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Abstract

The expressive and computationally inexpensive bipartite Graph Neural Networks (GNN)
have been shown to be an important component of deep learning based Mixed-Integer Linear
Program (MILP) solvers. Recent works have demonstrated the effectiveness of such GNNs
in replacing the branching (variable selection) heuristic in branch-and-bound (B&B) solvers.
These GNNs are trained, offline and on a collection of MILPs, to imitate a very good but
computationally expensive branching heuristic, strong branching. Given that B&B results
in a tree of sub-MILPs, we ask (a) whether there are strong dependencies exhibited by the
target heuristic among the neighboring nodes of the B&B tree, and (b) if so, whether we
can incorporate them in our training procedure. Specifically, we find that with the strong
branching heuristic, a child node’s best choice was often the parent’s second-best choice. We
call this the “lookback” phenomenon. Surprisingly, the typical branching GNN of Gasse
et al. (2019) often misses this simple “answer". To imitate the target behavior more closely
by incorporating the lookback phenomenon in GNNs, we propose two methods: (a) target
smoothing for the standard cross-entropy loss function, and (b) adding a Parent-as-Target
(PAT) Lookback regularizer term. Finally, we propose a model selection framework to
incorporate harder-to-formulate objectives such as solving time in the final models. Through
extensive experimentation on standard benchmark instances, we show that our proposal
results in up to 22% decrease in the size of the B&B tree and up to 15% improvement in the
solving times.

1 Introduction

Many real-world decision making problems are naturally formulated as Mixed-Integer Linear Programs
(MILPs), for example, process integration (Kantor et al., 2020), production planning (Pochet & Wolsey,
2006), urban traffic management (Foster & Ryan, 1976; Fayazi & Vahidi, 2018), data center resource
management (Nowatzki et al., 2013), and auction design (Abrache et al., 2007) to name a few. In some
applications, such as urban traffic management (Fayazi & Vahidi, 2018), these MILPs need to be solved
frequently (e.g., every second) with only a slight change in the specifications. Similarly in data center resource
management (Nowatzki et al., 2013), the available machines and tasks that must be served evolve over
time, prompting repeated assignments through MILP solving. Even with a linear objective function and
linear constraints, the requirement that some decision variables must take on integer values makes MILPs
NP-Hard (Papadimitriou & Steiglitz, 1982).

As a result, the Branch-and-Bound (B&B) algorithm (Land & Doig, 1960) is used in the modern solvers to
effectively prune the search space of the MILPs to find the global optimum. B&B proceeds by recursively
splitting the search space and solving the linear relaxation of the resulting sub-problems, the solution of
which serves as an informative bound to prune the search space. The algorithm continues until a solution
with integral decision variables is found and proven optimal. Quite naturally, the sequence of sub-problems
resulting from the decisions at each step of the algorithm can be visualized as a tree; every node (a sub-MILP)
has a parent except the root node.

While seemingly simple, the B&B algorithm must repeatedly take decisions that are crucial for its efficiency
in solving MILPs, such as the choice of decision variable over which to split at each iteration, a problem
known as variable selection. Even though the worst-case time-complexity of the B&B algorithm is exponential
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in the size of the problem (Wolsey, 1988), it has been successfully applied in practical settings thanks to the
careful design of a number of effective search heuristics.

Modern solvers are configured with expert-designed heuristics and are aimed at solving general MILPs.
However, assuming that MILPs come from a specific distribution, there has been a recent surge in research
related to statistical approaches to learning such heuristics (He et al., 2014b; Alvarez et al., 2017; Khalil
et al., 2016; Gasse et al., 2019; Zarpellon et al., 2020; Gupta et al., 2020; Huang et al., 2022).

Figure 1: (a) Frequency of the “lookback” property when (i) instances are solved using strong branching
heuristic (Ground truth), and (ii) corresponding frequency with which GNNs would have respected this
property on Ground truth. (b)-(e) GNNs trained with the proposed techniques (GNN-PAT) have higher
accuracy on the validation dataset. (f) GNN-PAT solves test instances faster than other baselines resulting in
(g) less time as compared to GNNs.

Gasse et al. (2019) proposed to use Graph Neural Network (GNN) for the variable selection problem to imitate
branching decisions of a computationally expensive strong branching heuristic that yields the smallest B&B
trees in practice. The GNN operates on a bipartite representation of a MILP in which variables and constraints
are nodes and an edge indicates the presence of a variable in a constraint. Such a bipartite representation has
several advantages. First, it is able to capture the most crucial invariances of MILPs, namely, permutation
invariance to the ordering of decision variables/constraints, and, by way of feature engineering, scale invariance
to the scaling of constraints or objective coefficients. Second, due to the shared parametric representation,
the model can be applied to MILPs of arbitrary size. Thus, GNNs have been extensively used to process
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MILPs as inputs to a neural network aimed at imitating various superior heuristic decisions (Huang et al.,
2022; Zarpellon et al., 2020; Nair et al., 2020), thereby outperforming solvers with off-the-shelf heuristics.

The training of GNNs consists primarily of two steps: (a) Dataset collection: data, i.e., sub-problems and
corresponding strong branching decisions, are collected offline by solving reasonably-sized MILPs while
invoking, with some exploration probability, either a less efficient but faster heuristic, or the strong branching
heuristic, and (b) Model Training: assuming independent and identical distribution (i.i.d.) of the collected
dataset, GNNs are trained to minimize standard cross-entropy loss between the predictions of GNNs and the
strong branching target.

Figure 2: (Maximum Independent Set) Frequency
of the lookback property per depth-decile, one of
the 10 equally divided portions by depth of the
B&B tree. Ground truth is obtained by solving
small instances using strong branching heuristic.
Retrospectively, GNNs do not respect the look-
back property well enough. For similar statistics
on other benchmark problem families, see Ap-
pendix B.

So far, previous works on learning to branch have tried
imitating the strong branching decisions at each node in
isolation, thereby ignoring the statistical resemblance in
the behavior of the neighboring nodes. However, it often
happens that strong branching’s top choice at a node was
the second best choice at the node’s parent, a phenomenon
we will refer to onwards as the “lookback” property of
strong branching. Figure 1(a) shows how frequently this
occurs in some standard benchmark instances, labeled
for convenience as cauctions (Combinatorial Auction), set-
cover (Minimum Set Cover), facilities (Capacitated Facility
Location), and indset (Maximum Independent Set). See
Appendix A for similar statistics on some real-world in-
stances; the lookback property is equally prevalent in the
real-world instances as in the instance families used in this
work . Given the importance of decisions closer to the
root node, Figure 2 further shows that this phenomenon is
quite prevalent in the top of the tree. Although it appears
quite common empirically, such property has never been
explicitly pointed out in the previous literature.

Since imitation learning aims to mimic the expert as closely
as possible, and the expert exhibits this lookback property,
it follows that successful imitation should exhibit the
lookback property as well. However, as can be seen in
Figures 1(a) and 2, there is a big gap between the fraction
of times GNNs respect the lookback condition and the
fraction of times it happens in the strong branching oracle. We therefore propose in this work two approaches
to encourage it in imitation frameworks for learning to branch, and analyze its effects on solving performance.

A difficulty is that our proposed methods introduce new hyperparameters, which raises the question of how to
select them efficiently. Gupta et al. (2020) used validation accuracy on a few thousand observations collected
by solving MILPs of slightly bigger size than the training instances. We argue that such a selection strategy
doesn’t serve various objectives that a practitioner might have. Thus, we also design a better model selection
framework to respect such varied requirements. As shown in Figure 1(b)-(e), our resulting combined method
(GNN-PAT) increases the validation accuracy on each benchmark, which in turn lead to decreases in the size
of the final B&B tree by up to 22% and in the running time by up to 15% (Figure 1(g)) solving most of the
instances fastest among the baselines (Figure 1(f)).

To summarize, the contributions of this paper are as follows.

• First, we demonstrate through numerical experiments that the “lookback” phenomenon often occurs
in practice (see Figure 1 and 2).

• Second, we propose two ways of exploiting this phenomenon, namely through target softening, and
through a regularizer term that encourages the GNN to exhibit this phenomenon.

3



Under review as submission to TMLR

• Third, we propose a model selection framework to incorporate harder-to-formulate practical objectives
such as minimum solving times.

The paper is divided as follows. Sections 2 and 3 review the literature and preliminary notation and
definitions, respectively. Section 4 proposes techniques to exploit the lookback phenomenon in imitation
learning. Section 5 details our proposed hyperparameter selection framework. Then, Section 6 presents
experimental results that show the benefits of these adjustments. Finally, in Section 7, we discuss implications
of our proposals, limitations, and potential future directions, concluding in Section 8.

2 Related Work

The problem of variable selection in B&B based MILP solving has been studied quite extensively. While the
gold standard strong branching heuristic yields the smallest B&B trees, due to the high computational cost
per iteration it is impractical (see Section 3 for details). Thus, in its early years, the focus of research has
been on hand-designed heuristic methods (Applegate et al., 1995; Linderoth & Savelsbergh, 1999) that are
faster and sufficiently good. As a result, reliability pseudocost branching (RPB) (Achterberg et al., 2005)
became the preferred branching strategy to solve general MILPs. RPB combines the lookahead strengths of
strong branching heuristic with faster estimations offered through computationally inexpensive measures of
performance (such as pseudocosts (Linderoth & Savelsbergh, 1999)).

In the last decade, researchers have proposed machine learning (ML) methods to imitate the strong branching
heuristic, thereby leveraging the computationally inexpensive nature of the learned functions. For exam-
ple, Alvarez et al. (2017) used extremely randomized trees on the data collected offline, whereas Khalil et al.
(2016) used support vector machines to imitate the strong branching ranking from the first few hundred
nodes explored in the B&B tree. We refer the reader to Lodi & Zarpellon (2017) for a detailed survey on
ML-based branching strategies.

Both Alvarez et al. (2017) and Khalil et al. (2016) learn a classifier on fixed-dimensional, hand-designed
features. Recently, however, several works have proposed deep-learning based branching strategies, starting
from (Gasse et al., 2019). Their GNN approach has been the basis of several following work. Specifically, Gupta
et al. (2020) explored the relation between the original MILP and subsequent sub-MILPs in a B&B tree
to design a CPU-efficient neural network architecture. However, this relationship has more to do with the
B&B characteristics than the oracle behavior. Similarly, Zarpellon et al. (2020) explored learning suitable
representations based on the evolution of the B&B tree. Peng & Liao (2022) investigated, in the context
of combinatorial auctions instances only, the effects of B&B node sampling to collect the training data.
Finally, Nair et al. (2020) proposed a GPU-friendly alternating descent method of multipliers approach to
solving linear programs that could be use to run strong branching on larger instances, allowing them to
show that the approach could scale to large, heteroneous datasets. In none of these works, however, has
the parent-child lookback property been explored in the context of training machine learning based variable
selection strategies.

More recently, works have tried to move beyond imitation learning and have investigated reinforcement
learning formulations for learning to branch. Sun et al. (2020) used a simple evolutionary strategies approach,
but they only obtained improvements on very homogeneous benchmarks, while reporting subpar results
on the harder benchmarks of Gasse et al. (2019) used in this work. Zhang et al. (2022) used imitation
learning framework of Gasse et al. (2019) to pre-train GNNs before using a hybrid reinforcement learning
and Monte-Carlo tree search framework, reporting more encouraging results. In parallel, Etheve et al. (2020)
proposed a Q-learning approach on value functions representing subtree size, and Scavuzzo et al. (2022)
reinterpreted their approach as reinforcement learning on a tree-shaped Markov decision processes. Parsonson
et al. (2022) proposed a similar mechanism, where the search tree is divided into small diving paths, that
are used as imitation targets. These works all seek to address the problem of the long episode lengths using
topological information from the branch-and-bound tree.

Although an interesting step forward, these approaches are nonetheless not currently competitive with
imitation learning methods, which remain the state of the art. Indeed, they face unusual challenges in this
context, including that poor decisions lead to longer, rather than shorter episodes, and also that transitions
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between states are also particularly computationally slow, since they involve solving linear programs. For
these reasons, like most works, we chose to focus on the more successful strategy of imitation learning.
Nonetheless, it is plausible that encouraging a lookback property in a reinforcement learning policy could
lead to similar benefits to those explored in the context of this work.

3 Preliminaries

A MILP is a mathematical optimization problem characterized by a linear objective function and linear
constraints in variables x. A generic representation of a MILP is as follows:

min
x

c⊺x, s.t. Ax ≤ b, x ∈ Zp × Rn−p, (1)

where c ∈ Rn is the vector of cost coefficients, A ∈ Rm×n is the matrix of constraint coefficients, b ∈ Rm is a
vector of constant terms of constraints, and p of the decision variables are constrained to take integer values.

The B&B algorithm proceeds as follows. The Linear Programming (LP) relaxation of the MILP, obtained by
relaxing the integer constraints on the discrete variables, is solved to obtain a lower bound on the global
optimum, thereby resulting in x∗ as the optimal solution. If x∗ has integral values for the integer-constrained
decision variables, then it is integer-optimal and the algorithm terminates. If not, one of the decision variables
with fractional value, k ∈ C, such that C ∈ {k | x∗

k ̸∈ Z, k ≤ p}, is selected to split the MILP in two sub-MILPs.
The resulting sub-MILPs are obtained by adding additional constraints xk ≤ ⌊x⋆

k⌋ and xk ≥ ⌈x⋆
k⌉, respectively.

We denote as C the set of branching candidates, while the variable xi is termed as a branching variable. The
algorithm proceeds recursively in this fashion by selecting the next sub-MILPs to operate on.

Denoting the optimal value of Eq. (1) by P , and using the superscripts 0 to denote the parent MILP, − to
denote the child MILP obtained by adding the lower bound to the branching variable, and + otherwise. The
strong branching heuristic selects the variable xsb that has the maximum potential to improve the bound,
namely

xsb = arg max
k∈C

[
max{P −

k − P 0, ϵLP } · max{P +
k − P 0, ϵLP }

]
,

where ϵLP > 0 is a small enough value to prevent the scores to collapse to 0 because of no improvement on
either side of the branching (Achterberg, 2007).

4 Methodology

In this section, we describe our proposals to incorporate dependencies between successive nodes. A bipartite
graph representation of a MILP is denoted by G ∈ (V, E, C), where V ∈ Rn×dv , E ∈ Rk×de , and C ∈ Rm×dc .
Here, V is the matrix of features for n decision variables, C is the matrix of features for m constraints, and
E is the matrix of features for k variable-constraint pairs. The terms dv, dc, and de are the numbers of input
features.

The data is collected by using the strong branching heuristic to solve instances of manageable size, thereby
yielding N graphical representations of MILPs, {Gi}N

i=1, the set of candidate decision variables, Ci, with
fractional value at a node i, and their corresponding strong branching scores si ∈ R|Ci|

≥0 . We use si,j to denote
the strong branching score of the jth candidate in Ci. We denote the strong branching target chosen during
the solving procedure by yi, and the set of second best strong branching variables by Zi = arg maxj ̸=yi

si,j .
Thus, Zi may include variables which have the same strong branching score as yi if there is a tie, else it
includes all the variables with the second best strong branching score, which can be more than one.

We denote the parent graph by a superscript 0 and the child node by a superscript 1. Thus, the parent
bipartite graph of the i-th observation is denoted by G0

i and the child graph by G1
i . Note that we drop

the superscripts whenever we do not need a distinction between parent and child nodes. We use D =
{(G0

i , s0
i , G1

i , s1
i ) | i ∈ {1, 2, 3, ..., N}} to denote the entire dataset.
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Defining a GNN by a function fθ that is defined over the parameter space Θ, Gasse et al. (2019) proposed to
find the optimal parameters by empirical risk minimization of the cross-entropy loss between the predictions
and the strong branching target over the dataset D. Thus, if there are n decision variables in Gi, fθ(Gi) ∈ Rn

represents the scores predicted by the function fθ. Denoting yi as a one-hot encoded vector with the value of
1 at yi and 0 elsewhere, θ⋆

y is determined by solving

θ⋆
y = arg min

θ

1
N

N∑
i=1

wi · CE(fθ(Gi), yi), (2)

where CE is the cross-entropy loss function, and wi is the relative importance given to the observation i,
which may depend on the depth (Gupta et al., 2020).

4.1 Second-best ϵ-smooth loss target

Keeping the cross-entropy loss function as is, we modify the target to a smooth label zi, i.e., instead of
one-hot encoded vector yi, zi carries a value of 1 − ϵ at the index of the strong branching target yi, while the
value of ϵ is equally divided among the second best strong branching decisions in Zi. Thus, we obtain the
optimal parameters as

θ⋆
z = arg min

θ

1
N

N∑
i=1

wi · CE(fθ(Gi), zi). (3)

A modified target such as zi in Eq. (3) yields parameters that tend to preserve the ranking of the second
most important decisions. While intuitive and simple to implement with minimal changes in the existing
framework, θ⋆

z is still not informed from the parent behavior.

4.2 Parent-As-Target (PAT) lookback loss term

Here, we are interested in incorporating the relation between parent and child outputs as it happens under
the strong branching oracle. In doing so, we expect the learned parameters to more appropriately represent
the strong branching behavior. Defining the lookback condition Li at the node i as

Li =
{

1, y1
i ∈ Z0

i

0, otherwise,
(4)

we consider an additional term to Eq. (2) or Eq. (3) that enforces fθ to follow the same ordering between
parent-child nodes whenever Li = 1. We call this Parent-As-Target (PAT) lookback term, designed to enforce
similarity between the logits at the parent node for the candidates C1

i of the child node, denoted as fθ(G0
i )[C1

i ],
and the logits at the child node for the same candidates C1

i , denoted by fθ(G1
i ). Thus, we obtain θ⋆

yP AT with
the target yi as

θ⋆
yP AT = arg min

θ

1
N

N∑
i=1

wi·
[
CE(fθ(G1

i ), y1
i )+ N∑N

i 1{Li = 1}
1{Li = 1}·λP AT ·CE(fθ(G1

i ), fθ(G0
i )[C1

i ])
]
, (5)

or we obtain θ⋆
zP AT with the target zi as

θ⋆
zP AT = arg min

θ

1
N

N∑
i=1

wi·
[
CE(fθ(G1

i ), z1
i )+ N∑N

i 1{Li = 1}
1{Li = 1}·λP AT ·CE(fθ(G1

i ), fθ(G0
i )[C1

i ])
]
. (6)

The first term in the brackets represents the usual cross-entropy loss which favors getting the top strong
branching variable right. The second term favors aligning the predicted scores of the second-best variable
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in the parent node whenever it is the best in the child node i. This term is active only when the lookback
condition is satisfied, i.e., when 1{Li = 1} is true. Here, λP AT is the relative importance given to the
lookback condition, whenever it holds.

5 Model Selection

The dataset D is collected on instances of manageable size such that a reasonable number of observations
are collected within a certain time budget (e.g., 1 day). We label these instances as Small. Given various
hyperparameters involved in training machine learning models, a standard practice is to select a model
with the best validation accuracy. However, owing to the sequential nature of the branching decisions, the
validation accuracy is not necessarily indicative of the models’ runtime performance. For example, due to bad
branching decisions early on in the search, the models might later face sub-MILPs that are not representative
of the training dataset, thereby leading to even worse decisions. Alternatively, a model might make reasonably
good guesses of the strong branching variables, but the overall running time may be dominated by the solving
time of the intermediate LP relaxations.

In general, a practitioner is interested in using the learned models to solve problems that are potentially
bigger than those used for data collection and training. We label these instances as Big. To obtain some
estimates of a model’s ability to generalize to Big instances, we solve K randomly generated Medium instances
of intermediate size by using each of the learned branching strategies, b ∈ B, to guide the MILP solver within
a time limit of T seconds per instance. The aggregate performance (e.g., arithmetic mean, geometric mean,
etc.) of the branching models can be evaluated in terms of (a) solving time, denoted by t(b), across K
instances, e.g., 1-shifted geometric mean, (b) node counts, n(b, B), across the instances that are solved by all
the strategies in B, or (c) number of solved instances within the time limit, denoted by w(b). Similarly, one
can also define a metric based on the optimality gap of unsolved instances.

In exploring generalization metrics, we need to further distinguish between different objectives that a
practitioner might have. For example, (a) Minimum solving time: the branching strategy that solves the
instances as fast as possible; (b) Maximum number of instances solved: a branching strategy that solves the
most instances to optimality within a certain time budget, irrespective of whether the strategy solved the
instances fastest or not; or (c) Minimum node count: a branching strategy that yields the smallest trees.

Thus, even though the models are trained to mimic the strong branching oracle, thereby expecting to
yield the smallest tree, we incorporate harder-to-formulate objectives by selecting the learned model using
a combination of aggregate performance measures. Thus, to incorporate the objective (a), we select the
branching strategy as per

B
′

= {j | j ∈ B, t(j) ≤ min
B

t(b) + ϵt},

b⋆
time = arg min

b∈B′
n(b, B

′
),

(7)

where we introduce ϵt to account for the variability that might result from the hardware-dependent solving
time measurement. Thus, ϵt = 1 considers all the branching strategies b such that t(b) < minb∈B t(b) + 1.

The objective corresponding to solving the largest number of instances in the minimum amount of time can
be formulated as

B
′

= {j | j ∈ B, w(j) = max
B

w(b)},

B
′′

= {j | j ∈ B
′
, t(j) ≤ min

B′
t(b) + ϵt},

b⋆
solved−time = arg min

b∈B′′
n(b, B

′′
),

(8)
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which is slightly different than the objective to select the strategy with the minimum time that also solves
the most instances,

B
′

= {j | j ∈ B, t(j) ≤ min
B

t(b) + ϵ},

B
′′

= {j | j ∈ B
′
, w(j) = max

B′
w(b)},

b⋆
time−solved = arg min

b∈B′′
n(b, B

′′
).

(9)

We discuss other possible formulations in Appendix C.

6 Experiments

We consider four benchmark problem families, namely Combinatorial Auctions, Minimum Set Covering,
Capacitated Facility Location, and Maximum Independent Set, to evaluate the performance of our proposed
methods. These are the same problems that have been used extensively in the “learning to branch"
literature (Gupta et al., 2020; Scavuzzo et al., 2022; Etheve et al., 2020; Sun et al., 2020) since introduced
in Gasse et al. (2019). Specifically, we collect a dataset D for each of the problem families by solving the
Small instances using SCIP (Gleixner et al., 2018) with the strong branching heuristic. Our models are
trained to minimize the objective functions as described in Equations (2), (3), (5), and (6). Due to the space
constraints, we leave the instance size, dataset collection, and training specifications to Appendices D, E,
and F, respectively.

Baselines. To demonstrate the utility of the proposed models, we consider three types of widely used
branching strategies: (a) Reliability Pseudocost Branching (RPB): Given the online statistical learning aspect
of this heuristic, it has been shown to be the most promising among all. The commercial solvers use this as
a default branching strategy; (b) TunedRPB: Given that we are focused on learning a branching strategy
suitable for problem sets coming from a fixed distribution, we search through the parameters of RPB to
select the ones suited best for the problem family. Specifically, we run a grid search on two RPB parameters
representing a trade-off between run time and the iterative performance (see Appendix G); We select the
best performing parameters using the model selection framework from Section 5, making this tuned heuristic
directly comparable to our method; (c) Graph Neural Networks (GNN): As proposed by Gasse et al. (2019),
and widely used in the community, we use GNNs trained on the same dataset as our proposed models. These
models have been shown to be the best among all the other machine learning based models. Finally, we also
show the performance of our gold-standard strong branching heuristic that is used to collect the training
dataset (FSB).

Evaluation. We replace the variable selection heuristic in SCIP Gleixner et al. (2018) with the strategy
to be evaluated. For each of the four problem families, we solve 100 randomly generated instances across
three scales: Small, Medium, and Big (see Appendix D). Since Combinatorial Auctions’ big instances are
solved fairly quickly, we extend the evaluation to slightly bigger instances. Increasing scale is expected to
increase the running time of the B&B algorithm. All Small and Medium instances used for evaluation are
different from those used for training and model selection. Given the NP-Hard nature of the problems, we
used the time limit of 45 minutes per instance to solve these instances using SCIP (Gleixner et al., 2018). See
Appendix H for the specifications of SCIP and the hardware used for evaluation.

Evaluation Metrics. As per the standard practices in the MILP community, the performance of B&B solvers
is benchmarked across the following metrics: (a) Time: 1-shifted geometric mean1 of solving time of all the
instances, irrespective of whether the instance was solved to optimality or not; (b) Nodes: 1-shifted geometric
mean of the number of nodes of the commonly solved instances (denoted by c in parenthesis for clarity) across
all branching strategies; note that this is a hardware-independent measure of performance; and (c) Wins:
number of instances that were solved (to optimality) the fastest by the branching strategy; (d) Solved: Total

1For a complete definition, refer to Appendix A.3 in Achterberg (2007)
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number of instances solved within the time limit; and (e) Time: 1-shifted geometric mean of solving time of
the commonly solved instances. The commonly solved instances are a subset of instances that have been
solved to optimality by all the branching strategies.

Model Hyperparameters. We consider a grid search over the following hyperparameters: (a) loss-target ∈
{y, z}, where z refers to the modified loss function proposed in Section 4.1 and y the typical loss function
that focuses only on the top strong branching variable; (b) λl2 ∈ {0.0, 0.01, 0.1, 1.0}, the l2-regularization
penalty; and (c) λP AT ∈ {0.01, 0.1, 0.2, 0.3} to define the strength of the PAT lookback loss term proposed
in Section 4.2. While we consider λl2 for both θy and θz, for θP AT we consider the best performing model
among all the hyperparameters {loss-target, λl2, λP AT }. For each hyperparameter configuration, we train
five randomly seeded models as described in Appendix F. Finally, θy represents the baseline GNN from Gasse
et al. (2019) without any of our proposed modifications.

Figure 3: Maximum (across the hyperparameters) mean validation accuracy (1-standard deviation) of the
proposed models is better than the baseline GNNs (θy). We see that the models trained with smoothed
target (θz) and those with PAT lookback loss term (θP AT ) result in better validation accuracy.

6.1 Results

Hyperparameter Selection. Figure 3 shows validation accuracy of the best performing hyperparameters for
θy, θz, and θP AT according to the validation accuracy on collected dataset D. However, to select the models
based on the generalization performance, we solve 100 randomly generated medium instances and gather the
metrics as described above. Table 1 shows the selection of hyperparameters for θP AT as per various criteria
(see Appendix I for the best parameters for θy and θz). We observe that the models selected by validation
accuracy are not always preferred by the selection criteria defined on the evaluation of medium instances.
Second, we observe that Eq. (8) and (9) may or may not have consensus among them; a strategy might have
the fastest solving times for all instances except one, but other strategies might solve all the instances in just
slightly more time. Third, we observe that the time limit per instance, T , does play a role in model selection;
both facilities and indset have a different preference. Finally, we observe that even though the modified target
z is not preferred by all the problem families, there is a consensus for the use of PAT lookback loss term.

Validation performance on Medium instances. To see the interplay between our proposals in Section 4 and
the model selection framework proposed in Section 5, we compare the performance of the selected models
using Eq. (8) (T=30mins) for each of θy, θz, θyP AT , and θzP AT . Figure 4 compares their performance on
medium instances with respect to Time and Nodes. To accommodate different scales of time and node, we
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Table 1: Best performing hyperparameters {loss-target, λl2, λP AT } for θP AT . We see that loss-target = z is
preferred by some problem families, while the PAT lookback term is preferred by all. In addition, the model
selection criteria does impact the chosen hyperparameters.

Problem family Validation Accuracy Eq. (8)(T = 30mins) Eq. (9)(T = 30mins) Eq. (8)(T = 15mins)
cauctions {y, 0.0, 0.01} {z, 0.0, 0.1} {z, 0.0, 0.1} {z, 0.0, 0.1}
setcover {y, 0.0, 0.1} {y, 0.0, 0.1} {y, 0.0, 0.1} {y, 0.0, 0.1}
facilities {z, 0.0, 0.0} {z, 0.0, 0.1} {z, 0.0, 0.1} {z, 0.0, 0.3}
indset {y, 0.0, 0.1} {z, 0.01, 0.2} {y, 0.1, 0.3} {y, 0.1, 0.3}

Figure 4: We plot the range-normalized (range is specified in parenthesis) Time and Node performance of
the selected models as per Eq. (8). The centered "X" black mark shows the finally selected models that
will be used for evaluating the performance on bigger instances. The points with "red" outline shows the
performance of the models selected according to the best validation accuracy (∗we omit such models for
indset as it distorts the scale of the plot; see Appendix J for complete data)

plot the range-normalized values of these measures and show the range of these measures in parentheses. The
centered black marks show the final models selected as per Eq. (8). The models chosen as per validation
accuracy are shown with transparent marks with red border.

We make the following observations. First, the PAT lookback term is beneficial for the generalization
performance most of the time. We observe that for the facilities set of problems, the current GNNs already
respect the lookback condition sufficiently well that the proposed modifications do not yield significant
improvements compared to θy. Second, we see that the cauctions and setcover models perform equally well
with respect to time, thereby making the node count an important criterion for identifying better branching
models. This is especially important because time measurements are hardware-dependent and thus not
as reliable. Third, central to the motivation of our model selection framework, the models chosen as per
validation accuracy do not fare well on practical objectives such as Time and Nodes.

Evaluation on Big instances. Given that sets of Small and Medium instances have already been used in
training and selection of the final models, we leave the evaluation on additional sets of unseen instances
from these families to Appendix L. Here, we evaluate the performance of the selected models (as per
Eq. (8)(T=30mins)) on bigger instances. We use the same instance scaling scheme as proposed by Gasse
et al. (2019) (see Appendix D). Table 2 shows various evaluation metrics as computed from the evaluation of
100 randomly generated Big instances. Since Big instances of Combinatorial Auctions are solvable by all
the strategies, we extend the scale of these instances to Bigger instances. Specifically, we observe that θP AT

(GNN-PAT) outperforms the baseline model (GNN) in all the problem families on all fronts – Time, Wins,
Solved and Nodes. As an example, for Maximum Independent Set problems, we observe a 15% decrease in
Time and a 22% decrease in Nodes. Notably, GNN-PAT increases the number of “Solved” instances by 4 to 5

10
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for all but one problem family. Solving additional instances to optimality is a testament to the improved
branching decisions brought about by GNN-PAT.

Table 2: Performance of branching strategies on Big evaluation
instances. The best performing numbers are in bold. Refer to Section 6
for metrics. Since all of the Big Combinatorial Auctions instances were

solved to optimality, we extend the evaluation to Bigger instances
(∗since only 10 instances were solved using FSB, we omit it here; See

Appendix K for the full results including those on Big instances.)

Model Time Time (c) Wins Solved Nodes (c)
fsb∗ n/a n/a n/a n/a n/a
rpb 626.81 434.92 1 80 17 979

tunedRPB 644.20 450.06 0 80 18 104
gnn 507.06 333.59 14 80 17 145

gnn-PAT (ours) 477.26 310.22 69 84 16 388
Combinatorial Auction (Bigger)

fsb 2700 n/a 0 0 n/a
rpb 1883.32 1213.57 1 47 58 766

tunedRPB 1851.83 1168.58 0 48 58 155
gnn 1708.99 991.07 5 54 39 535

gnn-PAT (ours) 1601.28 892.85 54 59 38 385
Set Covering

fsb 917.39 758.19 8 85 50
rpb 737.66 607.19 3 92 104

tunedRPB 751.27 619.27 2 91 97
gnn 646.03 525.80 16 92 293

gnn-PAT (ours) 581.91 471.20 66 95 304
Capacitated Facility Location

fsb 2700 n/a 0 0 n/a
rpb 1984.91 888.04 0 32 12 407

tunedRPB 2016.85 952.25 0 33 12 940
gnn 1207.62 279.71 14 65 7934

gnn-PAT (ours) 1035.32 233.97 56 70 6122
Maximum Independent Set

Finally, as noticed above, the
learned models for Maximum In-
dependent Set might result in a
different hyperparameter configura-
tion based on the selection crite-
rion. Therefore, we compare the
performance of the GNN-PAT mod-
els that are selected by each of the
Eqs. (8) and (9) against GNN in
Table 3. We observe that as per
the selection criterion of Eq. (8),
the branching strategy solved the
most number of instances. However,
as Eq. (9) prefers the strategy with
overall lower running time, we ob-
serve superior performance of the
branching strategy on Time of com-
monly solved instances. These ob-
servations confirm that the proposed
model selection approach yields the
expected outcomes on unseen test
instances.

Similarly, we look at the effect of
the time limit T on the selection
criterion. The models selected as per
Eq. (8) for facilities differ depending
on the specified time limit T (see
Table 1). We look at the how the
time limit might affect generalization performance in Table 3. Specifically, we observe that insufficient time
to evaluate Medium instances may lead to suboptimal hyperparameters. To conclude, we’ve shown that the
model selection criterion will impact generalization performance significantly.

7 Discussion

Table 3: Performance measures on branching strategies selected as per
different criteria specified in Eqs. (8) and (9) and the specified time limit
per instance T . We observe that each criterion supports the respective

measure on scaled-up instances.

Model Time Time (c) Wins Solved Nodes
gnn 1207.62 753.81 1 65 29 573

gnn-PAT (Eq. 8) 1035.32 621.42 38 70 23 574
gnn-PAT (Eq. 9) 1063.12 613.96 31 66 21 162

Maximum Independent Set

gnn 646.03 562.20 13 92 314
gnn-PAT (Eq. (8)(T=30mins)) 581.91 503.85 58 95 326
gnn-PAT (Eq. (8)(T=15mins)) 635.04 551.53 24 94 388

Capacitated Facility Location

An objective in this paper was
to imitate the strong branch-
ing behavior more closely by
taking advantage of its look-
back property. The propos-
als in Section 4 are aimed at
doing so. A post-hoc analy-
sis shows up to 16% improve-
ment in GNNs ability to fol-
low the lookback property (see
Appendix M). Such improve-
ments are evident at various
distances from the root node
(see Appendix N).

We can argue that the proposals in Section 4 are regularizers or inductive biases. Although the modified
target and the PAT lookback term were inspired to induce the required oracle behavior, owing to the lack
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of interpretability of GNNs, we cannot attribute the GNN-PATs’ performance improvements to the ability
to follow the lookback property with 100% certainty. However, if we consider that the proposals did cause
the observed improvements, we might consider it as an inductive bias. Inductive biases are defined as any
pre-coded knowledge about the target behavior, such as neural network architecture, choice of features, or
loss function.

Further, the PAT lookback loss term is similar to the objective function in knowledge distillation (Hinton
et al., 2015), i.e., we are minimizing the cross-entropy between the logits of one model (child node) and
the other model (parent node). Whereas in the original distillation framework, there are two separate
models (teacher and student) that act on the same inputs, the PAT lookback term can be understood as a
form of cross-distillation that acts through the same model but on different observations which share some
characteristics (e.g., output logits). Thus, we can understand that the PAT lookback term distills knowledge
from the parent node to the child node, as was intended.

Finally, our model selection framework enables us to incorporate complex metrics like Time and Nodes into
hyperparameter selection criterion. We hope that this framework will help aligning the research in machine
learning methods for MILP solvers with practitioners’ varied objectives.

Limitations. As illustrated in Figure 7, the GNNs for facilities instances are capable of capturing the
lookback condition 80% of the time. Since it is not possible to consider all possible problem families and
their varied formulations, we cannot make a definitive claim on whether our proposed modifications will be
useful all the time. Therefore, we recommend checking for the prevalence of the lookback condition to get
some idea of expected improvement.

Further, due to time and resource constraints, we restricted the evaluation for model selection to just 100
Medium instances. However, for a more robust selection, we suggest using larger set of instances. One can
also consider setting the size of Medium instances such that majority of them are solved, thereby resulting in
robust selection of better performing hyperparameters; see Table 1 on how the best hyperparameters vary
according to time limit per instance T and Table 3 for the effect of T on generalization performance.

Finally, we emphasize that the model selection criteria is very much dependent on how these models will be
deployed. For example, a practitioner might only be concerned with solving maximum number of instances
(to optimality) while ensuring minimum optimality gap in the unsolved instances. This objective can be
formulated as a different criteria. Considering all such formulations is beyond the scope of our work.

Figure 5: Post-hoc analysis of optimality gap of commonly un-
solved instances (number is shown in parenthisis next to the
problem family label) shows that θP AT is able to achieve the best
optimality gap (except for setcover) even though it is not the
primary objective specified in the model training.

Future work. Although we did not spec-
ify the minimum optimality gap as the ob-
jective of the branching strategies, we run
a post-hoc analysis to compare 1-shifted
geometric mean of optimality gaps of the
commonly unsolved instances (lower is
better). Figure 5 shows that, except for
setcover instances, the proposed branch-
ing strategies are able to close larger gaps
than the rest. We acknowledge that, de-
pending on the use, the optimality gap
might be of primary importance to the
practitioner. We think that the explo-
ration of optimality gap as a secondary
objective could be an important future
work.

As evident from the gaps in Figure 7 (Ap-
pendix M) and Figure 8 (Appendix N),
we plan to design more ways to incorpo-
rate the lookback condition explored in
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this work. While we studied how the parent and child nodes in a B&B tree are related with respect to
a simple PAT lookback condition, there still exists several ways in which such nodes can be related (see
Appendix O for another example). Thus, the design of machine learning algorithms to discover and exploit
such dependencies could be an important direction for future research. Moreover, such machine learning-aided
discoveries can be equally important for the MILP community to inspire the design of novel heuristics or
improve the existing manually-designed heuristics applicable to general instances.

8 Conclusion

With the huge gap between the performance of deep learning based heuristics and the oracle heuristics, we
expect that the research efforts might require more in-depth investigation of how to imbue these models with
the same “reasoning" as the oracles themselves. In this line of thought, we investigated how the parent-child
nodes of a B&B tree are related to each other under the oracle heuristic. We found that quite often, the
parent’s second best choice is the child’s best choice. To incorporate this lookback condition into model
training, we designed two methods to align the models more closely with the strong branching oracle’s
behavior. We believe that this investigative approach to imitating oracle behavior could be a useful way to
close the gap between machine learning and the oracle heuristics.

Broader Impact Statement

This paper continues the exploration of the use of machine learning techniques for the most critical step in
branch-and-bound methods, i.e., variable selection. Branch and bound is the method of choice for solving a
myriad of discrete optimization problems appearing in all sort of applications (a few named in the introduction
of this paper) and it is the basic scheme of all commercial and open-source discrete optimization solvers. Thus,
the impact of the research in the area is potentially very high, not only from a methodological perspective
but also in terms of day to day challenges that we all face, including drug discoveries and climate change.

This paper significantly advances the research in the area by observing for the first time a hidden pattern,
the lookback phenomenon, in the statistical evolution of the most successful heuristic for variable selection.
The paper proposes several methods to exploit such a phenomenon and makes a significant step forward on
the use of ML for discrete optimization.
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Appendix

A Lookback property on some real-world instances

We look at the frequency of the lookback property on some of the real-world instances. Specifically, we study
this property in the context of MIP instances related to wildlife management, first proposed by Dilkina
et al. (2017). These instances have been used by the MIP community to demonstrate the efficacy of various
proposals on the real-world MIP instances Nair et al. (2020); Hutter et al. (2010); He et al. (2014a). Table 4
shows that at least 30% of the parent-child pairs exhibit this property.
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Table 4: Frequency of the lookback proprerty in the real-world instances is as prevalent as in the synthetic
instances considered in the main paper. These instances are made available by Dilkina et al. (2017).

Instances Description number of
parent-child

pairs
collected

number of
parent-child

pairs
exhibiting

the lookback
property

Frequency of
the lookback

property

CORLAT Corridor planning in
wildlife management

5082 1765 34.73%

RCW Red-cockaded woodpecker
diffusion conservation

5115 1952 38.16%

B Lookback property as a function of depth-decile

Figure 6: The gap between the frequency of the lookback condition per depth-decile for the strong branching
oracle (Ground truth) and the traditionally trained GNNs (GNN) presents an opportunity to improve the
GNN models. See Section 4 for the dataset collection procedure.
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C Model Selection Objectives

To incorporate the objective of maximum solved instances, we select the branching strategy as per,

B
′

= {j | j ∈ B, w(j) = max
B

w(b)},

b⋆ = arg min
b∈B′

n(b, B
′
)

(10)

Finally, to select the strategy only with the minimum node count, we select the branching strategy as per,

b⋆ = arg min
b∈B

n(b, B) (11)

D Instance Specifications

We follow the procedure outlined by Gasse et al. (2019) to generate and scale the instances. A well commented
and functional code to generate these instances can be found on the authors’ Github repo2. For convenience,
we describe the procedure here.

D.1 Combinatorial Auction

These instances are generated following the arbitrary scheme described in the section 4.3 of Leyton-Brown
et al. (2000). The scalable parameters are the number of items and the number of bids.

Table 5: Parameters for Combinatorial Auctions

Instance Size number of items number of bids use
Small-Training 100 500 Dataset Collection & Training
Small-Validation 100 500 Dataset Collection & Validation
Medium-Validation 200 1000 Validation Evaluation
Small 100 500 Test Evaluation
Medium 200 1000 Test Evaluation
Big 300 1500 Test Evaluation
Bigger 350 1750 Test Evaluation

D.2 Set Covering

These instances are generated using the method described in Balas & Ho (1980). The scalable parameters
are number of items, where the number of sets are fixed to 1000.

Table 6: Parameters for Minimum Weighted Set Cover. Number of sets is fixed to 1000.

Instance Size number of items use
Small-Training 500 Dataset Collection & Training
Small-Validation 500 Dataset Collection & Validation
Medium-Validation 1000 Validation Evaluation
Small 500 Test Evaluation
Medium 1000 Test Evaluation
Big 2000 Test Evaluation

2https://github.com/ds4dm/learn2branch/blob/master/01_generate_instances.py
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D.3 Capcitated Facility Location

These instances are generated the meethod described by Cornuéjols et al. (1991). Fixing the number of
facilities to 100, the scalable parameter is the number of customers.

Table 7: Parameters for Capcitated Facility Location. Number of facilities is fixed to 100.

Instance Size number of customers use
Small-Training 100 Dataset Collection & Training
Small-Validation 100 Dataset Collection & Validation
Medium-Validation 200 Validation Evaluation
Small 100 Test Evaluation
Medium 200 Test Evaluation
Big 400 Test Evaluation

D.4 Maximum Independent Set

These instances are generated by formulating the maximum independent set problem on a randomly generated
Barabási-Albert with edge probability of 0.4. The scalable parameter is the number of nodes.

Table 8: Parameters for Maximum Independent Set. Affinity is fixed to 4.

Instance Size number of nodes use
Small-Training 750 Dataset Collection & Training
Small-Validation 750 Dataset Collection & Validation
Medium-Validation 1000 Validation Evaluation
Small 750 Test Evaluation
Medium 1000 Test Evaluation
Big 1500 Test Evaluation

E Data Generation

For each of the problem family, we generate 10,000 Small random instances to collect training data, 2,000
Small random instances to collect the validation data, and 20 Medium instances for model selection. We
use SCIP Gleixner et al. (2018) with strong branching heuristic to solve the randomly generated instances
and collect data of the form D = {(G0

i , s0
i , G1

i , s1
i ) | i ∈ {1, 2, 3, ..., N}}, as described in the main text. We

collected a total of 150,000 training observations and 30,000 validation observations.

The hand-engineered features to the GNNs are same as Gasse et al. (2019). For a full description of these
features, pleasee see Section 2 in Supplementary material of Gupta et al. (2020).

F Training Specifications

Our models are all implemented in PyTorch (Paszke et al., 2017). Following Gupta et al. (2020), we didn’t
change any of the training parameters, for example, we used the Adam (Kingma & Ba, 2014) optimizer with
the learning rate of 1e−3, training batch size of 32, and a learning rate scheduler to reduce the learning rate
by a factor of 0.2 in the absence of any improvement in the validation loss for the last 15 epochs Moreover,
we use the early stopping criterion to stop the training if the validation loss doesn’t improve over 30 epochs.
We validate the performance of model on the validation dataset after every epoch consisting of 10K random
training samples. For each problem family, we trained models with five random seeds.
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G TunedRPB

We consider two parameters in RPB to negotiate the trade-off between the compactness of the resulting B&B
tree and the computational time. Broadly, RPB performs strong branching on MaxLookahead candidates
until it has collected enough information to reliably act on it. The selection of candidates is prioritized by the
reliability of pseudoscores (statistically learned score to estimate bound improvement per fractional rounding
of the variable) collected during the strong branching operations. If the minimum psuedoscore obtained
by withere rounding up or rounding down of the integer-constrained vairable is less than MaxReliable, the
candidate is deemed unreliable, thereby prioritizing it in the next rows. Thus, we observe the following
trade-off by varying these two parameters: (i) MaxReliable: lower values prefer faster solving times at the
expense of larger trees, and (ii) MaxLookahead: higher values prefer shorter trees at the expense of more
computational time.

To have a version of RPB that is trained on the training instances of interest, we run a hyperparameter
grid-search on the following values -

1. MaxLookahead: {6, 7, 8, 9, 10, 11}

2. MaxReliable: {3, 4, 5, 6, 7, 8}

Specifically, we followed the procedure as described in Section 5 to solve 100 randomly generated medium
instances, and select the best performing hyperparameters according to Eq. (8).

H Evaluation Specification

The evaluation on Big instances is performed by using SCIP 6.0.1 installed on an Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz. The learned neural networks, as branching models, are run on NVIDIA-TITAN Xp
GPU card with CUDA 10.1. All of the main evaluations are done, as is a standard practice, while ensuring
that the ratio of the number of cores on the machine to the load average is more than 4. This condition
ensures that each process on the machine has at least 4 CPUs at a time.

The model selection is carried out by solving Medium instances on the shared cluster as specified by Nair
et al. (2020) (see Section 12.7). Specifically, we solve a benchmark MIPLIP problem (‘vpm2.mps‘) every
60 seconds to collect the solving time statistics. Given the solving times of the benchmark problem on the
reference machine, we recalibrate the solving time of the instance, which is used as the final running time. We
solve 20 independently generated Medium instances with five seeds resulting in 100 independent evaluations.

We followed the standard procedure used proposed by Gasse et al. (2019) to set SCIP for evaluating branching
strategies. Specifically, we used the following SCIP parameters to evaluate the branching strategies

1. Cutting planes are allowed only at the root node

2. No restarts are allowed

I Hyperparameters & Model Selection

We use the ridge regression to penalize the parameters θy and θz. In addition to λl2, θP AT searches over
target and λP AT . Following values were used for the hyperparameter search -

1. λl2 = {0.01, 0.1, 1.0}

2. λP AT = {0.01, 0.1, 0.2, 0.3}

3. target = {y, z}

Finally, Table 9 shows the best performing hyperparameters according to Eq. (8) for θy, θz, and θP AT . As
observed in Gupta et al. (2020), we found that the l2-regularization is useful for the performance of indset
models.
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Table 9: Best performing hyperparameters according to Eq. (8)

problem family θy{λl2} θz{λl2} θP AT {target, λl2, λP AT }
cauctions 0.0 0.0 {z, 0.0, 0.1}
setcover 0.0 0.0 {y, 0.0, 0.1}
facilities 0.0 0.0 {z, 0.0, 0.1}
indset 0.1 0.1 {z, 0.01, 0.2}

J Performance on medium validation instances

Table 10 shows the data that was used to plot the points in Figure 4. Due to the huge variability in the
performance metrics of indset we omit the performance of θaccuracy from Figure 4.

Table 10: Data for Figure 4

Model Metric cauctions setcover facilities indset

θy
Time 14.66 38.21 159.60 73.16
Nodes 1077 1546 421 3102

θz
Time 14.82 38.08 157.64 76.61
Nodes 1089 1527 437 3335

θyP AT
Time 13.83 37.92 160.13 74.80
Nodes 1031 1503 429 3201

θzP AT
Time 13.65 37.89 153.81 71.32
Nodes 1022 1513 420 2943

θaccuracy
Time 14.22 37.92 159.59 572.39
Nodes 1083 1503 421 9430

K Full performance of Combinatorial Auction models on Big and Bigger instances

Since Big Combinatorial Auction instances are solved by all the strategies, we show them in Table 11. We
extend the size of these instances to Bigger and show the evaluation in the main paper without FSB as there
are only 5 instances solved distorting the comparison of Time (c) and Node (c). See Table 12 for the full
results.

Table 11: Performance of variable selection strategies on Big instances for Combiatorial Auctions instances.
See Appendix D for the instance scaling parameters.

Model Time Time (c) Wins Solved Nodes (c)
fsb 2075.60 1643.78 0 53 336
rpb 202.78 113.47 1 100 4640

tunedRPB 205.57 112.80 0 100 4611
gnn 139.30 72.17 64 100 4142

gnn-PAT (ours) 141.63 73.31 35 100 3754

Table 12: Performance of variable selection strategies on Bigger instances for Combinatorial Auctions
instances. See Appendix D for the instance scaling parameters.

Model Time Time (c) Wins Solved Nodes (c) Optimality Gap (16)
fsb 2591.81 1793.64 0 10 257 0.033 102
rpb 626.81 88.22 1 80 5719 0.009 555

tunedRPB 644.20 97.72 0 80 6191 0.009 605
gnn 507.06 59.22 14 80 5630 0.008 307

gnn-PAT (ours) 477.26 65.62 69 84 5757 0.007 844

20



Under review as submission to TMLR

L Performance on small and medium instances

Table 13 shows the performance of the selected strategies as per Eq. (8) on small and medium instances. This
table is a counterpart to the Table 2.

Table 13: Performance of branching strategies on evaluation instances. We report geometric mean of solving
times, number of times a method won (in solving time) over total finished runs, and geometric mean of
number of nodes. Refer to section 6 for more details. The best performing results are in bold.

Small Medium
Model Time Wins Solved Nodes Time Wins Solved Nodes

fsb 5.85 0 100 6 127.56 0 100 72
rpb 3.89 0 100 11 25.31 0 100 696

tunedRPB 3.72 0 100 11 24.70 0 100 591
gnn 2.10 82 100 71 13.15 58 100 693

gnn-PAT (ours) 2.18 18 100 72 13.25 42 100 654
Combinatorial Auction

fsb 26.17 0 100 17 531.47 0 75 117
rpb 13.41 0 100 54 91.33 0 100 1119

tunedRPB 13.63 0 100 48 93.60 0 100 1131
gnn 9.37 5 100 136 64.81 1 100 1030

gnn-PAT (ours) 9.03 95 100 134 58.48 99 100 997
Set Covering

fsb 41.61 3 100 14 264.67 3 98 73
rpb 36.58 3 100 22 206.28 1 100 147

tunedRPB 37.56 1 100 21 211.77 2 100 140
gnn 27.20 78 100 113 146.41 64 100 320

gnn-PAT (ours) 29.46 15 100 112 159.95 30 100 329
Capacitated Facility Location

fsb 626.33 0 93 54 1634.40 0 60 46
rpb 58.03 0 100 702 144.92 0 100 770

tunedRPB 56.99 1 100 697 143.88 2 100 748
gnn 35.04 28 100 1000 76.53 36 100 795

gnn-PAT (ours) 31.96 71 100 455 72.00 62 100 789
Maximum Independent Set

M Post-hoc analysis of the lookback property

Figure 7: Statistics of the lookback condition as observed when the problems are solved using the strong
branching oracle (Ground truth). We also show how many times traditional GNNs (GNN) and our proposed
GNNs (PAT-GNN) respect the lookback condition on the same dataset. Note that the displayed statistics
are on the offline dataset and do not reflect the final inference-time performance of the models. We find that
the small improvements shown here results in large gains in the inference time performance (see Section 6)
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N Post-hoc depth-decile analysis of the lookback property

Figure 8: The gap between the frequency of the lookback condition per depth-decile for the strong branching
oracle (Ground truth) and the traditionally trained GNNs (GNN) presents an opportunity to improve the
GNN models (PAT-GNN). See Section 4 for the dataset collection procedure.

O Same strong branching decisions at the sibling nodes

Any MILP solving procedure results in a tree of sub-problems, where each node shares some characteristics
with its parent. This line of resemblance can eventually be traced all the way back to the original MILP. For
example, the bipartite graph structure remains the same throughout the tree, a fact exploited by Gupta et al.
(2020) to design CPU-efficient GNN-based models for learning to branch.

We investigate more of such dependencies among the B&B tree nodes of problem instances from the
benchmark problem families (Gasse et al., 2019) (see Appendix D for more details), which we label as
cauctions (Combinatorial Auctions), setcover (Minimum Set Cover), facilities (Capacitated Facility Location),
and indset (Maximum Independent Set).

Specifically, we investigate the frequency with which sibling nodes in the B&B tree have the same strong
branching decision. Figure 9 shows that this condition happens between 3-7% of the times on the small
instances that were used to collect approximately 30K observations. The SOTA GNNs (Gasse et al., 2019)
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are not able to capture this dependency as well. However, given that this condition is fairly less frequent
relative to the lookback condition, we do not explore this condition in our current work.

Figure 9: Frequency with which sibling nodes in a B&B tree have the same strong branching decisions
(Ground truth), and the fraction of times this condition is satisfied by GNNs trained as per Gasse et al.
(2019).

P Performance comparison with default SCIP

In this section, we provide comparison of our branching strategies with the default SCIP and the tuned
version of SCIP following the benchmarking procedure of Nair et al. (2020). But it is important to note that
SCIP comes loaded with several heuristics, e.g., cut selection, primal heuristics, restarts, etc. To study the
effect of branching strategies, the standard practice in the community is to switch off these heuristics. The
results in the main paper are based on this choice. Thus, comparing the branching strategies with default
SCIP isn’t an apple to apple comparison.

However, it is still useful to see where the proposed branching strategy stand relative to SCIP and some
problem-specific tuned version of SCIP. Specifically, we ran a grid search on 3 parameters of SCIP: (a) Presolve,
(b) Heuristics, (c) Separating. Each of these parameters can take four values: (a) OFF - do not use it, (b)
DEFAULT: keep it at the default level (SCIP without tuning will use this setting), (c) AGGRESSIVE: use it
aggressively, and (d) FAST: use it, but do not spend too much time on it. Based on the Eq. 8 (T=30mins), we
found the following parameters suitable for the problem families: (a) cauctions - (AGGRESSIVE, DEFAULT,
OFF), (b) setcover: (DEFAULT, DEFAULT, OFF), (c) facilities: (DEFAULT, DEFAULT, FAST), (d) indset:
(FAST, OFF, FAST). Table 14 shows the performance comparison with SCIP and TunedSCIP. Specifically,
we find that the proposed GNN-PAT retains its performance superiority over the default SCIP as well as the
tuned version of SCIP.
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Table 14: Performance of branching strategies compared with SCIP and TunedSCIP. The best performing
numbers are in bold. Refer to Section 6 for metrics.

Model Time Time (c) Wins Solved Nodes (c)
fsb∗ n/a n/a n/a n/a n/a
rpb 626.81 434.92 0 80 17 979

tunedRPB 644.20 450.06 0 80 18 104
scip 582.47 396.90 4 81 17 979

tunedscip 581.58 396.98 2 82 19 937
gnn 507.06 333.59 14 80 17 145

gnn-PAT (ours) 477.26 310.22 64 84 16 388
Combinatorial Auction (Bigger)

fsb 2700 n/a 0 0 n/a
rpb 1883.32 1213.57 0 47 58 766

tunedRPB 1851.83 1168.58 0 48 58 155
scip 1755.15 1048.76 1 54 61 546

tunedscip 1683.81 963.77 8 52 60 496
gnn 1708.99 991.07 3 54 39 535

gnn-PAT (ours) 1601.28 892.85 48 59 38 385
Set Covering

fsb 917.39 758.19 7 85 50
rpb 737.66 607.19 1 92 104

tunedRPB 751.27 619.27 1 91 97
scip 677.37 565.91 10 95 86

tunedscip 656.72 538.61 18 94 88
gnn 646.03 525.80 14 92 293

gnn-PAT (ours) 581.91 471.20 44 95 304
Capacitated Facility Location

fsb 2700 n/a 0 0 n/a
rpb 1984.91 865.90 0 32 11 886

tunedRPB 2016.85 927.68 0 33 12 486
scip 1920.46 784.62 0 37 11 886

tunedscip 1578.01 443.89 2 48 10 392
gnn 1207.62 262.61 14 65 7233

gnn-PAT (ours) 1035.32 223.81 54 70 5722
Maximum Independent Set

Q Results with 10,100-shifted geometric mean of time and nodes

We followed the evaluation protocol proposed by Gasse et al. (2019)(see Evaluation paragraph in Section 5
of Gasse et al. (2019)). Therefore, our results in Tables 2 are based on 1-shifted geometric means of nodes
and time. However, since Achterberg (2007) studied a much more diverse set of instances with widely varying
solving behavior, they use a 100,10-shifted geometric means respectively. We are not in this setting as our
instances come from a specific distribution. Nonetheless, in Table 15 we show the results with 10,100-shifted
geomteric means. Our conclusions will still remain same.
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Table 15: Performance of branching strategies on Big evaluation instances with 10,100-shifted geometric
mean for time and nodes respectively. The best performing numbers are in bold. Refer to Section 6 for
metrics. Since all of the Big Combinatorial Auctions instances were solved to optimality, we extend the

evaluation to Bigger instances (∗since only 10 instances were solved using FSB, we omit it here; See
Appendix K for the full results including those on Big instances.)

Model Time Time (c) Wins Solved Nodes (c)
fsb∗ n/a n/a n/a n/a n/a
rpb 633.20 438.94 1 80 18 052

tunedRPB 650.24 453.86 0 80 18 169
gnn 515.04 338.33 14 80 17 217

gnn-PAT (ours) 484.45 314.17 69 84 16 448
Combinatorial Auction (Bigger)

fsb 2700 n/a 0 0 n/a
rpb 1884.49 1214.20 1 47 58 781

tunedRPB 1853.08 1169.20 0 48 58 169
gnn 1710.74 991.84 5 54 39 548

gnn-PAT (ours) 1603.20 893.58 54 59 38 399
Set Covering

fsb 917.39 758.19 8 85 84
rpb 740.16 608.88 3 92 157

tunedRPB 753.67 620.88 2 91 149
gnn 648.72 527.57 16 92 330

gnn-PAT (ours) 584.60 472.93 66 95 339
Capacitated Facility Location

fsb 2700 n/a 0 0 n/a
rpb 1987.27 889.92 0 32 12 443

tunedRPB 2019.12 954.35 0 33 12 976
gnn 1215.48 281.93 14 65 8009

gnn-PAT (ours) 1043.12 235.78 56 70 6186
Maximum Independent Set
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