

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TRANSFORMER NETWORKS ENABLE ROBUST GENERALIZATION OF SOURCE LOCALIZATION FOR EEG MEASUREMENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

An electroencephalogram (EEG) is an electrical measurement of brain activity using electrodes placed on the scalp surface. After EEG measurements are collected, numerical methods and algorithms can be employed to analyze these measurements and attempt to identify the source locations of brain activity. These traditional techniques often fail for measured data that are prone to noise. Recent techniques have employed neural network models to solve the localization problem for various use cases and data setups. These approaches, however, make underlying assumptions that make it difficult generalize the results past their original training setups. In this work, we present a transformer-based model for single- and multi-source localization that is specifically designed to deal with difficulties that arise in EEG data. Hundreds of thousands of simulated EEG measurement data are generated from known brain locations to train this machine learning model. We establish a training and evaluation framework for analyzing the effectiveness of the transformer model by explicitly considering the source region density, noise levels, drop out of electrodes, and other factors. Across these vast scenarios, the localization error of the transformer model is consistently lower than the other classical and machine learning approaches. Additionally, we perform a thorough ablation study on the network configuration and training pipeline. The code and data used in this work will be made publicly available upon publication.

1 INTRODUCTION

Arising from cognitive processes, the brain generates electricity when neurons are firing. When a large quantity of neurons are firing simultaneously, this can be measured by Electroencephalogram (EEG). EEG is a common technique in neuroscientific research to measure brain activity using electrodes placed on the scalp surface. EEG is sparsely sampled at different scalp locations to remotely monitor brain activity as potential difference measurements. Solving the location of the source given these sparse EEG measurements is an ill-posed inverse problem (Helmholtz, 1853).

Traditional approaches have used numerical methods and algorithms to analyze EEG measurements and identify the source locations of brain activity. These traditional techniques, however, can be very slow and often fail for measured data that are prone to noise and multi-source activations (Dannhauer et al., 2013). Recent approaches have utilized advances in machine learning and artificial neural networks to predict source locations by training on large amounts simulated data. Architectures involving convolutional layers (Hecker et al., 2021), fully-connected layers (Hecker et al., 2022), graph layers (Jiao et al., 2022), and have been explored.

Transformer models have been shown to provide state-of-the-art results in fields such as natural language processing and computer vision, but as of yet, the transformer architecture has been under explored for the source localization task. Transformer architectures that do exists (Zheng & Guan, 2023) follow the same fixed input and output size setup as other networks. This under-utilizes the unique features of the transformer that allow it to generalize well across datasets. For the input, the attention mechanism can operate on any number of tokens and in any order, even at runtime. For the output, the number of learned embeddings can explicitly determine the number of desired classifications. Such capabilities have direct application to real scenarios for collecting and processing

054 EEG data, where electrodes could be faulty or misconfigured and where multi-source accuracy is
 055 vital.

056 In this work, we present a novel transformer model for solving the inverse problem that is designed
 057 with such consideration in mind. Our transformer model represents each electrode as its own input
 058 token, and uses a number of learned embeddings to match the desired predicted source locations. We
 059 demonstrate the effectiveness of the transformer model in solving this inverse EEG problem for both
 060 single- and multi-source setups. We also show its robustness to the EEG electrode placement, noise
 061 in the EEG signal, and dropout of individual electrodes. At high noise levels, the transformer model
 062 can outperform all other methods in single-source localization by over 3mm in average MLE and by
 063 12mm in multi-source localization.

064 To train the transformer, we create EEG simulations utilizing a head model of an individual and
 065 add varying levels of measurement noise. These EEG simulations require discretizing the brain
 066 into specific regions. Previous works have relied on representing the brain regions through simple
 067 grouping techniques such as voxelization (Hecker et al., 2021) or as divisions of icosohedral meshes.
 068 Such setups do not represent the complex folded surface of the brain or do not allow for direct control
 069 of the desired localization accuracy. To combat these issues, in this work, we use a Poisson-disc-like
 070 approach where desired spacing between regions can be approximately enforced. This allows for
 071 more direct control of the source region clustering. We used both a 10mm and 5mm spacing when
 072 evaluating the performance of the model.

073 Our transformer method is heavily evaluated, and the evaluations are designed to thoroughly under-
 074 stand the models abilities in difficult scenarios that appear in EEG data. The performance is measured
 075 for single- and multi-source tasks at high and low spacing between sources, high and low noise levels,
 076 and with possible electrode drop out. The method is compared to other techniques and consistently
 077 outperforms them in each unique scenario. This showcases the transformer model as a viable solution
 078 for EEG inverse problem and step towards generalization to real data.

079 In addition to the presented method, many variations are possible on the network configuration
 080 and training pipeline. This work explores many possible ablations to the method, including an
 081 iterative training approach, an unconstrained location prediction approach, and multiple alterations
 082 to the network configuration. We empirically found the that the presented approach was the best
 083 possible design and training setup, and the details of these alternate configurations are presented in
 084 the appendix.

085 In summary, our contributions are as follows:

- 087 • We present a unique transformer-based neural network that can handle variable number of
 088 inputs and explicitly define the number of source outputs.
- 089 • We present a novel approach for directly controlling the spacing between source regions on
 090 the brain for the forward model.
- 091 • We conduct through evaluations and comparisons, showing our model outperforms other
 092 architectures and methods on single- and multi-source prediction for high-noise and drop
 093 out scenarios.
- 094 • We provide a thorough ablation study of the network architecture and its effect on the
 095 supervised learning task.

097 2 RELATED WORKS AND BACKGROUND

100 2.1 EEG SOURCE LOCALIZATION

101 Over the past few decades, significant advances have been made in reconstructing neuronal sources
 102 from EEG data. These techniques rely on a forward model describing the physical and electromagnetic
 103 properties of head tissues and sensors. Simple spherical models provide an analytical approximation,
 104 but finite element modeling (FEM) offers higher numerical accuracy by capturing complex geometry
 105 and resistivity. The forward model underlies the inverse problem, where neuronal sources are
 106 estimated from EEG signals. In FEM head models, a dipolar current source simulates volume
 107 currents that reach the electrodes (Eichelbaum et al., 2014). Current dipoles, which approximate
 point-like flows, are widely used due to their flexibility in capturing diverse neuronal configurations.

108 Source configurations vary in strength and time, with peaks in activity marking concentrated brain
 109 processes. These may appear as a single source, bilateral sources, or multiple correlated sources.
 110 Different source localization methods address the inverse problem by uncovering the contribution of
 111 underlying sources at specific times.

112 Because the inverse problem is ill-posed, algorithms impose assumptions about number, location,
 113 and strength of sources. Numerically, whether the problem is under- or over-determined depends
 114 on the number of sources relative to independent measurements. In the over-determined case, a few
 115 discrete sources are estimated (e.g., dipole fit, beamformer), a method fairly noise-resistant but prone
 116 to missing or misattributing activity. In the under-determined case, a large number of dipoles—often
 117 oriented perpendicular to the cortical surface—are distributed across the brain to better explain EEG
 118 data. Here, minimal energy constraints (e.g., minimum norm estimate, MNE) reduce non-uniqueness,
 119 forming a distributed source model (Dannhauer et al., 2013). Additional temporal or statistical
 120 constraints further limit the solution space and improve robustness to noise.

121 A classical distributed method is eLORETA (Pascual-Marqui, 2007), known for robustness and
 122 practical utility (Jatoi et al., 2014). Like sLORETA (Pascual-Marqui et al., 2002), it minimizes
 123 L2-norms between predicted and measured EEG while regularizing source strength via Tikhonov
 124 methods. Although these approaches suffer from depth bias, weighting schemes and iterative matrices
 125 (e.g., in eLORETA) mitigate this issue. Distributed models remain noise-sensitive and often require
 126 averaging or preprocessing, though nonlinear and spatio-temporal strategies have been developed to
 127 address closely spaced or correlated sources.

128 We tested both distributed source reconstruction methods sLORETA as well as eLORETA on simu-
 129 lated data and found identical results, so we report eLORETA henceforth. We included also a discrete
 130 source reconstruction method called linearly constraint minimum variance (LCMV) beamformer
 131 (Van Veen et al., 1997). A more comprehensive review of classical techniques is provided by (Zorzos
 132 et al., 2021).

133

134

135

136

137 2.2 MACHINE LEARNING

138

139

140 Using machine learning to solve the inverse problem is a recent field of exploration. ConvDip (Hecker
 141 et al., 2021) presented the first convolutional neural network to solve EEG source localization. In their
 142 distribution-based spatial predictor, the brain is separated into voxels and the energy in each voxel
 143 for a single moment in time is predicted using the neural network. Many approaches would soon
 144 follow that would expand to different network architectures and types of prediction. (Hecker et al.,
 145 2022) presented a recurrent neural network with fully-connected layers to make spatial-temporal
 146 predictions. Later, a similar spatio-temporal predictor was designed using graph neural networks
 147 (Jiao et al., 2022). Other approaches included learning linear combinations of basis functions (Wei
 148 et al., 2021), using mass models (Sun et al., 2022), augmenting CNNs with finite element analysis
 149 (Delatolas et al., 2023), and modifying LSTMs (Sarah et al., 2023) or autoencoders (Huang et al.,
 150 2024; Liang et al., 2023). A summary of supervised learning approaches for electrical source imaging
 151 is presented in (Reynaud et al., 2024).

152

153 While many works have focused on the source localization task using CNNs and LSTMs, none have
 154 used Transformers for the spatial or temporal components. Transformers have been used heavily for
 155 EEG classification tasks with network architectures such as EEGFormer (Wan et al., 2023), EEG-ViT
 156 (Yang & Modesitt, 2023), EEG-Conformer (Song et al., 2023), and EEG-Deformer (Ding et al.,
 157 2025), but such successes have not yet translated to the source localization task. To our knowledge,
 158 only one other work has presented a transformer-based model for solving the EEG source localization
 159 task (Zheng & Guan, 2023). Their network, however, relies on the fixed input and distribution-based
 160 setups of prior works and doesn't provide any ablations on network configuration. By comparison,
 161 our transformer uses a learnable embedding tokens to separate single-source from multi-source
 162 localization, incorporates location into the input vectors, and is easily extendable to unconstrained
 163 location prediction. Additionally in this work, unique aspects of the transformer are explored to
 164 analyze aspects such as noise level effects on training and unique network configurations.

162

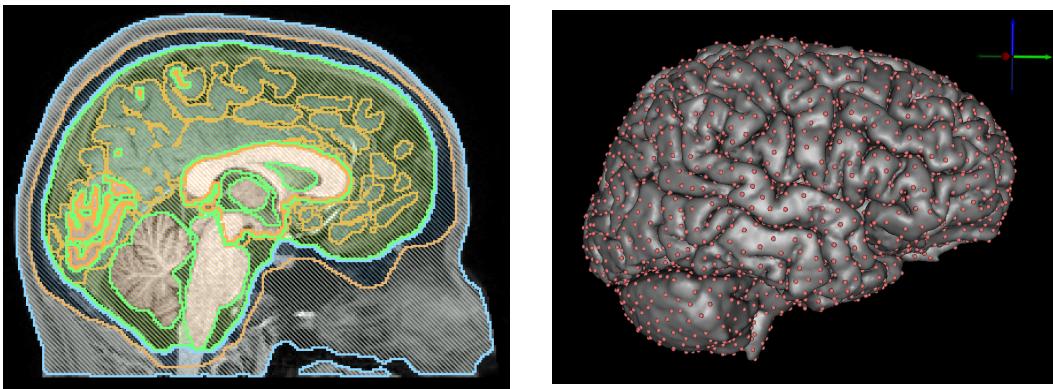
3 METHODOLOGY

164 For the localization of sources generating EEG measurements, the source location in the brain is only
 165 be determined by measured electrical potentials at the scalp surface. These sources cause electric
 166 current flow through the head tissues which manifests in the EEG potentials and can be modeled
 167 using a finite element model of the head tissue properties. The shape and extent of the head tissue
 168 properties can be derived from magnetic resonance imaging. In this work, we use the so called Ernie
 169 head model (Thielscher et al., 2015) to generate EEG data for source localization using classical (i.e.,
 170 eLORETA) as well as machine learning approaches. There are specific considerations in configuring
 171 a machine learning model to solve the inverse problem. We explore those considerations, as well as
 172 detail our transformer model architecture, in the following subsections.

173

3.1 REGION CLUSTERING AND FORWARD SIMULATION

175 While a source signal could be generated continuously along any part of the brain surface, effective
 176 machine learning models need discretized outputs to learn and compute metrics on. Previous
 177 techniques have voxelized the brain into a 3-dimensional grid (Hecker et al., 2021) or use icosahedral
 178 divions, but this ignores the complex folded nature of the brain surface. For this work, we generate
 179 region clusters by distributing points equidistantly across the brain surface for a specific geodesic
 180 distance threshold (either 5mm or 10mm) in-between them. To determine each cluster center, we
 181 used the brain surface mesh nodes and their computed geodesic distances (using Dijkstra's algorithm)
 182 to remove any nodes from the calculations that fall within a geodesic distance threshold. We repeated
 183 this Poisson-disc-like approach for all remaining nodes. At the 10mm spacing, this results in 1803
 184 regions represented by one dipole pointing outwards and perpendicular to the brain surface. We also
 185 repeated this procedure for a finer discretization with a 5mm spacing which resulted in 6790 regions
 186 as shown in Figure 1.



200 Figure 1: The modeled Ernie head is made up by many intricate tissues (right) and folded brain
 201 regions (left) as smooth surface as tetrahedral volume element discretized from tissue-label voxels
 202 (left). We distributed source locations (shown as red dots) across the brain surfaces equally within
 203 10mm (shown here) or 5mm geodesic distance between them using an in-house Possion disc-like
 204 approach.

205 We used the Ernie head model (part of SimNIBS software (Thielscher et al., 2015)), which comes
 206 with electrode scalp locations defined according to the 10-10 electrode placement system. The Ernie
 207 head model consists of 662 thousands nodes and 3.7 million tetrahedral elements. With standard
 208 tissue conductivities (Thielscher et al., 2015), we used the EIDORS-3D (Polydorides & Lionheart,
 209 2002) package to compute a finite element stiffness matrix \mathbf{A} and an in-house software (Gomez et al.,
 210 2021) to compute the right-hand side \mathbf{b} . We then solved the equation system $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ for \mathbf{x} using the
 211 software SCIRun 4.7 (Parker & Johnson, 1995). The potential values coincide with the 76 electrode
 212 locations on the scalp and are stored as a column of the so called leadfield matrix for each dipole.
 213 Leadfield matrices were created, one for the 10mm (dimensions: 76×1803) and one for the 5mm
 214 source space (76×6790). Both leadfield matrices were used directly for our MATLAB-implemented
 215 classical (for eLORETA, LCMV) as well as for machine learning approaches. The regularization
 parameter for eLORETA and LCMV were logarithmically spaced between 10^{-5} and 10^{15} (MATLAB

216 command: $\alpha = \text{logspace}(-5, 15, 10)$). For eLORETA, we used Tikhonov regularization of the minimum
 217 norm estimates (i.e., equals to 10 regularization parameter denoted as α ; Pascual-Marqui (2007)) and
 218 for LCMV we additionally regularized the noise covariance matrix (i.e., $\alpha = \beta$ being the Tikhonov
 219 regularization factor of the covariance matrix; this equals to $10 \times 10 = 100$ different (α, β) parameter
 220 pair combinations).

222 3.2 SYNTHETIC NOISE, TRAINING SETUP, AND DROPOUT

224 As is common for the inverse problem, we add synthetic measurement noise, relative the the EEG
 225 signal strength, to the simulated EEG measurement values. Rather than simply randomizing the
 226 strength, we train our network at different levels of noise strength. We quantify the added noise as
 227 a percentage strength relative to the initial measurement, ranging from 1% to 99%. We randomly
 228 generate noise vectors for each sample at each noise level and add these vectors to the data during
 229 training and testing. Specifically, the noise vectors are generated with a standard deviation of

$$230 \quad \sigma = n \frac{l_{max}}{2} \quad (1)$$

233 where n is the noise level and l_{max} is the max absolute value of the leadfield for that sample.

234 During training, noise vectors were randomly generated for each new setup. The results were
 235 validated against 50 generated noise vectors (per sample) and results are reported on 100 test vectors
 236 (per sample). These noise vectors were saved and stored for consistency across all experiments.

237 In real EEG measurements, it is common for issues to arise with electrodes. Faulty EEG sensors or
 238 loose adhesion to the scalp can cause drastically inaccurate results (e.g., oscillations, drift of over
 239 time, amplified measurement noise). For this reason, we also experimented with a different training
 240 and testing setup. In addition to the added noise, a small amount measurements would be masked out
 241 or removed from the computation. This is done to test each method’s prediction consistency when
 242 information is lost.

244 3.3 NEURAL NETWORK ARCHITECTURE

246 We propose a transformer architecture for solving the inverse problem. It receives the 76 electrode
 247 values from leadfield matrix and the electrode locations as input, and outputs the indices of the predict
 248 source region. To illustrate the differences between our approach and other methods, we also provide
 249 a baseline fully-connected network that follows the structure and assumptions of other techniques.
 250 This network is primarily used to evaluate the effectiveness of the transformer network.

252 3.3.1 BASELINE: MULTI-LAYER PERCEPTRON

253 As a baseline configuration for comparison purposes, we propose a simple fully-connected network,
 254 or Multi-layer Perceptron (MLP), composed of three fully-connected layers, similar to the fully
 255 connected setup presented in (Hecker et al., 2022). The hidden layer sizes are 100 and 1000 and
 256 each layer is followed by a ReLU nonlinearity. This network assumes fixed input size based on the
 257 training data. When values are masked in the input for the dropout experiments, the corresponding
 258 channels are simply set to 0.

260 3.3.2 TRANSFORMER NETWORK

261 We propose a transformer network that follows the original structure of the encoder block presented
 262 in (Vaswani et al., 2017). Rather than a fixed input equal to the size of the number of channels,
 263 each individual channel is treated as its own vector. Each vector is the electrode value appended to
 264 its electrode location. This allows the network to learn spatial dependencies across the electrodes,
 265 which is crucial in EEG data, where proximity can significantly affect signal interpretation. These
 266 four values are then projected into a 512 dimensional space using a linear layer. Similar to Vision
 267 Transformers (Dosovitskiy et al., 2021), a learned 512-dimensional embedding token is added to the
 268 list of inputs, giving 77 vectors in all. For multi-source prediction, additional learned embedding
 269 tokens are added. These inputs are then fed through the standard self-attention mechanisms of the
 transformer encoder.

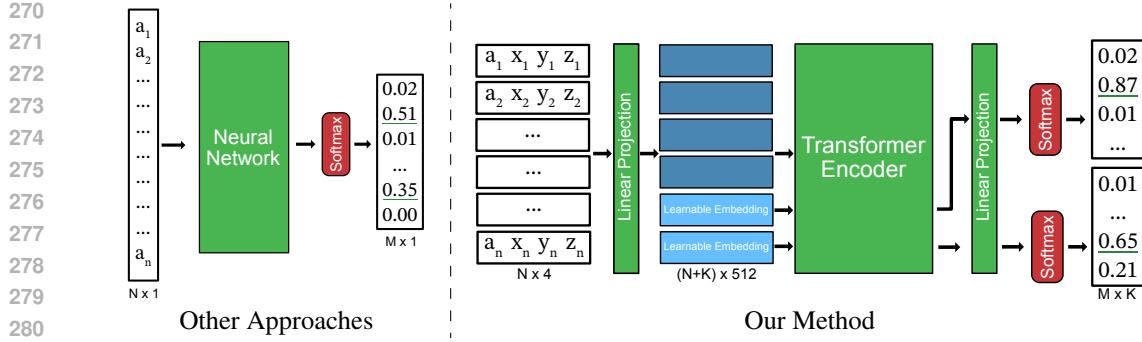


Figure 2: Network diagram for the Transformer model compared to other approaches. In most other methods (Hecker et al., 2021; 2022; Zheng & Guan, 2023), the neural network has a single input vector for the N electrodes and single output predictor vector for the M source regions, with multi source prediction handled by taking the K top values from the output confidences. In comparison, our approach can directly append location information to the electrode values to treat each as individual token, and can integrate K learned embedding tokens (Dosovitskiy et al., 2021), so that each region source is predicted directly. In our setup, $N=76$, $K=1$ for single-source or $K=2$ for multi-source, and $M=1803$ for 10mm or $M=6790$ for 5mm.

After multiple transformer blocks, the values in the embedding token are projected using a linear layer to the number of region clusters. The index with the highest value is considered the source location and the output vector and is put through a cross entropy loss. If multiple sources are present, the closest output to each source is fed through cross entropy loss and each output loss is added together. A visualization of this process is shown in Figure 2.

In our implementation, we use 512 dimensions, 8 attention heads, and 3 transformer layers, with an internal dropout rate of 0.1 to prevent over-fitting. The overall architecture leverages the self-attention mechanism to learn both local dependencies between nearby electrodes and long-range relationships across distant electrodes.

As stated previously, this setup has the benefit of being able to handle any number of input tokens. If data is masked for our drop out experiments, those tokens are simply not processed through the network. Order of the tokens also doesn't matter, removing the risk of misconfiguring the setup for future predictions.

4 RESULTS

After training the network, we evaluate our technique on our test set as described in section 3.2 for single-source, multi-source, and dropout tests. Two metrics are reported to evaluate our results: the technique's accuracy in predicting the correct region (Acc.) and the average Euclidean distance between the predicted region center and the correct region center, this being equivalent to Mean Localization Error (MLE).

4.1 SINGLE-SOURCE REGION PREDICTION

We evaluate the ability of the transformer networks to correctly predict the source region. We compare to the baseline MLP network described in Section 3.3.1. The transformer network was trained using a learning rate of 1e-4 using the OneCycle learning rate scheduler (Smith & Topin, 2019) for 250 steps on 10mm and 300 steps on 5mm. The MLP network was trained at 1e-4 for 150 steps and the 1e-5 for an additional 50 steps. We found that both networks converged after these durations.

Additionally, we compare to eLORETA (Pascual-Marqui, 2007) and LCMV beamformer (Van Veen et al., 1997), two classical source localization methods that rely on optimal spatial filter design. As described in Section 3.2, 100 noise vectors for each brain region are saved for testing at each noise level. These noise vectors are added to data before feeding into the classical approaches to allow for fair comparisons.

324
 325 Table 1: Comparison of the transformer network to the classical eLORETA method, ConvDip
 326 approach, and baseline MLP approach on the **10mm** regions. Average Accuracy (Acc.) and Euclidean
 327 Distance (MLE) in millimeters are reported for a test set of 100 different noise vectors per possible
 328 region. The transformer network performs better on every metric compared to the other techniques.

Method \ Noise	Acc. \uparrow						MLE \downarrow					
	1%	10%	25%	50%	75%	99%	1%	10%	25%	50%	75%	99%
LCMV	1.000	0.999	0.965	0.594	0.345	0.238	0.000	0.002	0.517	7.924	14.29	17.79
eLORETA	1.000	0.999	0.986	0.869	0.527	0.307	0.000	0.002	0.203	4.161	14.04	25.20
ConvDip	1.000	0.999	0.994	0.944	0.814	0.639	0.000	0.003	0.089	1.278	5.837	14.35
MLP	1.000	0.999	0.992	0.940	0.819	0.651	0.000	0.003	0.125	1.359	5.611	13.73
Transformer	1.000	1.000	0.998	0.960	0.848	0.686	0.000	0.000	0.034	0.877	4.647	12.40

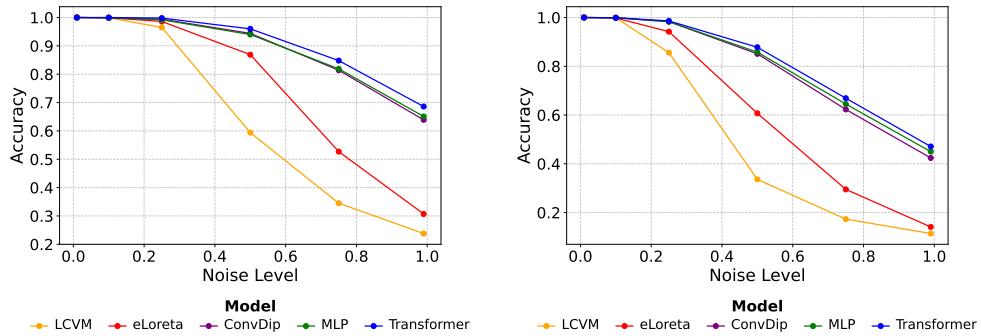
336
 337 Table 2: Comparison of the transformer network to other approaches on on the **5mm** regions. The
 338 transformer network performs better on both metrics in most cases, especially at high noise levels.

Method \ Noise	Acc. \uparrow						MLE \downarrow					
	1%	10%	25%	50%	75%	99%	1%	10%	25%	50%	75%	99%
LCMV	1.000	0.999	0.856	0.336	0.173	0.114	0.000	0.006	1.748	11.29	16.46	19.15
eLORETA	1.000	0.998	0.942	0.607	0.295	0.141	0.000	0.013	0.685	7.478	18.04	28.03
ConvDip	1.000	0.999	0.983	0.851	0.623	0.424	0.000	0.008	0.212	2.841	10.07	19.74
MLP	1.000	0.998	0.983	0.858	0.645	0.450	0.000	0.013	0.209	2.674	9.319	18.57
Transformer	1.000	0.999	0.986	0.878	0.669	0.471	0.000	0.055	0.341	2.246	8.602	17.79

340
 341 The average results over all brain regions and 100 noise vectors per brain region are provided. The
 342 results for the 10mm spacing are presented in Table 1 and the left side of Figure 3. The results for the
 343 5mm spacing are presented in Table 2 and right side of Figure 3. As these results show, the different
 344 approaches perform with similar accuracy when there are low levels of noise present. However,
 345 MLP and transformer models have significantly higher accuracy at high levels of noise, with the
 346 transformer model consistently outperforming the MLP model by 2%-3% accuracy. In addition to
 347 predicting source location with higher accuracy, our approach also runs significantly faster in the
 348 forward pass than the classical approaches. This illustrates that a well-trained model could provide
 349 real-time analysis in future applications.

357 4.2 MULTI-SOURCE REGION PREDICTION

358
 359 In comparison to traditional techniques, the transformer excels at handling multi-source setups. While
 360 most methods assume the top confidence values in the output vector correlate with source locations,
 361 the transformer can explicitly handle multi-source prediction by increasing the number of appended
 362 learned embedding vectors in the attention mechanism.



365
 366 Figure 3: A graph of the accuracy of each method on the 10mm (left) and 5mm (right) regions. The
 367 transformer model does better than the classical methods and other deep learned approaches.

378
379
380
381

Table 3: Comparison of the transformer network to other approaches on the 10mm regions when predicting two sources of similar strength. While the other methods break down as noise level increases in a multi-source setup, the transformer maintains reasonable performance up to 50% noise.

Method \ Noise	Acc. \uparrow						MLE \downarrow					
	1%	10%	25%	50%	75%	99%	1%	10%	25%	50%	75%	99%
LCMV	0.215	0.220	0.220	0.199	0.165	0.155	21.22	21.23	22.04	23.28	25.38	26.60
eLORETA	0.019	0.011	0.012	0.001	0.005	0.004	27.69	28.44	29.04	28.98	29.27	29.75
ConvDip	0.991	0.915	0.663	0.268	0.082	0.024	0.149	0.377	6.731	21.35	33.27	41.54
MLP	0.933	0.784	0.495	0.195	0.047	0.024	1.189	3.599	10.94	23.51	34.85	43.44
Transformer	0.995	0.986	0.863	0.564	0.297	0.138	0.128	0.203	2.100	9.955	20.57	30.87

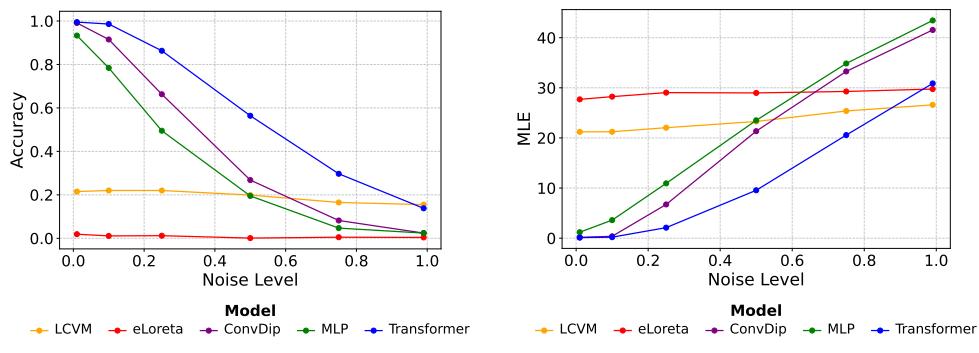
382
383
384
385
386
387
388402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: A graph of the accuracy (left) and mean localization error (right) of each method on a two-source setup. The transformer model does better than the classical methods and other deep learned approaches on multi-source prediction.

For our experiments, two sources of similar strength were generated from the forward solution, the distances between the sources being constrained to be 10cm apart. For training and testing, the model must predict the two dipoles locations. The loss function is modified to be permutation-invariant so that no assumptions are made about the order of the predicted dipoles. This is done by exclusively pairing predicted and actual sources in a way that globally minimizes the distances between predicted and actual source locations. This also prevents collapse of the model to predict the same source location twice. The results of this experiment for all the compared methods are presented in Table 3 and visualized in Figure 4.

4.3 HANDLING DROPOUT OF ELECTRODES

In the collection of real EEG data, it is very common to have a few electrodes with difficulties in measurements during data collection. Electrodes could be faulty, poorly calibrated, or physically disconnect from the scalp, providing inaccurate measurements. These "bad" electrodes could be clustered around a particular scalp area leading to problems in accurate detection especially if the dipolar-nature of the underlying active brain source is disrupted. Many source localization methods are ill-equipped to handle such scenarios, but our proposed transformer model can naturally handle such situations since it can process any number of inputs at runtime.

To test our transformer model on its ability to generalize in such situations, we simulate these conditions by randomly dropping 5 electrode values from each training and testing sample. This forces the model to learn and make predictions even in the presence of missing data. The results of this experiment are presented in Table 4. As is shown, the transformer model continues to perform with high accuracy and low localization error when data is missing. At 99% noise, the MLE from 12.40 to 14.34 when dropout was added, showcasing the transformers exceptional resilience to missing data when compared to other methods.

432
433
434
435

Table 4: Comparison of the transformer network to the classical eLORETA method, ConvDip approach, and baseline MLP approach on the 10mm regions when dropping 5 electrodes randomly. The transformer network shows minimal performance drop off when presented with missing information.

436
437
438
439
440
441
442

Method \ Noise	Acc. \uparrow						MLE \downarrow					
	1%	10%	25%	50%	75%	99%	1%	10%	25%	50%	75%	99%
LCMV	1.000	0.999	0.961	0.581	0.326	0.223	0.000	0.002	0.575	8.320	14.95	18.35
eLORETA	1.000	0.999	0.982	0.796	0.495	0.282	0.000	0.003	0.255	4.837	15.44	26.91
ConvDip	1.000	0.999	0.991	0.929	0.780	0.600	0.001	0.018	0.149	1.699	7.215	16.54
MLP	0.999	0.997	0.974	0.894	0.755	0.592	0.022	0.064	0.511	2.775	8.245	16.79
Transformer	1.000	1.000	0.996	0.949	0.820	0.649	0.001	0.001	0.059	1.190	5.814	14.34

443
444445 4.4 ADDITIONAL ABLATIONS
446447 In addition to the presented transformer model, we experimented with various network configurations
448 and encoding setups. Ultimately, we found the model presented represents an optimal setup. These
449 additional ablations can be found in the appendix.
450451
452453 5 DISCUSSION AND CONCLUSIONS
454455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

We have presented a transformer-based model for EEG single-source and multi-source localization and have demonstrated its improved performance over baseline approaches, especially in scenarios with higher levels of noise or dropout of electrodes. In single-source tests, the transformer maintained the highest accuracy and lowest mean localization error across the majority of noise levels, outperforming both classical methods and the deep learning baselines. Beyond single-source settings, the transformer extends naturally to multi-source prediction by increasing the number of learned query embeddings and using a permutation-invariant loss. In two-source experiments with sources 10 cm apart, the transformer retained strong performance up to moderate noise (e.g., Acc.=0.564 and MLE=9.955 mm at 50% noise), whereas other methods degraded much more rapidly. The model also showed resilience to realistic data quality issues. In the transformer model, dropping 5 electrodes randomly only modestly decreased performance relative to the no-dropout case. For example, at 99% noise on the 10 mm regions, accuracy only dropped by 3.7% and mean localization error only went up by 1.96 mm. Practically, these results indicate that the proposed transformer model can better tolerate high sensor noise, scale to multiple concurrent sources, and handle missing channels at inference time. These are desirable properties as EEG source localization techniques move towards application to real data in clinical settings with imperfect monitoring and setups.

471
472
473
474
475
476

A current limitation of this work is the reliance on a large amount of synthetically generated training and testing data. Ultimately, to be transferable to clinical applications, the transformer model will need to be validated on evoked and resting EEG from human participants (e.g., motor tasks for known ground truth and empirically derived noise) in order to assess its generalization across head models and preprocessing pipelines. Additional practical considerations include verifying adaptability across electrode layouts and uncertainty estimation in predictions.

477
478
479
480
481
482

In future work, this model could be extended to temporal signals. By including recurrent neural networks or additional attention mechanisms, temporal electrode information could be encoded into feature vectors and fed through a similar transformer model. Integration with popular EEG software toolboxes, such as MNE (Gramfort et al., 2013) could also increase usability with temporal data. Additional future work could explore the capabilities of the transformer across different head models and types, further verifying the transformer’s versatility.

483
484
485

Finally, we note that there are still many disparate frameworks and standards for the EEG source localization task. By making the code and data of this work publicly available, we hope to provide accessible benchmarks for others to compare against and enable future developments in EEG source localization techniques in the machine learning community.

486 REFERENCES
487

488 Moritz Dannhauer, Eric Lämmel, Carsten H Wolters, and Thomas R Knösche. Spatio-temporal
489 regularization in linear distributed source reconstruction from eeg/meg: a critical evaluation. *Brain
490 topography*, 26:229–246, 2013.

491 Thanos Delatolas, Marios Antonakakis, Vangelis Sakkalis, Carsten H. Wolters, and Michalis Zervakis.
492 Eeg source analysis with a convolutional neural network and finite element analysis. In *2023
493 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
494 (EMBC)*, pp. 1–4, 2023. doi: 10.1109/EMBC40787.2023.10340742.

495 Yi Ding, Yong Li, Hao Sun, Rui Liu, Chengxuan Tong, Chenyu Liu, Xinliang Zhou, and Cuntai Guan.
496 Eeg-deformer: A dense convolutional transformer for brain-computer interfaces. *IEEE Journal of
497 Biomedical and Health Informatics*, 29(3):1909–1918, 2025. doi: 10.1109/JBHI.2024.3504604.

498 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
499 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
500 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
501 In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

502 Sebastian Eichelbaum, Moritz Dannhauer, Mario Hlawitschka, Dana Brooks, Thomas R Knösche,
503 and Gerik Scheuermann. Visualizing simulated electrical fields from electroencephalography and
504 transcranial electric brain stimulation: A comparative evaluation. *NeuroImage*, 101:513–530,
505 2014.

506 Luis J Gomez, Moritz Dannhauer, and Angel V Peterchev. Fast computational optimization of tms
507 coil placement for individualized electric field targeting. *Neuroimage*, 228:117696, 2021.

508 Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel Strohmeier, Christian
509 Brodbeck, Roman Goj, Mainak Jas, Teon Brooks, Lauri Parkkonen, and Matti S. Hämäläinen.
510 MEG and EEG data analysis with MNE-Python. *Frontiers in Neuroscience*, 7(267):1–13, 2013.
511 doi: 10.3389/fnins.2013.00267.

512 Lukas Hecker, Rebekka Rupprecht, Ludger Tebartz Van Elst, and Jürgen Kornmeier. Convdip: A
513 convolutional neural network for better eeg source imaging. *Frontiers in Neuroscience*, 15, 2021.
514 ISSN 1662-453X. doi: 10.3389/fnins.2021.569918. URL <https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.569918>.

515 Lukas Hecker, Rebekka Rupprecht, Ludger Tebartz van Elst, and Jürgen Kornmeier. Long-short
516 term memory networks for electric source imaging with distributed dipole models. *bioRxiv*, 2022.
517 doi: 10.1101/2022.04.13.488148. URL <https://www.biorxiv.org/content/early/2022/04/14/2022.04.13.488148>.

518 H von Helmholtz. Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern,
519 mit anwendung auf die thierisch-elektrischen versuche (schluss.). *Annalen der Physik*, 165(7):
520 353–377, 1853.

521 Gexin Huang, Ke Liu, Jiawen Liang, Chang Cai, Zheng Hui Gu, Feifei Qi, Yuanqing Li, Zhu Liang
522 Yu, and Wei Wu. Electromagnetic source imaging via a data-synthesis-based convolutional
523 encoder-decoder network. *IEEE Transactions on Neural Networks and Learning Systems*, 35(5):
524 6423–6437, 2024. doi: 10.1109/TNNLS.2022.3209925.

525 Munsif Ali Jatoi, Nidal Kamel, Aamir Saeed Malik, and Ibrahima Faye. Eeg based brain source
526 localization comparison of sloreta and eloreta. *Australasian physical & engineering sciences in
527 medicine*, 37:713–721, 2014.

528 Meng Jiao, Guihong Wan, Yixin Guo, Dongqing Wang, Hang Liu, Jing Xiang, and Feng Liu. A
529 graph fourier transform based bidirectional long short-term memory neural network for elec-
530 trophysiological source imaging. *Frontiers in Neuroscience*, 16, 2022. ISSN 1662-453X.
531 doi: 10.3389/fnins.2022.867466. URL <https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.867466>.

540 Jiawen Liang, Zhu Liang Yu, Zhenghui Gu, and Yuanqing Li. Electromagnetic source imaging
 541 with a combination of sparse bayesian learning and deep neural network. *IEEE Transactions on*
 542 *Neural Systems and Rehabilitation Engineering*, 31:2338–2348, 2023. doi: 10.1109/TNSRE.2023.
 543 3251420.

544 Steven G Parker and Christopher R Johnson. Scirun: a scientific programming environment for
 545 computational steering. In *Proceedings of the 1995 ACM/IEEE conference on Supercomputing*, pp.
 546 52–es, 1995.

548 Roberto D Pascual-Marqui. Discrete, 3d distributed, linear imaging methods of electric neuronal
 549 activity. part 1: exact, zero error localization. *arXiv preprint arXiv:0710.3341*, 2007.

550 Roberto Domingo Pascual-Marqui et al. Standardized low-resolution brain electromagnetic to-
 551 mography (sloreta): technical details. *Methods Find Exp Clin Pharmacol*, 24(Suppl D):5–12,
 552 2002.

554 Nick Polydorides and William RB Lionheart. A matlab toolkit for three-dimensional electrical
 555 impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruc-
 556 tion software project. *Measurement science and technology*, 13(12):1871, 2002.

557 Sarah Reynaud, Adrien Merlini, Douraied Ben Salem, and François Rousseau. Compre-
 558 hensive analysis of supervised learning methods for electrical source imaging. *Frontiers in*
 559 *Neuroscience*, 18, 2024. ISSN 1662-453X. doi: 10.3389/fnins.2024.
 560 1444935. URL <https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1444935>.

563 Reynaud Sarah, Merlini Adrien, Ben Salem Douraied, and Rousseau François. Eeg source imaging
 564 by supervised learning. In *2023 31st European Signal Processing Conference (EUSIPCO)*, pp.
 565 1170–1174, 2023. doi: 10.23919/EUSIPCO58844.2023.10290011.

566 Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
 567 large learning rates. In *Artificial intelligence and machine learning for multi-domain operations*
 568 *applications*, volume 11006, pp. 369–386. SPIE, 2019.

570 Yonghao Song, Qingqing Zheng, Bingchuan Liu, and Xiaorong Gao. Eeg conformer: Convolutional
 571 transformer for eeg decoding and visualization. *IEEE Transactions on Neural Systems and*
 572 *Rehabilitation Engineering*, 31:710–719, 2023. doi: 10.1109/TNSRE.2022.3230250.

573 Rui Sun, Abbas Sohrabpour, Gregory A. Worrell, and Bin He. Deep neural networks constrained
 574 by neural mass models improve electrophysiological source imaging of spatiotemporal brain
 575 dynamics. *Proceedings of the National Academy of Sciences*, 119(31):e2201128119, 2022. doi:
 576 10.1073/pnas.2201128119. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2201128119>.

578 Axel Thielscher, Andre Antunes, and Guilherme B Saturnino. Field modeling for transcranial
 579 magnetic stimulation: A useful tool to understand the physiological effects of tms? In *2015 37th*
 580 *annual international conference of the IEEE engineering in medicine and biology society (EMBC)*,
 581 pp. 222–225. IEEE, 2015.

583 Barry D Van Veen, Wim Van Drongelen, Moshe Yuchtman, and Akifumi Suzuki. Localization
 584 of brain electrical activity via linearly constrained minimum variance spatial filtering. *IEEE*
 585 *Transactions on biomedical engineering*, 44(9):867–880, 1997.

586 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 587 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing*
 588 *Systems*, 2017.

590 Zhijiang Wan, Manyu Li, Shichang Liu, Jiajin Huang, Hai Tan, and Wenfeng Duan. Eeg-
 591 former: A transformer-based brain activity classification method using eeg signal. *Frontiers in*
 592 *Neuroscience*, Volume 17 - 2023, 2023. ISSN 1662-453X. doi: 10.3389/fnins.
 593 2023.1148855. URL <https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1148855>.

594 Chen Wei, Kexin Lou, Zhengyang Wang, Mingqi Zhao, Dante Mantini, and Quanying Liu. Edge
595 sparse basis network: A deep learning framework for eeg source localization. In *2021 International*
596 *Joint Conference on Neural Networks (IJCNN)*, pp. 1–8, 2021. doi: 10.1109/IJCNN52387.2021.
597 9533968.

598 Ruiqi Yang and Eric Modesitt. Vit2eeg: Leveraging hybrid pretrained vision transformers for eeg
599 data. 2023.

600 Tongtong Zheng and Zijing Guan. Eeg source imaging based on a transformer encoder network.
601 In *2023 3rd International Conference on Neural Networks, Information and Communication*
602 *Engineering (NNICE)*, pp. 208–212, 2023. doi: 10.1109/NNICE58320.2023.10105793.

604 Ioannis Zorzos, Ioannis Kakkos, Errikos M. Ventouras, and George K. Matsopoulos. Advances
605 in electrical source imaging: A review of the current approaches, applications and challenges.
606 *Signals*, 2(3):378–391, 2021. ISSN 2624-6120. doi: 10.3390/signals2030024. URL <https://www.mdpi.com/2624-6120/2/3/24>.

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 **A ABLATION: UNCONSTRAINED LOCATION PREDICTION**
649

650 While our region clustering approach provides effective results, it is worth exploring whether region
651 clustering is needed at all. We explore a network model which is unconstrained in its location
652 prediction. In this setup, the Transformer network is modified to predict an x, y, z location and
653 n_x, n_y, n_z vector direction to indicate a location of the brain surface. This is done by modifying
654 the last projection layer to output 6 values. For baseline comparison, we also modified the Linear
655 Network in a similar way. The x, y, z vector goes through a tanh function, and the n_x, n_y, n_z goes
656 through an L2 normalization. This overall structure is visualized in Figure 5. This prediction is
657 unconstrained and does not require a known number of regions on the brain surface.

658 For the loss function, we use mean-square error on the Euclidean distance multiplied by an approxi-
659 mation of the angle between the points on a sphere, representing an approximation of the great-circle
660 distance between the two points.

661

$$s \approx \|\mathbf{p}_2 - \mathbf{p}_1\|((1 - (\mathbf{n}_1 \cdot \mathbf{n}_2)) \frac{\pi - 2}{4} + 1) \quad (2)$$

664

665 This linear approximation prevents numerical instabilities that would be present in the exact definition.
666 A deeper discussion of these numerical instabilities and the derivation of this linear approximation
667 are presented in the next section.

668 The results of the unconstrained location task are shown in full in Table 5. As is seen, the transformer
669 model outperforms the MLP model, but both under perform compared to the standard approach
670 and even classical methods. Both the MLP and Transformer models perform reasonably at low
671 noise levels, with accuracies nearing 100%. However, each model underperforms at higher noise
672 levels, with 50% noise accuracies of 0.548 and 0.771 respectively. This shows that the unconstrained
673 approach can learn on electrode data, but may need additional modifications and improvements to be
674 viable at high noise levels. Future work could improve such an approach to allow generalization of
675 prediction without requiring a known number of brain regions.

676 **B DERIVATION OF UNCONSTRAINED LOCATION LOSS FUNCTION**
677

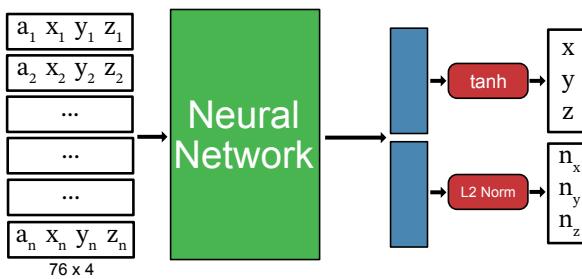
679 In the unconstrained location prediction task presented in Equation 2 is presented as a linear approxi-
680 mation of great-circle distance. The derivation of this approximation is presented here.

681 First, a sphere can be perfectly defined given two points on the surface and the normals to the surface
682 at those points. The distance of those two points along the surface can be defined using the arc length
683 between those two points. Mathematically,

684

$$s = r\theta \quad (3)$$

685



698 Figure 5: Network configuration for unconstrained location prediction. Rather than generating a
699 vector of prediction confidences per region, six predictions are outputted. Three of those predictions
700 are fed through a tanh function to map to a location within the normalized brain boundaries (-1,1)
701 and the other three are fed through an L2 normalization to generate a unit vector representing the
surface normal at that location.

702
 703 Table 5: Comparison of unconstrained location prediction methods on the 10mm regions. While
 704 neither method outperformed the region-prediction based approaches, the transformer network
 705 showed significantly better performance over a standard MLP. Future developments of this approach
 706 could lead to better generalization across brain models.

Noise Level	MLP		Transformer	
	Acc. \uparrow	MLE \downarrow	Acc. \uparrow	MLE \downarrow
0.01	1.000	0.517	1.000	0.472
0.10	0.999	0.683	0.999	0.805
0.25	0.951	1.716	0.988	1.344
0.50	0.548	5.378	0.771	3.730
0.75	0.213	10.45	0.374	8.507
0.99	0.085	15.81	0.162	14.18

715
 716 where s is the arc length, r is the radius of the sphere, and θ is the angle between the two points. The
 717 radius of the sphere can be found by using the Law of Cosines. Specifically,
 718

$$720 \quad r = \frac{d}{\sqrt{2 - 2 \cos \theta}} \quad (4)$$

723 where d is the Euclidean distance of the two points on the surface. The angle between the two points
 724 on the surface matches can be found using the normals of the two points via a simple dot product.
 725 Mathematically,

$$727 \quad \theta = \cos^{-1} (\mathbf{n}_1 \cdot \mathbf{n}_2) \quad (5)$$

729 where \mathbf{n}_1 and \mathbf{n}_2 are the unit normals of the points on the surface. Rewriting Equation 3 with these
 730 definitions, the equation becomes
 731

$$733 \quad s = d \frac{\cos^{-1} (\mathbf{n}_1 \cdot \mathbf{n}_2)}{\sqrt{2 - 2(\mathbf{n}_1 \cdot \mathbf{n}_2)}} \quad (6)$$

736 Note that d can simply be calculated as $\|\mathbf{p}_2 - \mathbf{p}_1\|$.
 737

738 The right side of Equation 6 provides a numerical instability. Both the inverse cosine and the square-
 739 root denominator tend towards 0 as the angle between the two points goes to zero. Even with this
 740 division, the range of this function is 1 to $\frac{\pi}{2}$ as the dot product of the normals ranges from 1 to -1.
 741 However, the cosine inverse and near-zeros divisions create a numerically unstable loss function
 742 for purposes of training. Thus, we create a linear function that matches this range and domain.
 743 Specifically,

$$745 \quad f(x) = (1 - x) \frac{\pi - 2}{4} + 1 \quad (7)$$

747 is a linear function has range of 1 to $\frac{\pi}{2}$ as x goes from 1 to -1. Replacing x with the dot product of
 748 the normals and replacing the right side of Equation 6 provides the final approximation as presented
 749 previously in Equation 2. Rewritten here,
 750

$$752 \quad s \approx \|\mathbf{p}_2 - \mathbf{p}_1\| ((1 - (\mathbf{n}_1 \cdot \mathbf{n}_2)) \frac{\pi - 2}{4} + 1) \quad (8)$$

754 This function provides a reasonable approximation for great-circle distance while avoiding the
 755 numerical instabilities during training.

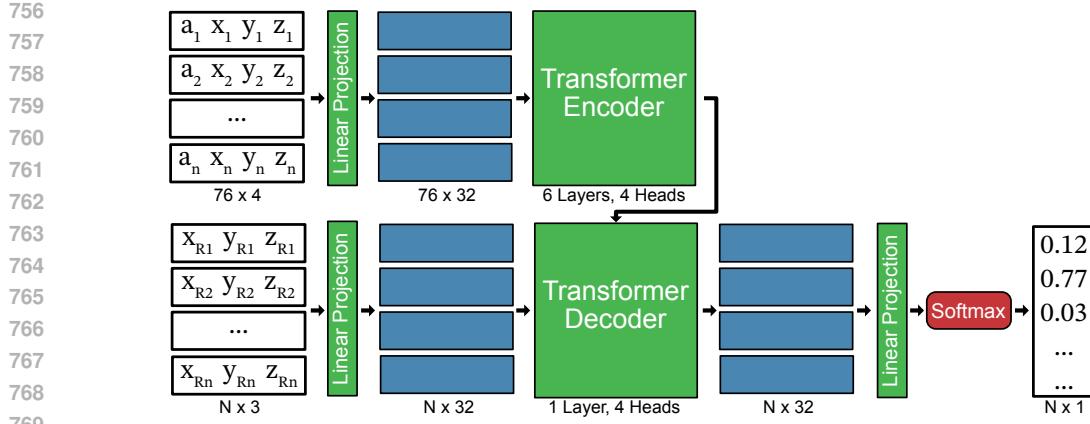


Figure 6: Encoder-Decoder Transformer Structure. In this configuration, the region locations are also projected into the same dimensional space as the EEG measurements and locations. The EEG vectors perform cross attention to the region vectors. Each region vector is then fed through a linear projection and is scored. Due to the large number of regions the dimensionality is reduced to 32 to improve training speed, but ultimately this configuration failed to converge in most training scenarios.

C ABLATION: ENCODER-DECODER TRANSFORMER ARCHITECTURE

We experiment with an additional transformer network that uses an encoder-decoder architecture. In our encoder-only architecture, the number of output regions must be known at training time since it relies on a linear projection for the classification. If an encoder-decoder architecture is used, the network could cross attend to each region individually to determine the most likely source location. We experiment with such a possibility.

As in the encoder-only architecture, the 76 electrode inputs are appended to their location and projected to 32 dimensional vectors and considered the source tokens. Similarly, the brain region centers are projected into 32 dimensional space and considered the target tokens. This small dimensional size is chosen to account for the large amount of cross attention that will occur. The electrode vectors are fed through a transformer encoder which consists of 6 layers and 4 heads. The output from this network is sent to the decoder and cross-attends to the region vectors. The decoder consists of 1 layer and 4 heads. At the end of the network, each region vector is scored by feeding it through a linear layer and projected to a single value. The vector with the highest value is considered the source location and the lists of values is put through a cross entropy loss. A full illustration of the network architecture is presented in Figure 6.

For this full transformer network, even with the smaller dimensionality space, we find that the network does not generally converge to a solution. If it does, it does not do so quickly or as well as the encoder-only network. Because of the large number of clusters to cross-attend to, the overall accuracy remains very low, peaking at 78% even when just 1% noise is present. It is possible that with a pretraining scheme, large dimensional vectors, and more compute power and time, such a network could be feasible in future work.

D ABLATION: ITERATIVE TRAINING APPROACH

The results presented in Tables 1 and 2 required training an individual model exclusively at a single noise level. Multiple models are trained from scratch, even though they are learning the same prediction task, just at various levels of difficulty. It is worth investigating whether a model learned at one noise level can transfer knowledge to a model trained for another level.

In this ablation, we experimented with using an iterative training approach, where the weights from a lower noise level are the starting point for a model trained at a higher noise level. Our motivation for adopting this approach is to improve efficiency by eliminating the need to train separate models for each noise level, which in turn substantially reduces computational costs.

810
 811 Table 6: Comparison of average accuracy of iterative models on each noise level on the 5mm regions.
 812 Both the iterative MLP and Transformer network were trained for 50 epochs per noise level using 1e-4
 813 oneCycle learning rate schedule. The iterative approach does not outperform the standard approach,
 814 but does train for all noise levels in a much shorter time.

815

Noise Level	Standard MLP	Standard Transformer	Iterative MLP	Iterative Transformer
0.01	1.000	1.000	1.000	1.000
0.10	0.998	0.999	0.998	0.999
0.25	0.983	0.986	0.954	0.984
0.50	0.858	0.878	0.800	0.865
0.75	0.645	0.669	0.593	0.653
0.99	0.450	0.471	0.417	0.458

822
 823 Table 7: Comparison of the average accuracy of the transformer model with and without and positional
 824 encoding for the 10mm region prediction task. The model with positional encoding performed worse
 825 at each noise level. The improved performance of the network without positional encoding is likely
 826 due to the EEG measurements being sparse and locations being directly incorporated into the linear
 827 projection.

828

Noise Level	No Pos. Enc.	With Pos. Enc.
	Acc. \uparrow	Acc. \uparrow
0.01	1.000	1.000
0.10	1.000	0.987
0.25	0.998	0.981
0.50	0.960	0.879
0.75	0.848	0.810
0.99	0.686	0.175

837
 838 Our iterative training approach involves training models progressively across increasing noise levels
 839 (from 0.01 to 0.99), with each noise level trained for 50 epochs before moving to the next. The model
 840 weights are saved after each stage to ensure smoother transitions and stable learning. Both the MLP
 841 and Transformer model were evaluated at the currently trained noise level during the iterative process.
 842 These results are provided in Table 6.

843 The iteratively-trained transformer outperformed both the standard-training and iterative-training
 844 MLP, particularly at high noise levels. However, accuracy at high noise levels did not surpass standard
 845 training for the transformer model at higher epochs (e.g., 250 epochs at 99% noise). The limitation of
 846 this approach is that increasing the number of epochs per noise level beyond 50 makes the iterative
 847 approach more computationally expensive than single-noise-level training. Thus, the standard training
 848 pipeline provides the best results, but the iterative approach could be useful for quickly training
 849 effective models at all noise levels.

850 851 E ABLATION: NETWORK ARCHITECTURE

852
 853 To verify our selection of neural network architecture, we conduct an ablation study comparing results
 854 of various network and hyper-parameter configurations.

855 856 E.1 POSITIONAL ENCODINGS

857
 858 In most transformer-based architectures for computer vision or natural language processing, a
 859 positional encoding is added to outputs of the projection layers to indicate some spatial or sequential
 860 location of the input. Thus, we experimented with adding a positional encoding for the electrode
 861 locations rather than appending them to the inputs. The results for that experiment are provided
 862 in Table 7. As can be seen, an added positional encoding under-performs compared to feeding the
 863 positions through the linear layer with the electrode values. The sparse nature of the input may be a
 864 factor in eliminating the need for a positional encoding.

864

865

Table 8: Ablation study on the learning rate for the 10mm regions. The accuracy is reported.

866

867

Noise Level	MLP			Transformer		
	1e-5	1e-4	1e-3	1e-5	1e-4	1e-3
0.01	1.000	1.000	1.000	1.000	1.000	0.999
0.10	1.000	0.999	1.000	1.000	1.000	0.996
0.25	0.986	0.992	0.996	0.997	0.998	0.980
0.50	0.860	0.940	0.950	0.956	0.960	0.902
0.75	0.617	0.819	0.827	0.836	0.848	0.745
0.99	0.400	0.651	0.661	0.672	0.686	0.579

874

875

876

E.2 HYPERPARAMETERS

877

878

A hyper parameter study is conducted and the results are presented in the following tables. Table 6 presents the effect of different learning rates on the MLP and Transformer model performance. Table 7 evaluates the effect of the step and one cycle learning rate scheduler on performance of the models. Tables 8 and 9 does an ablation on the transformer dimensions and layer counts.

881

882

These ablations demonstrate that the model parameters and training configurations that are presented in the results of the paper generally provide the best results. However, it is worth noting two exceptions. First, the combination of a 1e-3 learning rate and the OneCycle scheduler on the 10mm cluster for the MLP model outperformed the base MLP model using the step scheduler, but it was found that a similar configuration for the 5mm MLP performed worse than the step scheduler, indicating the MLP's sensitivity to the training configuration. Second, the transformer performed slightly better when increasing the size of the dimensions and the number of layers, but doing so causes a dramatic increase in the needed computational resources and training time.

889

890

891

Table 9: Ablation study on the learning rate scheduler for the 10mm regions. The accuracy is reported.

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Noise Level	MLP			Transformer	
	Step	Onecycle (1e-3)	Onecycle (1e-4)	Step	Onecycle
0.01	1.000	1.000	1.000	1.000	1.000
0.10	0.999	1.000	1.000	1.000	1.000
0.25	0.992	0.996	0.991	0.997	0.998
0.50	0.940	0.952	0.924	0.958	0.960
0.75	0.819	0.836	0.797	0.847	0.848
0.99	0.651	0.675	0.633	0.686	0.686

918
919
920
921
922
923
924
925
926
927

928 Table 10: The accuracy of the transformer model on 10mm regions with various sizes for the
929 projection dimension. While the 768 dimensional transformer performs slightly better than the
930 presented 512 method, it requires significantly more computational resources.

931
932
933
934
935

Noise Level	64 Transformer	512 Transformer	768 Transformer
0.50	0.958	0.960	0.960
0.75	0.839	0.848	0.850
0.99	0.676	0.686	0.690

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

956 Table 11: An ablation study on the accuracy of the transformer model on 10mm regions when varying
957 number of layers. While the 4 dimensional transformer performs slightly better than the presented 3
958 layer method, it requires significantly more computational resources and training time.

959
960
961
962
963
964
965
966
967
968
969
970
971

Noise Level	2 Layer Transformer	3 Layer Transformer	4 Layer Transformer
0.50	0.957	0.960	0.962
0.75	0.839	0.848	0.850
0.99	0.675	0.686	0.691