned weight decay term in the Taylor series parametrized plasticity rule (Equation 6),
from flies with positive (top) and negative (bottom) test set percent deviance explained.
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Table 3: Evaluation of various different reward-based plasticity rules: R2 scores for weight and
individual neural activity trajectories, and percentage of deviance explained for behavior.

Plasticity Rule MLP Taylor
R2 Weights R2 Activity %Deviance R2 Weights R2 Activity %Deviance

xjyiwijr − 0.05r 0.27 0.34 79.92 0.41 0.51 84.22
xjwijyir − 0.05r 0.61 0.67 84.39 0.33 0.30 82.79
xjwijr

2 − 0.05r 0.66 0.66 84.75 0.42 0.47 79.33
xjyiwijr

2 − 0.05r 0.40 0.57 80.56 0.40 0.48 79.03
xjr

2 − 0.05r 0.75 0.73 70.78 0.66 0.61 70.65
x2
jyiwijr − 0.05 0.59 0.68 70.41 0.59 0.69 68.84
x2
jy

2
i r

2 − 0.05 0.59 0.62 64.98 0.55 0.62 64.44
xjr − 0.05xjyir 0.81 0.96 63.64 0.81 0.95 64.01
xjr − 0.05xjwijr 0.84 0.95 64.19 0.82 0.95 63.24
xjr − 0.05xjyi 0.80 0.96 62.90 0.76 0.94 62.50

xjr 0.85 0.96 64.76 0.78 0.94 61.91
xjr − 0.05r 0.70 0.76 62.01 0.63 0.68 61.82

xjr − 0.05xjyiwijr 0.82 0.96 63.13 0.73 0.93 61.05
xjr − 0.05xjwij 0.83 0.95 61.24 0.81 0.95 60.85
xjr − 0.05xjyiwij 0.84 0.96 63.53 0.72 0.92 60.33

xjr − 0.05xj 0.89 0.97 61.99 0.77 0.91 60.05
xjr

2 − 0.05xjwij 0.89 0.95 54.92 0.88 0.94 53.94
xjr

2 − 0.05xjyi 0.79 0.95 56.40 0.77 0.92 53.76
xjr

2 0.89 0.96 54.32 0.81 0.92 52.87
xjr − 0.05wij 0.87 0.91 57.01 0.70 0.86 51.80

xjr
2 − 0.05xjyir 0.84 0.96 53.14 0.78 0.93 51.61

xjr
2 − 0.05xjyiwij 0.81 0.95 54.92 0.76 0.93 51.52

xjr
2 − 0.05xjwijr 0.85 0.96 53.04 0.78 0.92 51.30

xjr
2 − 0.05xjyiwijr 0.90 0.96 53.90 0.82 0.92 51.29
xjr

2 − 0.05xj 0.89 0.95 51.52 0.85 0.93 51.03
xjr

2 − 0.05xjr 0.88 0.96 54.17 0.79 0.93 50.90
xjr − 0.05yiwijr 0.91 0.95 52.94 0.84 0.91 50.24
xjr − 0.05yir 0.94 0.95 52.84 0.86 0.92 50.20
xjr − 0.05wijr 0.87 0.94 49.72 0.82 0.92 48.90
xjr − 0.05yiwij 0.94 0.96 48.58 0.90 0.95 48.60
yiwijr

2 − 0.05 0.66 0.90 47.26 0.55 0.84 47.00
xjr

2 − 0.05wij 0.86 0.94 46.44 0.78 0.91 46.26
xjr

2 − 0.05yiwijr 0.91 0.92 43.64 0.89 0.93 44.04
xjr

2 − 0.05yir 0.96 0.97 43.74 0.93 0.95 43.18
xjr

2 − 0.05wij 0.92 0.93 42.68 0.91 0.94 42.43
x2
jyiwijr

2 − 0.05r 0.65 0.53 43.26 0.65 0.57 42.32
xjr

2 − 0.05yir 0.93 0.92 44.13 0.91 0.94 41.69
yiwijr − 0.05 0.69 0.89 38.52 0.61 0.85 37.74
y2i r

2 − 0.05 0.52 0.87 37.01 0.60 0.82 36.81
xjr

2 − 0.05yi 0.97 0.97 34.55 0.96 0.97 34.36
x2
jy

2
i r

2 − 0.05r 0.72 0.65 33.94 0.68 0.60 33.57
x2
jyiwijr − 0.05r 0.60 0.53 34.82 0.65 0.57 33.45

yiwijr − 0.05xjr 0.04 0.45 28.56 0.08 0.46 28.63
x2
jy

2
i r − 0.05r 0.50 0.44 28.81 0.70 0.60 28.08

yiwijr
2 − 0.05xjr 0.17 0.47 26.90 0.31 0.44 24.92

yiwijr
2 − 0.05r 0.38 0.32 16.49 0.60 0.59 15.87

y2i r
2 − 0.05r 0.01 −0.01 14.06 0.24 0.29 13.62

x2
jy

2
iwijr − 0.05xjr 0.82 0.94 4.64 0.86 0.95 4.35

x2
jy

2
iwijr

2 − 0.05xjr 0.78 0.94 4.31 0.90 0.96 4.01
xjr − 0.05xjr 0.75 0.92 4.30 0.92 0.96 3.96

xjy
2
iwijr

2 − 0.05xjr 0.79 0.93 4.39 0.89 0.97 3.87
xjyiwijr − 0.05xjr 0.70 0.91 3.49 0.87 0.96 3.29
xjy

2
i r − 0.05xjr 0.63 0.90 3.28 0.83 0.96 3.04
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B NeurIPS Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: All experiments are reproducible, and code is opensource. We report the
rough time it takes to run an experiments, but have not provided extensive indepth details
like the time of execution, etc.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: We have discussed the impact that our paper could have within the field of
neuroscience. Larger societal impact of this work however is unclear, and likely will only
be felt down the road as this approach is used more widely, we have therefore not dedicated
a section to discuss this.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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