
SELECT: A Large-Scale Benchmark of Data Curation
Strategies for Image Classification

Benjamin Feuer∗1, Jiawei Xu∗1, Niv Cohen1,
Patrick Yubeaton1, Govind Mittal1, Chinmay Hegde1

1 NYU

Abstract

Data curation is the problem of how to collect and organize samples into a dataset
that supports efficient learning. Despite the centrality of the task, little work has
been devoted towards a large-scale, systematic comparison of various curation
methods. In this work, we take steps towards a formal evaluation of data curation
strategies and introduce SELECT , the first large-scale benchmark of curation
strategies for image classification.
In order to generate baseline methods for the SELECT benchmark, we create a
new dataset, IMAGENET++ , which constitutes the largest superset of ImageNet-
1K to date. Our dataset extends ImageNet with 5 new training-data shifts, each
approximately the size of ImageNet-1K itself, and each assembled using a distinct
curation strategy. We evaluate our data curation baselines in two ways: (i) using
each training-data shift to train identical image classification models from scratch
(ii) using it to inspect a fixed pretrained self-supervised representation.
Our findings show interesting trends, particularly pertaining to recent meth-
ods for data curation such as synthetic data generation and lookup based on
CLIP embeddings. We show that although these strategies are highly com-
petitive for certain tasks, the curation strategy used to assemble the original
ImageNet-1K dataset remains the gold standard. We anticipate that our bench-
mark can illuminate the path for new methods to further reduce the gap. We
release our checkpoints, code, documentation, and a link to our dataset at
https://github.com/jimmyxu123/SELECT.

1 Introduction

Data curation is the process of collecting and organizing a corpus of data into a dataset that supports
efficient learning. Until recently, data curation was an implicit consideration in most of the academic
discourse on machine learning, and the vast majority of research works were oriented towards
introducing novel methods, theories, or architectures.

However, data curation has begun to gain prominence as a research topic in its own right; several recent
works have contended that labeling errors pervade commonly used benchmark datasets, with error
rate estimates varying from 3% to 50% on the most popular ones [32, 5, 22, 28]. Group imbalances
are often inadvertently introduced during the curation process, biasing model predictions [21, 10].
The work of [33] created a standard, now widely adopted, for reporting on the process for creating
new datasets. Unfortunately, despite growing attention of the centrality of the data curation problem
to model performance, many works in the literature do not adhere to best practices, reporting very
little about the data on which they are trained, or how that data was curated [34, 24, 6]. To address
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Figure 1: Overview of SELECT Benchmark. (Left) The ImageNet++ dataset is composed of
different shifts of the ImageNet train set. The shifts were generated using different curation strategies
and drawn from diverse data sources including OpenImages (natural images), LAION (natural
images), and Stable Diffusion (synthetic images). (Right) We trained identical models on the sets
collected using the different strategies (producing different ‘shifts’), and evaluated them in two
ways: (i) Utility metrics: quantifying the models ability to predict different in-distribution and
out-of-distribution test sets, and (ii) Analytic metrics: examining various statistics of the distribution
of the samples among the various classes.

this, [14] in NeurIPS 2023 introduced the DataComp competition, where the model architecture and
loss (following CLIP [34]) were fixed and the challenge was to filter (subsample) a large pool of
images to find high-performant sets of image samples for a suite of zero-shot tasks.

Our goal in this paper is to bring the implicitly studied subject of data curation into sharper focus,
broaden the scope of curation beyond data filtration, and introduce it as a topic of research in its
own right. In Sec. 2, we use rational choice theory to formalize any data curation strategy as a utility
function, where an increment to the marginal cost produces an expected gain in utility. In Sec. 3, we
introduce SELECT , a benchmark that serves as a diverse measure of utility of data curation methods
in the domain of image classification. In Sec. 4, we introduce IMAGENET++ , which we leverage to
produce a large-scale set of baselines for data curation, composed of 5 new training-data shifts of
ImageNet-1K. Finally, in Sec. 5, we compare our IMAGENET++ baselines on the SELECT benchmark
and derive several useful insights. Specifically, our contributions are as follows.

1. We introduce SELECT , a diverse benchmark for data curation methods for computer vision (in
particular, image classification).

2. We introduce IMAGENET++ , the largest, most diverse set of distribution shifts for ImageNet-train
to date [11]. This serves as a rich source of data curation baselines on which we train over 130
models (Fig. 2).

3. We analyze our baseline models and derive several novel insights:

(a) On certain metrics in SELECT (pretraining and fine-tuning), reduced-cost curation methods
perform as well as expert-labeled data.

(b) However, on most metrics, expert labeling continues to outperform the alternatives.
(c) Image-to-image curation methods generally outperform those which rely on text.
(d) Both label noise and label imbalance remain important limiting factors on the utility of

cost-efficient data-curation.

In order to enable future research and reproducibility, we release our code, our dataset, and a complete
enumeration of our results for all models in the study (see supplemental attachments).
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2 Background

2.1 Related Work

Benchmarking data filtration strategies. The work most closely related to our own is [14], a
machine learning benchmark where the models are fixed and the challenge is to filter the best possible
subset for pretraining. [14] compared a range of data curation strategies using standardized CLIP
training code followed by a zero-shot evaluation on 38 downstream datasets. Unlike their work, ours
focuses on image-only models, which are smaller and easier to train to high accuracy [13]. Our
benchmark also allows for comparing a greater variety of data curation strategies and reports a more
diverse range of metrics, including utility metrics on downstream tasks and analytic metrics that do
not rely on model training.

Representation learning. The problem of data curation has long been an implicit consideration in the
field of representation learning. In representation learning, images from an existing computer vision
dataset are often paired with noisy labels, or replaced with some weaker form of supervision such as
text captions [34, 2]. In Self-supervised learning, the labels are removed entirely and the model learns
only from the images [7, 8]. Although these models require fewer labels, or in some cases no labels
at all for learning a representation, they nevertheless rely on the existence of a well-defined label set
for downstream tasks and benefit from a previously filtered and curated collection of images. Our
work extends these efforts by illuminating the extent to which methods such as DINO are dependent
on the quality of data curation at test time [7].

ImageNet-train distribution shifts. [40] generated a synthetic shift of ImageNet-train composed of
LAION data – unlike their work, ours searches all of LAION-5B, does not rely on text similarity, and
applies NSFW filtering. [40] argue that intra-class similarity of images in the original ImageNet is
dramatically higher than it is for LAIONet, because searching based on an image caption alone creates
an information bottleneck that mitigates the selection bias otherwise present in image-based filtering,
formalizing a long-held intuition in the community that ImageNet images are stereotypical, unnatural,
and overly simple representations of the class category. In a paper investigating the relationship
between pretraining data diversity and fine-tuning robustness, [35] produce a 150K-sample ImageNet-
like dataset using 80 diverse prompts per ImageNet class to generate the samples. Unlike their
work, our dataset is publicly available, covers the entirety of ImageNet, and generates images using
CLIP’s image encoder only. [25] generated and released to HuggingFace 1.3 Mn images using Stable
Diffusion 1.5. [1] fine-tuned a Stable Diffusion checkpoint and released the resulting dataset. [38]
used Stable Diffusion 1.4 but did not release their data. Unlike previous work, our synthetic dataset
was NSFW-filtered and uses CLIP’s image encoder only, without any subsequent fine-tuning.

Imbalance and quality. The problem of label imbalance has been extensively studied in the literature,
with many interventions proposed [41]. We incorporate one such intervention into our benchmark
and introduce new metrics for measuring imbalance. There is also a large existing literature on
detecting and correcting noisy labels; as of this writing, however, no method has been shown to work
reliably across a wide range of datasets and modalities, and so we do not attempt to incorporate
any label correction into our training [16]. Closely related to the concept of label fidelity is the
concept of image fidelity or diversity. Our experiments lead us to postulate that label fidelity is
necessary, but not sufficient, to achieve data diversity; as a simple counterexample, conventional
data augmentation strategies such as image transformation can be designed to maintain label and
image fidelity, but models trained on synthetically augmented data are only marginally more robust
to natural distribution shifts [29, 42]. [36] conduct an experiment similar to our Base Accuracy
experiments, but use them only to evaluate the quality of synthetic image generative models.

2.2 Data Curation Strategies

In this section, we formalize the problem of data curation and offer an overview of data curation
strategies, as well as exemplary datasets for each curation strategy, in Tab. 1.

We model any data curation strategy as a rational series of choices made by humans with the aim of
maximizing the utility of a dataset of a given size (also referred to as a shift). Through this lens, we
can formalize data curation as follows.

Let I be the set of plausible images (or wherever pertinent, image-text pairs). Let D be a distribution
over I . A curation strategy f takes in a scalar cost input C, and draws a set of samples S from D. An
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increase in the cost C will give a larger set S. Typically, for a larger S, the curators expect increased
marginal utility on downstream tasks. For an extended discussion of cost, please refer to Sec. J.

3 SELECT : a benchmark of data curation for image recognition

We now introduce SELECT , the first large-scale benchmark of data curation strategies for image
recognition. SELECT assumes the existence of a baseline dataset and strategy against which we wish
to measure the performance of a new curation strategy. We refer to a dataset curated using a particular
strategy as a shift. In SELECT we fix the model architecture, training strategy, and the label set, but
the quantity and quality of data varies depending on the curation method. For our experiments, we
fix L as the 1000 labels of the ImageNet validation set, and ImageNet-train’s expert curation as our
baseline strategy.

We center the benchmark around ImageNet because it is arguably the most well-studied task in the
vision literature for which there exist a large and growing space of OOD-robustness distribution shifts.
Given how influential ImageNet has been in the development of machine learning research, we can
expect the original ImageNet-1K to be a challenging baseline strategy against which to compare
shifts. Nevertheless, newly curated images can outperform the labeled images in ImageNet-train,
even with respect to ImageNet-val accuracy [13]. Another advantage is that ImageNet training has
been heavily optimized, making the choice of a hyperparameter search space less controversial [45].

Metrics. The metrics in SELECT can be divided into two main categories. Utility metrics are designed
to measure the usefulness of the curated shift for a variety of downstream tasks. Utility metrics are
reliable, but more expensive to compute, since most of them require model training. Analytic metrics
are useful for planning the data curation and rapidly evaluating different options. Therefore, such
metrics are inexpensive to compute and do not require model training on the shift. They can be used
to indicate the expected utility of a shift or to help explain observed differences in performance. Our
analytic metrics are computed over a 1 million size sample from each shift’s data, sampling uniformly
and with replacement.

3.1 Utility metrics in SELECT

Base Accuracy. The first metric we report is accuracy on holdout data drawn from the same
distribution as the data of the baseline strategy (in this case, ImageNet validation accuracy).

OOD Robustness. We report several out-of-distribution robustness metrics, both synthetic and
natural. Synthetic OOD-robustness shifts are generated using algorithms which transform existing
real images in the validation set (e.g., synthetic image corruptions). Natural OOD-robustness shifts
contain novel real images collected according to some heuristic, such as sketches of the class [43] or
only collecting class examples with unusual context [3]. For natural distribution shifts, we include
ImageNet-Sketch [43], ObjectNet [3], ImageNet-V2 - a replication of the original ImageNet test set,
ImageNet-R [19] - a 200-class subset of ImageNet-2012, highlighting renditions of everyday objects,
and ImageNet-A [19] a 200-class subset of ImageNet-2012 selected by misleading previous methods.
For synthetic distribution shifts, we report ImageNet-C and Stylized-ImageNet [18, 15]. In Tab. 2,
we report the average over all natural distribution shifts as Avg. Nat. Rob., and the average over all
synthetic distribution shifts as Avg. Syn. Rob..

Pretraining and fine-tuning. In order to holistically assess the quality of a data curation strategy
it is important to include utility metrics that do not strictly track base accuracy. One such metric is
treating the model trained on the shift as a pre-trained checkpoint, and evaluating it via a diverse
regime of fine-tuning tasks. Inspired by the VTAB-1k benchmark introduced in [46], we assemble
11 such tasks. The details of the tasks and our implementation details for fine-tuning models can be
found in Appendix Sec. K. We report the results of such a regime in Tab. 2 as Avg. VTAB.

Guiding self-supervised models. All of the utility metrics we describe so far require first pretraining
a model on the shift dataset. However, for rapid evaluation, it is also useful to consider metrics that
estimate the utility of a curated dataset without training a model. For this, we turn to the field of
self-supervised learning, in particular the DINO method introduced in [7]. We evaluate a DINO
model pretrained on ImageNet-train; note that the DINO pretraining method makes no use of the
labels in the dataset, relying entirely on the images. We then evaluate the pretrained DINO model
on the ImageNet-val test set using the method of kNN classification described in [7]. We evaluate
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the model multiple times, each time allowing a different quantity of samples-per-class (SPC). For
the details of our implementation and the specific SPC values we consider, please refer to Appendix
Sec. I. We report the average over all SPC values in Tab. 2 as Avg. SSL.

3.2 Analytic metrics in SELECT

Summary statistics. Summary statistics are extremely high-level features that are easy to compute
and interpret. We report Dataset Size (the number of unique samples in the dataset) and class coverage
(classes), which indicates the number of classes in the label set (in this case, ImageNet-1k) covered
by the shift.

Imbalance metrics. Zipfian’s distribution suggests that the frequency of an event is inversely
proportional to its rank in a frequency distribution. This type of distribution is observed in natural
language, where a few words (like “the” and “and”) appear very frequently, while the majority are
used much less often. Inspired by this law, we utilize two metrics for imbalance; one which estimates
the effect of overrepresented classes, a phenomenon we term left-skewedness; and another estimating
the impact of long-tail classes, which we refer to as long-tailedness. For formal definitions of these
terms, please refer to Sec. G. For a visualization, please refer to Fig. 3.

Quality metrics. Quality metrics assess the usability of labels and images in the shift. One such score
is CLIPScore, introduced in [20], uses a CLIP model (in our case, the OpenAI ViT-B-16 checkpoint)
to score the similarity of image and text; this metric assesses the quality of both images and labels.
Another such score is CLIP-IQA, introduced in [44], uses generic semantic opposite pairs such as
good / bad and bright / dark and a CLIP model to score the quality of an image alone. We also include
the extremely popular Inception Score, which measures both the diversity and recognizability of
generated images by using a pre-trained Inception v3 model, with higher scores indicating better
image quality and variety [37]. Finally, we include the recent CMMD score, based on richer CLIP
embeddings and the maximum mean discrepancy distance with the Gaussian RBF kernel [23]. We
find that Inception Score is not a reliable predictor of quality as measured by IN1000-Val accuracy, as
it favors synthetic SD1000 (txt2img) images over real OI1000 and IN1000 images, which contradicts
the commonsense conception of image quality as a measure of realism. CMMD score shows more
promise than any other method we have considered, and has the potential to be useful; however, its
low score for the OI1000 split is incongruous with other, more reliable measures of label and image
quality.

Correlational metrics. We also provide a range of correlations which we observe to have good
predictive power. All correlations are Pearson’s R; precision, recall and accuracy are reported for the
shift model unless otherwise specified. R:P,CC is the correlation between precision and class count.
R:A,CS is the correlation between accuracy and confusion skewness (how concentrated the model
error is on a few classes). R:INA,A is the correlation between accuracy of the ImageNet-1k model
and the shift model. R:P,R is the correlation between precision and recall, and R: INAV, AV is the
correlation between class availability in ImageNet-1k and the shift.

4 IMAGENET++ : A new set of baseline strategies for data curation

Overview. Having defined our data curation strategies in Tab. 1 and constructed a benchmark for
them, we turn to producing datasets using each of our strategies and comparing them with our baseline
strategy of expert curation for ImageNet-train. Few distribution shifts of ImageNet train exist, and
those that exist rarely document their curation process. To fill this need, we introduce IMAGENET++ ,
the largest and most diverse set of shifts of ImageNet-train to date. IMAGENET++ consists of
ImageNet-train and 5 distinct training shifts, each one constructed using a strategy from Tab. 1. The
constituent shifts of IMAGENET++ are:

1. OI1000: A subset of the OpenImages dataset [26] utilizing the Crowdsourced strategy. OI1000
samples are human-labeled using crowdsourced annotators, and images are scraped without addi-
tional filtration. We assemble this dataset by creating a mapping from OpenImages to ImageNet
classes and repackaging the relevant samples. The curation process required approximately 96
compute hours on CPU-only nodes.

2. LA1000 (img2img): A subset of the LAION dataset [39], utilizing the Emb img2img strategy -
embedding-based search retrieving new images conditioned on each ImageNet image embedding.
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Table 1: Data curation strategies. We enumerate the strategies we consider for curating datasets.
Image quality is low for synthetic image generating methods and high otherwise, as synthetic methods
can introduce noise in the image. We estimate class imbalance using our LT@500 (long-tailedness)
and LS@5pct (left-skewedness) metrics, described in depth in Sec. G. We report high cost when
humans were paid to label images and low otherwise. Our ImageNet label error estimates are drawn
from [32], and in the absence of other information, estimates for OpenImages are assumed to be
similar. Syn img2img label error estimates are identical to ImageNet, as labels are inherited.The
emb-txt2img and emb-img2img label error estimates were derived from experiments in [12], who
computed a 10% rate of disagreement between ImageNet original labels and those generated by a text-
based embedding search (the lower bound assumes that all human errors were corrected by txt2img
labeling, the upper bound assumes the union of errors). For extended definitions of the abbrevations
used in this table, please refer to Sec. 2. FS:= Fully Supervised; WS:= Weakly Supervised. We
enumerate the strategies employed for curating datasets.
Strategy Shift Name I (image

source)
T (text
source)

La-
bels

g (labeling
function) Filtration Image

Quality
Label
Error

Imbal-
ance

C
(cost)

Expert IN1000 Natural None FS Expert Expert High 0.06 Low High
Crowdsourced OI1000 Natural None FS Expert None High 0.06 High High
Syn img2img SD1000(img2img) Model None WS Algo existing S(X,y) Low 0.06 Low Low
Syn txt2img SD1000(txt2img) Model Natural WS Algo Text Low 0.00 Low Low

Emb img2img LA1000(img2img) Natural None WS Model CLIP sim,
existing S(X,y) High 0.04 - 0.16 Low Low

Emb txt2img LA1000(txt2img) Natural Natural WS Model CLIP sim, Text High 0.04 - 0.10 Low Low

FS:= Fully Supervised; WS:= Weakly Supervised

The curation process required approximately 336 compute hours on a 1x-NVIDIA-RTX8000
node.

3. LA1000 (txt2img): A subset of the LAION dataset [39], utilizing the Emb txt2img strategy -
embedding-based search conditioned on the CLIP similarity with the text of each ImageNet class
name. This shift is an expanded version of LaionNet, originally introduced in [40].

4. SD1000 (img2img): A shift generated from the ImageNet-train images using a Syn img2img
strategy; we utilize the Lambda Diffusers library from [27] to synthesize one image conditioned
on each image in ImageNet-train. The curation process required approximately 672 compute
hours on a 1x-NVIDIA-RTX8000 node.

5. SD1000 (txt2img): A shift generated from the ImageNet-train classnames using a Syn txt2img
strategy; this is the standard process used to generate images with diffusers. The dataset was
originally created by [25].

For extended descriptions of our shifts, including estimated costs of curation for each method, we
refer the reader to Appendix Sec. D.

Dataset coverage. In this work, we generate shifts of ImageNet-train only. We do not produce new
shifts for ImageNet-val, although prior works have explored this possibility, most recently [47]. We
avoid this because of the high likelihood of introducing an unspecified degree of label and image
noise into our validation sets. Our aim is to evaluate the training data, keeping the evaluation data as
accurate as possible.

5 Results and Analysis

In this section, we evaluate our baseline strategy as well as our 5 shifts, training over 130 different
models evaluating the utility of the shifts for different tasks. For further implementation details,
please refer to Appendix Sec. L. In Tab. 2, we report our utility metrics for each strategy. Our key
findings are as follows:

• No reduced-cost curation strategy improves on ImageNet. We explore this surprising result
further in Sec. 5.1.

• Embedding-based search strategies are the best reduced-cost curation methods. They con-
sistently and dramatically outperform diffusion-guided curation on most benchmarks, despite the
difficulty in obtaining class-balanced data. This reinforces observations in [14] that the filtration
step is particularly important when the search space is large, and in [30] that synthetic image
distributions tend to saturate classifiers rapidly.
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Figure 2: Samples selected from the ImageNet++ dataset compared to those in the original
ImageNet-1k dataset. The selected classes are "Volcano", "School Bus", "Umbrella" and "Dogsled".
Different viewpoints and centers emerge in these categories of LAION-1k and OI-1k. Also, samples
generated in SD-1k are illustrations which may defy the laws of physics.

• Human curation does not always lead to more useful shifts. The OI1000 shift was expensive
to curate because of its use of human annotators. However, for the majority of metrics we report,
LA1000(img2img) performs better. We attribute this surprising result to label imbalance, and
analyze it in greater depth in Sec. 5.2.

• Larger datasets do not necessarily outperform smaller ones. LA1000(img2img), despite being
the smallest dataset, is the second or third best on every metric.

• img2img strategies outperform txt2img strategies. According to most metrics, img2img is the
stronger approach; extending observations in [30] to a wider range of metrics.2

Table 2: Utility of curated datasets. Embedding search outperforms other curation methods,
including the human-labeled, but heavily imbalanced, OI1000 dataset. Size is not a reliable predictor
of quality; the smallest dataset is also one of the strongest performing by most metrics. Fine-tuned
and self-supervised learning performance do not strictly track base task accuracy or robust accuracy,
underscoring the importance of holistic evaluations of dataset quality.
Dataset Name Size (in M) IN1000-Val Avg. Nat. Rob. Avg. Syn. Rob. Avg. VTAB Avg. SSL
IN1000 1.3 M 77.9 ± 0.4 33.4 ± 0.5 23.0 ± 0.5 41.2 ± 0.8 49.8 ± 0.2
LA1000 (img2img) 0.8 M 59.6 ± 0.4 23.2 ± 0.5 12.5 ± 0.4 41.1 ± 0.8 42.3 ± 0.2
LA1000 (txt2img) 1.0 M 55.7 ± 0.4 26.0 ± 0.4 13.3 ± 0.3 39.1 ± 0.8 39.2 ± 0.2
OI1000 1.2 M 42.3 ± 0.4 21.8 ± 0.4 09.4 ± 0.3 44.1 ± 0.8 31.9 ± 0.2
SD1000 (img2img) 1.2 M 25.2 ± 0.4 11.4 ± 0.4 04.8 ± 0.2 39.2 ± 0.8 28.8 ± 0.2
SD1000 (txt2img) 1.2 M 23.7 ± 0.4 10.1 ± 0.3 03.3 ± 0.2 35.9 ± 0.8 35.8 ± 0.2

2A notable exception is distributional robustness on ImageNet shifts. We postulate that this is because the
space of images is not precisely mapped by semantic descriptions of classes; terms such as "polar bear" can refer
to a wide range of images with distinct features, leading to more diverse but less precise class representations.
As further evidence, we note that the Avg. SSL performance of SD1000(txt2img) is strong, because even with
very low SPC (samples per class), the class spaces of txt2img models are highly distinctive. However, they are
not as diverse as the SD1000(img2img) class space, leading to a plateau in model performance when increasing
SPC – see Appendix Sec. I.
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Table 3: Analytic metrics for curated datasets. We consider a range of analytic metrics to help
interpret the differences we observe in shift utility. The definitions for the abbreviations used in this
table can be found in Sec. 3.2. For the purposes of readability, we put the quality metric headers
in red. LT@500 refers to long-tailedness at 500 samples per class, and LS@5pc refers refers to
left-skewedness at 5%.

Name Coverage Imbalance Quality Correlation
Dataset Classes LT@500 LS@5pct CLIPScore CLIP-IQA Inception CMMD R:P,CC R:A,CS R:INA,A R:P,R R:INAV, AV
IN1000 1000 00.0% 05.1% 23.1 0.76 12.86 0.007 -0.05 -0.35 1.00 0.76 1.00

LA1000 (img2img) 1000 00.2% 06.5% 23.4 0.68 8.7 0.367 -0.13 -0.08 0.72 0.31 0.29
LA1000 (txt2img) 1000 58.7% 4.5% 23.1 9.97 0.69 0.251 -0.35 -0.11 0.66 0.32 0.08

OI1000 962 73.4% 74.9% 23.5 0.72 6.79 0.686 -0.24 -0.17 0.37 0.64 0.06
SD1000 (img2img) 997 00.1% 05.3% 22.9 0.76 11.31 0.346 0.00 -0.02 0.47 0.48 0.59
SD1000 (txt2img) 1000 00.1% 05.2% 22.8 0.75 19.09 0.974 0.00 0.09 0.36 0.49 1

5.1 Why do reduced cost strategies (still) fail to match ImageNet?

Despite innumerable advances in the field, including new vision-language foundation models, realistic
generative image models and massive web-scraped datasets, it is still not possible to recreate, much
less improve on, ImageNet curation without human labeling. The best human labels outperform
reduced cost methods on every utility metric. In order to gain a better intuition for why reduced-cost
shifts fail to match the utility of the baseline, we evaluate our analytic metrics, listed in Tab. 3.

• img2img selection strategies exhibit strong correlation with their source dataset, harming
sample diversity. Img2img curation produces models that correlate with ImageNet in terms
of per-class accuracy (See columns R:INA,A and R:INAV,AV), but fail to match it. Intuitively,
this makes sense; how could a search method conditioned solely on ImageNet images produce
something more diverse than ImageNet itself? Baseline datasets likely represent a performance
ceiling for img2img strategies unless other factors are introduced to boost sample diversity or class
balance.

• Reduced cost methods scale noisily. For datasets with real images, we observe that larger classes
contain more label noise (Column R:P,CC). This effect is larger when the labeling strategy itself
introduces noise, as is the case with embedding search based methods (LA1000) and crowdsourced
labels (OI1000). Cross entropy loss has been empirically shown to be highly sensitive to label
noise at high accuracy[13, 30]. Reducing label noise is an important area of improvement for
embedding-based strategies. This limitation also presents opportunities – future data filtration
methods could be benchmarked against their ability to denoise large classes.

• Image and label quality metrics do not provide useful signal for guiding data curation,
harming diffusion-based methods. Diffusion models rely heavily on image quality metrics such
as FID to drive progress. However, we find that the rank order agreement of these metrics with data
curation utility is low, and that there is very little variance in general when comparing one shift to
another. We consider the development of better metrics for these properties an important direction
for future work.

5.2 Under-represented classes degrade utility.

Spurred by our observation that the OI1000 shift underperformed on utility metrics relative to its cost,
we conduct further experiments on the adverse effects of class imbalance on model performance, and
find that the presence of classes with very few samples in a dataset drives performance declines.

Experimental details. In this section, we use the imbalance metrics introduced in Sec. 3.2 to analyze
the performance of OI1000 models when the data is blended with IN1000 data to rebalance it. To
control for the possible confounding factor of label set size, we conduct this experiment at |L|=100 as
well as |L|=1000.

Results. Tab. 4, which includes information on the data source, dataset size, our principal indicators,
validation accuracy, and average accuracy under shifts, indicates that the presence of long-tailed
classes is driving the performance declines in OI1000. Our indicator for long-tailedness shows
strong rank-order agreement with validation accuracy. In contrast, dataset size and left-skewedness
demonstrate only weak agreement.

The minimum number of samples below which a class accuracy begins to decline, however, is affected
by the size of the label set and the size of the dataset. Comparing rows 8 and 9 in Tab. 4, we see
that rebalancing only the classes with 101-500 samples results in an a small gain of around 6% to
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Table 4: Under-represented classes trigger performance declines. To better understand the
importance of left-skewedness and long-tailedness measures, identical models are trained on various
blended combinations of ImageNet (green) and OpenImages (red) samples. Robustness generally
correlates strongly with dataset size, unless the dataset is heavily left-skewed. Base accuracy,
however, correlates most closely with long-tailedness. The classes with the longest tails (k = 100)
are responsible for most of the performance decrease. Sample sizes are rounded to the nearest 1,000
and percentiles to the nearest whole number for clarity. The percentage in the first column indicates
the proportion of data from ImageNet, while the remainder is from OpenImages. Rows are sorted by
base (Val) accuracy.

OI% Ratio% Dataset Size Left-skew Long-tail @ 500 / Long-tail @ 100 IN100-Val / Avg. Rob.
0% 125,000 05.0% 00.0% / 00.0% 85.3 ± 0.20% / 40.6 ± 0.27%

38% 130,000 05.0% 00.0% / 00.0% 82.5 ± 0.21% / 43.1 ± 0.27%
71% 190,000 45.0% 00.0% / 00.0% 82.2 ± 0.17% / 44.3 ± 0.22%
60% 101,000 13.0% 00.0% / 00.0% 79.3 ± 0.25% / 41.3± 0.30%
88% 90,000 25.0% 00.0% / 00.0% 76.6 ± 0.28% / 38.8±0.32%
67% 135,000 31.0% 09.0% / 09.0% 73.9 ±0.23% / 40.7±0.26%
57% 105,000 12.0% 09.0% / 09.0% 73.4 ± 0.27% / 39.1± 0.30%
100% 135,000 64.0% 64.0% / 09.0% 67.7± 0.25% / 37.2± 0.26%
100% 53,000 18.0% 67.0% / 09.0% 58.2 ± 0.42% / 31.1± 0.39%

OI% Ratio% Dataset Size Left-skew Long-tail @ 500 / Long-tail @ 100 IN1000-Val / Avg. Rob.
0% 1,300,000 00.5% 00.0% / 00.0% 74.5 ± 0.07% / 30.7 ± 0.08 %

53% 1,200,000 26.0% 00.0% / 00.0% 69.2± 0.08% / 29.6 ± 0.08%
28% 1,300,000 00.5% 00.0% / 00.0% 69.1 ± 0.08% / 31.8 ± 0.08%
71% 1,390,000 34.0% 05.0% / 00.0% 57.7± 0.08% / 26.2± 0.07%
80% 452,000 01.4% 70.0% / 01.0% 33.0± 0.14% / 13.5± 0.10%
56% 683,000 18.0% 75.0% / 25.0% 30.4±0.11% / 16.2± 0.09%
100% 1,230,000 49.0% 75.0% / 25.0% 30.0± 0.08% / 17.9± 0.07%
88% 1,120,000 43.0% 56.0% / 06.0% 24.4±0.08% / 15.0± 0.07%

accuracy, but the same change with 1000 classes (rows 13, 14) results in a much larger gain (over
25% base accuracy).

6 Limitations and Conclusion

In this paper, we introduced SELECT to systematically evaluate data curation strategies, curated
IMAGENET++ , and evaluated 5 shifts while training over 130 models. Our analysis revealsed that
cost-efficient data curation methods are growing more competitive with expert data curation methods,
but that more work remains to be done to fully close the gap.

We consider this work to be an initial examination of data curation, and as such, far from complete.
We report on only six curation methods, one task (image classification), and one label set (ImageNet).
Another limitation of this work is that our modeling of cost is relatively coarse; as more curation
methods become available and documentation of curation strategies improves, it will be possible to
develop more fine-grained cost estimates. We do not ablate the choice of architecture; however, we
do note that prior work has shown that this should not be expected to have an outsized effect [13].
Our analytic metrics are also constrained by the limited ability of current image quality metrics as
estimators; we consider this an important area for future research.

We hope this work will spur research into new methods for data curation, and improved strategies
for cost-effective data filtration, sample labeling, and synthetic data generation. In App.C we detail
recommendations for future authors wishing to include data curation details in their data sheet.
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A Broader Societal Impact Statement

The goal of our work is to investigate a variety of data curation strategies and benchmark their
performance on a range of downstream tasks. We do not see any negative broader societal impacts of
our work that do not already exist in other methods for dataset curation, and indeed, we hope that our
work will spur the advancement of more sophisticated and efficient methods for curation, which will
reduce the harms incurred by employing humans to label data at scale.
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B Licensing Statement

We release our contributions under a CC0 license (for the data we generate) and an MIT license
(for our code) respectively. The remainder of the data remains bound by the rights assigned it by its
original authors or license holders. We, the authors, bear responsibility in case of violation of rights
and confirm that we have the right to distribute the data we have generated and the code we have
written under these licenses, and that we do not have the right to modify any existing licenses binding
the other code and data in our work.

C Reporting best practices

We recommend that authors include the following best practices as part of their data card reporting:

1. Report their approaches to the problems of data curation (See Tab. 1).
2. Benchmark some of their training data against existing curation baselines in a standardized fashion,

following Tab. 2.
3. Report approximate unit costs of curating their data.
4. Provide summary metrics for their datasets, including estimates of label error and group imbalance.

D Extended discussion of data curation methods

D.1 Additional details on our shifts

OI1000. The source of the OI1000 shift images is the OpenImages dataset introduced in [26]. Our
labeling function for this shift is schema matching (with a prior of the original crowd-sourced labels).
We find that 965 of 1000 ImageNet-1k classes can be matched to OpenImages equivalents via exact
string matching and expert review of the label sets; the mapping we utilize is included as an artifact
with this paper.
Properties of OI1000. Because the images in this shift are scraped from the internet without
additional filtration, this shift contains extreme class imbalances.
Curation costs in OI1000. The major drivers of curation cost in OI1000 are the crowdsourced
labelers.

LA1000(img2img). The source of the images in this shift is the LAION-5B data from [39]. These
images are unlabeled; however, descriptive text captions accompany the images. Our selection
strategy for LA1000(img2img)is embedding search; using the CLIP Retrieval package, we select
the samples with the greatest top-1 similarity to the images in the ImageNet-1k training set [4]. We
prefilter our selections to eliminate likely duplicate images and to eliminate NSFW content.
Properties of LA1000. LA1000(img2img) avoids introducing another potential confound – the
text tower of the CLIP retriever. This strategy also replicates easily on datasets where labels do
not translate very well to natural language representations, such as MNIST or Country211. Since
labels are inferred, all embedding-based search methods introduce some label noise. Curation cost
of LA1000. The cost of LA1000 shifts is dominated by building and updating the large embedding
tables used for the search and pretraining the large CLIP models used to search them on images and
texts. These up-front costs are amortized over many datasets, so the marginal cost of LA1000 is
relatively low.

SD1000(img2img). Our SD1000 synthetic img2img pipeline transforms ImageNet-1k images
through a one-to-one inversion process, mirroring the data from the ImageNet-1k set, thereby
providing a unique perspective on image representation. We generate our synthetic images conditioned
on CLIP’s image encoder and do not use any text encoder; to the best of our knowledge, we are the
only paper to produce distribution shifts of ImageNet-train in this manner.
SD1000 properties. As all the samples in SD1000 are generated by AI, SD1000 contains image
noise in the dataset.
Curation cost of SD1000. The cost of SD1000 shifts is dominated by assembling the pretraining
datasets for the diffusion models and training those models; these up-front costs can also be amortized
over many datasets, and human labels are not required for pretraining, so the marginal cost of LA1000
is relatively low.
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D.2 Extended discussion of data curation strategies

Numerous reduced-cost data curation strategies have been proposed in the literature, sometimes with
the practical aim of making curation more affordable, and sometimes with the more research-oriented
objective of better understanding the effects of dataset design choices.

In Tab. 1, we enumerate these strategies and describe their distinguishing attributes.
D(im, txt) represents the data distribution of the baseline strategy, D′(im, txt) the distribution
of the shift strategy. In this context, a model is any learned representation over data, such as a
diffusion model or an embedding search model.

• Expert is the gold-standard approach for dataset curation employed by most groups, in-
cluding the authors of ImageNet. Labels are selected by experts in advance, images are
prefiltered by a different group of experts, and a third group applies the correct labels to the
images, usually with the oversight of the research team. Considerable effort goes towards
ensuring these labels are accurate.

• Crowdsourced labeling describes an alternate strategy; the label set is still selected by
experts, but the images are not prefiltered. Instead, a wider space of potential labels is
introduced and the group applying labels to images is free to select as many labels as apply
to the image. This approach reduces labeling cost but can introduce class imbalance.

• Schema matching, used to create our OI1000 shift, describes any dataset curation strategy
which seeks to find a mapping between datasets via the label set alone. The production of the
schema itself is typically low-cost, but it does depend on the prior existence of well-curated
origin and update datasets, and in some cases, experts to generate the mapping.

• Synthetic datasets generate S(X, y) with AI, typically GANs or diffusion models, using as
a prior some element(s) of a source dataset, such as the label set, text captions or images.
We find that low x, xtest fidelity is common when generating synthetic data via diffusion
models, violating assumption (C); remedying this problem is an important direction for
future work.

• Embedding search methods generate S via nearest neighbors search over an index of
embeddings generated by a computer vision model (typically a vision-language classifier
such as OpenAI’s CLIP [34]. One challlenge of such methods is that they introduce label
noise into the dataset. Many authors in the literature have proposed to correct noisy labels
via a family of models M(y) → ycorrect in the literature; we discuss some methods in
Sec. 2.1. Another property of embedding-based search methods is that they are difficult
to scale reliably. For LA1000-img2img, we retrieved over 1.3 million images, but were
only able to construct a dataset of around 0.8 million images from them after NSFW
filtering, deduplication, and broken links in the embedding lookup table. When constructing
LA1000-txt2img from LaionNet, we encountered a similar rate of failure. [40]

E Predictive measures of fidelity under shift

In the bulk of this paper, we analyze distribution shifts in the aggregate, rather than individually.
While this is reasonable, it is also important to better understand why certain pretraining datasets are
more helpful for particular distribution shift benchmarks. This line of inquiry relates closely to that
of [31].

The models we analyze here are our baseline models trained independently on each of our three shifts,
as well as the model trained on ImageNet itself.

We select as our exemplary shift ImageNet-R [19], because performance on this shift varies widely
and does not closely track base classifier accuracy. In Tab. 5, we report the ratio of ImageNet-R
accuracy to ImageNet-Val accuracy (R-Acc-Pct). The widely referenced probit-scaled ‘linear fit‘
hypothesis of [29] would predict that this metric should remain constant except at the extremes of
ImageNet-Val; surprisingly, we see considerable variance in practice.

One important factor, clearly, is that ImageNet-R does not cover all of the classes in ImageNet, but
only a 200-class subset of them. It is logical that models trained on highly imbalanced datasets, such
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Table 5: Correlation predicts shift accuracy. We find that when accuracy on the training dataset is
strongly correlated with accuracy on the shift dataset, and base accuracy is high, shift performance
improves.

Dataset IN1000-Val R-Acc-Pct R-Cls-Acc Pearson
IN1000 0.779 0.467 1.06 0.07
LA1000 0.596 0.432 1.09 0.25
SD1000 0.252 0.635 1.21 0.41
OI1000 0.313 0.971 1.55 0.62

as OI1000, perform better when the class imbalance is reduced post-hoc. This phenomenon occurs at
test time, because for ImageNet-R, the logits for the 800 classes which are not present in the test set
are zeroed out, eliminating many of the most heavily over-predicted classes from consideration.

Still, this cannot be the entire explanation, since even after we correct for the class imbalance, models
trained on OI1000 data still perform better on ImageNet-R.

Therefore, we introduce two other measures in this section. The first is the Pearson correlation
coefficient (R) of ImageNet-Val accuracy and ImageNet-R accuracy. The second (R-Cls-Acc) is the
relative performance of each model on the subset of ImageNet-R classes, expressed as a multiple of
its performance on the entire validation set.

Surprisingly, we find that when combined, target class accuracy and correlation between validation
accuracy and shift accuracy are good predictors of robust accuracy, making this a useful predictor of
model performance under shift, when the relevant data is available.

F Label Noise as a Function of Class Hierarchy in ImageNet

As noted in our main paper, the negative correlation between precision and class size is stronger on
LA1000(img2img) subset, which was created using an embedding search based method.

One research question we hope to answer is whether the negative correlation is stronger on classes
with high conceptual similarity, sometimes called fine-grained classes, as it has been shown that
vision-language classifiers tend to struggle with such classes [13].

Because ImageNet derives from WordNet, there exists a natural hierarchy of classes which we
can exploit to better understand this question. We investigate all label in ImageNet and find that
their WordNet concepts exist at varying depths in the hierarchy. We find that concepts are broadly
distributed with respect to depth – the 104 deepest concepts in ImageNet exist 15 levels down the
WordNet hierarchy, and the 76 shallowest concepts exist 6 levels down the hierarchy. All of the
deepest classes correspond to animals, and all but six are mammals (mostly dogs). All but two of the
shallowest classes share the WordNet superclass physical_entity.n.01. For our experiments on class
hierarchy, we promote all classes 6 levels up the hierarchy (the deepest level at which all classes are
represented). We leave ablations of this particular choice to future work – heuristically, we find that
evaluating labels at this level of abstraction leads to interesting discoveries.

Specifically, we find that mammal, one of the most common superclasses in ImageNet, with 181 of
the 1000 classes in ImageNet representing mammals, and one of the most fine-grained according
to the WordNet hierarchy, is also one of the superclasses which suffers the greatest decline when
transitioning from IN1000-trained classifiers (82% Accuracy on mammals) to LA1000-trained
classifiers (55% Accuracy on mammals).

Although it is possible that label noise is introduced whenever the vision-language embedding
model performs poorly on a class, we note that both our IN1000 and our LA1000 trained classifiers
perform poorly on the machine.n.01 superclass (35% accuracy and 34% accuracy, respectively). If
VL-embedding-model accuracy alone was predictive of label noise, we would expect the LA1000
model to perform substantially worse than the IN1000 model.

This evidence supports our hypothesis that growing datasets using embedding-based search methods
tends to disproportionately introduce label noise in fine-grained classes where the classifier is less
accurate.
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Table 6: Datasets with IN1000 Val. Acc and Avg. Rob. We compare the model performance on
different datasets by training a ResNet-50 model and measuring the validation accuracy on ImageNet-
Val and the average robustness on the shift datasets. Specifically, models trained on shift combination
datasets of ImageNet-1000 and ImageNet++ (line 5, 6, 7) are with a class-balanced weighted loss.
We find that the weighted loss boosts the performance when the dataset is class-imbalanced.

Dataset Dataset Size IN1000 Val. Acc IN1000 Avg. Rob.
IN1000 1.3 Mn 77.9± 0.36% 33.4± 0.30%
OI1000 1.2 Mn 31.3± 0.41% 18.3± 0.24 %
LA1000 1.4 Mn 59.6± 0.43% 23.2± 0.26%
SD1000 1.2 Mn 25.2± 0.38% 11.4± 0.20%

IN1000 + LA1000 2.7 Mn 74.7± 0.38% 31.0± 0.29%
IN1000 + OI1000 2.5 Mn 77.1± 0.37% 35.7± 0.30%
IN1000 + SD1000 2.5 Mn 69.7± 0.40% 26.7± 0.28%

IN2000 2.3 Mn 69.2± 0.40% 31.0± 0.29 %
IN5000 5.4 Mn 72.7± 0.39% 35.6± 0.30%

IN21000 (ft) 14.2 Mn 82.4± 0.33% 44.6± 0.31%

When using embedding-based search methods to grow a dataset, we find that per-class label noise is
more likely to occur when both of the following conditions hold:

1. The embedding-generating classifier is less accurate than average on the class

2. The class is fine-grained (conceptually similar to others in the label set)

F.1 What kinds of classes are hard to learn?

When examining the ten superclasses on which our classifiers are weakest, find strong agreement –
four of the ten (clothing, consumer goods, gun, structure) are present on all training shifts. Agreement
on the best performing classes is less strong. We also note that all but one of the superclasses (causal
agent) are non-living and all but five of the best performing superclasses are living.

G Left-skewedness and long-tailedness

We propose left-skewedness @ k to be the percentage of samples in the dataset that belong to the
most common k of classes, and long-tailed distribution to be the percentage of classes that contain
fewer than k samples (%< k Classes). Formally, we define them as follows –

Left-skewedness @ k. Suppose we have SORT(R, fD) → Rs which sorts an array of labels R in
descending order per some function over a dataset fD, with D also an array. In this case, let fD be a
frequency counter. So for 0 < k < 1, left-skewedness @ k (LS) is given by:

LS(Rs, D, f, k) ⊆ |D[Rs[0 : k|Rs|]]|
|D|

(1)

Long-tailedness @ k. Now suppose that 0 < k < n. Long-tailedness (LT) @ k is given by:

LT (D,R) :=
|R s.t. ∀r ∈ R, r ∈ LT ⇐⇒ |Dr| ≤ k|

|R|
(2)

We set left-skewedness k at .05. We explore two heuristic settings for long-tailedness k: 500 and 100.

H Weighted Loss Training

Weighted loss training mitigates the effects of class imbalance. While we have conducted detailed
research on the indicators within the class-imbalanced dataset, the question of how to effectively
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Figure 3: Illustration of Label Imbalance metrics on a dataset with 1.2 million samples and 1000
classes. (Left) is an approximately uniform data distribution. (Middle) 5% classes hold 50% samples.
(Right) Most classes are under represented with less than 100 samples (y-axis is log-scaled).

address this issue remains open. Surprisingly, we found that a simple class-balanced weighted loss
could be a powerful solution.

Estimating the weight matrix Given a class-imbalanced dataset D of N classes, we could obtain the
weight matrix W , with each entry Wi associated with the class weight of the i-th sample, computed
as:

Wi =
1

fi ·N
(3)

Here, fi represents the frequency of the class to which the i-th sample belongs, as:

fi =
|Di|∑N
j=1 |Dj |

(4)

Computing a weighted loss With the weighted matrix W and the original loss function l(ŷi, yi) (here
we choose the CrossEntropyLoss), the weighted loss for a dataset with N classes can be formulated
as:

L =
1

N

N∑
i=1

Wi · l(ŷi, yi) (5)

We retrain our model using a combination of ImageNet-1k and OI1000 datasets with the same
parameters described in the Training setup (see Appendix Sec. L, but implemented this weighted loss
function proportional to class counts. The performance improved markedly. By employing only a
weighted loss, the average robustness of models across the five shift test sets increased from 18.3% to
35.7%, surpassing the baseline average robustness of 33.7% achieved when trained on ImageNet-1k
(refer to Table 4). Hence, we conclude that we are able to boost the robust accuracy again with a
simple intervention of reweighted loss function.

I Dataset curation as a guide for self-supervised pretrained models

In this section, we discuss in detail our methodology for self-supervised models, and analyze the
performance of our methods on this task.

Methodology. For all experiments in this section, we utilize the pretrained ResNet-50 DINO model
introduced in [7]. DINO is pretrained on unlabeled samples (in this case, ImageNet-train), and at test
time, is evaluated using KNN classification, guided by a fully labeled dataset.

We randomly subsample our curated datasets to acquire different numbers of samples per class (5, 10,
100 and 1000). The standard approach to KNN classification assumes that labels will be balanced;
however, in real life as well as in our own curation benchmark, datasets are unbalanced and certain
classes do not exist. We find that if these imbalances are treated naively, model performance suffers.
Therefore, when no samples are available for a particular class, we generate random features by
sampling from a Gaussian distribution in the neighborhood of a random point in latent space. If we
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Table 7: The performance of data curation methods for self-supervised guidance depends on the
number of samples per class (SPC). When only a few samples per class are provided, the highly
imbalanced OI1000 is more competitive with IN1000, and SD1000(txt2img), whose prompts were
highly consistent across samples, performs well. As SPC increases, the greater sample diversity of
LA1000 and IN1000 allows their performance to scale better.
Dataset IN1000-Val (SPC=5) IN1000-Val (SPC=10) IN1000-Val (SPC=100) IN1000-Val (SPC=1000)
IN1000 31.77 42.75 57.74 66.72
LA1000 (img2img) 27.39 32.10 50.86 58.91
OI1000 24.61 30.19 31.65 41.10
SD1000 (img2img) 18.64 23.34 33.83 39.48
SD1000 (txt2img) 30.40 33.52 38.46 40.93

have some samples per class, but not enough to balance the classes, then we randomly perturb existing
features by a small amount, again, sampling from a Gaussian distribution in the neighborhood of an
existing real feature vector.

Analysis. . We observe substantial differences between our methods as a function of the number of
samples per class. When only a few samples per class are provided, the highly imbalanced OI1000 is
more competitive with IN1000, and SD1000(txt2img), whose prompts were highly consistent across
samples, performs well. As SPC increases, the greater sample diversity of LA1000 and IN1000
allows their performance to scale better.

J An Extended Discussion of Costs in Data Curation

Cost. Fundamental to understanding any utility function is the marginal cost of acquiring new
samples. Unfortunately, unlike other costs incurred such as GPU training time, the cost of data
acquisition is very rarely reported in the literature. In our study, we discretize our cost levels into two
coarse bins: low and high. This discretization of cost precludes meaningful comparisons of marginal
utility of curation functions per unit of data. Therefore, in this study we fix the quantity of data we
consider and report differences in utility across curation methods. We consider the refinement of the
cost variable an important direction for future research into data curation. We detail below the four
main drivers of the cost in a data curation-strategy:

Source distribution. Also important is the choice of I . The typical choices are synthetic or natural;
however, in real life, we choose a subset of the natural images from which to sample, and therefore
condition our distribution on our data source, such as the Common Crawl [14] or Flickr [11]. If the
image source is natural, there are inevitably implicit constraints, as it is impossible to effectively
sample from the distribution over all conceivable images. As a general rule of thumb, we argue that
more diverse and representative D incur greater costs.

Labeling function. Once samples are collected, they must be labeled in order to use them for model
training. Data labeling is any function g which assigns labels to unlabeled samples. Traditionally,
human experts have been employed for this stage. More recently, noisy labels such as image tags or
captions written by humans for other purposes have been used in lieu of traditional labels. Computer
vision models have also been employed to generate labels according to a variety of self-supervised
strategies.

Filtering. After all samples have been collected, another key decision point is whether and how
to subsample, or filter, S. Filtration (F ) can take place before or after labels are produced, or at
both stages. In the case of synthetic datasets, filtration can be understood as conditioning the data
generating model according to some prior. Common filtration strategies include filtration via human
experts (e.g., ImageNet) partial human-in-the-loop methods, and model-based methods like CLIP
similarity scores. Partial human-in-the-loop includes filtering conditioned on noisy labels scraped
from the web, or filtering conditioned on previously curated datasets.

Label set. Another important implicit decision point is when and how to introduce a label set, L.
When curating a new image classification dataset, the space of available labels must be set before the
labeling function g is fixed, either prior to or after data filtration (unlike a zero-shot setting where L
is only required at test time).
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K Impact of Shifts on Unseen Downstream Tasks

The Visual Task Adaptation Benchmark (VTAB) [46] was introduced as a way of studying how
effectively pretrained models were able to adapt to unseen tasks with limited training examples.
VTAB is composed of 19 downstream tasks ranging from natural images such as those found in
Caltech101 to more specialized images such as those found in EuroSAT. The benchmark takes a
pretrained model and finetunes it on a limited amount of training data from the downstream task
before evaluating the model on the task’s evaluation set. The finetuning process is fixed across
datasets to ensure a fair comparison process.

We take the benchmarking process introduced in VTAB and rewrite it to be compatible with PyTorch
models. In addition, we choose the following datasets for this new benchmark: Caltech256, SVHN,
DTD, EuroSAT, Flowers102, Country211, FGVCAircraft, GTSRB, RenderedSST2, LFWPeople,
and SUN397. We finetune each of the models introduced in this work for 1000 steps of SGD with a
batch size of 64. We have an initial learning rate of 0.01 which is decreased by a factor of 10 every
300 steps of SGD. The momentum for SGD is 0.9. Results for our models and the original timm
ResNet50 are present in Table 8.

We see that the vast majority of our models outperform the original timm ResNet50 model. We
will first highlight two datasets where our models had similar performance to the timm model:
RenderedSST2 and LFWPeople. All of the models had about a 0.5 accuracy on the RenderedSST2
dataset because it is a difficult binary classification task. None of the models presented were able to
perform better than a coin-flip with the limited number of fine-tuning steps. In addition, we see that
all models had a 0 accuracy on the LFWPeople dataset. This dataset is a facial recognition dataset
with 5749 classes. Thus, it is understandable that the models struggled to classify the faces with such
a limited number of training examples.

We see that in the SVHN and GTSRB tests, our models have about 0.7 and 0.8 accuracies respectively.
However, we note that the original timm model has only 0.26 and 0.28 accuracies respectively.
All of the models were given the same fine-tuning process. Therefore, the significant accuracy
difference likely stems from the additional pretraining our models received from their respective data
shifts. The two datasets both have relatively small label sets (10 and 43 respectively) and focus on
the classification of similar image types (numbers and traffic signs respectively). Due to the way
we selected images for the data shifts, it is unlikely that a significant amount of numbers/traffic
sign images were added to the pretraining dataset. Therefore, our data shift likely improved the
models’ abilities to distinguish similar objects such as different types of traffic signs. This point is
further supported by the Flowers102 and FGVCAircraft dataset (flowers and aircraft type objects
respectively). We see that the accuracies for our models are significantly higher than the timm model.

Figure 4: The performance of various examined data curation strategies across different
ImageNet evaluation sets. Each color on the radial plot represents a different data curation strategy
(Tab.1). Each direction on the plot corresponds to a distinct ImageNet evaluation set (see Sec. 3). All
values are normalized based on the performance achieved with the original ImageNet training set, set
as 1.0. The radial direction indicates values ranging from 0.0 to 0.9.
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Table 8: Shifts vs. Unseen Downstream Tasks. We take the models trained on various dataset shifts
introduced in this work and adapt them to 11 different datasets. The models are fine tuned for 1000
steps of SGD with a batch size of 64. The presented results are accuracy on the entire test set with
95% confidence intervals.

Datasets IN1000 LA1000 (i2i) OI1000 SD1000 (i2i) SD1000 (t2i) LA1000 (t2i) Pretrained Resnet50 (timm)
Caltech256 0.429± 0.012 0.441± 0.013 0.447± 0.013 0.319± 0.012 0.204± 0.010 0.245± 0.011 0.085± 0.007

SVHN 0.687± 0.006 0.719± 0.005 0.883± 0.004 0.698± 0.006 0.769± 0.005 0.782± 0.005 0.257± 0.005
DTD 0.476± 0.023 0.454± 0.023 0.397± 0.022 0.425± 0.022 0.146± 0.016 0.384± 0.022 0.273± 0.020

EuroSAT 0.957± 0.005 0.953± 0.006 0.964± 0.005 0.949± 0.006 0.814± 0.010 0.937± 0.006 0.728± 0.012
Flowers102 0.367± 0.012 0.387± 0.012 0.371± 0.012 0.353± 0.012 0.236± 0.011 0.344± 0.012 0.113± 0.008
Country211 0.011± 0.001 0.009± 0.001 0.016± 0.002 0.011± 0.001 0.023± 0.002 0.026± 0.002 0.007± 0.001

FGVCAircraft 0.074± 0.009 0.069± 0.009 0.103± 0.010 0.093± 0.010 0.209± 0.014 0.097± 0.010 0.017± 0.004
GTSRB 0.851± 0.006 0.818± 0.007 0.934± 0.004 0.811± 0.007 0.922± 0.005 0.831± 0.007 0.282± 0.008

RenderedSST2 0.538± 0.023 0.520± 0.023 0.536± 0.023 0.530± 0.023 0.498± 0.023 0.517± 0.023 0.514± 0.023
LFWPeople 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000

SUN397 0.137± 0.005 0.149± 0.005 0.200± 0.005 0.127± 0.004 0.125± 0.005 0.137± 0.005 0.026± 0.002

We see that our models and the timm model have similar accuracies for the DTD and EuroSAT
datasets. These datasets are both "unnatural" images with DTD being composed of describable
textures and EuroSAT being composed of satellite images of land. A key point in this section is that
neither of these image types are found in the ImageNet-1k dataset which is used to pretrain all of
the models in this table. This could suggest that the features present in these types of images are not
being learned as much with our data shift. This would explain why the accuracies in our models are
not significantly higher than the original timm model.

We now focus on comparing the models presented in our work. We see most of our models perform
similarly with the exception of the SD1000 (t2i) model. This model tended to have significantly
poorer accuracy than the other 5 models we introduce in our work. This is likely caused by the noise
introduced by the Stable Diffusion generated images. This accuracy drop is likely not seen in the
SD1000 (i2i) model due to the fact that we start from ImageNet-1k images instead of a text prompt.
One interesting fact about SD1000 (t2i) is that it has the highest accuracy on FGVCAircraft (over
2x the next highest accuracy). The dataset is composed of various aircraft types. It is difficult to
draw concrete conclusions from this result because SD1000 (t2i) performs poorly on a similar dataset
(Flowers102) which is a collection of different species of flowers.

L Implementation Details and Extended Results for base accuracy and
OOD-robustness.

Compute. The experiments for this work were conducted using NYU’s Greene cluster. We estimate
that 6422 A100-hours were used during the writing of this paper; 2190 for dataset construction, 4032
for shift model training, 200 for evaluation.

Models trained for this paper. We state that we train over 130 models for this paper. We arrive at
that estimate in the following fashion:

• VTAB Benchmarking: 2 baselines and 5 shifts, fitted to 11 datasets -> 77 models
• SSL Benchmarking: 1 baseline and 5 shifts, fitted at 4 SPC variations -> 24 models
• Accuracy and Robustness Benchmarking: 1 baseline and 5 shifts -> 6 models
• Under-represented Classes Experiments: 17 models
• Ablation on Data Scaling (Tab. 6): 6 models

Training setup. We train a standard ResNet-50 with a 1000-class linear classification head in
the timm library using mixed precision with a batch size of 192. The learning rate for each new
combination of architecture and dataset is determined through a grid search. All models are trained
for 600 epochs. Our search space is based on that of [45], with one key modification; we introduce
a weighted loss function in order to compensate for class imbalances introduced by our labeling
strategies. For more details on the weighted loss function, please refer to Sec. H. Our models are
trained on a single node equipped with 8 AMD MI50 GPUs or 4 NVIDIA RTX8000 GPUs.

Evaluation setup. We evaluate our models every 10 epochs, and report all model-based results using
the checkpoint with the highest accuracy on the holdout set.
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Table 9: Extended robustness results for SELECT.
model name IN1000-Val IN1000-V2 IN1000-S IN1000-R IN1000-A IN1000-OBJ IN1000-C IN1000-STY Avg Nat Rob Avg Syn Rob
IN1000 0.779 0.648 0.235 0.364 0.087 0.176 0.402 0.058 0.302 0.23
LA1000 (img2img) 0.596 0.49 0.134 0.258 0.044 0.105 0.214 0.035 0.206 0.125
OI1000 0.423 0.36 0.124 0.314 0.072 0.084 0.159 0.029 0.191 0.094
LA1000 (txt2img) 0.557 0.469 0.268 0.405 0.053 0.105 0.225 0.041 0.26 0.133
SD1000 (img2img) 0.252 0.207 0.059 0.16 0.031 0.018 0.086 0.01 0.095 0.048
SD1000 (txt2img) 0.237 0.191 0.073 0.121 0.018 0.049 0.06 0.006 0.09 0.033

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. Please do not modify the
questions and only use the provided macros for your answers. Note that the Checklist section does
not count towards the page limit. In your paper, please delete this instructions block and only keep
the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] , see Appendix Sec. D
(c) Did you discuss any potential negative societal impacts of your work? [Yes] , see

Appendix Sec. A
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] , See Sec. L
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] , we include 95% confidence intervals for our tables
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] , See Sec. L
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] , see Sec. 4
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] , our data is sampled from existing datasets in the literature
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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M Availability

Our entire dataset, including Croissant metadata record and our trained model checkpoints,
are currently available on HuggingFace. All shifts are made available in WebDataset
or HuggingFace Datasets format. The links can be accessed at our GitHub repository,
https://github.com/jimmyxu123/SELECT. Our hosting and maintenance plan is to preserve the
work via the HuggingFace repository, which has proven to be a reliable exchange for large datasets in
recent years.

N Not safe for work (NSFW) filtering

The images included in ImageNet++ are sourced from the LAION-5B dataset ([39]), the OpenImages
dataset ([26]), and synthetic img2img inversion transformations from the ImageNet-1k dataset.
Although these datasets are generally regarded as safe and publicly available, we employ a variety of
NSFW content filtering techniques to identify and exclude any potentially problematic images and
captions.

Firstly, we filter captions using Detoxify ([17]), a robust language model designed to detect toxic
comments. Specifically, we employ the multilingual XLM-roBERTa ([9]) variant. This model
generates scores ranging from zero to one for the following categories: toxicity, severe toxicity,
obscenity, identity attack, insult, threat, and sexually explicit content. Based on the prior work in
image filtering by DataComp ([14]), we heuristically set a threshold of 0.1. This threshold effectively
filters NSFW text while minimizing false positives. If any of the Detoxify category scores exceed this
threshold, the sample is discarded. Next, we apply a filtering process to the visual data. We utilize
a modified version of LAION-5B’s CLIP-based binary NSFW classification model by [39], which
employs CLIP ViT-L/14 visual embeddings as input. Further information about the training data
is provided in Appendix C.5 of the LAION-5B paper. In summary, the dataset comprises 682,000
images, with a roughly equal distribution between Safe for Work (SFW) and NSFW categories.

After applying this filtering to the three subsets of ImageNet++, no toxic images were found, indicating
that the dataset’s captions are safe. However, after applying this filtering to the three subsets of
ImageNet++, no toxic images were found, indicating that the dataset’s captions are safe. This result
isn’t surprising given that the source data has been previously vetted by machine or human experts.

O Datasheet

Motivation

For what purpose was the dataset created?
ImageNet++ aims to facilitate the training of models robust against natural distribution shifts,
efficiently utilizing data. Including three datasets, OI1000, Laion-1k, and SD1000, each introducing
natural distribution shifts relative to ImageNet-1k, it is the largest and most diverse superset of
ImageNet-1k. Moreover, we use ImageNet++ to derive novel insights into scaling factors in this paper.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?
The dataset was created by researchers in the DICE Lab at New York University.

Has the dataset been used already? If so, where are the results so others can compare (e.g.,
links to published papers)?
The dataset was used for experiments in this paper.

What (other) tasks could the dataset be used for?
The dataset could also be used for model pretraining. The method could also be applied to generate
the same-size shifts to other datasets.
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Any other comments? None.

Dataset Composition

What do the instances that comprise the dataset represent?
ImageNet++ consists of 5 distinct datasets, each representing a variation of the ImageNet-1k dataset:
1.OpenImages-1000(OI1000): A subset of the Open Image dataset[26], where samples are aligned
with ImageNet-1k class names based on human-labeled annotations.
2.Laion-1000(LAION1000): A subset of the unlabeled LAION dataset[39], selected through nearest
neighbors search against the ImageNet-1k training set.
3.Stable Diffusion-1000(SD1000): A set generated from the ImageNet-1k dataset using Stable
Diffusion, where images are transformed via an inversion process.

How many instances are there in total?
See Table 6 for reference of our dataset.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)?
Features/attributes? Is there a label/target associated with instances?
Instances in OI1000 and LAION1000 are images each associated with labels and captions. SD1000
contains AI-generated features based on the images from ImageNet-1k, also with associated labels.
All the included data are filtered for NSFW content (see Appendix N)

Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information but might include, e.g., redacted text. There is no
missing information in the dataset.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample
representative of the larger set (e.g., geographic coverage)? If so, please describe how this
representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were
withheld or unavailable).
Instances in OI1000 and LAION1000 are raw images, while SD1000 comprises AI-generated features
derived from ImageNet-1k images. All instances are labeled. The datasets, particularly OI1000 and
LAION1000, are subsets of larger sets and are intentionally curated to introduce specific feature shifts
relative to ImageNet-1k, rather than to serve as comprehensive representations of their parent datasets.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.
There are no known errors, noise, or redundancies in the dataset.

Any other comments?
None.

Collection Process

What mechanisms or procedures were used to collect the data? (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)
All the data of OI1000 and Laion-1k are collected from larger public sets. Data in SD1000 is
generated by AI.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?
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1.OI1000 (OpenImages-1000): The sampling strategy was deterministic, based on a direct mapping
of human-labeled class names to the corresponding classes in ImageNet-1k.
2.LAION1000: The sampling was semi-probabilistic. Samples were selected using a nearest
neighbors search based on the ImageNet-1k training set. While this approach is guided by the
proximity of LAION images to the ImageNet-1k feature space, it inherently introduces a probabilistic
element due to the variability in nearest-neighbor results.
3.SD1000 (Stable Diffusion-1000): This subset encompasses all possible instances generated from
the ImageNet-1k dataset using Stable Diffusion, hence it’s not a sample but a complete set derived
from the original dataset through a generative process.

Who was involved in the data collection process (e.g., students, crowd workers, contractors),
and how were they compensated (e.g., how much were crowd workers paid)?
The creation of ImageNet++ is done by the author of this work.

Over what timeframe was the data collected?
The timeframe for creating the ImageNet++ is from 12/2023 to 1/2024.

Any other comments? None.

Data Preprocessing

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? If so, please provide a description. If not, you may skip the remainder of
the questions in this section.
As our images are collected either from public data sources or synthetic generation, we did an NSFW
filtering on all the images and the captions (see Appendix N).

Was the "raw" data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.
Yes, the "raw data" was also public.

Is the software used to preprocess/clean/label the instances available? If so, please provide a
link or other access point.
The details can be found in Appendix N.

Does this dataset collection/processing procedure achieve the motivation for creating the
dataset stated in the first section of this datasheet? If not, what are the limitations?
We hope that the release of this benchmark suite will achieve our goal of accelerating research in
models’ robustness to natural shifts, as well as making it easier for researchers and practitioners to
generate data augmentations via our benchmark.

Any other comments? None.

Dataset Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created?
The dataset will be public soon. All researchers and practitioners can access it if they are interested
in the dataset.
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How will the dataset be distributed (e.g., tarball on website, API, GitHub)?
We will publish all the format of the data.

When will the dataset be released/first distributed? What license (if any) is it distributed under?
The dataset is public as of 6/2024.

Are there any copyrights on the data?
There are no copyrights on the data.

Are there any fees or access/export restrictions?
There are no fees or restrictions.

Any other comments?
None.

Dataset Maintenance

Who is supporting/hosting/maintaining the dataset?
The authors of this work are supporting/hosting/maintaining the dataset.

Will the dataset be updated? If so, how often and by whom? We welcome updates from the
community.

How will updates be communicated? (e.g., mailing list, GitHub)
Updates will be communicated by the mailing list of the authors.

If the dataset becomes obsolete how will this be communicated?
If the dataset becomes obsolete, it can be communicated by the mailing list of the authors.

If others want to extend/augment/build on this dataset, is there a mechanism for them to do so?
If so, is there a process for tracking/assessing the quality of those contributions? What is the
process for communicating/distributing these contributions to users?
Others can publish their extends/augmentation on the benchmark to any open-source website (eg.
HuggingFace, Github, etc.)

Any other comments?
None.

Legal and Ethical Considerations

Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link
or other access point to any supporting documentation.
There was no ethical review process. However, we did filtering for NSFW information before
publishing the dataset.

Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctorpatient confidentiality, data that includes the content of
individuals non-public communications)? If so, please provide a description.
All the data are either collected from public source or generated by AI. There is no confidential data.
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Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why.
We did NSFW filtering to prevent this problem. As we believe, none of the data might be offensive,
insulting, threatening, or otherwise cause anxiety.

Any other comments?
None.
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