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ABSTRACT

Adam has become one of the most popular optimizers for training modern deep
neural networks, such as transformers. However, its applicability is largely re-
stricted to single-level optimization problems. In this paper, we aim to extend
vanilla Adam to tackle bilevel optimization problems, which have important ap-
plications in machine learning, such as meta-learning. In particular, we study
stochastic bilevel optimization problems where the lower-level function is strongly
convex and the upper-level objective is nonconvex with potentially unbounded
smoothness. This unbounded smooth objective function covers a broad class of
neural networks, including transformers, which may exhibit non-Lipschitz gradi-
ents. In this work, we first introduce AdamBO, a single-loop Adam-type method

that achieves O(e~*) oracle complexity to find e-stationary points, where the or-
acle calls involve stochastic gradient or Hessian/Jacobian-vector product evalu-
ations. The key to our analysis is a novel randomness decoupling lemma that
provides refined control over the lower-level variable. Additionally, we propose
VR-AdamBO, a variance-reduced version with an improved oracle complexity of

O(e3). The improved analysis is based on a novel stopping time approach and
a careful treatment of the lower-level error. We conduct extensive experiments
on various machine learning tasks involving bilevel formulations with recurrent
neural networks (RNNs) and transformers, demonstrating the effectiveness of our
proposed Adam-type algorithms.

1 INTRODUCTION

The Adam algorithm (Kingma & Ba, [2014) is one of the most popular optimizers for training mod-
ern deep neural networks due to their computational efficiency and minimal need for hyperparameter
tuning. For example, Adam has become the default choice for training transformers (Vaswani et al.,
2017;Devlin et al., |2018)) and vision transformers (ViT) (Dosovitskiy et al.,[2021)). Practitioners fa-
vor Adam and adaptive gradient methods in general because they significantly outperform stochas-
tic gradient descent (SGD) for certain models, such as transformers (Zhang et al., 2019} |(Crawshaw
et al.,|2022; |Kunstner et al., 2023} |Ahn et al., 2023). Recently, there is a line of work analyzing the
convergence of Adam under various assumptions (Guo et al., [2021b; |Défossez et al., 2020; Wang
et al.| 20225 Zhang et al.| 2022} Li et al.,[2023a)).

Despite the empirical and theoretical advances of Adam, it is only applicable for single-level op-
timization problems such as the empirical risk minimization. However, there is a huge class of
machine learning problems which are inherently bilevel optimization problems (Bracken & McGill,
1973} |[Dempel 2002), including meta-learning (Franceschi et al., 2018} |Rajeswaran et al., |2019),
reinforcement learning (Konda & Tsitsiklis, [2000), hyperparameter optimization (Franceschi et al.|
2018 [Feurer & Hutter, |2019) and continual learning (Borsos et al.| 2020; |Hao et al.l 2023)). There-
fore, an important question arises: How can we extend the applicability of vanilla Adam to solve
bilevel optimization problems, while ensuring both provable theoretical convergence guaran-
tees and strong empirical performance for machine learning applications?

In this paper, we provide a positive answer to this question, under the setting of bilevel optimiza-
tion under unbounded smoothness (Hao et al., 2024} [Gong et al.| [2024a). In particular, the bilevel
optimization in this setting has the following form:

min ®(z) := f(z,y"(z)), st, y*(z) € argming(z,y), (1)
rERd= yER%Y
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where f and g are upper- and lower-level functions respectively, and f satisfies a unbounded smooth-
ness condition (see Definition[3.1]) and g is a strongly-convex function in y. One example satisfying
this particular setting is meta-learning (Finn et al.| 2017} Franceschi et al.| [2018)) with certain ma-
chine learning models such as RNNs (Elman, [1990) or transformers (Vaswani et al.| 2017)), where
x represents all layers except for the prediction head, y represents the prediction head, and the goal
is to learn the shared model parameter z to find a common representation such that it can quickly
adapt to various tasks by simply adjusting the task-specific prediction head y. The unbounded
smoothness condition for the upper-level function f is particularly relevant in this paper for two
main reasons. First, recent studies have demonstrated that the gradient’s Lipschitz constant (i.e., the
smoothness constant) is unbounded in various modern neural networks, including RNNs and trans-
formers (Zhang et al., 2020bj; (Crawshaw et al., 2022} Hao et al., [2024)). Second, Adam is empiri-
cally successful on training these neural networks (Vaswani et al., [2017; [Kunstner et al., [2023) and
its convergence under unbounded smoothness was recently proved within the single-level optimiza-
tion framework (Li et al., 2023a). Therefore it is natural and imperative to design new Adam-type
algorithms, building on the vanilla Adam approach, to solve bilevel optimization problems in the
unbounded smoothness setting.

We introduce two Adam-type algorithms for such bilevel optimization problems with provable con-
vergence guarantees. The first algorithm is called Adam for Bilevel Optimization (AdamBO).
AdamBO begins by running a few iterations of SGD to warm-start the lower-level variable, after
which it simultaneously applies vanilla Adam updates to the upper-level variable and SGD updates
to the lower-level variable. The primary challenge for the convergence analysis of AdamBO is tack-
ling the complicated dependency between the upper-level hypergradient bias and the lower-level
estimation error when the upper-level performs the vanilla Adam update. The convergence analysis
of AdamBO for unbounded smooth upper-level functions builds upon the insight of regarding bilevel
optimization as a stochastic optimization problem under distributional drift (Gong et al.,[2024a)), but
with a few important differences. First, our analysis incorporates a novel randomness decoupling
lemma for lower-level error control, which arises from using Adam updates for the upper-level vari-
able. Second, unlike (Hao et al., [2024} |Gong et al., 2024a), the lower-level error in our setting is
not necessarily small across iterations, requiring a more refined analysis to handle the hypergradi-
ent bias and establish convergence guarantees. In addition, we also introduce another Adam-type
algorithm, namely VR-AdamBO, by incorporating the variance reduction techniques (Cutkosky &
Orabonal, 2019)) along with Adam for the upper-level variable and the lower-level acceleration tech-
niques (Gong et al.}2024b) to further improve the convergence rate. The analysis for VR-AdamBO
relies on a novel stopping-time analysis in the context of bilevel optimization and a careful treatment
for the lower-level error, which is different from the techniques used in single-level variance-reduced
Adam (L1 et al., 2023a). Our main contributions are summarized as follows.

* We design a variant of Adam, called AdamBO, for solving bilevel optimization problems
under the unbounded smoothness setting. We prove that AdamBO converges to e-stationary
points with O(e~*) oracle complexity. To achieve this result, we develop a novel ran-
domness decoupling lemma for lower-level error control and a refined analysis for the
hypergradient bias, which are of independent interest and could be applied to analyzing the
convergence of other adaptive optimizers in bilevel optimization.

* We propose a variance-reduced variant of AdamBO, named VR-AdamBO, with an im-

proved oracle complexity of 6(6_3). The proof relies on a novel stopping time analysis in
the context of bilevel optimization and a careful treatment for the lower-level error.

* We conduct experiments on deep AUC maximization and meta-learning for text classifica-
tion tasks with RNNs and transformers to verify the effectiveness of the proposed Adam-
type algorithms. We show that both AdamBO and VR-AdamBO consistently outperform
other bilevel algorithms during the training process. Notably, for the transformer model,
they improve the training (testing) AUC by at least 14% (7%) over other baselines. The
running time results indicate that our algorithms converge much faster than baselines.

2 RELATED WORK

Convergence Analysis of Adam. Adam was proposed by (Kingma & Bal, [2014) and the conver-
gence guarantee was established under the framework of online convex optimization. [Reddi et al.
(2019) identified a divergence example of Adam under fixed hyperparameters and designed new
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variants to fix the divergence issue of Adam. Recently, there is a line of work analyzing the conver-
gence of Adam under various assumptions and problem-dependent hyperparameter choices (Zhou
et al.,2018;|Guo et al., | 2021b; Défossez et al., 2020; Wang et al., 2022; Zhang et al.,|2022; |L1 et al.}
2023a). The most related work to our paper is (Li et al., 2023a)), which studied the convergence
of Adam under relaxed assumptions (i.e., generalized smoothness as defined by (Li et al., 2023a)).
However, all of these works only consider Adam within the single-level optimization framework and
are not applicable for bilevel optimization problems.

Bilevel Optimization. Bilevel optimization was extensively studied in the literature, most of which
focus on asymptotic convergence guarantees (Bracken & McGill, |1973}; |Vicente et al., |1994; |Anan-
dalingam & White, [1990; White & Anandalingam, |1993). /Ghadimi & Wang| (2018) studied bilevel
optimization algorithms with non-asymptotic convergence guarantees when the lower-level func-
tion is strongly convex. The complexity results were later improved by a series of work (Hong et al.,
2023; Ji et al., 20215 Chen et al., 2021; [Dagréou et al., [2022}; [Kwon et al., 2023 |Chen et al., 2023al).
When each realization of the functions has a Lipschitz stochastic gradient, several works incorporate
momentum-based variance reduction techniques (Cutkosky & Orabonal 2019) to further improve the
convergence rate (Khanduri et al.| [2021;|Guo et al.,[2021a;|Yang et al., 2021). Recently, (Hao et al.,
2024} |Gong et al., 2024a3b) considered bilevel optimization with unbounded smoothness for the
upper-level function and designed stochastic algorithms with convergence guarantees. However,
none of these works use the Adam update under the bilevel optimization setting.

Relaxed Smoothness. Zhang et al.| (2020b) initiated the convergence analysis of the gradient clip-
ping algorithms under the relaxed smoothness condition, which was motivated by the loss landscape
of RNNs and LSTMs. The work of (Zhang et al.,[2020b)) inspired a line of work focusing on design-
ing various algorithms under the relaxed smoothness condition (Zhang et al.,[2020a; Jin et al., 2021}
Liu et al., [2022; |Crawshaw et al.| [2023ajb; [Faw et al., 2023} [Wang et al., 2023} [Li et al., [2023a}b),
some of them achieved improved convergence rates (Liu et al., 2023} |[Reisizadeh et al., 2023 L1
et al., 2023a)). Several variants of relaxed smoothness were considered in (Crawshaw et al.l 2022}
Chen et al., |2023bj Hao et al.,[2024;|Gong et al.l 2024aib)). This work considered the same problem
setting as in (Hao et al., [2024} |(Gong et al.| 2024a3b)), focusing on designing Adam-type algorithms
for bilevel optimization with unbounded smooth upper-level functions.

3 PRELIMINARIES, NOTATIONS AND PROBLEM SETUP

Denote (-,-) and || - || as the inner product and Euclidean norm of a vector or spectral norm of a
matrix. For any vectors = and y, denote 22, \/z, |z|, x ®y, x/y as the coordinate-wise square, square
root, absolute value, product and quotient, respectively. We write < y to denote the coordinate-
wise inequality between z and y. We use O(-), ©(-), Q(-) to denote asymptotic notations that hide
polylogarithmic factors of 1/¢. Define f, g : R% xR% — R as the upper- and lower-level functions,
where f(x,y) = E¢up, [F(z,y;¢)] and g(z,y) = E¢op, [G(2,y; ()], with Dy and D, being the
underlying data distributions, respectively. When the lower-level function is strongly convex, the
hypergradient has the following form (Ghadimi & Wang|, 2018)):

Vo (x) = Vaf(z,y*(2)) = Vi,9(z.y" ())[V,9(z, 5" (@) 7'V, f 2,57 (2).
The goal of this paper is to design Adam-type algorithms that can find e-stationary points of function

® (i.e., finding an z such that [|[V®(x)|| < ¢). For a given (x,y), we estimate the hypergradient
V®(x) using Neumann series approach (Ghadimi & Wang, 2018)) with the following formulation:

. _ G(
Vé(x,y;§) = VaF(x,y:) — Va,G(z,5;¢”) [ Z H ( W)

q=0 j=1 lg,1

va(mvy;"g)a

where £ = {¢&,¢© ¢ . (@D} and (@ = {¢@V) . . (@9} forgq > 0.

Now we start to state the main assumptions for our analysis.

Definition 3 1 (L, 0, @1, Ly.0, Ly 1)-smoothness (Hao et al., 2024, Assumption 1)). Let z =

(x,y) and 2" = (2',y'), there exists Ly o, Ly 1, Ly o, Ly1 > 0 such that for all z, 7', if ||z — 2'|| <

1\ L3 1 + L o then Vo f(2) = Vo f(2)|| < (Lo + LoalVa f(2)D)]l2 = 2| and ||V, £ (2) —
v (@ < (Lyo + LyalIVy f () Dz = 2/]l-

Remark: This definition characterizes the unbounded smoothness of the upper-level function f and

has also been used in previous works (Hao et al., 2024; |Gong et al., 2024aib). It can be regarded
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as a generalization of the relaxed smooth assumption in (Zhang et al.| [2020b) and the coordinate-
wise relaxed smoothness assumption in (Crawshaw et al.,|2022). Moreover, it has been empirically
verified for bilevel formulations with RNNs (Hao et al., [2024)).

Assumption 3.2. Suppose the followings hold for functions f and g: (i) f is continuously differ-
entiable and (L 0, Ly 1, Ly 0, Ly 1)-smooth in (x,y); (ii) For every z, ||V f(z,y*(2))| < lto;
(iii) For every x, g(x,y) is p-strongly convex in y for u > 0; (iv) g is continuously differentiable
and 14 1-smooth jointly in (x,y); (v) g is twice continuously differentiable, and Vﬁyg, Vf/yg are
lg2-Lipschitz jointly in (z,y); (vi) Objective function ® is bounded from below by ®*.

Remark: Assumption [3.2] is standard in the bilevel optimization literature (Kwon et al., 2023}
Ghadimi & Wang, 2018} [Hao et al.| [2024). Under this assumption, the objective function @ is
(Lo, L1)-smooth, see Lemma in Appendix [B]for definitions of Lo, L1 and more details.

Assumption 3.3. Suppose the following stochastic estimators are unbiased and satisfy:
(i) IVoF(z,4:8) — Vof(z,y)ll < op (i) [|[VyF(2,4:8) — Vyf(z,y)| < opr (iid)
Pr([|VyG(@,y;0) = Vyg(z,y)l| = s) < 2exp(=25?/07 1); () [|V2,G(z,y;¢) — VZ,g(z, )] <
04,2 (V) Hvin(xvya ¢) - szg(x,y)H < 0g,2.

Remark: Assumption [3.3] assumes the noise in the stochastic gradient and Hessian/Jacobian is
almost-surely bounded or light-tailed. This is an standard assumption in the literature of optimiza-
tion for single-level relaxed smooth functions (Zhang et al.l |2020bjal), as well as for bilevel opti-
mization under unbounded smooth upper-level functions (Hao et al.l 2024} |Gong et al., [2024azb).

Assumption 3.4. (i) Let z = (x,y) and 2’ = (2, y), if ||z —2|| < 1/\/ L2, + L2 ,, then for every

Y,
&IV F(26) = Vy F (25 < (Lyo + LyalIVy f(2) DIz = 2"l (ii) For every § and ¢, G(x, y; ()
satisfy Assumption (iv) and (v).

Remark: Assumption[3.4](i) requires that certain properties of the second argument (i.e., the lower-
level variable y) in the upper-level function at the population level also hold almost surely for each
random realization. Assumption[3.4](ii) requires each random realization of the lower-level function
satisfies the same property as in the population level. Similar assumptions were made implicitly
in the bilevel optimization literature (Ghadimi & Wang| 2018)). Note that this assumption does not
assume any properties in terms of the upper-level variable x under each random realization.

Assumption 3.5. F'(z,y;&) and G(x,y; () satisfy Assumption|3.2|for every £ and ¢ almost surely.

Remark: Assumption [3.5] poses a strictly stronger requirement than Assumption [3.4} it assumes
each random realization for both upper-level and lower-level function has the same property as in
the population level. This assumption has been shown to be necessary to obtain the improved oracle
complexity 0(6_3) for both single-level problems (Arjevani et al., 2023; |Cutkosky & Orabona,
2019) and bilevel problems (Khanduri et al., 2021} |Yang et al., 2021; /Gong et al., [2024b).

4 ADAMBO AND CONVERGENCE ANALYSIS
4.1 ALGORITHM DESIGN, MAIN CHALLENGES, AND TECHNIQUE OVERVIEW

Algorithm Design. Our first Adam-type algorithm AdamBO is presented in Algorithm|[T} It consists
of the following components. First, the algorithm requires several warm-start steps for updating
the lower-level variable y for a given initialization of the upper-level variable xg (line 2), which
is designed to obtain a good estimate of the optimal lower-level variable at the very beginning
and shares the same spirit of the bilevel algorithms introduced in (Hao et al. 2024} |Gong et al.
2024aib). Second, the algorithm updates both the upper- and lower-level variables simultaneously:
the lower-level variable y is updated by SGD, and the upper-level variable z is updated by the vanilla
Adam algorithm (lines 3 ~ 9). Therefore, the upper-level update benefits from the coordinate-wise
adaptive learning rate. In contrast, the existing bilevel optimization algorithms under the unbounded
smoothness setting use normalized SGD with momentum to update the upper-level variable (Hao
et al.| 2024} |Gong et al., [2024alb), which use a universal learning rate for every coordinate.

Main Challenges. The main challenges for the convergence analysis of AdamBO are listed as
follows. First, the analysis of vanilla Adam in the single-level generalized smooth optimization set-
ting (L1 et al.,|2023a) is not directly applicable for bilevel problems. This is because the hypergra-
dient estimator in bilevel optimization may have a non-negligible bias due to inaccurate estimation
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Algorithm 1 ADAMBO (all operations on vectors are element-wise)
I: Inpl'It: 67 Bsq7 7, )‘7 TO? Ta Z1,Y0

2: Initialize y; = SGD(z1,y0,7, o), 11 = Vé(z1,y1;&1) and 91 = (Vo (a1, y1;:&1))?
3: fort=1,...,Tdo

4: yt+1 =y —YVy G2, yr: Gt)

5: = (1= B)my—1 + 5V¢($t,yt7 &)

6: =(1- Bsq)vt 1+ Bbq(v¢(xt,yt7§t))
7: mf m

8: Uy = W

9. Tpp1 =T — \/E-&-)\ © My
10: end for

of the lower-level variable, whereas the single-level analysis in (Li et al.,|2023a) does not need to
account for this issue. Second, the existing algorithms and analyses for bilevel optimization with
unbounded smooth upper-level functions require the lower-level error to be small (Hao et al., 2024;
Gong et al.,[2024a:b)), which may not hold for AdamBO. In particular, the existing analysis crucially
relies on a fixed update length for the upper-level variable at every iteration (due to normalization):
the analysis in (Hao et al |2024; (Gong et al.| 2024ajb) views the update of the upper-level variable
as a fixed distributional drift for the lower-level function, which is crucial to show that the lower-
level error is small and the hypergradient bias is negligible. However, such an argument is not true
for AdamBO: the Adam update for the lower-level variable does not have a fixed update size and
it depends on randomness from both upper-level and lower-level random variables in the stochastic
setting, which make the lower-level error control more challenging.

Technique Overview. To address these challenges, one of our main technical contributions is the
introduction of a novel randomness decoupling lemma for controlling the lower-level error when
the upper-level variable is updated by Adam, as illustrated in Section[4.3.2] This lemma provide a
high probability guarantee for the lower-level error control when the upper-level update rule satisfies
certain conditions (which are satisfied by the vanilla Adam update rule for the upper-level variable).
The key novelty of this lemma lies in the randomness-decoupling fact: the high-probability bound
depends solely on the randomness {(;}7_, from the lower-level random variables, and it holds for
any fixed sequence of upper-level vanables {x;}I_, and any fixed upper-level random variables
{& L, that respect the Adam updates. To describe the condition that Adam satisfies and to prove
this lemma, we introduce an auxiliary sequence (defined in (3))) that separates the randomness in
the upper- and lower-level random variables, which is new and has not been leveraged in previous
bilevel optimization literature.

4.2 MAIN RESULTS

We first introduce some notations and technical definitions. Denote o (-) as the o-algebra generated
by the random variables within the argument. Let Fi,; be the filtration for updating y; (see Algo-
r1thm' Finit = (7o, ..., mry—1). Forany t > 2, define F*, F{ and F; as Ff¥ = o(&1,y ..., &—1),
F=0(Crye ey Co1) and Fi = o(Finit UFF U FY). We use E[] to denote the conditional ex-
pectation E[- | F;]. We also use ¢q, ¢a, ¢3 to denote small enough constants and C, Cs to denote
large enough constants, all of which are independent of € and J, where € denotes the target gra-
dient norm and § denotes the failure probability. The definitions of problem-dependent constants
04, Cp.0,Cs1,A1, Lo, L1, L, Cg are comprehensively listed in Appendix [D.1}

Theorem 4.1. Suppose Assumptions [3.2] to hold. Let G be a constant satisfying G >
max {4)\ 204,4C 0, “,,/%LILO, %} Given any ¢ > 0 and § € (0,1), choose
0<Bqg <18 =0(32),y=0(2)n=06() Q =0(), Ty = 0(e2). Run Algo-
rithm for T = max {ﬁ, Ciﬁgc} = 6(674) iterations. Then with probability at least 1 — § over
the randomness in Fr41, we have |V O(xy)|| < G forall t € [T), and % Zthl [V®(x,)|| < €

Remark: The full statement of Theorem [.1| with detailed parameter choices is deferred to The-
orem in Appendix D] Theorem provides the convergence guarantee for Algorithm
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AdamBO converges to e-stationary points with Ty + QT = O(e~*) oracle complexity. This com-
plexity result matches that of non-adaptive bilevel optimization algorithms in (Hao et al., 2024;/Gong
et al.,[2024a) when the upper-level function exhibits unbounded smoothness, as well as the complex-
ity of Adam for single-level optimization with generalized smooth functions (L1 et al.l 2023a). It
is also worth noting that we choose a larger learning rate n = ©(€?) for the upper-level updates,

compared to 7 = O(e3) used in the SLIP algorithm (Gong et al., [2024a).
4.3  PROOF SKETCH

In this section, we provide a proof sketch for Theorem The detailed proof can be found in
Appendix @ Let yf = y*(x:). The key idea is to provide a high probability bound of lower-
level estimation error ||y, — ;|| when the upper-level variable z is updated by the vanilla Adam.
Lemmat.4|provides such a guarantee: the lower-level error ||y, —y; || is bounded by a function of the
initial estimation error ||y; — yi]|, the variance term o ;, and an auxiliary momentum estimator of
the hypergradient ||4; | (see definition of @, in (6)). Based on Lemma[4.4] we introduce Lemmal4.5]
and[4.6] which incorporate the lower-level error into the upper-level problems and adapt the stopping
time technique of Adam (Li et al.| 2023a) to prove the convergence. The proof of Lemma [.4]is a
direct application of the randomness decoupling lemma (i.e., Lemma[.2]in Section[4.3.2). All of

the proofs in this section are based on Assumptions [3.2]to[3.4]
4.3.1 EQUIVALENT UPDATE RULE OF ADAMBO

17(1[377‘%)? Inspired by (Li et al.,[2023a), we provide an equivalent
yet simpler update rule of lines 5-8 of Algorithm|T](see Proposition[A.T[for more details):
my = (1 — ag)my_1 + at@qﬁ(mt,yt;&), O = (1 — )01 + aiq(@ﬁb(xuyt;gt))g'

4.3.2 RANDOM DECOUPLING LEMMA FOR LOWER-LEVEL ERROR CONTROL

Let o = 17(1‘%5), and a;q =

In this section, we introduce the random decoupling lemma (Lemma [4.2)) for the lower-level error
control. The rationale is as follows: for any given upper-level variable sequence and any given
randomness from the upper-level updates that satisfy certain conditions and are consistent with the
AdamBO updates, we can bound the lower-level error with high probability, where the randomness
is taken solely from lower-level random variables. Specifically, for any given sequence {Z;}, define

ft and ét as the random variables from the lower-level and upper-level, respectively, at the ¢-th
iteration (see (26)) for definition). We consider the following update rule for {7}, which is exactly
SGD and corresponds to line 5 of Algorithm|[I}

Jer1 = Tt — YVyG (@0, Gt Gr)- 2

Let j; = y*(%;) and 7 = (C1,...,¢—1). Denote Gy := maxy<; |V®(&)||, Ly = Lo + L1G,.
We also introduce the following auxiliary sequences {r;} and {@;} for our analysis:

iy = (1= a1 + Vo (Fe, s &), e = (1— a)iie—1 + V(@ 573 &). ()

Lemma 4.2 (Randomness Decoupling Lemma). Given any sequence {&;} and any randomness
{&:} such that

~ ~ 2 2 ~ T : ~ ~ %
I — &l < S (mnz +LE Y duglgs y]-n?) : @
j=1

where {d; j};_, is defined in (10). Let {;} be the iterates generated by the update rule @) with
v < 1/2l,1 and choose v = 23 /. For any given § € (0,1) and all t > 1, the following holds with
probability at least 1 — & over the randomness in F7, I

~ ok t—1 5 . 8 0_2 eT '
g =5l < (1 B HQJ) lon =Gl + el i (Variance)
Alya e 16071 00 s Ly \E1= =y .
i </\2u§7 ] il DI (R T N A )
i=1

an?l2 | < t—1—i 64nd t—1 tm1mi L .
ot S (=)l st S (L= ) el (i
Hey = pEyt
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Remark: Lemma shows that, when (@) holds for any sequence {;} and any {} (as satisfied
by the vanilla Adam update for the upper-level variable), the lower-level error can be controlled with
high probability as in (3)). In addition, the high probability is taken over the randomness solely from
the lower-level filtration 77, 4 1- This lemma provides a technical tool to control the lower-level error
without concerns about the dependency issues from the upper-level randomness. In particular, the
right-hand side of (3) consists of two parts: the standard variance term, which does not involve the
update of {Z,} over ¢; and the drift terms, which account for the update of {Z;} over time.

4.3.3 APPLICATIONS OF THE RANDOM DECOUPLING LEMMA AND REMAINING PROOF

Given a large enough constant G, denote L = Lo + LG and ¢ = C1.G?/2L, where G is defined
in Theorem[d.T]and C7, is defined in (#3). Now we formally define the stopping time 7 as

7=min{t | ®(x;) — D" > Y} A (T +1).

Based on Lemma|D. 1} we know that if ¢ < 7, we have both ®(z;) — ®* < ¢ and | V®(z,)| < G.
Similar to Section4.3.2] we introduce the following auxiliary sequence {;} for our analysis:

Uy = (1 — ay)lp—q + at@¢($tay:;gt)- 6)

Lemma 4.3 (Warm-Start). Choose v < 1/2l, 1. With probability at least 1 — 6 /4 over the random-

2
ness in Fii (denote this event as &) that: |lyy — yi||* < (1 — "2—7)% lyo — yglI* + 8777;7'1 In 4.

Lemma 4.4. Under the parameter choices in Lemma apply Lemma 4.2\ with {Z:} = {x},
{0} = {ye}, {t} = {4} and {Li} = {L.}, then () holds with probability at least 1 — /4 over
the randomness in FY.__ (denote this event as £,).

Remark: Lemma[.3]and Lemma[4.4] together provide a high probability bound for the lower-level
error, where the randomness is taken only from the lower-level filtrations Fj,; and ]-':7% 1 Lemma
is a direct application of Lemmal4.2]to the actual sequence {a} and {y;} in Algorithm I}

Lemma 4.5. Ift < 7, we have |V®(z;)|| < G, |G| < Cuo; under event Eg N E,, if t < T, we

have ||f|| < Cuo + Cuio, o = (Cuo + Cu10)? where constants C,, o, Cy 1, 0 are defined in
and (33)), respectively.

Remark: Lemma {4.5|generalizes the stopping time analysis from the single-level setting (Li et al.,
2023a)) to the bilevel setting and is useful for upper-level analysis. It shows that the momentum
estimators of the hypergradient remains bounded when ¢ < 7 and &, N £, holds. This implies that
x4+1 and x; remains close for small enough 7, allowing us to apply Lemmas and[B.T1]

Lemma 4.6. Under event £y N £, and the parameter choices in Lemma we have

T

1 272 2 272 2
8n“l; 1L 8 4el 32n°lZ L
Z - 012 < TL2 g,1 * (2 2 g1 2
| e =l < T ((1 A2 pdoy? )Hyl ~uil (/L s A2 Py )U”)

8212, 2048714 L2 1\ <=, , 212,12, n\2@
L? 9, g 2+1In= 2|VP CELSE LR (S QR
+ (/\2#472 + Py +1In 8 tz:; llel|” + 2|V () ||” + 2 Ig1

Remark: Lemma[.6|provides a bound for the difference between the actual momentum 772; versus
the virtual momentum 4, under the good event & N &,, which is essential for establishing the
convergence guarantees for AdamBO.

5 VR-ADAMBO AND CONVERGENCE ANALYSIS
5.1 ALGORITHM DESIGN

In this section, we propose a variance-reduced version of AdamBO, called VR-AdamBO, as shown
in Algorithm[2] Similar to AdamBO, the VR-AdamBO algorithm also includes a warm-start phase
for the lower-level variable (line 2): it runs stochastic Nesterov accelerated gradient (SNAG) method
on the lower-level variable y for Ty iterations, with the initial upper-level variable z( fixed. After
that, VR-AdamBO updates the upper-level variable by VRAdam (Li et al.| [2023a) (i.e., the Adam
algorithm (Kingma & Bal [2014) with recursive momentum (Cutkosky & Orabonal 2019), lines
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Algorithm 2 VR-ADAMBO (all operations on vectors are element-wise, see Algorithm[5|for SNAG)
I: Inpl'It: 6765(17777)\)1—’751’1'07?/0 )
2: Initialize y, = y» = §1 = G2 = SNAG(20, 0,7, To), m1 = Vé(21,y15851), v1 = Bsgmi,

1 =xpand 29 = 11 — %, where S is a batch of samples with size S;.
3. fort=2,---,Tdo
4: iftisa multiple of I then
5: Set yt = yt_ =Y
6: for] =0,...,N—1do

1

7: z —yt+a(yt—yi )
8: Yl T = 2] — AV, G(xy, 2] 7)), where 7} ~ D,
9: end for
10: Yrr1 = Yi
11:  else
12: Yt+1 = Yt
13:  endif

14: G = (1 =)0 + vy

15 my = (1—pF)m—1 + ﬂv¢(‘rt7yta§t) (1= B)(Vo(we, §: &) — Vo1, 9i-15 &)
16: Uy = (1 - 5sq)vt 1 + ﬁsq(v¢($t7yt7§t))

17: @t = W

18: T4l = Tt — \/E'i‘)\ ® my

19: end for

15 ~ 18) and periodically updates the lower-level variable by SNAG (lines 4 ~ 14). In particular,
the lower-level variable is updated by NN steps of SNAG for a fixed upper-level variable (lines 6 ~ 8)
after every [ iterations of the upper-level updates via VRAdam (lines 4 ~ 13), and the moving
average of the lower-level variable is used to estimate the hypergradient (line 14). Note that the
periodic updates for the lower-level variable have been widely used in bilevel optimization (Hao
et al., 2024} |Gong et al} [2024b). VR-AdamBO can be regarded as a generalization of the AccBO
algorithm in (Gong et al., [2024b)), with the key difference being that AccBO uses normalized SGD
with momentum for the upper-level update, whereas VR-AdamBO employs VRAdam.

5.2 MAIN RESULTS

Theorem 5.1. Suppose that Assumptions[3.2] [3.3|and[3.3| hold. Let G be a constant satisfying G >
max {4A,2a¢,4c¢,0, Coa \[OBLa, Cchlel} Choose 0 < foq < 1, B = O(2), v = O(¢2),
n=206(,a=001),r=0(~),1=0(>E"Q=0(1),N=0("),Ty =06("). Run
Algorithm for T = 6117%;?1 = O(e7?) iterations. Then with probability at least 1 — § over the

randomness in Fr.1, we have |V ®(z,)|| < G for all t € [T, and Zthl (VO (z4)] < €2

Remark: The full statement of Theorem including detailed parameter choices, is deferred to
Theorem [E.T4] in Appendix [E] Theorem [5.1] establishes an improved oracle complexity of Ty +
TN/I +TQ = O(e3) for VR-AdamBO. This complexity result matches that of (Gong et al.,
2024b) when the upper-level function is unbounded smooth, as well as the complexity of VRAdam
for single-level optimization with generalized smooth objectives (L1 et al., [2023a). Notably, we

choose a larger learning rate 7 = ©(e) for the upper-level updates, compared to 7 = O (e 2) used in
the AccBO algorithm (Gong et al.,|2024b).

5.3 PROOF SKETCH

In this section, we briefly discuss the challenges in analyzing VR-AdamBO and provide a roadmap
for the proof. The detailed proofs can be found in Appendix|[E] Note that to apply relaxed smoothness
property and descent inequality, as listed in Lemmas [B.10|and one requirement is that x4,
and z; should remain close since Definition [3.1]is a local condition rather than a global one. For
AdamBO, this requirement is not hard to satisfy with sufficiently small 7), based on Lemmal4.5]and
its remark below. However, VR-AdamBO may not satisfy such a almost sure bound for ||| due
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to the STORM-type update (Cutkosky & Orabona, 2019)) for the upper-level variable. To overcome
this difficulty, we introduce a novel stopping time approach in the context of bilevel optimization.
Specifically, we define €; := m; — E;[V(x¢, §¢; & )] and the new stopping time 7 as

7= min{t | [V®(z,)|| < G} Amin{t | el > G} A (T + 1), )

where G is specified in Theorem [5.1] It is worth noting that our definition of 7 for the analysis of
VR-AdamBO differs from that in (Li et al., [2023a) for VRAdam, as our ¢; is not defined as the
difference between m; and V®(z;). At this point, we may still fail to guarantee the boundedness of
||| before time 7, unless the hypergradient bias introduced by the lower-level estimation error can
be effectively controlled. Fortunately, by leveraging the lower-level acceleration technique (Gong
et al.,[2024b) with periodic updates and averaging, we develop a new induction argument (i.e., Lem-
mas [E.10] to to show that under ¢ < 7 and some good event &,, both ||§, — y; || and ||m,]|
are bounded. We then show the averaged lower-level error is small under the parameter choices in
Theorem [5.1] (see Lemma[E.4), which shares an similar spirit as Lemma[.6] Combining aforemen-
tioned lemmas with the technique developed in (L1 et al.l |2023a) for the upper-level analysis, we
obtain the improved complexity result. One can refer to Appendix [E| for more details.

6 EXPERIMENTS

Deep AUC Maximization with RNNs/Transformers. The Area Under the ROC Curve
(AUC) (Hanley & McNeil, [1983) is a widely used metric for evaluating the effectiveness of binary
classification models, especially in the imbalanced data scenarios. It is defined as the probability
that the prediction score of a positive example is higher than that of a negative example (Hanley &
McNeil, [1982)). Deep AUC maximization (Liu et al.| [2020; |Ying et al., 2016)) can be formulated as
a min-max optimization problem (Liu et al., 2020): min,cgd,(q,p)cr> MaXaer f(w,a,b,a) =
E.[F(w,a,b,a;2)], where F(w,a,b,0;2) = (1 — p)(h(w;z) — a)’Ije—) + p(h(w;z) —
b)?Tje=—1] + 2(1 + a)(ph(w; z)ljo=_1] — (1 — p)h(w;x)[.—1)) — p(1 — p)a?, w denotes the
model parameter of a deep neural network, and z = (&, ¢) represents a random training data sample
(e represents the feature vector and ¢ € {+1, —1} represents the class label), the function h(w, x)
is a scoring function for the sample with feature x, and p = Pr(c = 1) indicates the proportion
of positive samples in the population. This min-max problem can be reformulated as the form of a

bilevel optimization problem with lower-level objective function g = — f:
i E.[F(w,a,b,a"(w,a,b); t, a"(w,a,b) € in —E,[F(w,a,b, a; z)].
MGRE%;%)GRQ |F(w,a,b,a*(w,a,b);z)] s a*(w,a,b) arg min | F(w,a,b,a;2)]

In above, (w, a,b) is the upper-level variable, and « is the lower-level variable. The lower-level
problem is a strongly convex one-dimensional quadratic function with respect to «, while the upper-
level objective is non-convex and can exhibit unbounded smoothness when using a recurrent neural
network or a transformer as the predictive model (Crawshaw et al., 2022} [Zhang et al., | 2020b).

In our experiment, we focus on tackling an imbalanced text classification task by maximizing the
AUC metric. Specifically, we conduct experiments using deep AUC maximization on the imbal-
anced Sentiment140 dataset (Go et al., |2009), a binary text classification benchmark. Following
the approach in (Yuan et al.,2021), we introduce imbalance in the training set using a pre-specified
imbalance ratio (p) while keeping the test set distribution unchanged. For a given p, we randomly
remove positive samples (labeled as 1) from the training set until the desired proportion of positive
examples is achieved. In our experiment, we set p to 0.8 (0.9), meaning that 80% (90%) of the train-
ing samples are positive examples. We run the experiment using two different models, a two-layer
transformer, and a two-layer recurrent neural network (RNN) with the same input dimension of 300,
hidden dimension of 4096, and an output dimension of 2.

To evaluate the effectiveness of our proposed bilevel optimization algorithm, we compare with recent
bilevel optimization baselines, including StocBio (Ji et al.,|2021), TTSA (Hong et al., 2023)), SABA
(Dagréou et al.; [2022), MA-SOBA (Chen et al., 2023a), SUSTAIN (Khanduri et al., [2021), VRBO
(Yang et al., 2021), BO-REP (Hao et al., [2024])), SLIP (Gong et al., [2024a)), and AccBO (Gong et al.,
2024b). The training and testing results of the transformer model over 50 epochs are presented in
Figure 3| (a) and (b), while the corresponding running times are shown in Figure [3|(c) and (d). Our
proposed Adam-type algorithms, AdamBO and VR-AdamBO, show the faster convergence rate
and significantly outperform other baselines. In particular, the performance on the training AUC
(testing AUC) is better by at least 14% (7%) over other baselines. The running time results indicate
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Figure 1: Transformer for AUC maximization on Sentiment140 dataset with imbalance ratio of 0.9.
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Figure 2: Comparison with bilevel optimization baselines on Hyper-representation.

that AdamBO and VR-AdamBO converge much faster to a high AUC value compared to the other
baselines. We also perform the AUC maximization on a RNN model with imbalance rario of 0.8,
and the results are presented in Appendix More detailed parameter tuning and selection can be
found in Appendix [F

Hyper-representation Learning. Hyper-representation learning, i.e., meta-learning (Finn et al.
2017), aims to find a good meta learner parameterized by x, such that it can quickly adapt to a
new task ¢ by fine-tuning the corresponding adapter y;. Consider a meta-learning task consisting
of K tasks with the training set {D!" | i = 1,..., K} and validation set {D?* | i = 1,...,K}.
Each task has a loss function L£(x,y;;&;) over each sample &. This meta-learning problem can
be reformulated as a bilevel optimization, where the lower-level objective function tries to find an
optimal task-specific adapter y} () on training data D!", and the upper-level minimizes the objective
function on validation data DY%! by finding the optimal meta-learner = with a set of adapters y =
{5 (x),y5(x),...,y5(x)}. We have the following formulation:

=

K
min — Y ——r Y L(x,y"(2);€), st, y*(x) = argmin — > Lo (2, i5¢) + Sl
SR o 2 B PP 5

where EDQT(:U, yi;C) = ﬁ Zcemr L(x,y;;¢). The adapter (parameterized by y;) is typically
instantiated as the last linear layer, and the meta learner (parameterized by x) is the remaining layers
of model, which guarantees that the lower-level function to be strongly-convex when p > 0.

We conduct the meta-learning experiments for the text classification on dataset Stanford Natural
Language Inference (SNLI) (Bowman et al.,[2015)), which consists of 570k pairs of sentences with 3
classes. We construct K = 500 tasks, where each task D!” and DY randomly sample two disjoint
categories from the original data, respectively. Empirically, we use mini-batches of meta-tasks for
training, with a task batch size of 25. A 3-layer recurrent network is used as representation layers and
a fully-connected layer as an adapter. The input dimension, hidden dimension and output dimension
are set to be 300, 4096, and 3, respectively.

We compare with typical meta-learning algorithms, MAML (Rajeswaran et al., 2019) and ANIL
(Raghu et al., [2019), and recent bilevel optimization algorithms, StocBio (Ji et al.| [2021), TTSA
(Hong et al.| 2023), SABA (Dagréou et al., |2022), MA-SOBA (Chen et al., 2023a), BO-REP (Hao
et al.| 2024)), SLIP (Gong et al. 2024a). The comparison results of training and testing accuracy are
shown in Figure 2] AdamBO outperforms other baselines on training set, and exhibits faster con-
vergence rate. One can refer to Appendix [F] for detailed hyper-parameter choices and experimental
settings. All the experiments are run on an single NVIDIA A6000 (48GB memory) GPU and a
AMD EPYC 7513 32-Core CPU.

10
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Algorithm 3 SGD

1: Input x yOa’YaTO #SGD(J"7y0777TO)
2: Tnitialize yinit = 4,

3: fort =0,1,...,7y — 1 do

4:  Sample 7; from distribution D,

50yl =yt = VGl gt m)

6: end for

Algorithm 4 ADAMBO (Equivalent update rule of Algorithm|[I])

1: Illpllt: ﬂvﬂsqarfﬁ’%)‘?TOaTaxlayO R .

2: Imitialize y; = SGD(1,%0,7, o), M1 = Vé(x1,y1;&1) and 1 = (Vé(x1,y1;€1))?
3: fort=1,...,7do

@ = =gy o = =Sy

Draw new samples and perform the following updates

Yt+1 = Yt — ’YvyG(mt, yt;ACt)

1y = (1 — ay)riy—1 + Oétvfﬁ(l‘t’ Yt; ft)

b= (1= ;M1 + (Vo (wr, y1; &)

9: L)S't_i_l:l't*ﬁ@mt

10: end for

® xR

Algorithm 5 STOCHASTIC NESTEROV ACCELERATED GRADIENT METHOD (SNAG)
1: Input: 2,9_1,v, 7o #SNAG(Z‘,yQ,’}/,To)
2: Initialize 7o = §_1
3: fort=0,1,...,7p — 1 do
4 Sample 7; from distribution D,
5 Z=3+ (P — Ti-1)
6
7

Urp1 = 2t — YVyG(T, Z; 7t)
: end for

A EQUIVALENT UPDATE RULE OF ADAMBO (ALGORITHM

In this section, we aim to provide a simplified version of the bias correction steps (lines 7-8) of
Algorithm (I} Inspired by (L1 et al., |2023a, Appendix C.1), we present an equivalent yet simpler
update rule of Algorithm|[I]in the following Proposition The detailed equivalent framework is
also outlined in Algorithm 4]

sq _ Bs
7 and Q- = ﬁqﬁsq)t'

Proposition A.1. Let oy = ﬁ
(Algorithm[l) is equivalent to that in Algorithm [}

Yer1 = Y — YV G,y G,

1y = (1 — ag)iiy_1 + aVo(ze, v &),

b = (1 — o) br-1 + A (Vd(xe, yes &), ®

n N
x =Ty — —F——— © My,
t+1 t T+ A t

Then the update rule in Bi-Adam

where initially we set 1 = V(b(:rl, y1;€1) and v, = (@gb(xl, y1;£1))2. There is no need to define
Mo and ¥g since 1 — a; = 1—a1 =0.

Proof of Proposition|A.1] We follow the same proof as in (Li et al., 2023a, Proposition E.1), but
replace the stochastic gradient V f(x,&;) in (Li et al., [2023a) W1th the stochastic hypergradient

estimator ng(rt, Yt} gt) in our setting. We still provide the proof here for completeness.

Let Z; = 1 — (1 — 3)t. Then we know that oy = 3/Z; and m; = Z;1n;. By line 6 of Algorithm
(the momentum update rule for m;), we have

Zying = (1 — B)Ze_1ie—1 + BV (e, yr; &)

17
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Note that Z, satisfies the following property

(1=8)Z1=1-B-(1-B) =2 —B.

.z 8 e .
my = tZt ﬁmtq + Zvd)(mhyt;ft)
= (1 — a)iiu—1 + V(e yi: &)
Next, we verify the initial condition. By Algorithm |1} since we set mg = 0, then we have m; =

BV¢(x1,y1;&). Therefore, we have riy = my/Z1 = V(x1,y1;&) since Z; = 3. Then the
proof is completed by applying the same analysis on v; and ¥;. [

Then we have

B TECHNICAL LEMMAS

In this section, we present several useful algebraic facts (Appendix [B.1]), probabilistic lemmas (Ap-
pendix [B.2), and auxiliary lemmas for bilevel optimization under the unbounded smoothness setting

(Appendix [B.3).
B.1 USEFUL ALGEBRAIC FACTS

In this section, we will frequently use «; and aiq, so we restate their definitions here for the reader’s

convenience: 5 5
— sq __ sq
=T A g =3 and oy = T-1-3. " - ﬂsq)t. 9)

The following two lemmas, i.e., Lemmas [B.I] and [B.2} are useful for bounding the norm of the
difference between Neumann series approximation matrices in Appendix

Lemma B.1. For any matrix sequences {A; }¥_, and {B;}¥_, (where k > 1), it holds that

k k
4[5
i=1 =1

where we use the convention Ax11 = By = 1.

Qi

k
=D Bl I Bica 1 Ai = Bill| Avea ]l - [ Awll
i=1

Proof of Lemma It is easy to check that
k k
HAi_HBi:Al"'Ak_Bl"'Bk
i=1 i=1
= (A —B1)Asy- - Ay + B1(Ay — B2)As - A+ -+ By -+ By_1 (A — By)

k
= 231 ~Bio1 (A — Bi)Aiyr - A,
i=1

where we set Ax11 = By = [ in the last equality. The result follows by noting that the operator
norm is submultiplicative. O

Lemma B.2. Forany Q > 1and a € (0,1), we have

Q-1

1

-1
Sowts gt
— (1—a)

Proof of Lemma We obtain the result by simple calculation:

T 1-Qa9 T+ (Q-1)a? _ 1-Qa% ! 4 (Q — 1)a@!
1—a%t 1
(1-a)? = (1-a)*

18
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The next four lemmas, Lemmas|[B.3|to[B.€] are useful for controlling the lower-level estimation error
and for proving the randomness decoupling lemma (i.e., Lemma4.2)) in Appendix

Lemma B.3. Foranyt > 1, define {d; ;};_, as the following:

HE:lt(l - ai)a ] = O
dej = Q; Hi:jJrl(l —q;), 1<j<t-1 (10)
At j =t.

Then {dy ;}’_ has the following properties:
e Forj=0,d;; =0.
« For1<j<t di;=oau(1— ).

¢ Z;:O dij = 22:1 dij =1

Proof of Lemma|B.3] Recall the definition of ¢ in Algorithm[] we have

_ B _1-@a-p)t
B A e e (e

It is obvious to see oy = 1, then for j = 0 we have

Qi

(1=5).

t

dio=[]A-)=00-a)--(1-a1)=0.

i=1
For1l <5 <t —1 wehave

e T (a8 T LB sy
o 11:131—1(1 2 1_(1_B)j¢:13_£1 1—(1-p) =8 (1= B

For j = t we have
B

m:at(lfﬁ)i~

dt,t = Q¢ =

For the last result of the lemma, we have

t t t 1=
Dodig = diy= a(1-5) = 5 @ L
j=0 j=1 j=1
where we use d; o = 0 in the first equality. O
Lemma B.4. Forany x € (0, 1], we have
1
l——<Inz<zx-1.
x

Consequently, for any 8 € [0,1) we have

_%Sln(l—ﬁ)ﬁ—ﬁ and ﬁS—ln(l—ﬁ)g%_
Proof of Lemma This is a well-known logarithm inequality, so we omit the proof here. O

Lemma B.5. Foranyt > 1, we have

tag(1—p)t < 1.

19
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Proof of Lemma(B-3] By definition of ¢, we have

tay(1—p) " = Gl e

o 1-Q1-p)t
Let f: R — Rbe
_pta =gt
=g
Then we have 8 8)
, B 1— t—1 B B . N B

Letg: R — Rbe
gt)=1—(1—-p)" +tIn(1 - B).
Then we have

g(t)=01-01-p8")n(1-p)<o0.

Note that Lemma|B.4|gives g(1) = 8+1n(1— 8) < 0, then for any ¢ > 1 we have g(t) < g(1) <0,

n 81— )
, B 1— t—1
FO=a—a-pmpe

Therefore, for any ¢ > 1 we conclude that

ta(1—8)1 = f(t) < f(1) = 1.

g(t) <0.

Lemma B.6. Foranyt > 1and 0 < 8 < 1/2, we have

t

> (1-8)""a; <32+ 16In 1
i=1 ﬁ

Proof of Lemma[B.6] We split the summation as the following:

t t

S S € tc) YRRV S €l
;(1 B) ey 5;1—(1_5)1' B(1 5);1—(1_5)1‘

. 1— —1 1— —1
—sa-p | 3 1<(15).+ > A

1<i<1/8

Note that when ¢ < 1/, we have
(1—ﬂ)i§1—%3i = 1-(1-p)>
and by Lemmaand B < 1/2 we know that
(1—B)"" =exp(—iln(l — B)) < exp (1_> < exp <1> < e

Then for the first part of the summation we have

(a-p= 2 1<262(1 11>
DI e I D VI e G

Also note that when ¢ > 1//3, we have

= 1—(1—5)2'21—1 =

(1-8) <

Q| =

20

e 1—(1—B)ige—1'
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Then for the second part of the summation we have

1/8<i<t I=(1=p~e-1 1/8<i<t 1<i<t - 1B
(12)
Combining and we obtain that
t . .
s (1-p)" -8
(1-8)""a; <B(1—p) T T -3
; 19;1/,81_(1_@ 1/;;@1—(1—5)’
Y 262( 1 1) 6<1—5)_t)
<B(1-p5) (5 1+ g )+ €15
=2¢%(1 - pB)! <1+1n;) +ei1
< 2¢? (1+ln;> +ef1
< 32+161n%.
O

Finally, we provide a useful lemma regarding the time-dependent re-scaled momentum parameters
in () and Algorithm [] for upper-level analysis.

Lemma B.7 ((Li et al.,|2023a, Lemma C.3)). Let a; = ﬁ, then for all T > 2, we have
T
> o} <3(1+5°T).
t=2

B.2 PROBABILISTIC LEMMAS

In this section, we provide a well-known probabilistic lemma without proof.

Lemma B.8 (Optional Stopping Theorem). Let {Z;};>1 be a martingale with respect to a filtration
{Fi}t>0. Let T be a bounded stopping time with respect to the same filtration. Then we have
E[Z;] = E[Zy).

B.3 AUXILIARY LEMMAS FOR BILEVEL OPTIMIZATION

In this section, we provide several useful lemmas for bilevel optimization under the unbounded
smoothness setting, including the properties of the objective function ® (Appendix [B.3.1)), the Neu-
mann series approximation error (Appendix [B.3.2), and the hypergradient estimation error (Ap-

pendix [B.3.3).

B.3.1 PROPERTIES OF THE OBJECTIVE FUNCTION

Lemma B.9 ((Hao et al.| 2024 Lemma 8)). Under Assumption[3.2] we have
(1) y*(x) is (14,1/p)-Lipschitz continuous.

(1) Vo f(z,y* (@) < [[VO(@)| + lgalso/p
Lemma B.10 ((Ly, L1)-smoothness (Hao et al., 2024, Lemma 9)). Under Assumption for any
z,x € R% we have
IVO(z) = V()| < (Lo + L1|[VO(2')|) [z — 2]
1

if o—a'| <r=
A+ /)2, +12,))

. 13)
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where the (L, L1)-smoothness constants Lo and Ly are defined as

152]1 lgllf()
Lo =14+ "5 | Lo + Lap——— +
K K

)

lo. ) l 4197119»2 + ng,2>
2 £.0 5

i;(L%04-L%1U0 +

(14)
2

l
Li=/1+ % L,,.
W

Lemma B.11 (Descent Inequality (Hao et all 2024, Lemma 10)). Under Assumption 3.2} for any
z,z' € R% we have

Lo+ L1 ||V®(2')

P(z) < d(2)) +(VO(2),x — ') + 5 I |z — 2'||?

1
A+ /i) (L2, +12)

if llz—a'l<r=

B.3.2 NEUMANN SERIES APPROXIMATION

Throughout the paper, for given (x,y) € R% x R, we estimate the hypergradient V®(x) using
Neumann series approach and the following formulation:

S ST G,y 7))
Vo(x,y;€) = Vo F(x,y;€) — V2,G(x,y;:¢) ZH( . ) VyF(z,y;€),
‘17 q=0 j=1 9,

where the randomness € is defined as

f_ = {f, C(O)v 5(0)7 ceey 5(Q71)}7 with C_(q) = {C(q’l), ey C(q,q)}.

For simplicity, denote P as the Neumann series approximation matrix for the Hessian inverse, then
P and E¢[P] can be written as:

R V2,G(z,y; C199) 1 v2,Glzy)\"
H< > and ]E Z(—’ )
q= E 9l 4=

g,1 0 j=1 lgal 9 1
(15)
Hence the simplified version of the hypergradient estimator and its expectation are
Vo(x,y;€) = Vo F(x,y:€) — V2,G(x,y: () PV, F(x,y:€), 16

Ee[Vé(x,y;0)] = Vaf(2,y) — Vi,9(x, y)Ee[PIVy f (2, y).
Also, we define V f(z,y) as
Vi, y) = Vaf(@,y) — Va9, 9)[Vi,9(z,9)] 'V f(z,y),

which is useful for the following analysis.

The following lemma bounds the norm of the Neumann series approximation matrix P and charac-
terizes the approximation error for the Hessian inverse in expectation.
Lemma B.12. Under Assumptions|[3.2|to we have

I

Q
1 _ 1
BRI <IPI<Y  and  [EelP— V20 < & (1—l ) .
:U' 1% g,1

Proof of Lemma We follow the similar proof as in (Ghadimi & Wang| [2018] Lemma 3.2). By
Assumption [3.4]and definition of P in (T3, for any @) > 1 we have

Q-1 a Gz (a,9) Q-1 q
IEP)l < 1Pl = |- ZH( _ VG i ’) <Ay (-4
q=0

9,1 j=1 l971

22
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As for the second result, we have

e 2 q

IEelP] = (3,0(0.0) ) < 7 Z( VGH)
Ly 2 G\ | 1 L@
Sl ) <5 0-)

qu

B.3.3 HYPERGRADIENT ESTIMATION ERROR
Lemma B.13. Under Assumptions[3.2t0[3.4] if ||y — y*(z)|| < r, we have
IVo(z, y:§) — Be[Vo(z, y: )]
< w+ SZQ: + 042 o + 2lg1 +0og2

2lg’1 + 09,2

lyo+ (Ly,0 + Lyalyo)lly =y ().

Proof of Lemma We will use a short hand y* = y*(z). By triangle inequality, we have

IVé(z,y;€) — Be[Vo(, y; §)]|
= (Vo F(z,y;€) — V2,G(z,y: ¢ OV PV, F(x,y;€)) — (Vo f (z,y) — V2,9(z,y)Ee[PIV, f(z.y))|
< |IVaF(2,y;€) = Vo f2,9)|| +1(V2,G(2,y;¢) = V3, 9(2,9)) PV F(z,4;6) |
(A1) (A2)
+ | V2,9(x, ) (P = Bg[P)Vy F(x, ;)| + V2, 9(z, ) Ee[PY(Vy F (2, 43 €) = Vy f(2,9))]l

(As) (A4)

Bounding (4;). By Assumption[3.3] we have
(A1) = [IVaF (2, y:€) = Vo f (z,)l| < oy

Bounding (A4,). By Assumptions[3.2|and [3.3|and Lemma|[B.12] we have

(A2) = [[(V2,G(x,y;:¢'V) = V3, g(z,y)) PV, F(x,y: )
< [V2,G(@,y;¢®) = V2, g(z, ) |1 PIV, F (2, 5: €|
< T2 (Y, F(a,y:€) = Vo f(@,9)| + [V @ y) — Vo f @) + 1V, £ (2, 57)])
n

IN

04,2 .
%(Uf + (Lyo + Lyalso)ly — v*ll +15.0)

0g,2 0g,2 .
B Z (o7 +1r0) + Z*(Ly,UJFLy’llf,O)Hy—y I.

Bounding (A43). By Assumptions[3.2|and [3.3|and Lemma|[B.12] we have

(A3) = V2,9(z,y)(P — E¢[P])V, F(z,;€)|

IVZy9(@, 9l (P = Ee[PDIIIVyF (2, ;)]

21 "
=22 (04 + (Ly,o + Lyalso)lly — vl + Lro0)

IN

IN

1 2l .
2= (op +1g0) + Z (Ly,0 + Lyalyo)lly — v,

where the second inequality uses the same step (the third inequality above) as in bounding (As).

23



Under review as a conference paper at ICLR 2025

Bounding (4,). By Assumptions[3.2]and[3.3/and Lemma [B.12} we have

(A4) = IV2,9(z, ) Ee[PY(Vy F(2,y;€) — Vy f (,9))

Then we obtain the final bound

IVo(2,y:8) — Ee[Vo(w,y; I < (A1) + (Az) + (A3) + (As)

+3ly1+0 201 +0 20,1 +0 .
< £ q; 2205 + g’lﬂ “2110+ g’lu 92 (Lyo + Lyalgo)lly — v

Lemma B.14. Under Assumptions[3.2]t0o[34] if ||y — y*(2)|| < r, we have
IVé(@,5:8) = V(@) < Co0+ (Con + L[ VE@)IDIly — y* (@)

where Ly is defined in (14) and constants Cy o and Cy 1 are defined as

i+ 3lg1 +0g2 o+ 2lg1 +0g2 lro+ lgyllf»O’

1%
21971 + 0g,2

Cypo =

a7)

!
Con = (Lyo + Lyalpo) + %(Ly,o + Lyalgo) + Lo.

Proof of Lemma We have the following decomposition:

IVo(z,y;€) — V()| < [Vo(z,y:€) — Ee[V(z, y; )]
+ |Ee[Vo(a,y;:€)] — V(@ y)ll + |V f(z,y) — VO()],

For the first term, by Lemma[B.13] we have

IVo(z,y:€) — EelVo(z,y: Ol

< ,LL+3lg,1 +09720_f+21971 + 04,2 2191+O'gg (18)
N H

lyo+ ﬁ(Ly,o + Lyalyo)lly —y*|l.

i
For the second term, by Assumption[3.2]and Lemma[B.12 we have
IEelVé(z,y;0)] — V(z,y)|
= (Vo f(z,y) — Vi,9(z,y)Ee[ PV, f(z,y))

— (Vo f(@,y) = V3,90, 9)[Ve,g(x,9)] 7 Vy flz, )]l
||szg( y)(E 5[ | = [Vi,9(@ )] )Vyf ()l

<

L

Iy,

L Lol !
I, (Lyo + Lyalyo)lly — vl +150)

Q
lg llfO H l M *
== 1—— 1—— Lyo+ Lyl — .
L l 'u lg,l ( y,0 y,1 f}O)Hy Yy ||

| /\

(IVyf(@,y) = Vyf (2,9 + IV, (2, 9)]) (19)

| /\
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For the third term, by Assumption [3.2]and Lemma[B.9|we have
19/(z,9) - VO()]
< |Vaf(2,y) = Vaf(z,y")|
+IV2,9(x, 9) V2, 9(x,9)] 'V f (2, y) = Va,9(z,y)Vi,g(z,y*)] Yy f (2,97
< (Lao + Lol Ve f (@9 ) DIy — y7 |l
+IV2,9(z,9) V2, 9(x,9)] 'V f (2, y) — Vi,9(z,y")[Vs,9(z, )] Vy f(z,y)]]
+ V2, 9(x, y) Ve, 9(z, )] 7' Vy f (2,y) = Vi,9(x,y) Ve, g(z,y")] 7'V fz,0)]|
+IV2,9(x, y") Vi, 9(z, y")] 'V f(z,y) = V2,9(x,y") [Vi,g(z, y")] ' Vy f(z,5%)]l

)
)\
< (Bao+ Lo (5220 4 vel) ) by -7l

| ola
10 2lly — + L
P ly —y"|l 2 ly

IVy f(z,y") DIy — |l

Mgz +lgalge2
12

Iy
gL (Ly,O +Ly,1

Iyl ly
— (LZ’OJFLI, glufo+ ul(LyoJrLy,llfo)Hf

< (Lo + LalIVe(@)Dlly - v*l,

n Lz,1||v<1><x>||) _—

(20)
where the last inequality uses the definition of L¢ and L; as in (T4). Summing up (T8) + (T9) + (20)
gives the final bound

IV (z,y:€) — VO()|| < |Vo(x,y:€) — Ee[V(z, y; O]
+ |Ee[Vo(z, 4; )] — V(@ y)l + IV f(z,y) — VO(2)]|

31 21 Iyl @
< M+ 3lg1+0g.2 or+ g,1 T 0g.2 lro+ g,1tf,0 (1 _ “)
7 u u

lg,l

2,1 +0 l @ .
+ (g’lug’Q(Ly 0+ Lyalso) + ‘Zl (1 - lﬂl) (Ly,o + Lyalyo) + Lo + L1||V‘I>(l’)||> ly — ||
9,

lgalyo

)

< p+3lgr 4042 of+ 21+ 0g2
B 7
21+ o l x
(B0 0 4 Lyt + B (Lo + Lyalga) + Lo+ LV Iy~ o)
= Coo+ (Con + La|V@)Dlly 7]l

where the second and the third inequalities use ) > 1, and the last inequality is due to the definitions
of Cy0 and Cyp 1 in (I7). O

lyo+

B.3.4 OTHER USEFUL LEMMAS

Lemma B.15. Under Assumptionsta iflly —y*(@)]| <, we havelﬂ
IVo(w,y; &) = Vo(z,y* (2); )l < (Lo + L[ VE(@)|)l|ly — v (@)
if oy — 2| < o/ + 1y 1), we have
e, [V (w1, 473 6)] — Be, [Vo(wa, y3: &)l < (Lo + La[VO(@) ) a1 — 2],
where yi = y*(x;) for i = 1,2, and constants Ly and Ly are defined in (14).

Proof of Lemma[B.I35} We will use a short hand y* = y*(x). Recall the definition of Ve(z, y; )
and Vo(z,y*; €) in (T6), we have
Vo(,y;€) = VaF (2,4:€) = V3,G (2,4 (") PV F(,3; ),
Vo(x,y*;€) = VoF (z,y%:€) — V3,G(x,y": () PV, F(z,y%;€).

'Please note that ; and x» here are unrelated to Algorithm and are deterministic.
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where similar to (I3, we define the Neumann series approximation matrix P* as

Q-1 2 * ]
N 1 v G(x’y ;C(‘LJ))
P = 11 <I — . 1)

lg,l

Then by triangle inequality we have
IVe(x,y;€) = Vo(x,y™; &)l

<NVoF(2,y:8) — Vol (2,58l
+11V2,G (@, y; ¢ )PV F(x,y;6) — V2,G(z,y"; ¢ O) PV, F(x,y"; 6|

< |VaF(2,y;€) = Vo F(x,y"5 )| + 1V2,G (2, 4 (O)P(Vy F (2, y;€) — Vy Fa, 5% )|

(A1) (Az)
+IV2,G(x,y; ¢ ) (P = P*)Vy, F(a,y"; €|
(As)

+1(V2,G(x,y;¢') = V2, G (2, 4" () PV, Fa, 5™ 6)||

(Ag)

Bounding (A4;). By Assumption[3.4/and Lemma[B.9] we have
(A1) = VaF (2, y;:6) = Vo F (2,45 9 < (Lao + Laa [V f(z,y") DIy — v
Iyl .
< (Lot Lo (222 4 90l ) ) o'

L

palgil .
- (L + Lztlailio +Lz,1||v<1><x>|) -

Bounding (A3). By Assumption[3.4]and Lemma[B.12] we have

(A2) = |IV2,G(z,5;CO)VP(V F(z,y;€) — V,F(z, 7€)
= |V2,G(z, y; CNNIPNVy F(z, 55 €) — Vy F(z, 4" &)

l ,1 * * l ,1 *
< i (Ly,o + Ly IVy f(z,y)Dlly =y < gj(Ly,OﬂLLy,llf,o)Hy—y .

Bounding (A3). We first apply Lemma|[B.1]to obtain

ﬁ (I _ szG((E,y, C(q,]))) B ﬁ (I B vzyG(x7y*7C(Q7]))>
j=1

l!]71 j=1 lg,l
qg—1 q—1
K l912 * ( K ) l.(h? *
< 1- = —yl=q(1- —
;( =) By ) By
Hence we can write
Q-1 qg—1 2
. 1 0 lg2 o~ Ml o o lg2 .
PPl S (1) - g < A2 -l < B - v
[ — g,1 g:1 g,1 K

where the second inequality uses Lemma with a = p/l, 1, and the last inequality is due to
tt < lg,1. Then by Assumption [3.4] we have

(A3) = |V2,G(2,y;, ¢ V)P — P*)V,F(z,y%; )|

» . lyalgoly, .
<IV5, Gy NP = POV, F e,y 59l < 22y =yl
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Bounding (4,). By Assumption[3.4]and Lemma [B.12} we have
(A1) = [(V2,G(,y:¢ ) = V2, G2,y (DN PV F (w5756
* * * l s l s *
<IV3, Gy () = V3, Glay s NP NIV F (s ) < 2252y = )

Final Bound. Summing up (A1) + (As2) + (A4s) + (A4) yields the final bound

IVé(w,y;€) — Vo(z,y; )|l < (A1) + (A2) + (A3) + (As)

lgalso lgalga+plgo
12

! "
< (Lo Lo B0 4 800 4 L0150) + 150 FLoalVE@I) ]
< (Lo + Lal[Ve(@)|Dlly — vl
where the last inequality uses the definitions of Lo and L as in (T4).

For the second result, we follow a similar procedure as above and obtain:

Eg, W(b(xl,yf;f_l)] — Eg, [@¢(I2,y§;§_2)]|| < (A1) + (A2) + (A3) + (Ag)

12 Iyl l lyalgo+ pil

<1+ %5 (L Ly ZEE0 4 (L o Ly o) + Ly et TR0 Lm,1||v<1><x1>||) 71 — 2]
H H H H

= (Lo + L1||V®(z1) ) [lz1 — 2|,

where the last inequality uses the definitions of Ly and L4 as in (I4). O
Lemma B.16. Under Assumptions|[3.2|to we have
2 - lgalyo p\©
[Ee[Vo(z,y™(x);§)] = V()] < o U)

1971

Proof of Lemma[B.T6 We will use a short hand y* = y*(x). By definition of V(z, y; €) in (T6)
and the hypergradient formulation, we have

Ee[Vo(r,y":€)] = Vaf(x.y") = Vi,9(2,y" ) EelPIV, (2,47,
Vo(z) = Vaf(z,y") = Vi,9(x,y*)[Vy,g(x,y")] ' Vy f(z,y%).
Then we obtain the conclusion by applying Assumption [3.2]and Lemma [B-12}

B[V (z,y:€)] = Ve(2)|| = |V2,9(z, y") (Ee[P] = [V5,9(z,y")] )V, flz,y7)]

. - . loaly, p\“
< 92,9005 IEEP] = [V ate )] IV, ol < B220 (1 )7
9,

C PROOF OF THE RANDOM DECOUPLING LEMMA (LEMMA [4.2))

C.1 RECURSIVE CONTROL ON MOMENT GENERATING FUNCTION

The following technical lemma on recursive control is crucial for establishing high probability guar-
antee for controlling the lower-level estimation error at anytime. We follow a similar argument as
in (Cutler et al., [2023], Proposition 29) with a slight generalization.

Proposition C.1 (Recursive control on MGF). Consider scalar stochastic processes (Vy), (Dy),
(Xt) and (Y3) on a probability space with filtration (H:), which are linked by the inequality

Vier S ptVi+ Dy Vi + Xy + Vi + 5y (22)

for some deterministic constants p; € (—o0, 1] and k¢ € R. Suppose the following properties hold.

* Vi and Y; are non-negative and H-measurable.
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e Dy is mean-zero sub-Gaussian conditioned on H; with deterministic parameter o;:

Elexp(0D;) | H¢] < exp(6%02/2) forall 6 € R.

* X, is non-negative and sub-exponential conditioned on H, with deterministic parameter
V¢!
Elexp(6X:) | Hi] < exp(Ovt) forall 0<6<1/v;.

Then the estimate

Elexp(0Vi11)] < exp(0(vs + ko) Elexp(0((1 + pi) Vi/2 + 1))

holds for any 6 satisfying 0 < 6 < min { 1-—py _1 }

207 7 2u4

Proof of Proposition For any index ¢ > 0 and any scalar § > 0, the law of total expectation
implies

Elexp(8Vis1)] < E [exp (6 (piVi + Div/Vi + Xo + Vi + 1) )|

= exp(0x¢)E {exp(ﬁ(ptVt +Y;))E [exp(@Dt VVi) exp(6X,) | ’HtH .

Holder’s inequality in turn yields

E [exp(@Dt VVi) exp(6X,) | ’Ht} < \/IE [eXp(QHDt\/‘Z) | Ht} - E [exp(20X%) | He]

< y/exp(20202V;) exp(20v;)
= exp(0202V;) exp(Ovy)

provided 0 < 0 < ﬁ Therefore, if 6 satisfies

: I—pe 1
0<o< —
- mln{ 2c7t2 721/t}’

then the following estimate holds for all ¢ > 0:

Elexp(8Vi11)] < exp(0r:)E [exp(8(p: Vi + V7)) exp(6°07 Vi) exp(6)]
— exp(B(vs + #o))E [exp(8((pe + 602)Vi + Y1)
< exp(0(ve + ) )E [exp(0((1 + pi)Vi/2 + Y2))]

where the last inequality uses the given range of §. Thus the proof is completed. O

C.2 PROOF OF LEMMA [4.2]

In this section, we aim to provide a high-probability guarantee for the approximation error of the
lower-level variable, namely ||y: — y;||. Our main technical contribution is the any-sequence argu-
ment, which separates the randomness in the updates of the upper-level variable z; and the lower-
level variable y;. Specifically, for any given sequence {Z;}, we consider the following update rule
for {{:} (which is the same as line 5 of Algorithm |I)):

Yi+1 = Yt — ’YvyG(fﬁm@t% ét) (23)
Before proceeding, we will first define (or restate) a few key concepts and useful notations.

Filtration. For any ¢ > 2, define fty as the filtration of the randomness used in updating 3, before
the ¢-th iteration:

Fl =0l Gm), (24)
where o (+) denotes the o-algebra generated by the random variables within the argument.
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Auxiliary Sequence. We also introduce the following auxiliary sequence {4, } for our analysis:
t
iy = (1= on)ilp— + e Vo(de 575 €) = > di jV(Ee, 75 &), (25)
j=1

where the sequence {d; ;}}_, is defined in (T0) of Lemma Similar to (T3), (T6) and 1)) in
Appendix@ the hypergradient estimators @d)(it, Tt; ft) and @gf)(ft, 7is ét) can be written as

V(i i &) = VaF (30,565 &) — V2, G 5 ) PV F (30, 565 &),
Vo (Ze, 053 60) = Vi F (T, 573 &) — V2,G(E, b7 5;0))Pt*va(ft737?§£t);
where the randomness ét is defined as
ét = {éb 515(0)7 E(O)v AR E(Qil)}v where E(q) = {5(%1)7 s aé:(qu)}; (26)

and the Neumann series approximation matrices FP; and P, are defined as

V2, G(F:, 575 ()

Q-1 g 2 ), q

7 1 v1 1 G(It’ Yt; Gt ) 7 1

P=— - and P/ = -— I—-
lga ,FZ% Jljl ( lg1 H lga

Constants. We define the following constants, which will be useful for analysis. Given any se-

quence {Z}, denote G and L, as

G, = max, IV®(z1)|, L¢ = Lo+ LGy, (27)

where constants Lq and L; are defined in (T4).

Lemma C.2 (Distance recursion, (Cutler et al.,[2023] Lemma 25)). Suppose that Assumptions 3.2
and [3.3| hold. For any given sequence {Z.}, let {§} be the iterates generated by the update rule
(23) with constant learning rate v < 1/2l, 1. Then for any t > 1, we have the following recursion:

IGe+1 — T l® < @ = p)1Ge — G + 2v(Ee, 00)lI1Te — 7l + 277 N1Ee1> + EDE’ (28)

~

where ¥y == if s is distinct from §; and zero otherwise, &, = Vyg(Z4, §t) — Vy G(&¢, s Et)

Ut =Yy
R
denotes the noise, and Dy = ||§; — 7/, || is the minimizer drift at time t.

Lemma C.3 (Restatement of Lemma[d.2). Suppose that Assumptions 3.2|and 3.3 hold. Given any

sequence {Z} and any randomness {&;} (see (26) for definition) such that

t
|41 — &)1 < el + LY duglids — 3517 | (29)

21

2
A =
where @iy, {dy j}'_, and L are defined in @3), (T0) and @7, respectively. Let {ij;} be the iterates
generated by the update rule 23) with constant learning rate -y < 1/2ly 1, and choose v = 23/ pu.
Then for any given § € (0,1) and all t > 1, the following estimate holds with probability at least

1 — & over the randomness in F, 41’

t—1 .
~ ~k wy t—1 4:7’]2127 wy t—1—7 _ 5 -
g~ 51 < ((1 IR (1 N Z

2 A2 py i=1 2
8y, el 160%12, =t NI )
+ (# In r + A2y Z (1 - 7) Li ) oga (30)
i=1
T e AR (VU el P E A
e L (1-0) Nl s Y (1) ),
i=1 —

29

) |
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Proof of Lemma|[C.3] By Lemma|C.2]and Lemma[B.9] we have

[Ge+1 — Tl < = p)1Ge — GF 112+ 2v(Ee, 0 l1Ge — TE 1l + 27 1E)1* + %Df
2
— &y|?
31

< (L= i) = G 1P + 27 o)1 — Fi 1l + 297 1€l +

< (L= p)Fe = G + 2v(Ee, o) l1Ge — T7 1| + 292 11€1?
4n?1? 1 ~ - ~ ~
+ Azug’; H“tHQJrLdet,ijj 1 E
j=1

where the last inequality uses (29). Note that under Assumption[3.3] there exists an absolute constant
¢ > 1 such that for all ¢ > 1, ||&|? is sub-exponential conditioned on F; with parameter co? ;, and
& 1s mean-zero sub-Gaussian conditioned on ]:"ty with parameter co 1 (Cutler et al.,[2023, Theorem

30). For simplicity we set ¢ = 1 here. Thus (£, u;) is mean-zero sub-Gaussian conditioned on ]}ty
with parameter o 1. Hence, in light of (3T), we apply Proposition [C.T| with

He=F/, Vi=|i— % Di=2nEL0), Xi=292&7,
4n1?
Y, = 5 Lzzdt 155 — 75117,
2 J g J
Apdy
2l
)\2 3

pr=1—py, kK= oy =2v041, V= 27203,17

yielding the following recursion

- 4n?12 4n1?
E [exp(0Vis1)| <E |exp 0 (1= 51) Vit 29202, + Sl + LQde
(32)
for all 4 satisfying
. o 1 I
0 <0 <min , < , (33)
{ 8yo2 . 4y202 } 8yo2,

where in (32) we denote V; := ||§: — §;]|%, and the last inequality of (33) uses v < 1/2l,, < 1/24.
By Lemma|C.4] we use induction to show that for any ¢ > 1 and X satisfying (33)), it holds that

2 272 t—1 ,
Hny (/ 4’709,1 477 lg,l 1 t=l=t 2
o[-y e e A oy
exp{ 5 Vi + T S, Z 5 el
RUREAR py i 2 16017 s,
+)\2/«L37V12<1_7> Li+ )\2 4 g,IZ( ) Lj
i=1
64774l4 1 ity Wy 2 2
T (-1 It 7 LA
A48y pt 2

where the first and the last lines use the sum of geometric series, and the second line is due to
Lemma (B3}

E [exp(&f/})} <E

t—1 i1 9 _
SO-E) <2 - <,
= 2 Y
— .. t—1 .
py\t-1-i i—j 2 py\tTl=E o,
S(-5) Z (-5 it =3 (-5 el
i=1 Y=
Moreover, by setting 1 as follows, we have
e 4yo? 1
9= %1 — %1 <9 and == Lz
I Iz v 8yoy,

30



Under review as a conference paper at ICLR 2025

Hence for any ¢ > 1 we obtain
272 t—1 .
~ Ly - A=l 4 gyt
B e {0 V- (12 22) 7y - M s ()
[exp{ K 2 M Ny z_: 2 I

a1z, - L t—1—i . 16 l2 =t t—1—i _
g oy 0 oy
i—1 i—1

1=

647741371
T4 ,8~4
syt
Taking 6 = 1/9 and applying Markov’s inequality and union bound completes the proof. O

Lemma C.4. Suppose (32) holds, where iy, {d; ;}5_, and Ly are defined in 23), (T0) and 27),
respectively. Choosing v = 23/, then for any t > 1 we have

t—1—1 ~
(1 - “QJ) aiL§||ai|2] H < exp(09) forall 0<6<1/9.

t—1 212 t—1
i/ ny ~ 9 9 py\i—t  4n lg’1 py\ 1
E [exp(0V,)| <E 0 (1—7) 2 (1-41) (1-1)
exp(0V;)| < [exp{ 5 Vi + 2y Ug,liEZ; 5 + Ny Z 5
An12 =1 py\t-1-i e 161212, i
t3 3. \213y Vi Z (1 - 7) o (1 —B)' Ly + Nt g71 Z (1 — —) L;
=1

327]4l4 1 1 wy t—1—1 ~ ¢ wy i—7
4 (1 - —) a;L? (1 . —) ;]2
4,,7~3 J

Ay ~ 2 = 2

(34)
Proof of Lemma[C.4}, We use induction to show that (34) holds for any ¢ > 1 and X satisfying (33).

Base Case. For the base case ¢t = 1, it is easy to check that
Elexp(8V1)] < Elexp(8V7)].
Induction Step. Now we assume that the induction hypothesis (34) holds for 1 < k < ¢, then for
k =1t + 1 we have
Elexp(0Vit1)] < Elexp(0[(A1) + (A2) + (A3) + (A4) + (45) + (46)])],
where (A1), (A2), (4s), (A4), (A5) and (Ag) are defined as

(- 5) -5

2 2
t—1 .
(As) = 2202, + 29202, (1= 22) 3 (1= 22)
2 Y 1 ’Y 2 ‘ D) )
an?i2 2 An?i2 ! t=1-i
(45) = szl + 55 1 —2)2( T e,
4n?12 J=1 . 4n?12 — t—1—i R
A4: 7791L2 dt 1_7 V+ 7791‘/1 _ﬂ 1_& Za11_5171L2,
A2 sy J A2 By 2 2 ‘
i=1
P50 =y i1 1615, Y o PYNETTE 5
“@—AmeEQWJMUMEZQ‘) ‘Fxm4%ﬂﬁ—2)kﬂ@‘z) Li,

P17 -, 4?17, = A AT
(g = a5y, S ()
j=1 i=1

320, B PV s HYNT o
s (5) () el Z () i
We continue to bound each term individually.
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Bounding (A,).

Bounding (As).

(AQ) - 27 Ugl +27

Bounding (As3).

477 lg,

(49) = Sl +

Bounding (A,).

Then we obtain

2l2 1= 5 j—l ~
(A4) g L Zdtj (17*) Vi+
j=1
an?l2 Ceon
= Sz tea(1=B) T LV + o
4772l§ 17 : oy Nt i—172
- AQAL?WVlZ(l_?) fs(1 = B LG

Bounding (As).

Al 4

A sy

Then we obtain

(A5)7477 g1 L2Zdt] 2 Uglz(lffy_lJr
yJZ(

N2 sy

167}2@71
A2

IN

1617212

By Lemma|[B.3|and the choice of v = 23/p, we have

LQde 2y aglz(1—ﬂ)

2 f2
0411t

t

)\24

4772152771 (1 B ﬂ
N2i3y

N’Y) L

4772lg7

_m

477[

>\23

S

32

) e, (1 ) S (1

t—1—i
EO i =
By Lemmaand the choice of v = 23/, we have

St (- 5) =

L2Zat 1-8)7(1—pY~'w

2 202 | L7 de
j=1

t—1
~ B a2



Under review as a conference paper at ICLR 2025

Bounding (4s). By LemmaB.3|and the choice of v = 23/, we have

4” %],~2 LR 1( py i1 4Ly Sl
, 1-E07 ) < L33 il
; TNy Z; 2 A2y N2ty ;” 7
272 272 t
< SEad M 123 (1 B g
A2pdy A2ptey? =
32774131 i ( t—j
_ 1_7) -
N ; I
Then we obtain
4772121~ i 4"72[21j71 Ly Jj—1—1
Ag) = 9,1 2 d 9 (1_7) i ||2
( 6) AZMB,Y t; t.J )‘2,“37 g 2 ||u H
321’}4131 ny =1 Wy t—1—1 9 i—j -
e (1-5) 2 0-5) LZO—f)nw
=1
< 32774%1,1 2 é 1 py\t=J U 3277 lg,l =l ) py\ i o i ) [y =i o
= )\4M7,y30‘t t;( _7> 125 | +Wi—1( —7) 7 z;( —?) lla;l
3antid ) & N i
=T 2 (1-9) e LZ( ) )

Final Bound for the Induction Step. Putting these terms together and rearranging yields

E {GXP(Q‘ZH)} <E [GXP {9 5

2
APy

B\t 22 % pyyitt A2, Ly
(“30”*”%J (1-3) e (-5
=1

t—1
) @l

1y, . 1 i—1f2 167°151 ! 1M =i i2
)\2 3 Z ioq(1 = B)7 Li + A2 051 Y i
i=1
32, & Yy 2 o 2
Pl S (1 BT mLZ( D) | bl

Aty
which aligns with for k = ¢ + 1. Thus, the induction step is complete, and holds for any
t>1 O

D CONVERGENCE ANALYSIS OF ADAMBO (ALGORITHM

In this section, we provide detailed convergence analysis of Algorithm [1| (or equivalently, Algo-
rithm ). Before presenting the lemmas and the main theorem, we will first define (or restate) a few
key concepts and useful notations.

D.1 TECHNICAL DEFINITIONS AND USEFUL NOTATIONS

Filtration. Define Fjy; as the filtration for updating y; (i.e., the filtration of warm-start phase):
]_-;nit = 0'(71'0, ey 7TT0,1>.

For any ¢t > 2, define F}* and .7-'ty as the filtrations of the randomness used in updating x; and y,,
respectively, before the ¢-th iteration:

ff:U(gla"wgt—l)a fg;:U(Cla"th—l)a
where o (+) denotes the o-algebra generated by the random variables within the argument. Addition-
ally, let F; denote the filtration of all randomness before the ¢-th iteration:

Fi = o(Fimit UFF UFY).
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Expectation. We use E,[-] to denote the conditional expectation E[- | F].

Auxiliary Sequence. Note that m; (line 7 of Algorithm ) can be written as
t
iy = (1= a1 + Ve, ys &) = > dij V(o yrs &). (35)
j=1
Similar to Appendix we introduce the following auxiliary sequence {; } for our analysis:

t
iy = (1= ap)iy_1 + Vo (z,y5 &) = Y di V(1,971 &) (36)
j=1

Other Definitions. We define the deviation of the rescaled auxiliary momentum from the condi-
tional expectation of the hypergradient estimator as

e =ty — B[V (w575 &)). G

Also, let iy be the learning rate vector and H; be the learning rate matrix:

Ui .
hy = —— and H; = diag(hy). 38
¢ NS ¢ g(ht) (38)

Then the update rule for upper-level variable z; (line 10 of Algorithm I)) can be written as

Ti41 = Ty — ht ® ﬁzt = Tt — Htﬁlt. (39)

Stopping Time. Given a large enough constant G as defined in Theorem [D.12] denote L and v as
CrG?
2L

where constants Lo, L; and Cf, are defined in and (43)). Now we formally define the stopping
time 7 as

L=Ly+ LG and P = (40)

7 :=min{t | ®(z;) — ®* > Y} A (T +1). 41

In other words, 7 is the first time when the sub-optimality gap is strictly larger than 1), truncated
at T + 1 to make sure it is bounded. Based on Lemma|[D.I} we know that if ¢ < 7, we have both
O(xy) — P* < ¢and [|[VO(z,)| <G.

Constants. We define the following constants, which will be useful for analysis.

Gy = max |[V®(xp)||, Li=Lo+I11Gy, L=Lo+LiG, A =(x)—d* (42

1<k<t
Lx 1
Cr = ﬁ’ Cuo=0Cs0+G, Cui=0Cs1+ LG, (43)
\/ L.t,l + Ly,l
+3l,1 + 20,1 + 20,1 +
oy = K g; %92 | Zol Ug’2lf,o + o m Zo2 (Ly,0 + Lyalso)r. (44)

8ec}G? max{l,t} 8CyeA;LoyG? o;G
o> P ) 2 1 b 1 [ 1
A= max{ c2oN2et T c1cadNZed + c1 €2 max{1, i, 1},

2 2
32e0iG? 48CeA Lo G3 o2G
3 d; el B 2621274 1+ -2 max{1, /s, ¢}
€102 c1ca0N\Zet c1\e?
Besides, constants Lo, L; are defined in (I4), Cy o, Cy,1 are defined in (I7), and r is defined in (I3)),
respectively.

(45)
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D.2 AUXILIARY LEMMAS

We first introduce the following useful lemma, which is crucial for the subsequent stopping time
analysis and for establishing the contradiction argument.

Lemma D.1. Under Assumption[3.2} we have
2 *
IVe(2)|* < o (Lo + Li[[Ve(2)[)(®(z) — ©7),

where constants Lo, L1 and C|, are defined in (14) and @3). Further, for any given constant G > 0,
if we denote ) as in @0) and ®(x) — ©* < 1), then we have |[VP(z)|| < G.

Proof of Lemma[D.1] Let 2’ be
/ CL||Ve(x)||

=r — ,
Lo+ L1[|[Ve(z)|

then we have

_ Cve)]
Lo+ L1 ||V ()]

<g: 1 :T7
_Ll

O+ i) (L2, + L2 )

where the inequality can be verified by considering both cases of |[V®(z)|| < Lo/L; and
IV®(z)|| > Lo/L1. By Lemma|B.10} we have

" — 2|

Lo+ L1||VO(z)|
2

P* — &(z) < (') — P(x) < (VO(2),2" —z) +

Cr(2—-Cyp) 9
=— Vo(x)|*.
2L + Lva@n )
Rearranging the above inequality yields

2(Lo + Ly[[VO()]]) Lo+ Ly||[VE(x)[)
Cr(2—-Cyp) Cr,

where the last inequality uses the definition of C'y, in (@3) and C, < 1.

2" — |

Vo) < (@) - 0%) < 2 (@) - 7). @6)

Now define the function ¢ : Rar — Ras

CLU2

o) = S L)

1

It is easy to verify ¢ is increasing and ¢(u) € [0, 00). Thus, ¢ is invertible and ¢~ " is also increas-

ing. Then for any constant G > 0, denote L and 1 as in (@0),

CLG?
L=Lo+ LG, ¢=-"2""=yq).
2L
The property of function ¢ ~1 and @) imply that if ®(x) — &* < 1, we have

IVe(2)] < ¢! (®(x) - %) < 7' (%) = G-

O
Note that when ¢ < 7, some of the quantities in Algorithm[I]and Appendix are bounded almost

surely. In particular, we have the following lemma.

Lemma D.2. [ft < T, we have

[Ve@)| <G Li<L [l < Cuo he=y [H] =,

where hy is defined in (38), constants Ly, L and C,,. o are defined in @2) and @3), respectively.
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Proof of Lemma[D.2} By Lemma[D.1]and definition of 7, we have |[V®(z,)|| < G if t < 7. Also,
recall the definition of G, L; and L as in (#2), we have G; = maxy<; [|[V®(xy)| < Gift < 7,
and hence gives L, = Lo+ LGy < Lo+ LG = L. Before bounding |||, we first show
V(s v &) < Cuo. Lemmadirect]y implies that if ¢ < 7, then

IV(@e, 575 €0l < Co0 + (Cop + La|[ V(@) lly; — yi | + [V@(@e)|| < Cp0 + G = Cup,
where the last equality is due to the definition of C,, ¢ in @3). Now [|i¢|| can be bounded by a

standard induction argument as follows. First, for the base case k = 1, note that ||V (x1, yF; & )| <
Clu,0- Suppose ||tg—1|| < Cy,0 for some k < 7, then by update rule of 4y, in (36) we have

il < (1 = an)llar-1]l + arl Ve(@r, yri &)l < Cuo.
Therefore, the induction is complete. The last two results directly follow from the definitions of h;
and H; in (38). O

D.3 PROOF OF LEMMA [£.3]

In the next lemma, we provide high probability bound for the warm-start phase.

Lemma D.3 (Warm-Start, Restatement of Lemma P Suppose that Assumptions[3.2]and[3.3| hold.
Let {y""} be the iterates generated by Algorithm 3|with constant learning rate v < 1/ 2lg.1. Then
Sor any given § € (0,1), the following estimate holds with probability at least 1 — §/4 over the
randomness in F;,;; (we denote this event as &):

2
. wy To N 8o 1 4e
llyr — 5l < (1—*2 ) lyo — w5 11* + M” n—. (47)

Proof of Lemma@ For any given ¢ € (0,1) and any fixed ¢ > 0, we invoke (Cutler et al.l 2023|
Theorem 30) to obtain that
In — (48)

ini * wy t *
Iy =il < (1= 57) llvo — w12 + ;
holds with probability at least 1 — & over the randomness in Fi,;. Set ¢ = T and then we have

2
. uy\ To 8yo 1, 4e
o =il = I = wil® < (1=5) " lwo — ) + =2 =,

where the first equality is due toy; = y‘jlé‘ and y = y; (since 1 = o) by line 2 of Algorithm O

870371 4e

D.4 PROOF OF LEMMA [£.4]

The following Lemma [D.4] (i.e., the complete version of Lemma [#.4) is a direct application of the
randomness decoupling lemma (i.e., Lemmaf4.2) to the actual sequences {x;}, {y;} in Algorithm([1}

Lemma D.4. Suppose that Assumptions to hold. Let {y;} be the iterates generated by

Algorithm[l| Under the parameter choices in Theorem[D.12) let 1) further satisfy
oA 7 225

Gr’ 6L LyGrmax{1,/,In(1/8),In(Cs)} Lyv/Gr |’

then for any given § € (0,1) and all t > 1, the following estimate holds with probability at least
1 — 6/4 over the randomness in .7:7?{_’_1 (we denote this event as &,):

t—1 .
" ey t—1 4’]72l2’1 wy t—1—17 .
|m—%2<<@—2) Eb e DI () N | PR

2,3
)‘”71':1

1N < comin { 49)

8y, el | 16712, YN o)
+ <’u th + )\2M4 Z (1 — ?> Lz 0'971
1

1=

a2 ) S N R YO0 Nt
328y 2(1—7) laall™ + 37 5 (1—7) a; L2||a,?,
i=1

where constant L; and sequence {i;} are defined in @2) and (36), respectively.
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Proof of Lemma[D-4] First, with the parameter choices in Theorem [D.12]and the additional choice
for n as in (@9), we can follow the same procedure as Lemma (see “Verification for o <
min{r,1/4L,}”) to show that ||y — y;|| < r for all t € [T]. Thus, the condition for applying
Lemma [B.T3]is satisfied. Recall the definitions of 1, and 4, in (33) and (36), we have

2

t
e = ae||* < | Y de s (Vo(as,u5:€) — V(e y5: &)

j=1
t — —
< i1V, y5:65) — Ve, v5: &) G
j=1
t ) t
<Y di (Lo + Ll V) |)?lly; — i 1> < L3> duejllys — 117,
J=1 j=1

where the second inequality uses Jensen’s inequality, the third inequality is due to Lemma|[B.T3] and
the last inequality uses the definition of L, in (#2)). By the update rule in Algorithm@ we have

et — 2l < NH el < 2 ol < 2L (al? + e — a2
A A
2772 . .
< e | + L7 E duj

j=1

Yi — y;‘|2 )

where the first inequality uses (38); the second inequality is due to Lemma[D.2} the third inequal-
ity uses Young’s inequality; and the last inequality is due to (3I). This implies that the sequence
{z+} and the randomness {¢;} generated by Algorithm [1|satisfy the condition (29) in Lemma

Therefore, the result follows by applying Lemmawith {#:} = {a;} and {&,} = {&;}. O

Remark. In the end, we will show 7 = T'+1 in the proof of Theorem[D.12|(i.e., the complete version

of Theorem , thus we can apply Lemmato obtain Gp < G and Ly < L. This suggests that
under event & N &,, the additional requirement (49) is actually included in the parameter choices
of Theorem [D.12} Therefore, there is no need to worry about this temporary iterate-dependent
requirement for the choice of 7.

D.5 PROOF OF LEMMA [£.3]

Before proving Lemma@ first note that when ¢ < 7 and £,N&, holds, some of the time-dependent

quantities (such as L; and ||d]|) in Lemmacan be well bounded by Lemma In particular,
we have the following two high probability bounds for the lower-level approximation error ||y —y; ||:
the first one, (32), is useful for the convergence analysis; and the second one, (33)), is crucial for

proving Lemmas [D.6|and [D§]
Lemma D.5. Under event £y N &, and the parameter choices in Lemma ift <1, we have

. py\t- o 8nPI2 L2 . 8y . 4eT  320°12, L7
lye — i I < ((1—2) +W lyr — i l* + FIHT—FT%W 03,1

a2 | 22 t—1—i 64t L2 12 t—1—i
e () e S () ada®
1=1

223 pat 2 M By4 2
(52)
and
8772[2 L2 8y . deT 32772[2 L2
_u N2 < 1 g,1 (2 R el g,1 2
||yt ytH —< + )\QPJ4,}/2 ||y1 yl” + 1 n 5 + )\2u5,}/ Og.1 3
8?12, C2, 102495 L2CE 5l 1\ _
2242 M8yt B L0

where constants L and sequence {;} are defined in (@2) and (36)), respectively.
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Proof of Lemma([D.3] By Lemma we know that L, < L and ||ii;|| < C0 if t < 7. Then under

event & N &,, (32) is obtained by replacing L; with L, and (53) is obtained by substituting both L;
and ||4;|| with L and C, o, respectively. O

With Lemma [D.3]in place, we now formally present the statement of Lemma [.5] below.

Lemma D.6 (Complete version of Lemma[#.3). Under event £y N &, and the parameter choices in
Lemma ift <1, we have

X . n n
el < Cuo+ Cuio, 9t < (Cuo+ Cui0)?, < hy 2=
[l < Cuyo 10, 0 2 (Cup 10) Cuo+ Cuto+ A Y

ift <1, we have

Vo (e, ye; &) — B[V (e, yi; &) < O,

B[V (e, 555 60)] — Be1[Vo(@e—1,yi 13 &—)]Il < Lllze — 2o l;
where constants C., o, Cy 1,04, L and ¢ are defined in @3), @2) and (53), respectively.

Proof of Lemma[D.6] By Lemma|[B.T4] under event & N &, if t < 7, we have

IV@(@e, yt: &)l < Co0 + (Cor + La[ V(@) )l — w7 | + V()
< Cp0+ G+ (Cy1+ L1G)o=Cup+ Cyr0,

where the second inequality is due to Lemma[D.2]and (33) in Lemma[D.3] and the last equality uses
the definitions in (@3). We can bound |77 || by a standard induction argument as follows. First, for
the base case k = 1, note that
1]l = V(21,15 &) < Curo + Cuto.
Suppose ||mp_1|| < Cu,0 + Cy 10 for some k < 7, then we have
]| < (1 — o)1l + | Vd(@k, y; &) | < Cuo + Cure-
Then we can show 0; < (Cy 0 + C'u,lg)2 in a similar way (by induction argument) by noting that
(Vo(e,y1:€))* 2 IVo(s, 515611 < (Cuo + Cuno).

Given the bound on ¥y, it is straight forward to bound the learning rate h;. As for the second last
bound, by Lemma@and (33) of Lemma@, under event £, N &, if t < 7, we have

||@¢($t7yt§f_t) - ]Et[ﬁgb(xtayt;gt)]”

p+3lga 402 + 251 + 042 251 + 042

< lyo+ ———=(Lyo+ Lyalso)llye — vl
[ L f L Y y,1tf t
+3l,1+0 20,1+ 0 20,1+ 0
< K g; 9,2 + g,1 g’2lf70+ %(Ly,o +Ly,1lf,O)Q

< O¢s

where the last equality uses ¢ < r by Lemma[D.T3]and the definition of o, in (@4). The last bound
can be obtained by applying Lemmas [B.T5|and[D.2]

IV (s, y75 &) — Bem1 [Vo(i—1,yi—1; &—1)]| < (Lo + La||[V(xe—1)||) ]zt — 21
< (Lo + L1G) ||z — ze—1||
= L||zy — z4-1],

where the last inequality uses the definition of L in (@2). O
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D.6 PROOF OF LEMMA [£.6]

The following lemma provides a bound for the difference between the actual momentum m; versus
the auxiliary momentum 4, under the good event & N &,, which is crucial for establishing the
convergence guarantees for Algorithm T}

Lemma D.7. Under event £y N &, and the parameter choices in Lemma we have

=1 212 12 212 12
A 8n7lg 1 L . 8y . 4eT  32n%12,L
Z:Hmt—ut”2 STLQ <<1+ )\zjzl,YQ > ”yl —y1||2—|— ( In 5 +7gé 03)1

2
t=1 A2 ulry

8212, 2048y L2 1)) & . . -
+L2<vuiﬁ*' Nt (20 5) | el 2 Foten i) - Ve

8212, 204854 | L2
+2L2<>\2u4g7712 " X‘/ﬁﬁ <2+ln ) ZHV@ =l

Proof of Lemma[D.7] Under event & N &,, if t < 7, by Lemma [D.2and (1) in Lemma [D.4 we
have

t

i — @] < L Zdt,gllya P < LY dugllys — il
j=1

Now we apply (52) of Lemma|[D.5]and take summation to obtain

T—1 t
MO duglly; — vl
t=1 j=1
-1t , 212 12 212 12
py\I=t 80Pl L o 87 4eT 3217151 L 9
< d | ((1=50) + =g )l —wilP + ([ S2m =+ =55 ) o
Zj ‘ t.J (( 9 A2 42 I il 5 25y 9,1

t=1 j=

(A1)
T—1 t J—1 . . 414 2 j—1 . .
py NI o 64T, L py NI
+Z dy,;j ()\2 3 2(1_7> ]| +Wz<1— 2) o ||
t=1 j=1 i=1 i=1
(A2)

We continue to bound each term individually.

Bounding (47). By Lemmas[B.3|and[B.5]and choice of y = 23/, we have

T—1 ¢ ; 272 2 272 2

uy\J—t  8n lg L 9 S'y 4eT 327 lg L 9

A — d; : (1 _ 7) _ 9= _ F In P

;; " << 2 iy ) Il 5 ey ) %o
T—1 1

=Sy (Y i

t=1 j=1

r—1 t 212 12
" 8y . 4eT 32971 71L
+ZZdH< 22 4 12 ||yl yl||2+< In e + ) g1

2
tl]l )\/147

212 8 d4eT 321212 L2
g,1 Y e Mg
—Ztat (1= B) "y — y1||2+z< o i ||y1—y1||2+< ==+ —5 % — | oy,

A2y
81212 | L? 8y deT  32n%1% L?
<T 14 L9 —_u¥l? 1 9, 2
= (( + A2/hn2 lyr — will” + [ s + 225 Tg.1 |

(54
where the last inequality uses 7 < 7'+ 1 by definition of 7.
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Bounding (43). By Lemmas[B.3|and[B.€]and choice of v = 23/, we have

T—1 t 2;2 J—1 . . 474 2 j—1 . .
anlg py\I—t—i o 64n*l; L pry\I—1-i A
@)=> > d; ()\2”??72(12) i1 + WZO*?) ol ]|*
i=1 i=1

t=1 j=1 =
2l2 T—1 ¢ 64 n L o1t

< Sepir 2o 2 el + = Z’ 1 (32“61“ ) 3 dullag )2
Ll 15=1 t=1 j=1

A2, 10245100 12 ,
< ()\2#472 + N pS~A <2 +In> ) Z e ||
Final Bound. Combining (54) and (33) yields

T—1 t 272 2 272 2

. 8nly L . 8y . 4eT  32n%12,L
oS digllyi—yIP<T <<1+ )\242) lyr = 7l* + (1115 + 5% | oo
t=1 j=1 Y K

A2 By

47)213 1 10241741;l L2 5
+ <)\2M4V2 + N84 <2 +1n = ) Z (e ]|”

In addition, recall the definition of @ and ¢, in (36) and (37), by Young’s inequality we have

lael|® < 2lle|]” + 4BV (e, u7'5 )] — V(@) ||* + 4| VD(x) |-
Therefore, we conclude that

T—1 t

Z e — el < L2 Y deglly; — w51

t=1 j=1

8212, L? 8y, 4eT 32212, L*
9 9.1 _ gl 9,1 2
<TL <<1+>\2M4’V2> lyr — will” + ( In S +W 99,1

8n212 2048n*1 | L? 1\ | = . _
2 9,1 )1 2 *, 2
+1L ()\2#472 + A8yt (2 +In 5) ?:1 ||6t|| + 2||]Et[v¢($t7 Yis ft)] - Vq’(fﬁt)H

81212 204814 | L2 1\ | =
2 g,1 1 2
+2L </\2M472 T 18y (2 +1n ﬂ) ;:1 V@ ()"

D.7 PROOF OF THEOREM [4.1]

The following lemma ensures that z;4; and x; remain close for sufficiently small 7, allowing us to
apply Lemma [B.T1]in Lemma|[D.9

Lemma D.8. Under event &y N &, and the parameter choices in Lemma|D.4} if t < T, then we have
|zt+1 — z¢|| < nD where D = 2G//\

Proof of Lemma[D.8} Under event & N E,, if ¢ < 7, then we have

N(Cuo+ Cui0) _ 210G
: 2 < =nD
X =T T
where the first inequality uses (38), the second inequality is due to Lemma|[D.2] the third inequality

uses Lemma[D.6] the fourth inequality is due to Lemma[D.13] and the last equality uses the definition
of D. O

R M
le4r = @ell < [|Hellle ]| < llmell <

Next, we provide a descent lemma for AdamBO.
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Lemma D.9. Under event £y N &, and the parameter choices in Lemma ift <, we have

U] 2 . .
O(zp41) — P(2) < —EHV‘I’(%)HQ + THmt — dig)|?

¥ 1 ) (56)
e 2 4 B [ (a7 6] — V()
Proof of Lemma[D.9, By Lemmas[D.6and [D.13]and choice of G, if t < 7, we have
nl n nl
=2 < H, <1
2G = Cup+ Cuno T A~ 15 7

Since we choose 17 < /D, then by LemmaD.8| we have ||z441 — 24|| < rif ¢ < 7. Define & and
€¢ as ~ _
ét = rht — V@(xt) and €t = at — ]Et[Vqﬁ(a:t, y:, ft)] (58)
For any ¢ < 7, we apply Lemma[B-TT]to obtain that
Lo+ L1||V®(z;)
2

D(ws1) — D) < (VD(w), w041 — w0) + Les — w2
L 2
< VO(xe), Ter1 — 20) + S| 2e41 — 24

L
= —V@(mt)THtmt + Em:HEmt

R L. .
< IV, — V() Hiér + o [,
2 3. nL .
< —§||V‘I’($t)“%{t + 1”%”?{, + N (V@ ()17, + 1Ecl?s,)
1 .
< —5 IV (@), + e,
<

— IV @) + L a1

n 20, . 4n 4n . . -
< *EHV‘D(%)HQ + 7||mt —a||® + 7||€t||2 + 7||Et[v¢(l"t7yt;§t)] — Ve(z,)|?,
where the second inequality is due to Lemma [D.2] and definition of L in (#2)); the third inequality
uses (58) and (57); the fourth inequality is due to Young’s inequality a " Ab < %|la||4 + 3[b[[% and
la+b|? < 2||a|} +2/|b||4 for any PSD matrix A; the fifth inequality uses the choice of n < A/6L;
the second last inequality is due to (37); and the last inequality uses (38) and Young’s inequality. []

The following lemma is essential for bounding the sum of the error terms ||¢;||? before time 7. Since

we introduce [V (zy, yF; £;)] as part of the definition of ¢, (see (58)), we can directly invoke (Li
et al.| 2023a, Lemma C.10) to obtain the high probability bound.

Lemma D.10 ((Li et al., 2023a, Lemma C.10)). Denote w; as
w1 = (1 — ag) (€1 + Et—lqu(xt—hy:—ﬁgt—l)] - Etw¢($t:y:§€t)])~

Under the parameter choices in Theorem Sor any given § € (0, 1), the following holds with
probability at least 1 — 0 /4 over the randomness in Fr1 (we denote this event as £, ):

Z o (wi—1, ©¢($t7 Y5 &) — Et[@ﬂ!ﬂt, Y5 &) < 505&\/(1 + B*T) In(4/6).
t=2

The next lemma bounds the sum of the error terms ||¢; ||? before time 7.

Lemma D.11. Under event £y N &, N &, and the parameter choices in Lemma we have

T—1

> lledll® ~ LIIV‘1>(JCt)||2 < 803(1/8 + BT) + 2003/ (1/82 + T) In(4/9)

128G
t=1
)\ T—1 _
+ 128¢ D e = ul® + B[ V(e 75 )] — V(o).
t=1

(59)
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Proof of Lemma[D.T1] We first denote w, as
wi—1 = (1 —ag)(er—1 + Et—l[@ﬂﬂ?t—l,y;_l;f_t—l)] - Et[@ﬂxt»yf;f_t)])
By definition of ¢; and the update rule (§), we have
e = (1 —ay)(e—1 + Etfl[@d)(xtflay:fl;gtfl)] - Et[@qﬁ(xt,y;‘;f_t)])
+ o (Vo(e,yf: &) — Be[V(ae, ufs &) (60)
= w¢—1 + at(@ﬁs(%a Yrs f_t) - Et[@ﬂﬂ?t, Y f_t)])
By choice of 7 we have
corA _ 2caor r
77 S S - S =)
G D D
where in the last inequality we choose small enough c;. By Lemma [D.8|we have ||z, — 1| < 7
if ¢ < 7. Then for 2 < ¢ < 7, we apply Lemma[D.6]to obtain

1B 1[Vo(zi_1,y 1:&-1)] — Ee[Volay, yi; &)l
L. . L .
< Ly — ol < Tl < 20V @e) | + e )

L ) ) R L
< 2 (190G )l + -1 = o] + el + Bt [V(-1,51:6-1)] = V@)

(61)
where the third inequality uses (58)). Hence we have
||wt71H2 = |(1 — ) (er—1 + Etfl[@¢($t—1,yff1§gt71)] - Etw¢($tayf§ étt)])Hz
< (1= ) (14 ag) e
1 — * c — *, &
#=a? (14 3 ) B (P15 2:60)] - BFolon i @D
1 = * & = *, &
< (1—aw)lle—1]* + ;t||Et—l[v¢(xt—17yt—1§ §-1)] — Ee[Vo(ze, yi5 &0)))II
4p*L? (62)

< (1= a)llee—1]* + (IVe(@e—0)I* + llell?)

A28

An?L? R ) N . s
+ 226 (Hmtfl - Ut71||2 + ||Et71[V¢($t,17yt71; ftfl)] — V‘I)(l'tfl)|‘2)
_ 2 AB 2
< (1-F) el + 55 172
A . R . .-
+ 2566G (Hmtfl - ut*1||2 + HEtfl[V(b(-thlyyt71§ft71)] - V‘I’(iﬂtq)ﬂz) )

where the first inequality uses Young’s inequality ||a + b||* < (1 + ¢)||al|? + (1 + 1/c)||b]|? for any
¢ > 0; the second inequality is due to
1—a)*(T+a) <(1—a)(1—a?)<1—ay,
1 1 1 1
l—a)? (1+—)=—(1—-aa)?(1 <—(1—ay) < —;
(-0 (14 1) = Lu-apfiran < Ta-a) < o
the third inequality uses (61)) and Young’s inequality; and the last inequality is due to the choice of
G and 7 with small enough c5:
3/2 3/2 272
n§C2>\ BS)\B :>477L§)\6§£
LVG ~ 32LVG A28~ 256G ~ 256
Plugging (62) back into gives
el = llwe—a]|* + 20 wi1, V(s yis &) — Ea[V(a, y7'5 €0)])
+ O‘?HV¢(%7 i gt) — B[V (ze, yfs éft)]HQ
Qi )\ﬁ
< (1= %) le-ll? + gees V@) + afo?
+ 200 (vi—1, V(1,473 6) — Ee[Vd(ae, v &)])
AB

+ 2560 (llmtq — 1|2+ |E1 [Vo(ae—1, yiq: &1)] — v‘I)(~’10t71)||2) .

NIy

Qi
< =< =
-2 2
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Rearranging the above inequality, for any 2 < ¢ < 7, we have

(0%
Sheall < Plleeal? < lleesl? = lleall + o V@)l
+ 0ol + 204 (v—1, Ve, y7: &) — Be[ V(@ y73 &)
A . . - . =
b oo (I = I + B a9 1,y 6 1)) — VB )IP)

Then taking summation over ¢ from 2 to 7 we obtain that
5 2 2
= lle— Vo
> gl - o 9]

el = llerl® + 02 Y a7 +2> afwi, Vo(ar, yi; &) — B[V, vi56)])
t=2 t=2
\B

+ 256G ; 01 — 1 ||? + B 1 [V (i1, yp 15 &1)] — V(1)

< 4o (1+ B°T) 4+ 1003/ (1 + B2T) In(4/5)

A s . - . .z
% Z 1 = e |® + B [Vo(e-1, 5715 &-1)] — VO(ze1)|,
t=2

where the last inequality uses Lemmas andand the fact that [|e;[|* < o3. Then we complete
the proof by multiplying both sides by 2/4. [

With Lemm% and [D.TT] we are ready to prove Theorem .1} Below is the full statement
of Theorem with detailed parameter choices, where we use ci, co, c3 to denote small enough
constants and C', Cy to denote large enough ones. The definitions of problem-dependent constants
04,Cy0,Cs1,A1, Lo, L1, L, Cg are provided in Appendix [D.1]

Theorem D.12 (Restatement of Theorem[d.1). Suppose that Assumptions[3.2|to[3:4 hold. Let G be
a constant satisfying

G Z max 4)\7 20’¢,40¢ 0, C(i)’l 5 ClAlLO, ClAlLl ) (63)
TV o CrL

Givenany € > 0 and 0 € (0,1), denote . :=1n(4/§), and choose

. c1Ae? B %
0<bhasl Bs mm{ 2Gmax{1 NO ln(Cﬁ)}} = p' 4
oA A op\B A\3/23
1 c2min {G’ 6L TG max{L, /i, (1/5),1n(Cp)} wa} ©

1 W C3Au“€e
Q22max{1n6/ln<1—ng> In <Gl§11?0>/1 (1—>}, (66)

B 1 CeAG
T = ln 9.1 In(1 ), T:max{,}, 67)
’ (u *llyo —yo||2>/ g2 e

where constant C'g is defined as

860’ G2 max{l L} 80 eA Lg’ G3 9 2G
¢ ) 2 1 o) ¢
Cﬁ N { 0%5/\264 ’ c1Ca0\2et c1\e? Ina::{ \ﬂ L}7

2
32eq}G” 48C5eA Loy G? o3G
¢ 2eA1L0oy
S5 —— |1 1
( Zon2e > ’ ( CreadNZel vl R S
Run Algorithm or T iterations. Then with probability at least 1 — § over the randomness in Frp1,
we have |V ®(z,)|| < G forall t € [T, and * 23:1 IV ()| < €%
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Proof of Theorem[D12] By Lemmas|D.3][D.4|and[D.10] we have Pr(£,NE, NE,) > 1 —35/4 >
1 — 0. The following analysis is conditioned on the event &, N &, N E,.

Rearranging (56) of Lemmamand telescoping over ¢ from 1 to 7 — 1, we have

S 16G
S AT - S el < 7 (@) - 8°) - (@) - )
- (68)
+ 3265 Z e — > + 2AEF (0,75 )] — V()2
t=1
Also, (39) of Lemma|[D.T1|can be written as
S 1B e vt < 256 (02015 + 67) + 2003 (175 TV A7)
t=1
(69)

T—1

+ 3 Ml = ael® + B[V, yi3 &) — V().

t=1

Summing (68) and (69) and rearranging gives

16G 64G' <
T(‘P(wr) )+ 32 IV (we)|* + Z leel®
t=1

= 1%; (AAl + 640 (Z + ”5T> +160n03\/(1/52 +T) ln(4/5))

+ (1 ?’QG) z =l + (145 ) Z BV (s, 75 €0)] — V()

< %G (AAl + 6402 (5 + nﬁT) +160n03+/(1/6% +T) 111(4/5))

33G 65G <
Z 770 — @||* + Z B[V (s, 575 )] — VO(a0) 1%,

where the last inequality uses G > A. By Lemma L we further have

16G 64G
—(®(zr +3Z IV (ze)||* + 72 lec]l?

= ISTG (AAl + 640 (5 + 775T> + 160002 /(1/5% + T) 1n(4/5)>

33L2GT 8n?lZ , L? 8y, 4eT  32%17,L°
1 9, %2 In 2
+ A\ << + )\2N472 Hyl yl” + L 5 + )\QM v Og.1

33L2G [ 81?12 2048n*13 | L2 1\ | = R -
+ ( LU ! <2+lnﬂ) ZHQHQ+2||Et[V¢(xt7yt;§t)]—V@(wt)HQ

>\ )\2/“6472 A4 8 4 1
t=
66L2G [ 8n?l2, 20481t L2 ,
PO (S L (20 ]) ) S wnc

G T—1 ) B
+ O S BT (i 6)] - V)

t=1

(70)
By Lemma|[D.T3] we know that
66L%G 8772l§1 2048015 | L? o l)) <o
2\ 24 + A4 8~4 +n3 =
piey? 1By g
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Then with G > X, (70) can be simplified as

%@(m — ") + Z_: VP ()|

33L2GT 8?12 | L* 87 4eT 320212 | L*
il 14+ 2 92" — ¥ 12 In 2 2
+ ) << + )\2//4472 Hyl yl” + 6 + )\2//457 Og1
2 12 2
+67(:T1g711f70 L Q
Ap? lg 1
By definition of 7 in (@I), we have
16G 16G 8CLG3
216G (e, — vy > 20G¥ _ 8CL
7 nL

By Lemma|[D.14] we have I; < I, which leads to a contradiction. Thus, we must have 7 = T+ 1
conditioned on & N &, N &,. Therefore, combining and Lemma [D.T4]finally yields that under
event & NEYy N &y,

(71)

=: Il.

=: IQ.

T

1

0 IVa) < €.
t=1

Moreover, since 7 = T' + 1, then by Lemma we can replace ﬁT and G with L and G respec-
tively, in the additional requirement {#9) for 1. Therefore, (@9) is now included in the parameter
choices of Theorem[D.12] which indicates that the current parameter choices are sufficient. O

D.8 PARAMETER CHOICES FOR ADAMBO (THEOREM [D.12)

The following two lemmas, Lemmas|[D.T3|and[D.T4] hide complicate calculations and will be useful
in the contradiction argument and upper-level convergence analysis.

Lemma D.13. Under the parameter choices in Theorem|D.12| we have the following facts:

4eT . 17802
In =5~ <I(Cy), g —will* < —5* In(Cy), (72
1
ngln T (> Cu0+culg+>\§2Ga (73)
4L1 E} 9
L2 8n312 2048n*1% |, L? 1
66L7G [ 807ty | 20480 Ly b7 () ) 1Y) (74)
)\ /\2M472 A4M874 ﬁ

Proof of Lemma[D.I3] We first list all the relevant parameter choices below for convenience:

C¢1 ClAlLO ClAlLl
> 4N, 204, 4 ’
G_max{ A206, 4000, T o TE T e (¢

. 12 _ %
s mm{ G max{1, Vi, 1n(cﬁ)}} Y=

<ec min{ r LAl )\3/25}
= G’ LGmax{1, /i, In(1/8),n(Cs)} LVG

1 1% C3Ape p
> = 1 In{l—-—],In In{1—-—
Q_Qmax{nﬂ/n< l_q71> <Gl§1l?0>/n( )

p 1 CoAG
To =In g’l In(1 ), T:max{, },
" (u *llyo — w5112 / g2 me

where Cj is defined in @3). Now we verify the above listed facts one by one.
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Verification for (72): In(4eT'/6) < In(Cps). We focus on the dominant terms for each parameter
choice when ¢ is sufficiently small. For the remaining cases, the result can be easily obtained by
following the same procedure. Specifically, we consider the case where (3,7 and 1" are chosen as

ﬂ o Cl>\62 - CQU¢)\5 T — ma i CQAlG
N aiGmaX{l,\ﬂ, In(Cs)}’ = LG max{1,/t,In(1/8),In(Cp)}’ - e B2 ne? '
(Case 1) If T' = 1/[3%, then we have
WT e
n— = n(w2
. 460‘;1)G2 max{1,,1n*(Cj)} l 4602G2(max{1,b} +1n?(Cp))
2Nt - 2Nt

4ectG?(max{1,.} + 401/2)
¢ ’ B
<In < C%5>\264 < 111(05),

where the second inequality uses Inz < 2z'/4 for = > 0, and the last inequality is due to

deog@Pmax{l} _Cp 0 163G Ly Oy
2oN2H =9 35Nt TP T 2

since

2
8ec? G? max{1,. 32e0tG?
Cp > max ¢ { }, ( ¢ )

c2oN2et AoN2et

(Case2)If T = C?ﬁf;G, then we have

! 4eT 1 <4CQ€A1LO'¢G3 max{1,/,In(1/5),In(Cp)} max{1, /z, ln(C’B)}>
. 1) - 0162(5)\264
I <4CQeA1LU¢G3(maX{1, Vit 4+ 1In(1/8) 4+ In(Cp)) (max{1, /¢} + In(Cp))

(75)

c1c0\2et

Also note that
1 U;G max{1,+/t,1n(Cg)} aiG(maX{l, Vi) +1n(Cg))
In— =1In <In
Cc1\€2 C1 €2
- 0;G(max{1,/t} +1In(Cp))
- c1\e?
Then we obtain

(max{1, vz} +In(1/8) + In(Cp))(max{1, vz} + n(Cp))

02 G (max L n
< (max{l, Vit + bl {:;\{2} In(C)) + ln(05)> (max{1,v/1} +In(Cs))

2

o5G
Cld/)\62> (max{l, L} +2 max{l, \ﬁ} 1n<Cﬁ) + In? (Cﬁ))

(76)

(max{1,:} + 2max{1,v/2}Cy* +4C}%)

max{1, /s, ¢} (1 + 60[13/2>

< <1+ UiG) (max{l,L}+6max{1,\ﬂ,L}C’é/2)
(i)
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where the second inequality uses In z < '/ and In 2 < 22/ for 2 > 0. Thus, plugging back
into (75) and we have

m 2T _ (4026A1La¢63<max{1, Vi} +In(1/8)) (max{1, i} + 1H(Cﬁ))>
1)

01025)\264
4026A1LO’¢G3 U¢>G 1/2
< - - ¥
_1n< creg0 2t Ve max{1, v/, ¢} (l—I—GC’ )

< 1n(C’5),

where the last inequality is due to

3 23
dCaebalooG® (| 0BG\ 0 sy <Co
cie2

c1ce0\2et
and )
24026A1LO'¢G3 U¢G 12 _ Cp
1 cl < ==
c1Ca02et +cl)\e2 max{1, v, ¢} B= 2
since

8CyeA 1 Lo yGP o;G
Cs > max{ creadNZed < e max{1,/t,t},
2
4802€A LO’¢G
< c1020A%et ( ) max{l, Vi, L}>

Verification for (72): |y1 — yi||* < 17807 ; In(Cp)/p®. By choice of Tj and v, we have

8yo? 4e

— 2 < (1 NV) 2 9:1 1, =€

llyr = yill” < 5 ) lvo—wll”+ PR
BU§,1 16ﬁ0 4e

1 —
Tou? I 0
17
< i““m(cm

where the last inequality uses 7 > 1/4% > 1 and In(4eT'/§) < In(Cp).

Verification for (73): ¢ < min{r,1/4L,}. By Lemma|D.5|and choices of 1,y and 3, we have

8’172l2 1L2 w12 8y . 4eT 32’17le 1L2 9
1+ i lyr —yill” + ZIHT—FW Tg.1

8212 ,C2,, 102411} | L2C2
n g,1 u,0 2+1Hl
>\2u ok A Byt B

+
277212 1L2 17802 1683 16172l2 1L2
< (1 + 2232 qugJ ln(Cg) + Fln(cﬁ) +—5 |
+
+

24 g1
2012 ,C2,  64ntly L2 1
+ 7 g,1 2+1H7
22 252 Npapa B
- 203)[3 1 1701)\0’3’162 16¢1 A€ 160103/\53,162 9
u2G? ,u20'2G + u%’iG urG3 9.1
212..C? 192cto414
2%;;1 wd | €204tg,1 < min ﬁi ,
u2L2G2 urL2G4 414

where in the last inequality we choose small enough ¢; and cs.
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Verification of (73): Cy, o + Cy10+ A < 2G. By definitions of C,, o, Cy,1 in (43) and choice of
G, we have
Cu,O + C’u’lg + A= C¢70 —+ G + (C¢,1 + L1G)Q + A
G

G G
<= —+-—-=G.
_4+G+2+4 G

Verification for (74). By choices of 7,y and 3, we have
272 474 72
66L*G [ 8n'ly, | 20480705, L7 () 1
N N2 A2 P 3
_ 66L%G 2212 | N 12814 L? . _ 66L°G 2c50312 384cyoly <y
=" 221232 T /3 =" (212G2 LAL2GH >4

where in the last inequality we choose small enough cs. O

Lemma D.14. Denote I and I5 as

I = ff <)\A1 + 6402 (Z + nﬂT) + 160002/ (1/3% 1+ T) ln(4/§)>

33L2GT 8?12 | L? 8'y 4eT 320212 L2
4+ 14+ L 90 — o *12 In - gl 2
\ (( A2 lyr — w1l S X257 99,1 -

67TGTIZ |12 2Q
4 — 9l /0 (1— “) ,

A2 Iy
8CLG?
nL -

lg,l

IQ =
For any given € > 0, under the parameter choice in Theorem wehave Iy < Iy and I /T < €2.
Proof of Lemma|D.14} We first verify I; < I and then verify I; /T < €.

Proof of I; < I,. We start to show I; /T < 1. We have

I 2L
7; < YeNeZ <)\A1 + 6407 (Z + nBT) +160n03+/(1/8% + T) 1n(4/5)>

50T 8?1y L? . 8y, deT 3202, L7
RYoe? 1+ﬁ lyr — i l* + In 5 +)\27‘q5 o34
L iy 0 5y
92 115 oLnT L 2Q
N2CLG?

lg,l

)\Al 2L 2 277 CgAlGﬁ CQAlGﬁ
S A, Tace | <B+ &2 )HGO ‘z"/\/w? ( 2 ))

3 212 L2\ 17802
oL <”+02A21G> <1+ 7.1 ) B0 In(Cp)

+ A\CLG2 \ 32 c X242 32 12

L3 A 161212 | L?
n 5 £+ C2AG ﬁ In(C) + nig,l 021
ACLG? \ 32 €2 2 X243 g,

913,11?,01’ ﬁ_i_OzAlG 38
M2CL G2\ 52 €2

16 48¢co N3
< + 6 ( 2770 + 246102)\A1>

_|_

1
=8 ' ACLG? LG
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N 5L3 i C20 A N 01022)\A1 - 26%;’2[5],1 1702371
NCLG LG p WG L
I 5L3 CQU¢)\ I c1C2AA E i QC%Uil;l 9
ACLG? \ LG o3 2 prG? 9.1
912,11?7(@ CQO’¢>\ 6102)\A1
AM2CG? LG aﬁ
1 384L (220}
== ColA
8 LG ( g taert
I CQO’¢/\ i c1CoAA{ 5L3 L? n 366%0@1371 52 4 913,11?701/
LG o2 NCLG2? \ 2 piG? 91T \u2C G2
<1,

where the first inequality is due to (77); the second inequality uses large enough C; and (Li et al.,
2023a, Lemma C.5), the fact that In(4eT'/0) < In(Cj) and In(4eT"/§) < In(Cp), and the choice of
v, Q,T that

n CQAlG Qﬂ 1 %)
<L 4= 0> / In(1--2);
n _52—1_ €2 v [ Q_2n6 n It
the third inequality uses (Li et al.,2023a, Lemma C.5), the choice of 7, 3 that
Ui CoO g\ J6] 1A

< ’ ) S ;
B = LGmax{l,/1,In(Cp)}" € = oG max{l,/,In(Cp)}

and in the last inequality we choose small enough c¢; and cs.

Proof of I; /T < €. Last, we show I; /T < €2. We have
L _16GA;,  102403G 10403G  256003GVE [T 1

T T NAT D) g T T

33L%G 8?12 L? cia  [8v, deT 322 L7\
+ h\ <<1+)\2M472 lyr — yill” + FIHTJFW 041

67GI? |12 Q
N o170 (1 N M)
Al l

9,1
162 358402G max{l, /1 102402G  256002G+/1
<=4 ¢ LV ol 6V | e
Cy BT A T

332G 212 L2 17802, 168 167212, L2
+ N\ ((1 + )\2;2/82 Mz'q 111(05) + ? ln(0ﬁ> + 7)\2:4/8 0'371

- 16¢€2 716805)6’ max{1,/:}8

=7 + \ +6703e2
2
+33L2G 1+2c§ail§71 17cido) 1€ [16ci0e® | 16c1c3NG 4 €2 2
A 12G? /~L203,G /~L203,G s 9,1

16 33¢1 L2G 2¢50312 1\ 17A02, 16N 163NI2,
= | =~ +7168¢; 4+ 67cs + ——— [ [ 1 * 9, 9.1 ) ;2 2
(Cz + c1+67cs + h (( + Ptz NQUQ%G + NQUiG + es Tg.1 €

<€

where the first inequality uses v/a + b < v/a + V/b for a,b > 0, the fact that In(4eT'/5) < In(Cj)
and [|y1 — yil|? < 17807 In(Cp)/p?, and the choice of T, Q, 7y that

CoA G 1 cs pu?e? ( i > 23
T> , >—In| —=——— In{1--"], ==
~ e @ 2 (G@Jl?,o / lga TS
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the second inequality uses the choice of T', 7, 5 that

1 C20 ¢ /\ﬁ C1 )\62
T>— < =, < ;
25 "< Tpg o Ps 02G max{L, /2, In(Cp)}
and in the last inequality we choose small enough ¢y, c2, c3 and large enough Cs. O

E CONVERGENCE ANALYSIS OF VR-ADAMBO (ALGORITHM [2))

In this section, we provide convergence analysis for VR-AdamBO (Algorithm [2). Before presenting
the lemmas and the main theorem, we first define (or restate) a few key concepts and useful notations.

E.1 TECHNICAL DEFINITIONS AND USEFUL NOTATIONS

Filtration. Let o(-) be the o-algebra generated by the random variables within the argument. De-
fine Fini as the filtration for updating y; (i.e., the filtration of warm-start phase):

-Enit = O'(ﬁ'(), s aﬁ-To—l)7

For any ¢ > 2, define F;* as the filtration of the randomness used in updating x; before the ¢-th
iteration:

Fr=0(S1,&,..., & 1),
also define F} as the filtration of the randomness used in updating y; when ¢ is a multiple of I:
FY=o(@?,...,aN7h).
Additionally, let F; denote the filtration of all randomness before the ¢-th iteration:
Fi = o(Finit U FF U (Ut FY)).

Expectation. We use E,[] to denote the conditional expectation E[- | F].

Other Definitions. We define the deviation of the momentum from the conditional expectation of
the hypergradient estimator as

€ = my — By [@qb(xh Yt gt)] (78)
Also, let h; be the learning rate vector and H; be the learning rate matrix:
n .
hy = —— and H; := diag(h;).
t \/@»t iy t g( t)

Then the update rule for upper-level variable z; (line 18 of Algorithm [2)) can be written as

Tip1 = Tt — hy @ 1y = 24 — Hythyg.

Stopping Time. Given a large enough constant G as defined in Theorem [E.14] denote L and 1) as
CrG?

2L
where constants Lo, L1 and C'r, are defined in (I4) and (43). Now we formally define the stopping
time 7 as

L="Ly+ LG and P =

r=min{t | ®(x¢) — ®* > Y} Amin{t | ||&| > G} A (T +1). (79)
Based on Lemma we know if ¢ < 7, we have ®(x;) — * < 9, ||| < G and |[VO(zy)]| < G.

Constants. We define the following constants, which will be useful for analysis.

« lgﬁllf,o 5126A10’¢LG2
L:Lo—f—LlG, Alzq)(l’l)—q), Cm:2G+T+LT7 anm—3/2€3’
Omax = | Max lykre1 = Yzl Omax = max 9 — v ll,

N ~ * nlgl 1—v lg,llfO nlglL 1—v
= — — I)(2G+ —— 1-—— 1.
: <||y1 il + ( — + )( e DA CEs vl et

Besides, constants Lo, L, are defined in (I4)), r is defined in (T3)), and o4 is defined in Appendix
respectively.
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E.2 AUXILIARY LEMMAS

First note that when ¢ < 7, some of the quantities in Algorithm [2] and Appendix are bounded
almost surely. In particular, we have the following lemma.

Lemma E.1. Ift < 7, we have
IVe@)l <G llel <G, he=;

Surther, if |g: — yi || <, then we have

I Q
el < 190+ el + Ll =i+ 220 (1= )
9,

Proof of Lemma[E]} For the first three results, the proof is the same as Lemma For the third
one, if ¢t < 7and ||g; — y;|| < r, we have

Hth < Hmt - Et[@ﬂxt’ﬂt%é)]n + H]Et[@(b(xhgt;gt)] - Et[?ﬂs(xt?y:,é)m
+ IIEt[%(aznyf;&)] = Vo (xy)| + [[VO(y)]

l Q
< IV + el + (Lo + LiIToGaOlDle — il + 2222 (1 )
9,

lgalso p\°
< Ve (@)l + llecll + Lllge — yi [l + = )

9,

where the second inequality uses the definition of ¢;, Lemmas[B.T5]and [B-T6] the third inequality is
due to |V®(z;)|| < G if t < 7, and the definition of gpax. O

Next, we provide an upper bound for ||y; — y; || using the structure of periodic updates.
Lemma E.2. Foranyt > 1, we have

1
421;1 HmZHa where Omax = kirﬁ%}/(fj Hyk1+1 - ylea
1=Kt

lye — i

where k; = |t/I| and we define my = 0 for completeness.

Proof of Lemma[EZ2] For any kil +1 <t < (k; + 1)I, we have

t—1 t—1
lye = 91l < Nlyeren = virl + D 197 = yiall < omax + Y llyi = yia
i=k¢l i*ktl
l t—1 77[
< Omax + 9.1 ’sz: “$z+1 - xz” < Omax + )\g/; zzk: H
+ 7

where the second inequality uses the definition of gpax, the third inequality is due to (B.9), and the
last inequality uses the update rule in Algorithm [2]and Lemma[E.] O

The following lemma provides bound for the lower-level estimation error.
Lemma E.3. Consider the averaging step (line 15) of Algorithm[2} for any t > 1 we have
t

t
~ * — ~ * (1 — l/)T]l ,1 t—1 —1 *
9 =9l < (1= 0)* Ml — w75 3 (=) il v 3 =2 s = i

i=1 i=1

Proof of Lemma[EZ3| Define §jo = yq for simplicity. By the update rule of §;, we have

19e = wi ll = 11 =) (@e—1 — i) + v(ye — i)l
= 1T =) (@1 = yim) + (L =) (yir =) +v(ye — 47l
< (=g =yl + A =)lly=y = el + vllye — vl
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We apply the above inequality recursively to obtain

t t
19 = w1l < (L=)" " Mlgn = will+ (=) D (=) lyimy = il +v D1 =) v — vl
=2

=2
< (1= — o (1 —v)nlga t—i pyt *
< W= = gill + Z( V) 1H+VZ i — i,
i=1
where the last inequality uses z; = x¢ and Lemma|[B.9] O

The following lemma characterizes the averaged lower-level estimation error.

Lemma E.4. Under the parameter choices in Theorem|E.14} if ||§: — ;|| < r holds for all t, then
we have

a ~ * 6 ~ *
> g = w17 < Slgn = w51 + 120007
t=1
7212 - 22 20
212 2 2 [91°f.0 H
Uy} & A K
s (L )Z(IV P+ el + 222 (1= )
and

. L Aspr2 L 96212 122
Z"yt—ytHQ < WH?A-Z/@HQ*‘ 2+>\27 OmaxT
t=1

81212 | I? ( 7212 | L2

T—1
A242 \2/.2 ( +772I2>> Z [V®(z) ||2+ llel )
t=1

2 2
N 8ilg 1 I° 1+ 725,17 (1 peye l5al%o LM @
X2 22z \ 2 12 I :

Proof of Lemma If t < 7, by Lemma[E.2]we have

M

i=k1

lye —yill <

Then we have

t—1 2
. nlg1 271,
lye —ur||* < (gmax+ /\gu > Imz|> < 2000 e g2 (Z ||m1||>

i=kyl i=kel (80)
2l2 I t—1 )
< 2 iqax AQ 2 Z ||m1||
i=kl
Taking summation on both sides of (80) over ¢ from 1 to v, we have
T lv/I|—1min{(k+1)I,v}
S llye—wil? = Z S w—vil?
t=1 t=kI
LV/IJ 1 min{(k+1)I,v}
<3 T3 (ke 2R S )
t=kI 1=kl (81)

212 11-2 lv/1]-1min{(k+1)I,v}

Z Yoo

t=kIl

< 2Q?nax(y - 1)

) 2[2 1]2 )
< 2QmaucT +t 3 5 )\2 2 Z ||mt||
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where the last inequality uses the definition of v and my = 0.

By Lemma|E.3] we have

t 2
v 771 ,1 —q
> il <331 - - yo||2+3z(yguguz<1—u>f nmun)
t=1 =1
- 2
+3Y <v2<1 — )"y - y)
t=1 =1
3 Ly 31 -v)E, NS . ,
S;th—yoll +W;V;(l—u) [lrmei—1 ]
+3Z Z )y — yi|1?
1 *
2>\2 2 g Z” ||2+32H9t—yt||2
t=1
3(1 — v)2p212, =

T—1
3. « 1 Ut
;Hyl —yo||2+TQQZ||m 1?43 (2QmaxT+ )\qu th||2>

3. 9 2 912 1 7] 272 2
< gy —yi 6 T AL (. I
=y Hyl Yo || + Omax + )\2[12 2 + n ; ||mt|| ’

3(1—

IN

3 ~ * 2
VHyl Yoll” +

IN

where the first inequality uses Young’s inequality; the second inequality is due to Jensen’s inequal-
ity; the third inequality uses the sum of geometric series; the fourth inequality is due to (81). By
Lemmal[E.T} we know that

i z N
el < DGl + e+ L — i+ 222 (1 )
g

Then we obtain

-
" 3.
D e [ [ Vi [ e

961 22 = gllfo 1% Q\*
32 I Z I9@@)l+ leell + Lilge — il + =22 (1= 7=

< 7“:‘)1 - yéHQ + 6Qr2naXT

36l n 212 = 2 2 2 2 13113‘0 H 2
o (L) T (1900l + P + 21— 17+ 252 (1= 22) 7).

t=1 9,

Under the parameter choices in Theorem [E.14] by Appendix [E.5|we have

3612 2
g1 (7 272 2
322 <V2+77]>L <=

Rearranging the above inequality yields

T

N . 6, .
> 15 =il < 29— w12 + 126, T

t=1
721 = 12,12 2Q
2 2 Z 2 24 g,1"f,0 H

t=1 9,1
(32)
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Finally, using the previous results we conclude that
2 T—1

3l =i 1P < 2T+ 20 2 lmel?
t=1
2
22 12 o laaly @
< 20T + 258 S (90 + el + Ll il + 2522 (1- )
Ap t=1 H lg.1
8772l2 2T 1 A . 12 1l2 2Q
< 20T+ 25 T (V1?4 llal? + 22— 717 + 2210 (1= )
A= H g1
8772l2 11-2 T—1 12 1l o " 2Q
<92 2 T —r g lm V(I) 2 2 9, f 1—- 2
< 2T+ g 2 | IVRGOI + el + 5 ™

SpPI2 P12 (6
s (S - il + 12687

72l 272\ \° 2 24 19711%0 H 2
S (L +n1)z<v¢>zt I+ e+ 22 (1 )

272 12712 2712 712712
LAY PP P L Rt SR
V)\2M2 Y1 Yo A2 2 max

81212 | I 7202, 12
+ )\29;;2 1+ ,\2 2 <V +772]2> Z IV ()| + flec*)

T

N 8n2I2 12 - 7212, L? e l;lz L 2Q
A2u2 )\2 2 y2 M lg,l ’

where the first inequality uses (81), the third inequality is due to Young’s inequality, and the last
inequality uses (82). O

The next lemma is a generalization of (Li et al.,2023a, Lemma D.4) under the bilevel optimization
setting.
Lemma E.5. Under the parameter choices in Theorem[E14] ift < 7, andn,v, I, 0max, Omax further
satisfy

vl vnly 11 . . N "
(<1 + ;71) g + 7])\9;) rtﬂga,}( ||mt|| + V(Qmax + Qmax) <7, Omax = rtngai)’( ”yt — Yt || <,
(33)

then we have

2nL vl 2nL> vl . N
Wl < o+ 225 (14288 ) (19t + eal) + (2024 22 (1220 ) ) gy -

2Lyl vl @
+ 2Ly, — gy | + T <1+ g’l) (1—“> .
Al I lg1

Proof of Lemmal[E.3] By the definition of W, we know that
Wy = 5(@¢($t7§t;gt) - Et[@ﬁﬁ(ﬂft@t;f_t)]) + (1= B)ds,
where J; is denoted as
6 = Vo(we,91: &) — Vo(we—1, e-13 &) — B[V (e, Ge; &)] + Ee [V (w1, Ge—1: &)
By condition (83) and Lemma|[E2] it is easy to verify that

PO vigi\ n .
e — 2eall 4+ 190 — Gos ]l < (1 + /j) Dmesll+ vllye = v |+ lGer — v |

v lo1] N
( 102 ) Lo+ (e + 22 i o) + 1
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Then we have

H5t|| < ||@¢($ta@t§§_t) - @Qﬁ(xt—lagt—l;gt)n + H]Et[@gb(xtagt;gt)] - Et[@¢($t—1,ﬁt—1;f_t)]||
< 2L([lze — @1 [l + (|9 — Ge-1l)

vig, § A )
<20 ( (1 222 s — sl vl =1+l — )

Vl ,1 n * ~ *
<2 (14282 ) Tl + vl — i+ vl vl

2 L 1/l l Q
<% (“ ) V@)l + leemsll + Lligror — vi o]l + q’”o(l‘”
A 12 1% 1971

+ 2L ([lye — yi | + 191 — g ll)

mL v, oL vl ) .
= 2 (14 288 9l + el + (202 + 225 (1 220 ) ) s )

Q
2nLl, 41 vl
+ 2Ly, — yi || + T (1 + ) (1 e ) :
)‘:U/ H lg71

where the second inequality uses Lemma [B.T3}, the third inequality is due to

190 = Geall < wllye — vl + vllys — vl + vliyi—a = Gl

vig . . R
< ‘qulxt — x|l + vl — vl + vy = Ge-all;

the fourth inequality uses the update rule in Algorithm 2|and h; < n/A by Lemma the last
inequality is again due to Lemmal[E.13] Thus we obtain

2nL vig, 2nL Vg, . N
Wil < o+ 225 (1 22} (190G + el + (202 25 (1 2 ) ) gy =)

onLi, 1 l Q
+2vLl|ly: — yi |l + 1749,1°1,0 <1—|—Vg’1) (1—”) .
)‘M 2 lg,l

O

The following is the descent lemma for VR-AdamBO, whose proof is similar to that of Lemma|[D.9]
Lemma E.6. Under the parameter choices in Theorem|[E 14 if t < T, and 1), dmax further satisfy

< rA brny < M { ! } (84)
P T T Omax > IMIN§T, — )
max< ||| 4L,

then we have
U 21 dnL®
D(zi41) — P(r) < —S[IVO(2) 1> + el + —— 19 — w7 |?
47] — *, &
+ 7||Et[v¢(xtayt;£t)] — V(z)|.

Proof of LemmalE.6] The proof is essentially the same as that of Lemma except for the last
step. Define €; and ¢; as

— V@(xt) and € = My — Et [@Qf)(l’t, Qta f_t)] (86)
By choice of 7 in (84), we have

rA

= - < X
||mt|| = /\max ||m H ||mt|| =T

241 — 2l <
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Then for any ¢ < 7, by Lemma[D.9 we have

O(z441) — (1)

IN

~ 15 Ive@)IP + {1l

2 4 ) o . -
< =LV (@) + Sl + SLIENV e, g1 €] — Bl Voo, yis &)1
4 - . -
FEV (s, i3] - V()
417L
< — LIV + el + T2 g~y

+ TH]Et[VGﬁ(fCuy?;ﬁt)] - V(I)(xt)” ;

where the second inequality uses (86) and Young’s inequality, the third inequality is due to
Lemma[B.15and the definition of v. O

The next lemma uses Optional Stopping Theorem () to bound the sum of the error terms ||¢;||? before
time 7 in expectation.

Lemma E.7. Under the parameter choices in Theorem if 0,0, I, Omax, Omax further satisfy

(83) and (84), then we have

3 3\
5 By — 2 0g, >||2]

t=1

E

400G

48n212 [ 1212 96212 , 122
4 oa2L? <W||y1—ys2+ oy Dol ) 2

A 6,
< 82037 = Bller) 482 (12 + o ) (Sl = 617 + 126807
vA2p2 A2
(2 +24n2L2T Lyl 2\ 2al%0 _— 2Q
326G A2 1 2 lga)

Proof of Lemma[E7} By Lemma [E.5] we have

2412 L2 g1\’
Wl < 6003 + 2 (14 2 ) (190(a0) 12 + o)
2
L2 vl . .
w6 (24 25 (1 220 gy = g4 2022 —

WLy (| () )
+ 5 1+ 1
)\ 1% lgl

A3 AB Y - "
< 68203 + S (IVR( I+ lera )+ 4822 (12 + 00 ) s = i P
24 2L2l2 l2 I 2 2Q
+24V2L2||yt—yt\|2+w (1+g’1> (1— M)
A 12 1% 1971

where the first inequality uses Young’s inequality; the second inequality is due to Lemma[E4] v < 1
and choices of 7, 8 such that

VCap ~ A0L(p+1g1) V G

where in the last inequality we choose large enough C5. Note that

leell = (1 = B)llee—11* + [Well® + (1 = B){ee—1, We).

o Ug,l\/B < /~L>‘3/2 B
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Taking summation over 2 < t < 7, we obtain

T

ZHEtH2 ZHet 1||2+Z||Wt”2 = B) ) _(et—1, W)
t=2

)? Z lee—all® + (1= B8) > (er—1,We)
t=2

t=2
2 2 Aﬂ 2 2
+ 60203 —1) + 64GZW<1> ze D)l + e

rast? (17 4OOG>ZH%1 i 1||2+24V2L22||yt wl?

+24772L2l21l olv—1) 1+19771 2 _a 2Q
)‘2 2 Zg,l

Zu“n? gjg 98I+ leeal) + (1= 8) S e, W)
t=2

400G

481212, I2L 967212 , 1212
2712 g,1 N * 12 g,1 2
+24°L <V>\2M2Hy1 —yoll"+ {2+ T2 Omax T’
(A8, 2T (1 N l) 5170 (1 ) u)”

32G A2 ,u w2 lgn

T )\ T T
< (1-38/9) Y el + %ZM@H)H? (1= 8) Y (err W)
t=2 t=2

t=2

A 6
+ 63203 T + 481> (u + 5) (Vllzh —wl®+ 12@imT>

400G

48772l2 I’L? . 9677212 I?L?
+ 24122 (/\212||yl - Z,/o||2 +12+ T Qr2naxT

+ £+M 1+l97’1 ’ M 1,L @
32G A2 1 112 lga ’

where the third inequality uses Lemma|E.4]and the choices of 7 and 3, and the last inequality is due
to G > A. Taking expectations on both sides, rearranging the terms, and noting that

E [i<6t17Wt>‘| = 0

t=2

A 6, .
+68%0;T + 48L7 ( + ﬂ) (Vllyl -yl + 12anaxT)

by the Optional Stopping Theorem (i.e., Lemma[B.§), we have
T—1
38 5 3B 9
0
S Ll - 90|

t=1

E

A 6, . «
<520t mller + 827 (37 00 (S i + 126)

A2 1202 967212 | 12 L2
+ 2422 (V)fg’lugllyl —wlP+ 2+ Agil; O T

+ £+w 1_|_l9771 ’ M 1_L e
32G A2 i 12 lga ’

where the inequality uses the choice of S; to derive E||e1 ||| < 03/S1 < 28%03T. O
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Combing Lemmas [E.6|and [E7] we obtain the following lemma.
Lemma E.8. Under the parameter choices in Theorem if 0,0, I, Omax, Omax further satisfy

(83) and (84), then we have

T—1
7 ABT
E o(x)|?| <, E[d(z,)— "] < = A< 2=
> IVaGIE| <7, BRe) - 915 . Ellell< fo
where T is defined in (89).

Proof of Lemma[E.§ By LemmalE.6] if ¢ < 7, then
2 AnL> .
(ar) = B(xr) < — LIV + S lleall® + = llge — v P
4G A
477 - *. & 2
+ THEt[V(b(mt»ytvft)] - Vq)(fft)” .

Taking summation over 1 < ¢ < 7, rearranging terms, multiplying both sides by 8G /7, and taking
expectation, we obtain

T—1
8G
B |02 Vo) - nmﬂ
t=1

8G 32GL? 32GTI? l 2Q
S sae) - o) + 5 Znyt ytnﬂ Taiio (1 1)
g

)

IA

8G 32GL% (6 .
< SO0y - (2] + (||y1 —y02+12giaxT)
n A v
32 72GI2 , L o) [ &= ) )
S O R (VQ I )]E ; V@@ )[I” + [le
2 2 2Q
L (207 32 GTEL (Y Bl (e
2\ 312 2 112 Ig1
8G 32GL% (6, .
< SO (0)) - B(a,)) + 2L (nyl gl 1zgfnaxT)
n A v
T—1

1 4G
+E Y IVl + e

t=1

Y 312

(87)
where the second inequality uses Lemma [E.4] and the last inequality is due to the choices of 7 and
. Also, by Lemma |E.7| we have

E

) %W - |v<1><mt>||2]

t=1

128Go? 51 16G 16 - 48G'L? B 6
[ 2 2 N *)(2 2
< — Ellle ] + ————— + — — — + 12 T

16 - 2402GL? (480717, 1°L* |, 96772121[2L2 )
+ )\IB V)\QMQ Hyl - yO” +12+ T QmaxT

L16G (A8 24n?L2T (g N\ Galo (,_ 1\
A8\ 32G A2 W w2 lg1 '
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Then summing + (88) gives

T—1
DIV
t=1

8GA; 128Go2BT  [(32GL? 16-48GL? A 6
e +( + (v2+ ﬂ)) (Vlﬁl—y3||2+12giaxT)

16G

8G N 2
E + E[0(r,) - 2]+ S Eller )

n A A AB 400G
16 - 2402GL? [ 48n*12  I°L* . 96n212 | I2L?
+ S gy — a2+ |2+ ——25— | kT
AB VA% A2
32GT 32-72GTZ§ | L? n? 5
5o = +n°I?
< T A3 2 (1/2+n )
1 24n2L2T 2\ | 2,03 2Q
+6G /\B+ n 1+lgi71 91770 [ P
A8\ 32G A2 I 12 lg1
=1,
(39)
which implies that
T—1
o o 1L 9 ABT
E o 21 <7, E[®(z,)— o< =, El|e|?] <=
> IVe@)l| <Z. Elb(n) -] < g Bllel’] < Tog
O

E.3 LOWER-LEVEL ERROR CONTROL

In this section, we aim to provide high probability bound for the lower-level estimation error. First,
we present the following high probability guarantee for SNAG (Algorithm [3)), as implied by (Gong
et al.,[2024b, Lemmas C.3 and C.6).

Lemma E.9 (SNAG). Suppose that Assumptions and hold. Let {g.} be the iterates
generated by Algorithm |5\ with constant learning rate v < 1/2lg 1. Then for any given § € (0,1)

and any fixed t > 1, the following holds with probability at least 1 — § over the randomness in ]:—%J :

- - 3 VY ! . - 47021 e
—u* 2 2 N — ¥ 2 + 9 n =,

Proof of LemmalE.9, We will use a short hand §* = y*(Z). By (Gong et al., [2024b, Lemmas C.6

and C.3), we have
—\ t 4 2 T

0
where V; is the notation defined in (Gong et al.|[2024b, Lemmas C.3) which satisfy the following by

noting that y_; = gp and py < 1:

1+(1—\/ﬂ>2”~

[ ~x |12 ~% (|2 3 ~ ~% (|2
v, > Eug, — N A _ < 2 lgg — .
P > 2Hyt Ml 0 < o Jo— 9y |I° < 27||yo 7|

Therefore, we obtain
Ellge
277 4

Rearranging the above inequality yields the result. [

Lemma E.10. Under the parameter choices in Theorem Sorany given § € (0, 1), the following

holds with probability at least 1 — 16 /8T over the randomness in o(Fi U (Us<rF}')) (we denote
this event as &,):

. 3 wy b . el
712 < o (1= S0 o - 7P + 29021 50

t—1
* T/l 1
lye = wi | <+ =25 D lmal
K i=kel

where ki = |t/1] and we define mo = 0 for completeness.
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Proof of Lemma[EI0} By line 3 of Algorithm 2] Lemma[E9]and Appendix [E.3] with probability at
least 1 — §/8T over the randomness in Fiy;; we have

4

\ 3 A\ dyo, 8T 12
I =551 < = (1= Y2 o -l + T B < T T

3 A
0 5 2

which gives ||y1 — y|| < 7. Then for any 1 < ¢ < I, we have

t—1 t—1
lye = will < My = vl + DNy —wial < n+ > llv = vill
1=0 =0

Iy =t nlyq =t
<+ 2= Z i1 — x| <+ 2= Z [l
L A
Also, under the parameter choices in Theorem [E.14] Lemma shows that ||yxr41 — vyl <
for all k. Similarly, for k7 + 1 <t < (k; + 1)1 we have

t—1

. nlg1
lye =il <m+ 525 D7 mall
i=kyl

O

Lemma E.11. Consider Algorithm |2|f0r 1 <t < I. Under event £, and the parameter choices in
Theorem[E T4} if t < T, we have

N " . . N l 1—v lg1l lo1L (1—v
9 —yill < 0= (Ilyl—yo|+n+n/\g’l< +I) <2G+g’1f’0)>/<1—ng’l< +I>);
n v 0 Al v
(90)

ift < T, we have

Iyl
me|| < Crm = 2G + %fo + L. 1)

Proof of Lemma[ET1} For 0 <t < I, we will use induction to show that if ¢ < 7, then

e =yl <o, and  [[my| < Cpm.

Base Case. Fort = 1, it is easy to check that
91 = vill = 91 — woll < 6,

where the first equality uses x1 = x¢. Also, since 9 < r and thus [|§; — y}| < r by Appendix[E.3]
then we have

[mall < [m1 — E1[Vo(z1, 915 €D + |E1[Vé(w1, 51:&)] — Ea [V (a1, yi:6)]]|
+ |EL[Vo(a1,y53 )] — V(1) + V(1)
I,1l @
<l + (Bo + LIV@) Dl — o+ 2222 (1= 24 jvage)
9,
lgalfo

Iyl
< 2G4+ 2P0 4 15 <0G 4 L0 |y
! 7

where the second inequality uses Lemmas[B.15|and [B.16] the third inequality is due to the induction
hypothesis and the definition of 7, and the last inequality again uses 0 < r by Appendix Thus,
the base case t = 0 holds.
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Induction Step. Suppose the induction hypothesis holds for t < k — 1 with k¥ < 7, then for ¢ = k
we have

k k
N * ~ * (1 —V)ﬂl ,1 —i —i *
9 = will < (1 =)"llgn =l + =5 =55 D (1= ) lhmacall 40D (1= )"l - 9

i=1 =1

k
~ * (1 - V)Ul ,1 —1i
< (1—1/)k||y1—y0|\+7/\ﬂ ! Z:(lfl/)]C i1l

i=1

k i1
—i Nlg,1
+’/Z(1_V)k ﬂ+ﬁ2”mj”
i=1 =0

. ’f]lg 1 1—v lg,llf,O . ﬂlg’lL 1—v A
< (1wl 40+ B2 (A2 1) (204 20} /(1o Mol (122 p)) =

where the first inequality uses Lemma[E.3] the second inequality is due to Lemmal[E.I0]and & < I,
and the last inequality uses the induction hypothesis, the sum of geometric series, and the definition
of 0. Also, we have

Il < lme — Ex[Vo (@, i &)l + B[V o (@, Gr; )] — Ex[V(ar, yis; &)l
+ [Ex [V (@, y7s &) — V(@) | + V()|

l Q
<l + (B + LIV@G@n) Dl sl + 2252 (1 2) 4 vt
g,

gl lgal
<26+ 210 4 pp <26+ 20 4 gy,
" p

where the second inequality uses Lemmas[B.T5]and[B.T6] the third inequality is due to the induction
hypothesis and the definition of 7, and the last inequality again uses ¢ < 7 by Appendix [E.3]
Therefore, the induction step is complete.

O

Lemma E.12. Under event £, and the parameter choices in Theorem .]4: ift <7, then ||§; —
yill < 0y and if t < T, then ||my|| < Cy,; where ¢ and C,, are defined in and (©T)

Proof of Lemma[E12] By Lemma we know that the statement of Lem holds true for
E.10]

0 <t < I. Now we consider the case for I + 1 < ¢ < 21. First, by Lemma 0| we know that

I—1
* 77191 77191[
yr—yrl <n+ = m;|| <n+ ———Chp,.
lyr = v | vl v

Then by choice of N and Appendix [E.3] we have

N 2 2 2

3 Ay . Ayogr . 8T _m* 1
(1= Y2) o= i+ 2 B <

— 2= A o2
lyr+1 —y7ll 1y 4 5 9 + 9 n,

which gives ||yr+1 — ;]| < n. Now we follow the same procedure as Lemmas and [E.11] to
obtain the result for I +1 < ¢ < 2I. For the general case kI + 1 < ¢ < min{(k; + 1 I, T}, where
1 <k < |T/I], we can easily obtain the results by repeating the previous steps. O

With Lemma[E.T2] some of the important quantities in Algorithm[2]are well bounded before time 7.
Lemma E.13. Under event £, and the parameter choices in Theorem[E. 14| ift < T, we have

n
Cu0+cu1@+)\_

3

B = (Cu,O + Cu71@)2a ht =3

>/

A ! @
Il < V@@l + ol + Ll 7] + 2522 (1—/‘1) < Co
9,
ift <1, we have

I9: —vill < 6,  |IVG(xt, 915 &) — Bt [V(as, Ge; &) < a6
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Proof of Lemma[E13] Note that if t < 7, by Lemma[E.T|we have
~ g 1lf 0 M @

[mel < V@)l + [lecll + Lllge — yill + 1—-—

2 lg,l
lg 1l lg1l

<2G+ Lo+ 20 <oqy Lr+ 210 —
[ 1
where the second inequality uses LemmalE-12] the third inequality is due to 4 < r by Appendix[E-3]

and the last inequality uses the definition of C,,. The remaining terms can be bounded in a similar
way as Lemma [D.6] O

E.4 PROOF OF THEOREM[5.1I

With Lemmas [E-8| and [E-T3] we are ready to prove Theorem [E.T4] Below is the full statement of
Theorem [5.1] with detailed parameter choices, where we use c1, ¢, to denote small enough con-
stants and C7, C5 to denote large enough ones. The definitions of problem-dependent constants
04,Cs.0,Cp1,A1, Lo, L1, L, Cpy, Cy are provided in Appendices[D.T|and [E.]

Theorem E.14. Suppose that Assumptions|[3.2} 3.3|and[3.3| hold. Let G be a constant satisfying

C¢ 1 ClAlLO ClAlLl
> 4,204, 4 =4/ 2
G > max { )\, O¢, O¢70, I ) CLo ’ CLo ’ (92)

Given any € > 0 and ¢ € (0,1), choose

A X 02,G*6 \2\/je Copi’n?
<e¢;-mind —, =, % < <1 =
nx>aa mln{GaL7 )\A1M27U¢GL O_BSQ— 9 O—;)l )
1 4GA 1
y= o2f v=B 1=, r=%0% g

pmax{1,In(Cy)}’
2

wy uyn Y
In ~— ], N>l In{l—-Y+—

(Glyo yo||2> / ( 4 (6(77+nlg,110m//\u)2> / ( 4

2u2GA
In (77% 1l?c1)>
32.72GTI2 , L2 2\’
o [ (287 + ZEGRE (4 ) 5 (2 2562 (1))

where C,, is defined as

Q=

512eA104,LG?

c1A\263/2¢3
Run Algorithm |2[f0r T iterations. Then with probability at least 1 — § over the randomness in Fr1,
we have |[V®(z,)|| < G forall t € [T, and + Zthl [V®(x,)|| < €2

Cy =

Proof of Theorem By Lemmal[E-8] we have

T—1
E | [VO(a)|?
t=1

First, note that if 7 = 7y < T, we know ®(x,) — ®* > 1 by the definition of 7. Then we have

_ . E[@(z,) —®*] _ nZ _ LI
Pr(r =71 <T) < Pr(®(z;) — ®* > ) < b < 8Gy  4C.G3’

ABZ

L
E[®(z,) - < =, Elle ] < — ek

— 8G7

where the second inequality uses Markov’s inequality. (@0)
Similarly, if 75 = 7 < T, we know ||¢;|| > G by the definition of 7. Then we also have

Efler]?] _ AT

2 2
Pr(r =1 <T) < Pr(|le;]| > G) = Pr([le; ]| > G7) < G? T 16G3
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Under event &, we further have
16GA
< ; L (93)

which implies that

ULI < 4A1L o 4A1L0 + 4A1L1 < 80 < 0

4C1G3 — CLG? - CrG? LG — 07 — 16’
where the first equality use the definition of L, the second inequality is due to the choice of GG, and
in the last inequality we choose large enough C1; (93) also implies that

ABT  ABAL Oy p?Ain )

< = <100 < —

1663 = 3962~ 2,2 - g
where the first equality uses the choice of 3, the second inequality is due to the choice of 7, and in
the last inequality we choose small enough c;. Thus, we obtain for : = 1, 2 that

Pr(r=7<T)=Pr(r =7 <T|E&)Pr(,) +Pr(r =7 <T|&)Pr(&)
5 5 § 36
<= |ll-5 )+ =
16 8 8 ~ 16
34
Prr <T)<Pr(r=n <T)+Pr(r=71<T) < 5
Also, note that by Lemma [E.8 we have

3 ||v<1><zt>||2]

t=1

Therefore, we have

IT>E

>Pr({r =T +1}N¢E,)E

doIVe@@)|® | {r=T+1}n Ey]

t=1

> 1g
-2

T
SOV |? | {r =T +1}n ey] ,
t=1

where the last inequality uses

Pr{r=T+1}N&,)=1-Pr({r <T}UE)

3 5 51
>1-P <T)-P Y>1—- — ——=1——=> =
Z1-Prr<T)-Pr(&) 21— 3 -3 2 =2

Then we obtain
T
1 32GA,  de
E|= o 2 =T+1¥nE, | <2T< < 94
72 VO | {7 =T +1)0&,| <27 < =5 < 5, (94)

where the second inequality uses (93)), and the last inequality is due to the choice of T. Now we
define £ to be the event that Algorithm [2 does not converge to e-stationary points:

T
c.__ 1 2 2
£ = {T;||vq>(xt)|| > € }
By (94) and Markov’s inequality, we have
de2 5

{r=T+1}n¢&) < —=-.

Pr(&
r( 22 2

Then we have

Pr(€cU{r <TIU&)) <Pr({r <T}UE&E) +Pr(&° [ {r=T+1}NE,)
<Pr({r <T})+Pr(&)) +Pr(&° [{r=T+1}NE,)
w5 i,
-8 8 2 ’

which yields

Prén{r=T+1}Nn&) =1-Pr(°U{r <TIUE)) >1-4.
Therefore, we conclude that with probability at least 1 — J, wehave 7 =T + 1 and [|[V®(z,)|| < G
forall t € [T], and L S/, |V ()| < €2 O
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E.5 PARAMETER CHOICES FOR VR-ADAMBO (THEOREM [E.14])

We first list all the relevant parameter choices below for convenience:

C¢ 1 ClAlLO ClAlLl 512036A10’¢LG2
> 2 =
G > max {4/\, 204,4Cy 0, I \/ O ' Cro , Cy UL

AN A2 A2V6e Cop®n?
< . 1 _— < < =
m=a mm{G’L’AlLQ’%GL}’ 0<bhasl, o2,
CQﬁ 1 CgGAl 1
7= rmeLmcyy Vo VP VB e V2 g

2 2
pyn ww) ( pn ) < \//w)
To>h|(—""" ) /Im(1-¥YL), N>k In(1-Y¥1),
0= <6lyo—yé‘ll2>/ < 4 6(n +nlg,11Cm /Ap)? / 4

Verification for Lemma[E.4} By choices of , 3, v and I, we have

2 2 272 2 2 72 2
36l5,, L (772 + 2]2> _ 27l LT 200,05, L <

1
2212 2 2223 CoNZpd 9’

where in the last inequality we choose large enough Cj.

Verification for Lemma|[E.8} By choices of 1, 3, v and I, we have

v2

b )

32-72GI2 | L? [ n? 32-72n*GI2 | L?  32-72Go? 1% L2
9.1 (77 + 772[2> = Ul el .1 9.1 < min {1 40}
312 \3123 Co X314

where in the last inequality we choose large enough Cs.
Verification for Lemmas[E.10jand[E.12]  Similar to Appendix[D} we focus on the dominant terms

for each parameter choice when ¢ is sufficiently small. For the remaining cases, the result can be
easily obtained by following the same procedure. Specifically, we consider the case where 7 is chose

as
cl)\gx/ge
0'¢GL '

Under event &, by Lemma we have

Iy — w5

3 NN dyo2 | 8T 1?2 depfol
2 < 2 _ MNP e e < L 9 In(C
” M’Y( 4 ”yO yO” + 1 n 5 — 9 +M2max{1’1n<cn)} Il( 7])
2 4 2
- 7620277 In
2 In(Cy)

2 2
Ui n
(Cn)§?+5:772,

where the second inequality uses the choices of Tj and +, the third inequality is due to the choice of
5, and in the last inequality we choose small enough c5.

Under event &, by LemmalE.12] for £ > 1 we have

N 2
3 VI dyog,  8eT
— k12 < 1 M7/ kP Sy
lyer+1 — izl _IW( 1 llyrr — yirll” + n—
N 2
3 N gl ”o_n
<2 (1-¥2 P9l o T <L 41T —2
_m( 4 Tt Tty sty =

where the third inequality uses the choice of V.
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Verification for ||§; — y;|| < 0 < min{r,1/4L,}. First, by choices of 7, v and I, we have

nlg1 L (1 —v +I) < lg1L (ﬂ +7]I) _ 2nlg 1 L
Al v ~ A\n \v A/ B
2091lg1 L < 1
VO A2 ~ 2

where in the last inequality we choose large enough C'. Under event &,, by Lemmal[E.T2] we have

0
’Iﬂq qulf 0 ’I]lg,lL 1—v
— 1 112G 1—-—=—(—+417T
(y1 il + ( + )( v/ e (o
nlg,l 1—v gllfO
212 2G
(n A ( v )( T
2617")\ 20g.1lg 1L lg 1lf0 . 1
< 3 b 3 9 <
_2< a + NSV 2G+7M < min 7’,—4[/1 ,

where the second inequality uses ||g1 — yg|| < 7, the third inequality is due to the choices of 7, v
and I, and in the last inequality we choose small enough ¢; and large enough C5. Therefore, we
also have

9e =i ll <

IA

Iyl Iyl
Cm:2G+M+L@§20+%f’°+Lr.
m

Verification for Lemma[E.7, By choices of 7, 3, v and I, we have

B 7202 L 4814407 417 L A A8
4 L2 2 2[2 — 9, 1
s (” * 400G) 222 7 = Corzyt T 3006 )" = qag

where in the last inequality we choose large enough C5. We also have

241212 - Bty l” 1+ 725 L peye 19203,153,1L2 1+ 7205 15 1 L? B< A3
A2 32 ot =T Ol Cony = 654G

where in the last inequality we choose large enough Cs. In addition, under event &, we have

Vlg,l n angvlj O
((1 + . ) \ + )\M I%a%( ||me + V(Qmax + Qmax)

1 2,4
< 9,
- ()\ A )Cmn \/3(77 2

< (L4 21 (g loalro g,y YOI () ad)
A A i Og1 G

1 21 1 1lf0 Cl)\ Clx/CQILL/\ Cl)\
<| = 9 2 g’ Lr — (14 — <
_<>\—|— )\M)(G p + ) 7 + ool —|—G r<r,

where the first inequality uses Lemmas and such that max;<7 ||m|| < Cny, Omax < 71
and Omax < 0; the second inequality is due to the choices of 1 and 3, and ¢ < r; and in the last
inequality we use the choice of 1 again and choose small enough c; .
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Verification for Theorem Under event £, by Lemma we have
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where the first inequality uses the choice of () and the fact that under event &, gmax < 7 by
Lemma and in the last inequality we plug in the choices of 3,7, v, I,T and choose small
enough c1, o and large enough C'1, Cs to obtain the final bound for Z.

F MORE EXPERIMENTAL DETAILS

F.1 RNN RESULTS ON AUC MAXIMIZATION

The results with RNNs for both training and testing over 25 epochs are presented in Figure 3| (a) and
(b), while the corresponding running times are shown in Figure 3] (c) and (d). Our proposed Adam-
type algorithms, AdamBO and VR-AdamBO, show the faster convergence rate and significantly
outperform other baselines during training process.

F.2 HYERPARAMETER SETTINGS FOR DEEP AUC MAXMIZATION

We tune the best hyperparameters for each algorithm, including upper-/lower-level step size, the
number of inner loops, momentum parameters, etc. The upper-level learning rate 7 and the lower-
level learning rate «y are tuned in a wide range of [1.0x 10~¢, 0.1] for all the baselines on experiments
of AUC maximization.

AUC maximization on transformer. The best learning rates (7,7) are summarized as fol-
lows: Stocbio: (0.005,0.0001), TTSA: (0.0005,0.001), SABA: (0.001,0.005), MA-SOBA:
(0.0005, 0.005), SUSTAIN: (0.005,0.001), VRBO: (0.005,0.0005), BO-REP: (0.0001,0.0001),
SLIP: (0.0001,0.001), AccBO: (0.0005,0.0001), AdamBO: (5.0 x 1075,0.005), VR-AdamBO:
(5.0 x 1075,0.005). Note that SUSTAIN decays its upper-/lower-level step size with epoch (¢) by

n=mn/t+2)"3, mow = v/(t + 2)'/3. Other algorithms use a constant learning rate.

AUC maximization on RNN. The best learning rates (7),7) are summarized as follows:
StocBio: (0.01,0.001), TTSA: (0.005,0.01), SABA: (0.01,0.005), MA-SOBA: (0.01,0.005),
SUSTAIN: (0.03,0.01), VRBO: (0.05,0.01), BO-REP: (0.001,0.001), SLIP: (0.001,0.001), Ac-
cBO: (0.005,0.005), AdamBO: (1.0 x 1072,0.001), VR-AdamBO: (1.0 x 10~°,0.001).

Other hyper-parameter settings are summarized as follows. The steps for neumann series estimation
in StocBiO, VRBO, AdamBO, and VR-AdamBO is set to 3, while it is uniformly sampled from
{1,2,3} in TTSA, SUSTAIN, and AccBO. AccBO and VR-AdamBO use the Nesterov accelerated
gradient descent for lower-level update, the momentum parameter o = 0.5 for AccBO and oo = 0.1
for VR-AdamBO, the averaging parameter v = 0.5 for AccBO and v = 0.1 for VR-AdamBO.
The batch size is set to 32 for all algorithms except VRBO, which uses a larger batch size of 64
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Test_AUC vs. Epoch Train_AUC vs. running time (s) Test_AUC vs. running time (s)

o 5 10 15 20 25 10 3
Epoch Epoch

(@) Train AUC (b) Test AUC (C) Train AUC vs. Time (d) Test AUC vs. Time

Figure 3: RNN for AUC maximization on Sentiment140 dataset with imbalance ratio of 0.8. Figures
(a), (b) are the results over epochs, Figures (c), (d) are the results over running time.

(tuned in the range of {32, 64,128, 256, 512}) at the checkpoint (snapshot) step and 32 otherwise.
The momentum parameter 5 = 0.1 is fixed in SLIP, AccBO, MA-SOBA, BO-REP, AdamBO and
VR-AdamBO, and Byq = 0.001 in AdamBO and VR-AdamBO . The warm start steps for the lower
level variable in BO-REP, SLIP, AccBO, AdamBO and VR-AdamBO are set to 3. The number of
inner loops for StocBio is set to 3. BO-REP uses the periodic updates for low-level variable, and
sets the iterations N = 3 and the update interval I = 2. The hyperparameter A in the Adam update
is fixed as 1.0 x 1078 in AdamBO and VR-AdamBO.

F.3 HYERPARAMETER SETTINGS FOR HYPER-REPRESENTATION

The upper-level learning rate 7 and the lower-level learning rate ~ are tuned in a range of [1.0 X
1074, 0.1] for all the baselines. The optimal learning rate pairs are listed as follows, (0.01,0.01) for
MAML, (0.01,0.05) for ANIL, (0.01,0.01) for StocBio, (0.02,0.05) for TTSA, (0.01,0.05) for
SABA, (0.05,0.05) for MA-SOBA, and (0.1, 0.05) for both BO-REP and SLIP, (1.0 x 1074, 1.0 x
10~3) for AdamBO.

Other hyper-parameter settings are summarized as follows. The steps for neumann series estima-
tion in StocBiO, AdamBO is set to 3, while it is uniformly sampled from {1, 2,3} in TTSA. The
momentum parameter 8 = 0.1 is fixed in SLIP, MA-SOBA, BO-REP, AdamBO, and 3, = 0.001
in AdamBO. The warm start steps for the lower level variable in BO-REP, SLIP, AdamBO are set
to 3. The number of inner loops for StocBio is set to 3. BO-REP uses the periodic update for the
low-level variable, and sets the iterations N = 3 and the update interval I = 2. The hyperparameter
A in the Adam update is fixed as 1.0 x 10~ in AdamBO and VR-AdamBO.

G COMPARISON TABLES

Assumption G.1. Consider the following smoothness assumptions:

(A) The objective function is L-smooth.

(B) The objective function is (Lo, L1)-smooth (Zhang et al.||2020a, Definition 1.1, Remark 2.3).
(C) The objective function is (p, Lo, L,)-smooth with 0 < p < 2 (Li et al.||2023a, Definition 3.2).

The above assumptions satisfy: |Assumption G.1(A)|=—=-|Assumption G.1(B)=—|Assumption G.1(C)}
In other words, |Assumption G.1(A)|is the strongest, and|Assumption G.1(C)|is the weakest.

Assumption G.2. The (stochastic) gradient norm of the objective function is (almost surely)
bounded.

Assumption G.3. Suppose the following stochastic estimators are unbiased and satisfy:
Eeop, [IVaF (2,y:€) = Vaf (@, 9)|°] < 071 Eenn, [V F(2,4:6) = Vy fz,9)[%] < 074,

Pr{||V,G(z,y;: &) — Vyg(z,y)| > A} < 2exp(—20*/0 ;) VA >0,

Econ,[IV2,G (2, y: )= Va,g(z. I?) <02y, Beun,[IVe, Gz, y: )=V, g9(z,y) 7] < 0l .
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Table 1: Comparison of Adam-related papers under different settings and assumptions. v* represents
dropping the bias correction term for the first-order momentum while keeping it for the second-order

momentum. d denotes the dimension. Only the key assumptions are listed here.

Adam Paper Problem Stochastic Setting Assumptions Bias Correction Complexity
De et al.|(2018) Single-Level Deterministic G.1(A)+ G2 X O(e7%)
Défossez et al.|(2020] Single-Level  Stochastic (Expectation)  [G.1(A)|+[G.2] s O(de)
Guo et al.[(2021b) Single-Level ~ Stochastic (Expectation) |G.1(A)}+|G.2! X O(e™)
Zhang et al.|(2022) Single-Level  Stochastic (Finite Sum) G.1(A)! v (Randomly Reshuffled) Not Convergeﬂ
‘Wang et al.|(2022) Single-Level  Stochastic (Finite Sum) G.1(B X (Randomly Reshuffled) Not Converge
Li et al.|(2023a) Single-Level  Stochastic (Expectation) G.1(C v O(e™)
AdamBO . . . Ro —n
(This work, Theorem Bilevel Stochastic (Expectation) G.1(B) v O(e™?)
Variance-Reduced Adam Paper Problem Stochastic Setting Assumptions Bias Correction Complexity
VR ADAM (Wang & Klabjan|2022)  Single-Level  Stochastic (Expectation)  [G.1(A)}+|G.2 v (Resetting) Asymptotic Convergence
VRAdam (Li et al.|[2023a} Single-Level  Stochastic (Expectation) G.1(C) /s 0(673)
VR-AdamBO . o . =8
(This work, Theorem Bilevel Stochastic (Expectation) G.1(B) /s O(e?)

Table 2: Comparison of bilevel optimization algorithms under the unbounded smoothness setting.

Method Problem Stochastic Setting Loop Style Assumptions Adam-Type Learning Rate p  Complexity
BO-REP (Hao et al.|[2024) Bilevel  Stochastic (Expectation) Double Assumptions B.2Jand[G.3] X O(e%) O(e)
SLIP (Gong et al.|[2024a) Bilevel ~ Stochastic (Expectation) Single Assumptions[3.2Jand|G.3 X (%) O(e™)
AdamBO ) ) ) ) I E P ~
(This work, Theorem Bilevel  Stochastic (Expectation) Single Assumptions|3.2to|3.4 v O(e?) O(e™*)
Method (Variance-Reduction)  Problem Stochastic Setting Loop Style Assumptions Adam-Type Learning Rate 5 Complexity
AccBO (Gong et al.|[2024b] Bilevel  Stochastic (Expectation) DoubleE Assumptions|3.2{|3.5fand|G.3 X (:)(52) (3(5’3)
VR-AdamBO . . . . ] =~ s
(This work, Theorem Bilevel  Stochastic (Expectation) Double Assumptions|3.2}[3.3fand[3.5, v O(e) O(e™?)

H ADDITIONAL EXPERIMENTS

H.1 META-LEARNING ON BERT

We have conducted meta-learning experiments on a larger language model, specifically an 8-layer
BERT (Devlin et al.,|2018)) model. The experiments are performed on a widely-used question clas-
sification dataset TREC (L1 & Roth}2002), which contains 6 coarse-grained categories. To evaluate
our approach on meta-learning, we construct K = 500 meta tasks, where the training data D!" and
validation data DY for the i-th task are randomly sampled from two disjoint categories, with 5
examples per category. A BERT model, with 8 self-attention layers and a fully-connected layer, is
used in our experiment. The self-attention layers serve as representation layers (with their param-
eters treated as upper-level variables) and the fully-connected layer (with its parameters treated as
lower-level variables) serves as an adapter, where each self-attention layer consists of 8 self-attention
heads with the hidden size being 768. The fully-connected layer acts as a classifier, with the input
dimension of 768 and the output dimension of 6 (corresponding to the 6 categories). Our bilevel
optimization algorithm trains the representation layers and the adapter on the meta tasks (D" and
DV from scratch, and then evaluate it on the test set D*®. During the evaluation phase, we fix
the parameters of representation layers and just fine-tune the adapters. We train the models for 20
epochs and compare it with other bilevel optimization baseline algorithms. The training and testing
comparison results are presented in Figure[d As shown, the proposed algorithm AdamBO achieves
fast convergence to the best training and test results among all baselines.

The best upper-level learning rate 7 and lower-level learning rate y for all baselines are tuned. The
detailed settings are summarized as following:

2(Guo et al.,2021b, Assumption 2) can be implied by Assumptionm although it is weaker.

3 Adam can converge with an additional strong growth condition (Zhang et al., 2022; Wang et al.| 2022).

*Under Assumption 3.2, the objective function ® is (Lo, L; )-smooth, see Lemma B.10 for details.

SThe single-loop version (Option I) of AccBO (Gong et al., [2024b) only works for one-dimensional
quadratic lower-level function.
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Train_ACC vs. Epoch Test_ACC vs. Epoch Train_ACC vs. running time (s) Test_ACC vs. running time (s)
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Figure 4: Comparison with bilevel optimization baselines on hyper-representation. The experiment
is performed on a large language model BERT, which contains 8 transformer encoder layers acting
as the representation layers and a fully-connected layer acting as the adapter.
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Figure 5: Test accuracy of different models on AUC maximization and hyper-representaion using
AdamBO with 8 = 0.1, 44 = 0.001 and different As. (a) a 2-layer RNN model on AUC maximiza-
tion (data imbalanced ratio = 0.8); (b) a 2-layer Transformer model on AUC maximization (data
imbalanced ratio = 0.9); (c) an 8-layer BERT model on hyper-representation.

The upper-level learning rate 7 and the lower-level learning rate + are tuned in a range of [1.0 x
10~%,0.1] for all the baselines. The optimal learning rate pairs (1,) are, (0.01,0.001) for MAML,
(0.01,0.02) for ANIL, (0.01,0.002) for StocBio, (0.01,0.001) for TTSA, (0.01,0.01) for SABA,
(0.01,0.01) for MA-SOBA, and (0.1, 0.05) for both BO-REP and SLIP, (1.0 x 10=%,5.0 x 10~3)
for AdamBO. Please refer to our code https://anonymous.4open.science/r/AdamBO
for more experimental details.

H.2 SENSITIVITY TO THE CHOICE OF \

In addition, we have conducted additional experiments in Figure [5] to show the empirical perfor-
mance of our algorithm is not very sensitive to the choice of A. Although the default choice of \ is
10~® (Kingma & Ba, 2014), increasing it up to 10~ only causes minor differences in AUC maxi-
mization, and increasing it up to 10~ leads to minor changes in hyper-representation performance

with BERT (Devlin et al,[2018).

I PROOF SKETCH FOR VR-ADAMBO (THEOREM [5.1])

For VR-AdamBO, we provide a more detailed proof sketch here due to space constraints in the main
text. In particular, we present two main challenges and outline the proof roadmap to address them.

Challenge 1: VR-AdamBO vs. VRAdam (Li et al., 2023a). The analysis of VRAdam in the
single-level generalized smooth optimization setting (Li et al.), is not directly applicable to
bilevel problems. This is because the hypergradient estimator in bilevel optimization may have a
non-negligible bias due to inaccurate estimation of the lower-level variable, whereas the single-level
analysis in (Li et al.| does not need to account for this issue. To control the lower-level
estimation error, we leverage the lower-level acceleration technique (Gong et all,[2024b) with peri-
odic updates and averaging. While we largely adopt the framework of VRAdam for the upper-level
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analysis, the main distinction lies in our incorporation of the hypergradient bias—arising from inac-
curate estimates of the optimal lower-level variable at each iteration—into the upper-level analysis.
This is detailed in Lemmas E.5 to E.8 of our paper, which correspond to Lemmas D.4, D.6, D.7, and

D.8in [2023al), respectively.

Challenge 2: VR-AdamBO vs. AccBO (Gong et al.}[2024b).  Although both VR-AdamBO and
AccBO [Gong et al| (2024b)) use the same lower-level update (periodic SNAG with averaging) and
adopt the same variance reduction technique STORM (Cutkosky & Orabona, [2019) for the first-
order momentum update, the key difference between these two algorithms lies in the upper-level
update: AccBO uses normalized SGD with momentum, while VR-AdamBO employs VRAdam.
This distinction leads to significantly different theoretical analyses for VR-AdamBO and AccBO. In
particular, for VR-AdamBO, we introduce a novel stopping time approach in the context of bilevel
optimization (see equation (7) in Section 5.3), building on the VR-Adam analysis (2023a)).
Base on the definition of stopping time 7, we develop a new induction argument (i.e., Lemmas E.10
to E.12) to show that under ¢ < 7 and some good event &, (see Lemma E.10 for definition), both
||g: — y; || and ||m]| are bounded. We then show the averaged lower-level error is small (see Lemma
E.4) under the parameter choices in Theorem 5.1, which shares an similar spirit as Lemma 4.6 for
AdamBO. Combining the aforementioned lemmas with the upper-level analysis mentioned above in

Challenge 1 (i.e., Lemmas E.5 to E.8), we can obtain the improved O(e~?) complexity result.
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