
CURRICULUM REINFORCEMENT LEARNING FOR
QUANTUM ARCHITECTURE SEARCH UNDER HARD-
WARE ERRORS

Yash J. Patel‡,1,6, Akash Kundu‡,2,3, Mateusz Ostaszewski4, Xavier Bonet-Monroig1,5, Vedran
Dunjko1,6, and Onur Danaci1,5

1⟨aQaL⟩ Applied Quantum Algorithms, Leiden University
2Institute of Theoretical and Applied Informatics, Polish Academy of Sciences

3Joint Doctoral School, Silesian University of Technology
4Warsaw University of Technology, Institute of Computer Science

5Lorentz Institute, Leiden University
6LIACS, Leiden University

‡Equal contribution

ABSTRACT

The key challenge in the noisy intermediate-scale quantum era is finding useful
circuits compatible with current device limitations. Variational quantum algo-
rithms (VQAs) offer a potential solution by fixing the circuit architecture and
optimizing individual gate parameters in an external loop. However, parameter
optimization can become intractable, and the overall performance of the algorithm
depends heavily on the initially chosen circuit architecture. Several quantum ar-
chitecture search (QAS) algorithms have been developed to design useful circuit
architectures automatically. In the case of parameter optimization alone, noise
effects have been observed to dramatically influence the performance of the op-
timizer and final outcomes, which is a key line of study. However, the effects of
noise on the architecture search, which could be just as critical, are poorly under-
stood. This work addresses this gap by introducing a curriculum-based reinforce-
ment learning QAS (CRLQAS) algorithm designed to tackle challenges in realis-
tic VQA deployment. The algorithm incorporates (i) a 3D architecture encoding
and restrictions on environment dynamics to explore the search space of possible
circuits efficiently, (ii) an episode halting scheme to steer the agent to find shorter
circuits, and (iii) a novel variant of simultaneous perturbation stochastic approxi-
mation as an optimizer for faster convergence. To facilitate studies, we developed
an optimized simulator for our algorithm, significantly improving computational
efficiency in simulating noisy quantum circuits by employing the Pauli-transfer
matrix formalism in the Pauli-Liouville basis. Numerical experiments focusing
on quantum chemistry tasks demonstrate that CRLQAS outperforms existing QAS
algorithms across several metrics in both noiseless and noisy environments.

1 INTRODUCTION

The past decade has witnessed dramatic progress in the study and development of quantum process-
ing units, prompting extensive exploration of the capabilities of Noisy Intermediate-Scale Quantum
(NISQ) hardware (Preskill, 2018). To account for the stringent limitations of NISQ devices, varia-
tional quantum algorithms (VQAs) (Peruzzo et al., 2014; Farhi et al., 2014; McClean et al., 2016;
Cerezo et al., 2021) were developed as a suitable way to exploit them.

In essence, VQAs consist of three building blocks: a parameterized quantum circuit (PQC) or ansatz,
a quantum observable allowing the definition of a cost function, and a classical optimization routine
that tunes the parameters of the PQC to minimize the cost function. Each of the building blocks
corresponds to an active area of research to understand the capabilities of VQAs.

1

RZ

RZ

RZ

RZ

RZ

RZ

RX

PRRX

RX

RZ

RY

10

QPU

Action

Policy

State representation of circuits Agent = Double deep Q-network Hybrid Quantum-Classical Environment

RewardState

Update

CPUCPU

Classical Optimizer
(e.g. Adam-SPSA, COBYLA)

qubit
index gate

type

depth

Figure 1: Illustration of the architecture of the double deep-Q network utilized by the reinforcement learning
(RL) agent. The RL state s here describes the quantum circuit encoded as a tensor-based 3D grid whose axes
correspond to the qubit index, depth (moment) and gate type. This information is processed through a multi-
layer perceptron. For the output, the agent computes the policy, according to which the actions a (as gates) in
state s are probabilistically chosen. A classical optimizer optimizes the circuit and, upon completion, provides
a reward that guides the agent to select subsequent actions.

One such promising VQA with an application in quantum chemistry is variational quantum eigen-
solver (VQE). In VQE, the objective is to find the ground state energy of a chemical Hamiltonian H
by minimizing the energy

E(θ⃗) = min
θ⃗

(
⟨ψ(θ⃗)|H|ψ(θ⃗)⟩

)
. (1)

The trial state |ψ(θ⃗)⟩ is prepared by applying a PQC U(θ⃗) to the initial state |ψinitial⟩, where θ⃗
specify the rotation angles of the local unitary operators in the circuit. The structure of this circuit
significantly impacts the success of the algorithm. Traditionally, in VQAs, the structure of the PQC
is fixed before initiating the algorithm and is often motivated by physical (Peruzzo et al., 2014) or
hardware (Kandala et al., 2017) considerations. However, fixing the structure of the PQC within
VQA may impose a substantial limitation on exploring the relevant parts of the Hilbert space. To
circumvent such limitations, recent attention has turned towards automatically constructing PQC
through quantum architecture search (QAS) (Grimsley et al., 2019; Tang et al., 2021; Anastasiou
et al., 2022; Zhang et al., 2022). This approach removes the necessity for domain-specific knowledge
and often yields superior PQCs tailored for specific VQAs. Given a finite pool of quantum gates,
the objective of QAS is to find an optimal arrangement of quantum gates to construct a PQC (and
its corresponding unitary U(θ⃗opt), where θ⃗opt are optimal parameters) which minimizes the cost
function (see Eq. 1).

One such proposal to tackle the QAS problem is to employ reinforcement learning (RL) (Os-
taszewski et al., 2021b; Kuo et al., 2021), where the PQCs are defined as a sequence of actions
generated by a trainable policy. The value of the quantum cost function (optimized independently
via a classical optimizer) serves as an intermittent signal for the final reward function. This reward
function then guides policy updates to maximize expected returns and select optimal actions for
subsequent steps.

Up to the completion of this work, most algorithms for QAS have been formulated under the as-
sumption of an idealized quantum computer, free from physical noise and endowed with all-to-all
qubit connectivity. However, it is essential to recognize that the QAS problem becomes even more
daunting in light of the constraints imposed by current NISQ devices (Du et al., 2022). According
to (Wang et al., 2021), the impact of noise on the trainability of VQAs in the context of QAS is
multifaceted.

First and foremost, noise induces the phenomenon of barren plateaus, causing gradients within the
cost function landscapes to vanish, thereby impeding optimization. Moreover, quantum noise in-
troduces additional complexity by transforming certain instances of exponentially occurring global
minima into local optima, posing a substantial challenge to trainability (Fontana et al., 2022). Addi-
tionally, noise alters the cost landscape to an extent that the optimal parameters for the noisy land-
scape may no longer align with the optimal parameters for the noiseless landscape (Sharma et al.,
2020). In addition to the influence of physical noise on the landscape, the finite sampling noise
hinders the performance of classical optimizers working on that landscape, raising the necessity of
optimizers robust to such conditions (Bonet-Monroig et al., 2023). Overall, the adverse effects in-

2

duced by the quantum noise demand swift simulation of numerous queries from noisy landscapes
and robust classical optimization strategies operating under these conditions.

Performing experiments that assess the performance of QAS algorithms in the presence of noise,
though computationally demanding, is a critical step toward understanding and ultimately overcom-
ing the challenges presented by real-world quantum hardware.

The contribution of our work is two-fold. Firstly, we introduce the curriculum-based reinforcement
learning QAS (CRLQAS) method depicted in Fig. 1. Secondly, we provide an optimized machinery
for CRLQAS that effectively simulates realistic noise—a crucial element for testing and enhancing
our method for quantum chemistry problems on larger system sizes. The machinery uses offline
computation of Pauli-transfer matrices (PTM) and GPU based JAX framework to accelerate compu-
tations by up to six-fold. To further improve the learning process of CRLQAS, we introduce several
key components:

(1) A mechanism, namely, illegal actions preventing invalid sequences of gates.
(2) A random halting procedure to steer the agent to learn gate-efficient circuits.
(3) A tensor-based binary circuit encoding that captures the essence of the depth of the PQC

and enables all-to-all qubit connectivity.
(4) Two variants of simultaneous perturbation stochastic approximation (SPSA) algorithm that

use adaptive momentum (Adam) and a variable measurement sample budget for faster con-
vergence rate and robustness.

By leveraging strategies (1)–(4), we achieve chemical accuracy for a class of chemical Hamiltonians
with better accuracy by maintaining both gate and depth efficiency in noisy and noiseless scenar-
ios. Our numerical demonstrations often establish CRLQAS as the superior approach compared to
existing QAS methods within the context of VQE across a spectrum of metrics.

2 RELATED WORK

There is a growing body of research in the field of QAS aimed at enhancing the efficiency and
performance of quantum algorithms. Several key themes emerge from related works, encompassing
QAS, optimization strategies, and the application of RL to quantum computing.

Evolutionary and Genetic algorithms Existing literature has explored various strategies to auto-
mate the design of quantum circuits. Evolutionary algorithms (EAs), particularly genetic algorithms
(GAs), have been utilized to evolve quantum circuits (Williams & Gray, 1998). While GAs demon-
strate the capability to evolve simple quantum circuits, such as quantum error correction codes or
quantum adders (Bang & Yoo, 2014; Potoček et al., 2018; Chivilikhin et al., 2020; Bilkis et al.,
2021), they face limitations in handling parameterized rotation gates. They are also known to be
sensitive to gene length and candidate gate set size.

Sampling-based algorithms As a step forward, sampling-based learning algorithms have been in-
troduced to sample circuits from candidate sets, addressing the QAS problem for ground state energy
estimation (Grimsley et al., 2019; Tang et al., 2021).In (Zhang et al., 2022), the authors utilize Monte
Carlo sampling to search for PQCs on QFT and Max-Cut problems. In (Du et al., 2022), a QCAS
method based on supernet and weight sharing strategy was introduced to better estimate energy for
quantum chemistry tasks. However, in the presence of hardware noise, this method fails to estimate
the ground state energy within a precision to make realistic chemistry predictions. Meanwhile, (Wu
et al., 2023) uses the Gumbel-Softmax technique (Gumbel, 1948) to sample quantum circuits and
benchmark their algorithm on VQAs, including quantum chemistry tasks.

Reinforcement-learning-based algorithms RL techniques have also been applied to tackle the
QAS problem for VQAs. Typically, such approaches employ a carefully designed reward function
to train the agent to choose suitable gates. (Ostaszewski et al., 2021a) employed double deep
Q-network (DDQN) to estimate the ground state of the 4- and 6-qubit LiH molecules. RL has also
been used to address the qubit routing problem (Li et al., 2019; Sinha et al., 2022; Pozzi et al., 2022).
These works aim to minimize circuit depth through qubit routing using RL techniques. Additionally,
(Kuo et al., 2021) have employed RL to test their algorithms on 2-qubit Bell state and 3-qubit GHZ
state in the presence of hardware noise. We summarize the relevant QAS methods for the ground
state energy estimation task in Appendix K.

3

3 CURRICULUM REINFORCEMENT LEARNING ALGORITHM

We give an overview of the CRLQAS algorithm to construct PQCs for a VQA task, wherein we
present state and action representations and the reward function used in this work. Later, we also
describe the features of CRLQAS, which yields better performance across several metrics.

In the CRLQAS environment, the agent starts every episode with an empty circuit. It then sequen-
tially appends the gates to the intermediate circuit until the maximum number of actions has been
reached. At every time step of the episode, the state corresponds to a circuit and an action to append
a gate to that circuit. As we employ deep RL methods, we encode states and actions in a way that
is amenable to neural networks. Thus, each state is represented by a newly introduced tensor-based
binary encoding of the gate structure of the PQC, which we describe in Sec. 3.3. For our simulations
to construct the circuits, we consider the gate set consisting of Controlled-NOT (CNOT) and 1-qubit
parameterized rotation gates (RX,RY,RZ). We consciously omit the use of the continuous parame-
ters of rotation gates and only utilize the estimated energy of the circuit in the state representation
of the RL agent.

To encode the actions, we use a one-hot encoding scheme as in (Ostaszewski et al., 2021b) with
CNOT and rotation gates represented by two integers. For CNOT, these values specify the positions
of control and target qubits, respectively. In contrast, for the rotation gates, the first value specifies
the qubit register, and the second indicates the rotation axis (the enumeration of the position starts
from 0). For an N -qubit quantum state, the total number of actions is 3N + 2

(
N
2

)
, where the first

term comes from the choice of selecting the rotation gates and the latter from choosing CNOTs.

To steer the agent towards the target, we use the same reward function R at every time step t of an
episode, as in (Ostaszewski et al., 2021b). The reward function R defined as,

R =


5 if Ct < ξ,

−5 if t ≥ T e
s and Ct ≥ ξ,

max
(

Ct−1−Ct

Ct−1−Cmin
,−1

)
otherwise

(2)

where Ct refers to the value of the cost function C at each step, ξ is a user-defined threshold value
and T e

s denotes the total number of steps s allowed for an episode e. T e
s can also be understood as the

maximum number of actions allowed per episode. Note that the extreme reward values (±5) signal
the end of an episode, leading to two stopping conditions: exceeding the threshold ξ or reaching
the maximum number of actions. For quantum chemistry tasks, the threshold ξ is typically set to
1.6× 10−3 as it defines the precision such that realistic chemical predictions can be made. The goal
of the agent is to obtain an estimated value of Cmin within such precision.

The continuous parameters θ⃗ of the quantum circuit that describes the cost function C are optimized
separately using a classical optimizer to obtain the reward R. The choice of the classical optimizer
is critical for the RL agent’s success in the environment. The nature of the CRLQAS reward func-
tion depends on the cost function evaluation. The cost function evaluation can be deterministic
or stochastic based on both the classical optimizer and quantum noise. Stochastic optimizers, like
SPSA, tend to converge toward different parameters, resulting in different function values across
multiple trials, even when initialized identically. Moreover, the quantum noise may also lead to
different function values even with the same parameters.

We consider both environment types (details discussed in Sec. 4) and successfully validate the ef-
fectiveness of novel features introduced in this work for the CRLQAS method. The results of our
ablation study to identify the features that standout in CRLQAS can be found in Appendix E. In the
next section, we describe the features of this method. We adopt the “feedback-driven curriculum
learning” approach from the (Ostaszewski et al., 2021b) which is elaborated in the Appendix B.1.

3.1 ILLEGAL ACTIONS FOR THE RL AGENT

As QAS is a hard combinatorial problem with a large search space, pruning the search space is
beneficial for the agent to find circuits with different structures. Hence, we introduce a simple
mechanism, namely, illegal actions to narrow down the search space significantly. The mechanism
uses the property that quantum gates are unitary, and hence, when two similar gates act on the
same qubit(s), they cancel out. An elaborate discussion on the implementation of the illegal actions
mechanism is provided in Appendix B.2.

4

3.2 RANDOM HALTING OF THE RL ENVIRONMENT

In the CRLQAS algorithm, the total number of actions executed by the agent within an episode,
denoted as T e

s , is set using multiple hyperparameters. The hyperparameter, nact, determines an
upper limit on the total actions in an episode, meaning T e

s ≤ nact. If the agent is not interrupted by
any of the schemes mentioned in the paper, it selects a maximum of T e

s = nact actions (gates).

If the RL agent finds a circuit that estimates an energy value (upon optimizing parameters) lower
than this threshold, the episode is halted abruptly leading to T e

s < nact. When employing the
random halting (RH) scheme, both the curricula and a stochastic sampling procedure then influence
the episode length. We use samples from the negative binomial distribution to determine the cap on
the total number of actions per episode, T e

s , at the beginning of each episode (Dougherty, 1990).
The probability mass function of this distribution is

Pr (X = nfail) =

(
nact − 1

nfail

)
pnfail(1− p)nact−nfail , (3)

where nact represents the hyperparameter for the total number of allowed actions per episode, and in
this context, it is the total number of Bernoulli trials as well. Also, nfail denotes the number of failed
Bernoulli trials, and the p denotes the probability of a Bernoulli trial to fail, which we provide as
another hyperparameter. The probability mass function given above yields the probability of having
nfail failed Bernoulli trials given nact total trials and p failure probability. In practice, we sample
T e
s ∼ nfail as a random number based on the failure probability, and the total number of experiments

is determined via inverse transform sampling implemented in NumPy (Harris et al., 2020). This
inverse sampling generates a number within the range T e

s ∼ [0, nact], and we obtain this number at
the outset of each episode.

The primary motivation for integrating RH into CRLQAS is to enable the agent to adapt to shorter-
length episodes, thereby facilitating the agent’s ability to discover more compact circuits in early
successful episodes, even if it occasionally leads to a delay in achieving the first successful episode.

3.3 TENSOR-BASED BINARY CIRCUIT ENCODING

Several QAS algorithms often require the compact representation of the circuit, also commonly
known as encoding, as it allows for modification, comparison, and exploration of quantum circuits.
Hence, the choice of encoding plays a vital role in efficiently maneuvering the search space and
uncovering efficient and novel quantum circuits.

We provide the agent with a complete description of the circuit by employing a binary encoding
scheme that captures the structural aspects of the PQC, specifically, the ordering of the gates. To
keep the dimension of the input tensor constant throughout an episode, the tensor must be prepared
for the deepest quantum circuit that can be generated.

For constructing a tensor representation of the circuit, we initially specify the hyperparameter nact,
which determines the maximum number of allowed actions (i.e., gates) in all episodes. We now
define the moment of a PQC, which is crucial for understanding the tensor representation. The mo-
ment or layer of a quantum circuit represents all gates that can execute simultaneously; essentially, it
is a set of operations acting on different qubits in parallel. The number of these moments determines
the depth of the circuit. We represent PQCs with 3D tensors such that each matrix (2D “slice”) rep-
resents a different moment of the circuit, and the other dimension represents the depth (see Fig. 1).
We use the maximum number of actions parameter, nact, at a given episode as an upper bound on
the depth of the circuit. We give this upper bound for the extreme case where all the actions are
implemented as 1-qubit gates appended to the same qubit. As a result, at each episode, we initialize
an empty circuit of depth nact by defining a [nact × ((N + 3)×N)] dimensional tensor of all zeros.
Here N is the number of qubits. Each moment or layer in the circuit is depicted through a matrix of
dimensions ((N + 3)×N). In this matrix, the initial N rows showcase the locations of the control
and target qubits for the CNOT gates applied during that specific moment. Following these, the sub-
sequent three rows indicate the positions of 1-qubit rotation gates RX, RY, and RZ, respectively. The
visualization of such an encoding for a toy circuit is depicted in Appendix B.3.

3.4 ADAM-SPSA ALGORITHM WITH VARYING SAMPLES

In the realm of VQE within a limited measurement sample budget, several variants of simultane-
ous perturbation stochastic approximation (SPSA) have displayed robustness towards finite sample

5

(shot) noise (Cade et al., 2020; Bonet-Monroig et al., 2023). One such family of variants, multi-
stage SPSA, reset the decaying parameters while tuning the allowed measurement sample (shot)
budget between stages. Implementing a moment adaptation subroutine in classical ML, such as
Adam (Kingma & Ba, 2014), alongside standard gradient descent, increases robustness and conver-
gence rates. This combination has also shown promise in the domain of quantum optimal control
for pulse optimization (Leng et al., 2019).

We investigate multi-stage variants of such an Adam-SPSA algorithm, exploring different shot bud-
gets and continuous versus reset of decay parameters (after every stage). In doing so, we empirically
observed increased robustness and faster convergence rates of a 3-stage Adam-SPSA with continu-
ously decaying parameters. We note that this particular observation is novel and was not discovered
before to the best of our knowledge. In Appendix F, we present empirical results demonstrating the
convergence of this Adam-SPSA variant across VQE tasks involving various qubit numbers and shot
budgets. Leveraging these enhancements, we managed to halve the number of function evaluations,
thereby significantly reducing the evaluation time for RL training under physical noise.

3.5 FAST GPU SIMULATION OF NOISY ENVIRONMENTS

Most QAS algorithms require a considerable amount of noisy function evaluations unless a training-
free algorithm is used. However, computing these evaluations becomes challenging within modern-
day simulation frameworks, particularly due to the method of noise simulation known as the Kraus
operator sum formalism. This formalism hinders the use of fast simulation methods tailored for
noiseless scenarios. Consequently, with an increase in qubits and gates, simulations are hindered
not only by the curse of dimensionality associated with dense matrix multiplications but also by the
exponential increase in the number of noise channels and their corresponding Kraus operators.

Most importantly, this computational overhead needs to be paid online (during training and parame-
ter optimization within episodes) at each step (see Appendix H). To mitigate this, the Pauli-transfer
matrix (PTM) formalism is applied, allowing the fusion of noise channels with their respective
gates to be precomputed offline, eliminating the need for recompilation at each step. In conjunction
with PTMs, we employ GPU computation coupled with just-in-time (JIT) compiled functions in
JAX (Bradbury et al., 2018), yielding up to a six-fold improvement in RL training while simulating
noisy quantum circuits (see Appendix I).

4 EXPERIMENTS

Our objective is to assess the performance of CRLQAS described in Sec. 3 to find circuits that
are accurate and can overcome hardware noise. We benchmark CRLQAS for the task of finding
ground-state energies via variational quantum eigensolvers (VQE) of three molecules, Hydrogen
(H2), Lithium Hydride (LiH) and Water (H2O). For all three molecules, we use their representa-
tion in the minimal STO-3G basis, mapped to qubits through Jordan-Wigner and Parity transfor-
mations (Ostaszewski et al., 2021b; Wu et al., 2023). To simplify the computational task, we use
symmetries of the problem to taper off qubits, thus calculating the ground-state energies of 2-qubit
H2 (H2 − 2), 3-qubit H2 (H2 − 3), and 4-qubit H2 (H2 − 4), 4-qubit LiH (LiH− 4) and 6-qubit LiH
(LiH − 6) and 8-qubit H2O (H2O − 8) (see Appendix L for description of molecules). Addition-
ally, we use hardware noise profiles from publicly available resources IBM (Corporation, 2023) to
implement noisy models of varying complexity and run experiments on the first three qubit systems.
The relevant details about the implementation of the CRLQAS method and its hyperparameters are
outlined in Appendix C.

In the subsequent subsection outlining noisy simulations, the RL agent consistently receives signals
as noisy energies during training, guiding its action choices. However, while post-processing the
data of the trained agent, we only assess energies in a noiseless scenario to determine the success or
failure of an episode. An ablation study to identify the features that standout within the CRLQAS
method in both noiseless and noisy settings can be found in Table 3 of Appendix E. Our analysis
reveals that incorporating illegal actions without random halting prompts the agent to achieve a posi-
tive signal (a successful episode) early on, albeit resulting in larger circuits. Conversely, introducing
random halting encourages the agent to discover shorter circuits, there is a trade-off as the agent
receives the positive signal at a later stage.

6

H2-2 H2-3
100

101

102
Nu

m
be

r o
f P

ar
am

at
er

s,
De

pt
h,

 G
at

es

Parameters
Depth
Gates
Noiseless

Shot Noise
IBM Mumbai Median
IBM Mumbai Max
IBM Mumbai 10*Max

H2-4 LiH-4

Parameters
Depth
Gates
Noiseless

Shot Noise
IBM Ourense QCAS
1Q deporalizing

Figure 2: Achieving the chemical accuracy for H2 (with 2-, 3- and 4-qubits), and LiH (with 4-qubits)
molecules via a systematic study under realistic physical noise where the noise model mimics the
IBM Quantum devices. In the initial episodes, the probability of choosing random actions is very high,
and to avoid this, we consider the statistics from 2000 episodes onward and plot the median of the minimum
over 3 different seeds. The different colours denote the different levels of noise (increasing from bottom to top),
and the patterns (from left to right) denote the number of parameters, the depth and the number of gates, respec-
tively. We reach the chemical accuracy for H2−2 and H2−3 (except the 10 times max noise of IBM Mumbai
device) molecule for all levels of noise. Meanwhile, H2 − 4 molecule reaches the chemical accuracy with the
noise profile of IBM Ourense even with qubit-connectivity constraints. Finally, with LiH − 4, we achieve
the chemical accuracy with shot and 1-qubit depolarizing noise. Note that, for H2, we decreased the threshold
(usually set to chemical accuracy) to 2.2× 10−4 because the problem is straightforward to solve.

4.1 NOISY SIMULATION

To simulate molecules, we consider a realistic noisy setting without drift, employing the noise pro-
file of the IBM Mumbai (see Appendix H) and IBM Ourense (Du et al., 2022) quantum devices.
Despite not considering drift time-scales of quantum computers, our experiments on a real quantum
device (see Appendix J) corroborate a hypothesis previously noted in (Rehm et al., 2023), that clas-
sical simulations of noisy quantum circuit evaluations closely resemble actual hardware behavior,
particularly under low noise levels. When noise is present, estimated cost function values for given
parameters differ from those in noiseless scenarios. This discrepancy challenges leveraging prior
domain knowledge (like ground state energies) for configuring rewards and curriculum mechanisms
in RL training. Notably, our CRLQAS algorithm does not rely on prior knowledge of the true ground
state energy value. Instead, it employs a curriculum-based learning method that dynamically adapts
to the problem difficulty based on the performance of the agent. This approach makes the agent
self-sufficient and allows it to accumulate knowledge at a pace determined by its performance.

We first simulate all the molecules in the noiseless scenario and then in the presence of shot noise.
Subsequently, we incorporate the noise profile from the IBM Mumbai device, setting the 1-, and
2-qubit depolarizing noise to (i) the median, (ii) the maximum value, and (iii) 10 times the maximum
noise value. Our findings, illustrated in Fig. 2, demonstrate the impact of noise levels on the quantum
circuit statistics (like depth, number of gates, and parameter count) to solve the ground state energy
estimation problem via VQE for H2 − 2, H2 − 3, H2 − 4 and LiH − 4. Our results empirically
verify a commonly expressed hypothesis: an increase in noise levels corresponds to an increase in
the number of gates and parameters in the circuit (Sharma et al., 2020; Fontana et al., 2021).

Moreover, we conduct a comparative analysis between CRLQAS and the QCAS method (Du et al.,
2022). With equivalent noise settings and connectivity constraints of IBM Ourense, our findings
indicate that CRLQAS efficiently determines the ground state energy of H2−4, yielding−1.136Ha,

7

0 2500 5000 7500 10000 12500 15000
Episodes

10 3

10 2

En
er

gy
 E

rro
r

Noisy Error
Threshold

0 2500 5000 7500 10000 12500 15000
Episodes

Noiseless Error
Threshold

Figure 3: Learning curve of the LiH (with 4-qubits) experiment. The agent is trained with a noise model
with 1-qubit depolarizing noise of strength 0.1 × 10−2, and sampling of the expectation values of 106 repeti-
tions. The left panel shows the training curve under noise, the right panel is the evaluation of the points on the
left panel but without noise. The red dashed line indicates the chemical accuracy.

in contrast to the reported minimum energy of −0.963Ha in (Du et al., 2022). Detailed data in
Table 2 outlines the minimum energy and the number of gates for H2−4. We also perform a noiseless
simulation of the circuit presented in (Du et al., 2022), yielding an energy error of 1.9× 10−2 (with
16 gates). In contrast, CRLQAS achieves significantly superior energy errors of 8 × 10−5 (with
RH, 32 gates) and 1.5× 10−5 (without RH, 40 gates), demonstrating improvements by three orders
of magnitude. Upon closer inspection of all the successful episodes during post-processing of the
trained agent’s data (i.e., searching for an intermediate step where the energy error is just below
chemical accuracy) for H2 − 4, we observed that CRLQAS indeed achieves an energy error of
2.8× 10−4 (with RH) and 5.5× 10−4 (without RH) respectively, while utilizing only 10 gates.

In Fig. 3, we present the learning curves of the agent from our simulations for LiH− 4 with 1-qubit
depolarizing noise strength of 0.1×10−2 and 106 sampling noise. The illustration tracks two crucial
values using the optimal parameters discovered in the noisy setting: the noisy and noiseless energies,
obtained by evaluating their respective cost functions for those parameters. The left panel depicts
that in the presence of noise, the energy error closely aligns with the threshold curve and decreases
with it. This trend indicates the learning trajectory of the agent, where it learns to construct circuits
that minimize the noisy energy error. Conversely, in the right panel, the energy behaviour does not
mimic the threshold curve for the noiseless scenario. Notably, it even passes chemical accuracy
despite the threshold being well above it. This divergence suggests that minimizing the noisy energy
does not necessarily result in minimizing the noiseless energy, and vice versa.

We also trained RL agents to solve the ground state energy estimation problem via VQE for LiH−4
in two additional noisy settings. In the first setting, we employ 1-, and 2-qubit depolarizing channels
of strength 0.1 × 10−2 and 0.5 × 10−2, respectively. In the second, we utilized the median noise
profile of IBM Mumbai device. Unfortunately, the agent fails to achieve chemical accuracy in these
noisy settings. In the first setting, the agent attained a minimum noiseless error of 3.4×10−3 (trained
for only 5000 episodes). In the latter scenario, it reached 3.3× 10−3 (trained for 15000 episodes).

4.2 NOISELESS SIMULATION

We now present the analyses for noiseless settings. This is due to the considerable challenge of
scaling noisy QAS beyond four qubits within the scope of this work. The exponential increase in
computational cost with the number of qubits makes it exceptionally difficult to handle billions of
queries to the noisy cost functions.

To analyze the scaling performance of CRLQAS method, we assess its performance for H2 − 4,
LiH− 4, LiH− 6 and H2O− 8 molecules in comparison to quantumDARTS (Wu et al., 2023) and
modified variant of qubit-ADAPT-VQE (Tang et al., 2021). The results are presented in Table 1.
Our results demonstrate that for H2 − 4, LiH − 4, and LiH − 6, CRLQAS surpasses these other
QAS methods, producing not only more compact circuits but also achieving lower absolute energy

8

Table 1: A tabular representation of noiseless simulation for H2−4, LiH−4, LiH−6, and H2O−8 molecules.
We simulate them in the noiseless scenario for the modified variant of qubit-ADAPT-VQE (Tang et al., 2021),
quantumDARTS (Wu et al., 2023) and compare it with our CRLQAS. (⋆) denotes that the simulation is done
using 1-, 2- and 3-qubit parameterized gates, which can be further decomposed into {RX,RY,RZ,CNOT}. N.A.
is the abbreviation for Not Applicable, implying that the algorithm failed to improve over the Hartree Fock state
energy.

Molecule Modified qubit-ADAPT-VQE (⋆) CRLQAS quantumDARTS

Energy Error # Params Depth # Gates Energy Error # Params Depth # Gates Energy Error # Params Depth # Gates

H2 − 4 1.9× 10−2 38 29 38 7.2× 10−8 7 17 21 4.3× 10−6 26 18 34

LiH− 4 4.6× 10−6 47 38 47 2.6× 10−6 29 22 40 1.7× 10−4 50 34 68

LiH− 6 3.7× 10−2 N.A. N.A. N.A. 6.7× 10−4 29 40 67 2.9× 10−4 80 54 132

H2O− 8 2.6× 10−3 N.A. N.A. N.A. 1.8× 10−4 35 75 140 3.1× 10−4 151 64 219

errors. Furthermore, in (Ostaszewski et al., 2021b), for the LiH − 6 molecule, their RL algorithm
achieves chemical accuracy only in 7 out of 10 independent seeds. Conversely, utilizing CRLQAS
with the same molecule, we achieve solutions across all seeds, showcasing the enhanced stability of
CRLQAS in contrast to the RL method of (Ostaszewski et al., 2021b).

It should be noted that we utilized a modified qubit-ADAPT-VQE in our simulations for comparative
analysis. Specifically, we replace the typically large fermionic pool of operators with a parameter-
ized gate set consisting of

{RX,RY,RZ,RZZ,RYXXY,RXXYY,Controlled-RYXXY,Controlled-RXXYY}. (4)

The energy errors reported in Table 1 were computed by simulating qubit-ADAPT-VQE in Hartree
Fock state (Slater, 1951) for 100 ADAPT-VQE iterations with Adam optimizer (learning rate =
0.1× 10−2, and 500 optimization iterations). Notably, for LiH− 6 and H2O− 8, it fails to improve
over the Hartree Fock state, repetitively applying the same gate in all iterations, thus resulting in
zero values for parameters, depth, and gates. Finally, we emphasize that we exempt ourselves from
doing a fine hyperparameter tuning of qubit-ADAPT-VQE, which might improve its performance.

5 CONCLUSION

We developed a curriculum-based reinforcement learning QAS (CRLQAS) algorithm, specifically
optimized to tackle the unique challenges of deploying VQE in realistic noisy quantum environ-
ments. Our main contribution lies in introducing CRLQAS and analyzing its performance across
different quantum noise profiles sourced from real IBM quantum devices like IBM Ourense and
IBM Mumbai. Our method achieved the ground-state energy within the precision defined by chem-
ical accuracy while suggesting circuits characterized by minimal gate counts and depths, thereby
establishing state-of-the-art performance in the sub-field of quantum architecture search (QAS).

We introduced a depth-aware tensor-based 3D encoding for the agent’s state description of the quan-
tum circuit, illegal actions to reduce the agent’s search space and to avoid consecutive application of
similar quantum gate, a random halting mechanism steering the agent to find shorter circuits, and a
novel variant of the simultaneous perturbation stochastic approximation (SPSA) algorithm to reduce
the energy function evaluations in the presence of noise.

Our numerical experiments focused on quantum chemistry tasks and demonstrated that CRLQAS
outperforms existing QAS algorithms across noiseless and noisy environments for H2 (2-, 3-, and
4-qubit), LiH (4-, and 6-qubit) and H2O (8-qubit) molecule. In pursuit of these experiments, we
significantly enhanced the efficiency of simulating realistic noisy quantum circuits by employing
the PTM formalism in the Pauli-Liouville basis, thereby fusing gates with their respective noise
models and values.

In essence, owing to the notable adaptability of our approach and a significant six-fold speed-up due
to PTM formalism, our approach holds potential for applications in QAS for combinatorial opti-
mization, quantum machine learning, reinforcement learning for quantum computing and quantum
reinforcement learning. We have outlined limitations and future work in Appendix A.

9

ACKNOWLEDGEMENTS

YJP and OD would like to thank Stefano Polla and Hao Wang for the helpful discussions. YJP
and VD acknowledge support from TotalEnergies. AK would like to acknowledge support from the
Polish National Science Center under the grant agreement 2019/33/B/ST6/02011, and MO would
like to acknowledge support from the Polish National Science Center under the grant agreement
2020/39/B/ST6/01511 and from Warsaw University of Technology within the Excellence Initiative:
Research University (IDUB) programme. XBM acknowledges funding from the Quantum Soft-
ware Consortium. VD and OD were supported by the Dutch Research Council (NWO/OCW),
as part of the Quantum Software Consortium programmes (project number 024.003.037 and
NGF.1582.22.031). This work was also supported by the Dutch National Growth Fund (NGF),
as part of the Quantum Delta NL programme. The computational results presented here have been
achieved in part using the ALICE HPC infrastructure of Leiden University and SURF Snellius HPC
infrastructure (SURF Cooperative grant no. EINF-6793).

REPRODUCIBILITY

To ensure the reproducibility of our work, we provide detailed descriptions of the experimental
configurations and hyperparameters for the CRLQAS method and Adam-SPSA optimizer in Ap-
pendix C and Appendix F, respectively. Additionally, information about the noise profiles of the
IBMQ device and molecular systems is available in Appendix G and Appendix L, respectively. A
comprehensive discussion of the noise models examined in our study and practical aspects of their
software implementation can be found in Appendix H and Appendix I. The source code for all
experiments conducted in this manuscript is accessible here: https://anonymous.4open.
science/r/CRLQAS/.

REFERENCES

Gabriele Agliardi and Enrico Prati. Optimized quantum generative adversarial networks for distri-
bution loading. In 2022 IEEE International Conference on Quantum Computing and Engineering
(QCE), pp. 824–827. IEEE, 2022.

Panagiotis G Anastasiou, Yanzhu Chen, Nicholas J Mayhall, Edwin Barnes, and Sophia E
Economou. Tetris-adapt-vqe: An adaptive algorithm that yields shallower, denser circuit ansätze.
arXiv preprint arXiv:2209.10562, 2022.

Yazan Arouri and Mohammad Sayyafzadeh. An accelerated gradient algorithm for well control
optimization. Journal of Petroleum Science and Engineering, 190:106872, 2020.

Jeongho Bang and Seokwon Yoo. A genetic-algorithm-based method to find unitary transforma-
tions for any desired quantum computation and application to a one-bit oracle decision problem.
Journal of the Korean Physical Society, 65:2001–2008, 2014.

Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed, Vishnu Ajith,
M Sohaib Alam, Guillermo Alonso-Linaje, B AkashNarayanan, Ali Asadi, et al. Penny-
lane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint
arXiv:1811.04968, 2018.

M Bilkis, María Cerezo, Guillaume Verdon, Patrick J Coles, and Lukasz Cincio. A semi-agnostic
ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712,
2021.

Patrick Billingsley. Probability and measure. John Wiley & Sons, 2017.

Carsten Blank, Daniel K Park, June-Koo Kevin Rhee, and Francesco Petruccione. Quantum classi-
fier with tailored quantum kernel. npj Quantum Information, 6(1):41, 2020.

Xavier Bonet-Monroig, Hao Wang, Diederick Vermetten, Bruno Senjean, Charles Moussa, Thomas
Bäck, Vedran Dunjko, and Thomas E O’Brien. Performance comparison of optimization methods
on variational quantum algorithms. Physical Review A, 107(3):032407, 2023.

10

https://anonymous.4open.science/r/CRLQAS/
https://anonymous.4open.science/r/CRLQAS/

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Heinz-Peter Breuer and Francesco Petruccione. The theory of open quantum systems. Oxford Uni-
versity Press, USA, 2002.

Chris Cade, Lana Mineh, Ashley Montanaro, and Stasja Stanisic. Strategies for solving the fermi-
hubbard model on near-term quantum computers. Physical Review B, 102(23):235122, 2020.

M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii,
Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and et al. Variational quantum
algorithms. Nature Reviews Physics, 3(9):625–644, Aug 2021. ISSN 2522-5820. doi: 10.1038/
s42254-021-00348-9. URL http://dx.doi.org/10.1038/s42254-021-00348-9.

D Chivilikhin, A Samarin, V Ulyantsev, I Iorsh, AR Oganov, and O Kyriienko. Mog-vqe: Multiob-
jective genetic variational quantum eigensolver. arXiv preprint arXiv:2007.04424, 2020.

Jerry M Chow, Jay M Gambetta, Antonio D Corcoles, Seth T Merkel, John A Smolin, Chad Rigetti,
S Poletto, George A Keefe, Mary B Rothwell, John R Rozen, et al. Universal quantum gate set
approaching fault-tolerant thresholds with superconducting qubits. Physical review letters, 109
(6):060501, 2012.

IBM Corporation. IBM Quantum. https://quantum-computing.ibm.com/services/
resources, 2023. Accessed on August 8, 2023.

Edward R Dougherty. Probability and statistics for the engineering, computing, and physical sci-
ences. Prentice-Hall, Inc., 1990.

Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, and Dacheng Tao. Quantum circuit architecture
search for variational quantum algorithms. npj Quantum Information, 8(1):62, 2022.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algo-
rithm. arXiv preprint arXiv:1411.4028, 2014.

Enrico Fontana, Nathan Fitzpatrick, David Muñoz Ramo, Ross Duncan, and Ivan Rungger. Evalu-
ating the noise resilience of variational quantum algorithms. Physical Review A, 104(2):022403,
2021.

Enrico Fontana, M Cerezo, Andrew Arrasmith, Ivan Rungger, and Patrick J Coles. Non-trivial
symmetries in quantum landscapes and their resilience to quantum noise. Quantum, 6:804, 2022.

Enrico Fontana, Manuel S Rudolph, Ross Duncan, Ivan Rungger, and Cristina Cîrstoiu. Classical
simulations of noisy variational quantum circuits. arXiv preprint arXiv:2306.05400, 2023.

Daniel Greenbaum. Introduction to quantum gate set tomography. arXiv preprint arXiv:1509.02921,
2015.

Harper R Grimsley, Sophia E Economou, Edwin Barnes, and Nicholas J Mayhall. An adaptive
variational algorithm for exact molecular simulations on a quantum computer. Nature comm., 10
(1):1–9, 2019. URL https://doi.org/10.1038/s41467-019-10988-2.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series
of lectures, volume 33. US Government Printing Office, 1948.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357–362, 2020.

Pascual Jordan and Eugene Paul Wigner. Über das paulische äquivalenzverbot. Springer, 1993.

Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M
Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets. nature, 549(7671):242–246, 2017.

11

http://github.com/google/jax
http://github.com/google/jax
http://dx.doi.org/10.1038/s42254-021-00348-9
https://quantum-computing.ibm.com/services/resources
https://quantum-computing.ibm.com/services/resources
https://doi.org/10.1038/s41467-019-10988-2

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson, and William D
Oliver. A quantum engineer’s guide to superconducting qubits. Applied physics reviews, 6(2),
2019.

En-Jui Kuo, Yao-Lung L Fang, and Samuel Yen-Chi Chen. Quantum architecture search via deep
reinforcement learning. arXiv preprint arXiv:2104.07715, 2021.

Zhaoqi Leng, Pranav Mundada, Saeed Ghadimi, and Andrew Houck. Robust and efficient algo-
rithms for high-dimensional black-box quantum optimization. arXiv preprint arXiv:1910.03591,
2019.

Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for nisq-era quantum
devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 1001–1014, 2019.

Junyu Liu, Frederik Wilde, Antonio Anna Mele, Liang Jiang, and Jens Eisert. Noise can be helpful
for variational quantum algorithms. arXiv preprint arXiv:2210.06723, 2022.

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and Thomas
Stützle. The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3:43–58, 2016.

Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of
variational hybrid quantum-classical algorithms. New J. Phys., 18(2):023023, 2016. URL
https://doi.org/10.1088/1367-2630/18/2/023023.

Jarrod R McClean, Nicholas C Rubin, Kevin J Sung, Ian D Kivlichan, Xavier Bonet-Monroig,
Yudong Cao, Chengyu Dai, E Schuyler Fried, Craig Gidney, Brendan Gimby, et al. Openfermion:
the electronic structure package for quantum computers. Quantum Science and Technology, 5(3):
034014, 2020.

Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cam-
bridge university press, 2010.

Román Orús. A practical introduction to tensor networks: Matrix product states and projected
entangled pair states. Annals of physics, 349:117–158, 2014.

Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti. Structure optimization for parame-
terized quantum circuits. Quantum, 5:391, 2021a.

Mateusz Ostaszewski, Lea M Trenkwalder, Wojciech Masarczyk, Eleanor Scerri, and Vedran Dun-
jko. Reinforcement learning for optimization of variational quantum circuit architectures. Ad-
vances in Neural Information Processing Systems, 34:18182–18194, 2021b.

Thomas E O’Brien, B Tarasinski, and Leo DiCarlo. Density-matrix simulation of small surface
codes under current and projected experimental noise. npj Quantum Information, 3(1):39, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love,
Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue solver on a photonic quan-
tum processor. Nature communications, 5(1):4213, 2014.

Václav Potoček, Alan P Reynolds, Alessandro Fedrizzi, and David W Corne. Multi-objective evo-
lutionary algorithms for quantum circuit discovery. arXiv preprint arXiv:1812.04458, 2018.

Michael JD Powell. A direct search optimization method that models the objective and constraint
functions by linear interpolation. Springer, 1994.

12

https://doi.org/10.1088/1367-2630/18/2/023023

Matteo G Pozzi, Steven J Herbert, Akash Sengupta, and Robert D Mullins. Using reinforcement
learning to perform qubit routing in quantum compilers. ACM Transactions on Quantum Com-
puting, 3(2):1–25, 2022.

John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

Patrick Rall, Daniel Liang, Jeremy Cook, and William Kretschmer. Simulation of qubit quantum
circuits via pauli propagation. Physical Review A, 99(6):062337, 2019.

Arthur G Rattew, Shaohan Hu, Marco Pistoia, Richard Chen, and Steve Wood. A domain-agnostic,
noise-resistant, hardware-efficient evolutionary variational quantum eigensolver. arXiv preprint
arXiv:1910.09694, 2019.

Florian Rehm, Sofia Vallecorsa, Kerstin Borras, Dirk Krücker, Michele Grossi, and Valle Varo.
Precise image generation on current noisy quantum computing devices. Quantum Science and
Technology, 9(1):015009, 2023.

Manuel S Rudolph, Enrico Fontana, Zoë Holmes, and Lukasz Cincio. Classical surrogate simulation
of quantum systems with lowesa. arXiv preprint arXiv:2308.09109, 2023.

Amit Sabne. Xla: Compiling machine learning for peak performance. 2020.

Jacob T Seeley, Martin J Richard, and Peter J Love. The bravyi-kitaev transformation for quantum
computation of electronic structure. The Journal of chemical physics, 137(22), 2012.

Kunal Sharma, Sumeet Khatri, Marco Cerezo, and Patrick J Coles. Noise resilience of variational
quantum compiling. New Journal of Physics, 22(4):043006, 2020.

Animesh Sinha, Utkarsh Azad, and Harjinder Singh. Qubit routing using graph neural network
aided monte carlo tree search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 9935–9943, 2022.

John C Slater. A simplification of the hartree-fock method. Physical review, 81(3):385, 1951.

James C Spall. A stochastic approximation technique for generating maximum likelihood parameter
estimates. In 1987 American control conference, pp. 1161–1167. IEEE, 1987.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga, Masahiro Nakadai, Jiabao Chen,
Ken M Nakanishi, Kosuke Mitarai, Ryosuke Imai, Shiro Tamiya, et al. Qulacs: a fast and versatile
quantum circuit simulator for research purpose. Quantum, 5:559, 2021.

Ho Lun Tang, VO Shkolnikov, George S Barron, Harper R Grimsley, Nicholas J Mayhall, Ed-
win Barnes, and Sophia E Economou. qubit-adapt-vqe: An adaptive algorithm for constructing
hardware-efficient ansätze on a quantum processor. PRX Quantum, 2(2):020310, 2021. URL
https://doi.org/10.1103/PRXQuantum.2.020310.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: funda-
mental algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

Hanrui Wang, Yongshan Ding, Jiaqi Gu, Yujun Lin, David Z Pan, Frederic T Chong, and Song Han.
Quantumnas: Noise-adaptive search for robust quantum circuits. In 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pp. 692–708. IEEE, 2022.

Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and
Patrick J Coles. Noise-induced barren plateaus in variational quantum algorithms. Nature com-
munications, 12(1):6961, 2021.

Colin P Williams and Alexander G Gray. Automated design of quantum circuits. In NASA In-
ternational Conference on Quantum Computing and Quantum Communications, pp. 113–125.
Springer, 1998.

13

https://doi.org/10.1103/PRXQuantum.2.020310

Christopher J Wood, Jacob D Biamonte, and David G Cory. Tensor networks and graphical calculus
for open quantum systems. arXiv preprint arXiv:1111.6950, 2011.

Wenjie Wu, Ge Yan, Xudong Lu, Kaisen Pan, and Junchi Yan. Quantumdarts: Differentiable quan-
tum architecture search for variational quantum algorithms. International Conference on Machine
Learning., 40, 2023.

Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao. Differentiable quantum architec-
ture search. Quantum Science and Technology, 7(4):045023, 2022.

14

A LIMITATIONS AND FUTURE WORK

Computational Demands The training process for the agent is computationally demanding, pos-
ing challenges both in terms of evaluating quantum circuits on a quantum computer and training
the algorithm on classical devices. This limitation warrants further exploration for more efficient
computational strategies.

Evolution of RL Methods Reinforcement learning (RL) methods are continually evolving, and
while promising, they face challenges related to sample efficiency, stability, and sensitivity. Rec-
ognizing these evolving aspects is crucial for refining the proposed algorithm and addressing its
limitations.

Validation on Real Quantum Hardware A limitation of this work is the absence of validation on
real quantum hardware due to current cost constraints. Future research should include experimenta-
tion on practical quantum devices to assess the algorithm’s performance in real-world scenarios.

Scalability Challenges The proposed algorithm’s scalability to larger quantum circuits, more
complex quantum chemistry problems, or different noise models is a potential limitation that re-
quires thorough investigation. Current experiments train the agent from scratch, necessitating ex-
ploration for scalability improvements.

Transfer Learning Exploration Investigate the feasibility of transfer learning for the proposed
algorithm, particularly in the context of different molecules and various noise scenarios. This ex-
ploration aims to enhance the algorithm’s adaptability and generalization across diverse quantum
tasks.

Application Scenarios Enhancement Explore more applicable scenarios, such as pre-training the
algorithm on simulations and fine-tuning on real quantum devices. This approach can potentially
improve the algorithm’s efficiency and performance in practical quantum computing applications.

B DESCRIPTION OF CRLQAS COMPONENTS

B.1 FEEDBACK-DRIVEN CURRICULUM LEARNING

The moving threshold technique (see Fig. 4) is a feedback-driven curriculum learning method in-
troduced in (Ostaszewski et al., 2021b). During the learning process the agent pursues a parameter
ξ2 that marks the lowest energy known by the agent so far and updates a threshold parameter with
respect to this parameter based on some rules. In the beginning, the ξ2 parameter is set to a hyper-
parameter ξ1. If the agent finds an energy value lower than the current one, it updates ξ2 to this new
energy value. Another hyperparameter “fake minimum energy” µ, a proxy to the lower bound of
attainable ground state energy is set as a target for the agent1. We compute this proxy by taking the
summation of absolute values of Pauli string coefficients stemming from the Hamiltonian. In the
absence of amortization, the algorithm shifts the threshold to |µ − ξ2| for the new ξ2. In the pres-
ence of amortization, however, it adds a parameter to that threshold as |µ − ξ2| + δ, where δ is the
amortization hyperparameter. In the meantime, the agent continues its exploration with subsequent
actions and episodes and records the number of successful actions. Here, there are two rules at play.
The first rule greedily shifts the threshold to |µ− ξ2| after G episodes. Here G is a hyperparameter
as well. The second rule slowly decreases the threshold parameter each time there is a successful
episode by subtracting a factor of δ/κ. Here κ is the radius of shifts, also a hyperparameter. Upon
setting the threshold to |µ−ξ2|, if the agent fails to improve the energy value in consecutive episodes
the threshold is increased back to |µ−ξ2|+δ, as demonstrated in Fig. 4. This way the agent is given
an opportunity to trace its steps back if it was stuck in a local minimum.

Notably, this method does not require any prior knowledge regarding the true value of the ground
state energy and does not impose any specific constraints on the initial threshold value, unlike exist-
ing QAS methods in the literature.

1One can set the target of the agent to such a value for VQE because from Rayleigh’s variational principle,
the agent theoretically can never attain an energy below the true ground state energy.

15

Figure 4: Demonstration of the feedback-driven (green) process, depicting the impact of two amortization
occurrences (pink), denoted by δ. The initial occurrence corresponds to a non-zero adjustment in the threshold,
transitioning from ξ1 to ξ2, indicating the agent’s success in enhancing the energy estimate during training.
The subsequent amortization event illustrates the scenario where the agent falls short of improving upon the
current threshold ξ2 or the improvement is marginal compared to the amortization value. Consequently, the
threshold undergoes a sudden increase due to the reset of the amortization value. It’s noteworthy that the
ultimate threshold, subsequent to the second amortization reaching zero, may also be less than ξ2.

B.2 ILLEGAL ACTIONS FOR RL AGENT

The illegal actions (IA) scheme is an adaptation we developed in this work to prevent the RL agent
from choosing actions that either revert or add redundancy to the effect of the previous actions. In
our context, each action involves appending a gate to a qubit wire within the circuit. This scheme
relies on two heuristics.

The first heuristic centers on the nature of unitary matrices within quantum gates. When adding
a unitary (gate) to a qubit wire at a certain circuit moment (layer), appending the same unitary to
the same wire in the subsequent moment effectively negates the former’s effect. This multiplication
results in an identity matrix or an idling operation. Our CRLQAS algorithm is designed to progress
forward, consistently increasing the total number of gates in the circuit by appending gates. It does
not retract or prune gates dynamically. To restrict redundant idling operations and enhance the RL
agent’s exploration efficiency, the first rule of IA prohibits adding a CNOT gate on specific wires if
the same gate was appended to those wires in the previous layer.

The second heuristic focuses on 1-qubit rotations. When optimizing the parameter of a 1-qubit
rotation gate to a certain value θ∗ at a given moment, appending the same rotation gate to the
same wire in the next moment introduces redundancy from an optimization perspective. As our
CRLQAS continuously optimizes at each step, subsequent rotation gates with the same angle will
yield redundant values. Thus, the second rule of IA prevents adding a 1-qubit rotation gate (e.g., RX,
RY, RZ) if the same gate was appended to that wire in the previous layer. The RL agent must remain
informed about the disallowed actions via a subroutine when it is about to choose an action (gate).
Below, we provide implementation details for this IA subroutine.

When the agent is determining its next action, the subroutine scans the three-dimensional tensor
representing the circuit to identify the previously added gates. It then translates this information into
action numbers based on the number of qubits N , presenting it in a format understandable by the
RL agent. An example of such a list can be exemplified as the following.

Aillegal = [CNOT (i, j,N) ,RX (k,N) . . .] (5)

Here i and j denote the ctrl and targ qubit wires of a CNOT gate for N qubits, and the k denotes
the wire where RX gate was appended. For example, when N = 4, i = 0, j = 1 and k = 2 the list
takes the following form.

Aillegal = [CNOT (0, 1, 4) ,RX (2, 4) . . .] → [12, 6 . . .] (6)

Since the first N × 3 actions are reserved for three 1-qubit rotation directions acting on N qubits
in our numbering convention, the action number for RX (2, 4) is 6 in the Eq. 6. Similarly, we use
a ctrl major numbering convention, the action number for the CNOT (0, 1, 4) gate is given as 12
as the first action after an array of 1-qubit rotation gate actions. During the selection of the next
action, the RL agent updates the Q-table of Q-values corresponding to these action numbers based
on the current RL state (quantum circuit) by utilizing a DQN. Without the IA scheme, the agent
would typically choose the action with the highest Q-value. However, with the IA scheme, the agent
identifies illegal actions using the subroutine’s provided list and updates their Q-values to−∞ in the

16

Q-table. Consequently, when the agent selects actions based on the highest Q-values, those actions
with −∞ Q-values (i.e., illegal actions) are effectively discarded.

B.3 ILLUSTRATION OF TENSOR BASED ENCODING

Figure 5: Illustration of tensor-based encoding for a 4-qubit (i.e., N = 4) toy circuit with nact = 3.
We initialize a tensor of zeros of dimension [nact × ((N + 3)×N)], equating to [3× ((4 + 3)× 4)] for this
circuit. Each blue-colored matrix of size ((4 + 3) × 4), represents a different moment (depth). Within this
matrix, the first (4 × 4) block is reserved for CNOT (CX), with rows and columns encoding target and control
qubits, respectively. The remaining (3 × 4) block of the blue-colored matrix then encodes rotation gates.
The columns mark the position of the qubit wire (index) and the rows mark the rotation direction m. Here,
m = 1, 2, and 3 yields the rotations RX, RY and RZ, respectively.

C CRLQAS IMPLEMENTATION & HYPERPARAMETERS

In our experiments, we employed the Double deep-Q network (DDQN) algorithm with variable step
sizes in the n-step trajectory roll-out update (Sutton & Barto, 2018). For noiseless experiments
involving simple molecules with low qubit numbers, such as H2 − 2, H2 − 3, H2 − 4, and LiH− 4,
we used a single step, n = 1. For noisy simulations of simple molecules, such as H2 − 2, H2 − 3
with the IBM Mumbai noise model, and H2 − 4 with the IBM Ourense noise model, we used
n = 5 steps. Conversely, for noiseless simulations of complex molecules LiH − 6 and H2O − 8,
and for the relatively challenging task of simulating LiH − 4 with the IBM Mumbai noise model,
we employed n = 6 steps.

In these configurations, we set the discount factor (γ) to 0.88. We implemented an ϵ-greedy policy
for selecting random actions, with ϵ decaying by a factor of 0.99995 per step from an initial value
of ϵ = 1 until it reached a minimum value of ϵ = 0.05. The memory replay buffer size was fixed at
20000, and the target network in the DQN training process2 was updated after every 500 actions. In
the curriculum learning strategy, we implemented a testing phase after every 100 training episodes.
In this testing phase we set the randomness factor to ϵ = 0 to halt the random exploration, and
ensure a set of deterministic actions. We exclude the experiences acquired in this phase from the
memory replay buffer. We greedily adjusted the threshold after G = 500 episodes for both noiseless
and noisy 2-, 3-, and 4-qubit problems. Conversely, for 6-, and 8-qubit problems, the threshold
underwent adjustments every G = 2000 episodes, with an amortization radius set at δ = 0.0001.
This amortization radius decreased by δ/κ = 0.00001 after every 50 successfully solved episodes,
beginning from an initial threshold value of ξ1 = 0.005.

We conducted simulations of noiseless quantum circuits using the Qulacs library on CPU (Suzuki
et al., 2021). For the simulations of noisy quantum circuits, we utilized the JAX library on two com-
puting clusters equipped with NVIDIA-A100 GPUs (Bradbury et al., 2018). In experiments without

2The neural network was trained using Adam optimizer (Kingma & Ba, 2014).

17

finite-sampling (shot) noise, we employed the gradient-free COBYLA optimizer (Powell, 1994) with
default hyperparameter settings from Scipy (Virtanen et al., 2020) and 1000 iterations to optimize
circuit parameters at each step of the RL episode. In the presence of shot noise, we employed the
m-stage Adam-SPSA (where m is an integer) developed in this work. Specifically, we used m = 1
stage Adam-SPSA for two and three qubit problems, and m = 3 stages for four qubit problems.
Unlike the local optimization approach for circuit parameters, where only the angles of the latest ap-
pended parametrized gate are optimized, we adopted a global optimization approach (Ostaszewski
et al., 2021b). In each step, we used the circuit parameters from the previous step as initial values,
but we optimized all the parameters.

The hyperparameters of the Double deep-Q network algorithm were selected through coarse grain
search. The employed network architecture consisted of fully connected network with 5 hidden
layers, each with 1000 neurons for the noiseless 4-qubit case, 2000 neurons for the 6-qubit case,
and 5000 neurons for the 8-qubit case. In the noisy case, however, we employed 1000 neurons at
each layer for the 2-, and 3-qubit problems, while the number of neurons per layer ranged upto 2000
neurons for the 4-qubit problem depending on the complexity of the problem. Simulating 1-qubit
depolarizing noise required only 1000 neurons per layer, but the noise model of IBM-Mumbai
devices required up to 2000 neurons for the 4-qubit problem. Similarly, in the noiseless case, we
capped the maximum number of gates at 40 for 4-qubit problems, 70 for 6-qubit problem, and 250
for 8-qubit problem. In the noisy case, we capped the maximum number of gates at 40 for 2-, and
3-qubit problems, but it ranged up to 60 gates for the 4-qubit problems depending on the complexity
of the noise model.

D COMPARISON WITH QCAS (DU ET AL., 2022)

Table 2: Comparison summary between our CRLQAS and QCAS for the 4-qubit H2 molecule. The average
is taken over 3 seeds. The bold numbers highlight the optimal performance of the CRLQAS algorithm. For
both CRLQAS (RH) and CRLQAS (wo-RH), the first row represents the minimum achievable error and the
corresponding number of gates required for these settings. Additionally, the second row demonstrates the
minimum number of gates needed to achieve errors just below the chemical accuracy threshold. Notably, using
only 10 gates in both settings allows for better accuracy to the target. Each approach, RH and wo-RH, presents
its unique advantages and disadvantages. The wo-RH setting achieves energy estimates significantly below
chemical accuracy. Conversely, using RH yields slightly less accurate energy estimates but with shallower
circuits.

Method Minimum Noiseless Err. Avg. Noiseless Minimum Err. # Gates

CRLQAS (RH) 8× 10−5 1.7× 10−4 32

2.8× 10−4 10

CRLQAS (wo-RH) 1.5× 10−5 8.7× 10−4 40

5.5× 10−5 10

QCAS
(Du et al., 2022) 1.9× 10−2 16

18

E ABLATION STUDY OF DIFFERENT COMPONENTS OF CRLQAS

Table 3: Results of ablation study for CRLQAS method. We conducted a thorough investigation to identify the
features that standout within the CRLQAS method in both noisy (for 4-qubit LiH and H2) and noiseless (for
6-qubit LiH) settings. Initially, we find episode(s) with the best noiseless error(s), gathering circuit statistics
(depth, gate count, etc.) and then acquire the noisy error(s) for these episode(s). The last two columns provide
insights into the learning performance of the CRLQAS method. We present median statistics over three random
seeds for noisy experiments and five seeds for noiseless settings. Notably, we emphasize noiseless errors
(in both noisy and noiseless settings) achieving chemical accuracy and denote in bold. wo-X denotes the
deactivation of feature X, where X ∈ {IA,RH}. Additionally, N.A. denotes Not Applicable, implying that
none of the agents over three seeds achieved chemical accuracy.

Molecule Environment Noisy Err. Noiseless Err. Depth # Gates # Params Act. to 1st Succ. Ep. Succ. Ep.

LiH− 4 (wo-IA, wo-RH, Mumbai Median) 0.0581 0.0026 24 40 33 N.A. N.A.

LiH− 4 (IA, wo-RH, Mumbai Median) 0.0818 0.0015 23 40 30 66221 1

LiH− 4 (wo-IA, RH, Mumbai Median) 0.0535 0.0029 15 29 21 N.A. N.A.

LiH− 4 (IA, RH, Mumbai Median) 0.0670 0.0024 15 29 23 N.A. N.A.

LiH− 4 (IA, RH, Mumbai Median & shot noise) 0.0735 0.0038 17 28 18 N.A. N.A.

H2 − 4 (IA, wo-RH, Ourense) 0.2382 0.0001 26 40 14 59311 1209

H2 − 4 (wo-IA, wo-RH, Ourense) 0.3118 0.0004 29 40 23 58157 10

H2 − 4 (IA, RH, Ourense) 0.1372 0.0002 27 32 5 42331 217

H2 − 4 (wo-IA, RH, Ourense) 0.1522 0.0003 19 27 22 35593 6

LiH− 6 ((Ostaszewski et al., 2021b), noiseless) − 0.0024 24 55 29 N.A. N.A.

LiH− 6 (IA, wo-RH, noiseless) − 0.0008 27 56 26 356604 30

LiH− 6 (IA, RH, noiseless) − 0.0012 30 59 37 641593 3

LiH− 6 (wo-IA, RH, noiseless) − 0.0037 23 45 25 N.A. N.A.

LiH− 6 (wo-IA, wo-RH, noiseless) − 0.0016 31 62 31 N.A. N.A.

F SPECIFICS FOR ADAM-SPSA

We implement a version of simultaneous perturbation stochastic approximation (SPSA) that was
not implemented in the context of VQE before. It combines stochastic gradient estimates of
SPSA (Spall, 1987) with adaptive moment estimation (Adam) (Kingma & Ba, 2014) leading to more
stability and faster convergence while retaining the noise robustness of SPSA. To estimate a gradient
term at a given iteration, the SPSA algorithm randomly samples a number of angles amount of bi-
nary directions from the Rademacher distribution, denoted by ∆k. By adding and subtracting these
shifts from the current set of angles θ± = θ ±∆k, we acquire two sets of angles such that we eval-
uate the cost function twice (two function evaluations per iteration) there to acquire the stochastic

gradient approximation ∇Jk =
g+
k −g−

k

2ck∆k
. Then the algorithm proceeds similarly to standard gradient

descent θk+1 = θk − ak∇Jk, with the exception of both parameter shift scaling parameters ck and
the learning rates ak decay at each iteration k slowly with respect to hyperparameters α, a, c, γsp.

Similar to incorporating adaptive moment terms (parameter adaptation and momentum) in gradient
descent optimization, we integrate these terms with the stochastic gradient estimate from SPSA.
In this integration, three additional hyperparameters, namely β1, β2, and λ, are introduced to gov-
ern the adaptation and momentum terms. In the quantum context, Adam enables the utilization of
gradient information from previous iterations in classical post-processing, without relying on addi-
tional quantum queries, thereby enhancing robustness and convergence rates. After testing multiple
variants of SPSA in a well-known problem of VQE through hardware efficient ansatz (Agliardi &
Prati, 2022; Arouri & Sayyafzadeh, 2020; Kandala et al., 2017), we found the variant used in (Leng
et al., 2019) to be the most stable. Throughout this work, we refer to this specific variant as Adam-
SPSA (Leng et al., 2019). In this version of Adam-SPSA, the momentum term β1 undergoes updates

19

Table 4: The hyperparameters of Adam-SPSA optimizer used during the noisy simulations. In the noisy
simulation of 2-, and 3-qubit problems we used 1-stage version of the algorithm, therefore only single maximum
function evaluation hyperparameters are given. The parameters within the curly brackets denote the maximum
number of function evaluations in the 3-stage version of the algorithm. We provide Max fevals both for 1-stage
and their 3-stage equivalents.

Molecule a α β1 β2 c γsp λ Max fevals Shots

H2-2 1.2104 0.9531 0.9414 0.9983 0.1039 0.0984 0.9277 500 103

H2-3 0.5188 0.9859 0.716 0.6265 0.0938 0.0974 0.6483 500 104

LiH-4 1.2324 0.9709 0.6114 0.9326 0.2215 0.1485 0.9772
1600

{1191, 357, 119}
3300

{2383, 715, 238} 106

LiH-6 1.7564 0.8365 0.6841 0.9048 0.1068 0.1549 0.1223 2000
{1430, 429, 143} 108

at each iteration using the λ scaling hyperparameter, ensuring numerical stability. Conversely, the
other momentum term β2 remains constant. The pseudo-code for Adam-SPSA is outlined in Alg. 12,
with the newly introduced Adam momentum components highlighted in green.

In the presence of finite sampling (or shot) noise, keeping the number of measurement samples,
Nshots, constant throughout the training is named 1-stage optimization (Cade et al., 2020; Bonet-
Monroig et al., 2023). Similarly, a 3-stage version of vanilla SPSA is proposed in (Cade et al.,
2020; Bonet-Monroig et al., 2023) such that the number of measurement samples is increased at
each phase. In the 3-stage optimizers, the first phase is implemented with a shot budget of N (1)

shots =

Nshots/10 for a function evaluation budget of n(1)f , the second with a shot budget of N (2)
shots =

Nshots for a function evaluation budget of n(2)f , and the third with a shot budget of N (3)
shots =

10Nshots for a function evaluation budget of n(3)f . The 3-stage SPSA algorithm introduced in these
papers resets the decaying hyperparameters to their default values during transitions between stages.

In this work, we propose a 3-stage Adam-SPSA where the decaying hyperparameters are continu-
ously evolving (i.e., not reset to defaults) while changing between stages such that the momentum
of the iterations from higher measurement samples can be utilized in the later stages. Our proposed
algorithm also reports the latest function evaluation as the best function evaluation, unlike the others.
After examining various versions of SPSA, considering factors like the inclusion of Adam, and ex-
perimenting with or without parameter reset, we observed that the SPSA variants without parameter
reset are constrained to use the best function evaluation because they significantly diverge from the
solution after a certain number of iterations. Our simulations empirically show that the continuity of
hyperparameters between stages leads the algorithm to converge towards the optimum while Adam
increases the rate of such convergence.

We conducted experiments involving various variants of 1-, and 3-stage SPSA, both with and with-
out Adam, and with and without parameter reset. The evaluation was performed on 2-, 3-, 4-,
and 6-qubit systems utilizing the VQE approach with a hardware-efficient ansatz of depth 10. For
the 2-qubit problem addressing H2 − 2, we employ 103 samples. Similarly, the 3-qubit problem
targeting H2 − 3 utilizes 104 samples, and the 4-qubit problem for LiH-4 employs 106 samples.
Lastly, the 6-qubit problem dealing with LiH-6 utilizes 108 samples in each function evaluation.
We fine-tuned the hyperparameters of the SPSA variants for these problems using an evolution-
ary algorithm-based stochastic hyperparameter optimizer library called IRACE in R (López-Ibáñez
et al., 2016). The final hyperparameters used in the experiments are outlined in Table 4. Specifically,
we tuned the hyperparameters within the following ranges for each hyperparameter: a ∈ [0.01, 2],
α ∈ [0, 1], c ∈ [0.01, 2], γsp ∈ [0, 1/6], λ ∈ [0.01, 0.999], and β1, β2 ∈ [0.6, 0.999]. For running
the IRACE algorithm, we allocated 2500 evaluations of the hyperparameters as the total budget. We
implemented a single run of IRACE using this budget, and utilized the F-test to eliminate worse
configurations.

After the hyperparameter optimization, we executed each combination (for each SPSA variant and
each problem) in 100 independent runs for the qubit systems described above. Both Fig. 6 and Fig. 7
illustrate the optimization traces of SPSA variants with 1-, and 3-stage sampling strategy, respec-

20

Algorithm 1: Simultaneous Perturbation Stochastic Approximation with Adam (Adam-SPSA)
Input : Initial parameter vector θ, Objective function f(θ), Number of iterations K
Output : Optimal parameter vector θ∗
Hyperparameters: a, α, c, γsp, λ, β1, β2

1 Initialize momentum parameters to zero: m, v ← 0
2 for k = 1 to K do
3 Compute the scaling parameters ak ← a

(k+1)α , ck ← c
(k+1)γsp

4 Compute the hyperparameter β1,k ← β1

(k+1)λ

5 Randomly choose a perturbation vector ∆k with elements ±1
6 Evaluate objective function gradients: g+k ← f(θ + ck∆k) and g−k ← f(θ − ck∆k)

7 Compute gradient estimate: ∇Jk ←
g+
k −g−

k

2ck∆k

8 Biased update of moment parameters m and v: m← β1,km+ (1− β1,k)∇Jk,
v ← β2v + (1− β2)(∇Jk)2

9 Unbiased computation of moment parameters m̂ and v̂: m̂← m

1−βk+1
1,k

, v̂ ← v

1−βk+1
2

10 Update gradient estimate: ∇Jk ← m̂√
v̂+k

11 Update parameters: θ ← θ − ak∇Jk
12 return θ∗ = θ

tively. The colors show the results of the vanilla SPSA (brown and black) and Adam-SPSA (orange
and grey). The thick lines (black and grey) on top of individual optimization traces indicates the
median of 100 independent runs. The markers (brown and orange) refer to the final candidates of

0 50 100 150 200 250

10 4

10 3

10 2

10 1

100

En
er

gy
 E

rro
r

H2-2

0 50 100 150 200 250

10 1

100
H2-3

0 200 400 600 800
Number of Iterations

10 3

10 2

10 1

100

En
er

gy
 E

rro
r

LiH-4

0 200 400 600 800 1000
Number of Iterations

10 2

10 1

100

LiH-6

Final candidates of SPSA
Final candidates of Adam-SPSA

SPSA median trace
Adam-SPSA median trace

Figure 6: Optimization traces of the one-stage sampling strategy of SPSA (brown and black) and Adam-
SPSA (orange and grey) on the 2-, 3-qubit H2 and 4-, 6-qubit LiH molecules (whitesmoke text-box), using
the hyperparameters outlined in Table 4. The individual traces are represented by thin lines, while the thick
line on top indicates the median of 100 independent runs.

21

0 50 100 150 200 250
10 4

10 3

10 2

10 1

100

En
er

gy
 E

rro
r

H2-2

Reset Parameters

0 50 100 150 200 250
10 6

10 5

10 4

10 3

10 2

10 1

100

H2-2

Continuous Parameters

Final candidates of SPSA
Final candidates of Adam-SPSA
SPSA median trace
Adam-SPSA median trace

0 50 100 150 200 250

10 1

100

En
er

gy
 E

rro
r

H2-3

0 50 100 150 200 250

10 1

100
H2-3

0 200 400 600 800

10 2

10 1

100

En
er

gy
 E

rro
r

LiH-4

0 200 400 600 800

10 3

10 2

10 1

100
LiH-4

0 200 400 600 800 1000
Number of Iterations

10 2

10 1

100

En
er

gy
 E

rro
r

LiH-6

0 200 400 600 800 1000
Number of Iterations

10 2

10 1

100

LiH-6

Figure 7: Optimization traces of the three-stage sampling strategy of SPSA (brown and black) and
Adam-SPSA (orange and grey) on the 2-, 3-qubit H2 and 4-, 6-qubit LiH molecules (whitesmoke text-
box), using the hyperparameters outlined in Table 4. The individual traces are represented by thin lines,
while the thick line on top indicates the median of 100 independent runs. The left and right panels showcase
the resetting and continuous evolution of SPSA (Adam-SPSA) hyperparameters, respectively.

SPSA (Adam-SPSA) after every optimization run. The error bars are one-sigma standard-error of
100 independent runs. The y-axis in both the figures is given in log-scale. In Fig. 7, the left and right
panels showcase the resetting and continuous evolution of 3-stage SPSA (Adam-SPSA) hyperpa-

22

rameters, respectively. Note that the number of iterations (maximum function evaluations) outlined
in Table 4 are different than the hyperparameters generated for this systematic benchmarking study.

In both 1-, and 3-stage Adam-SPSA, unlike the vanilla SPSA without Adam momentum, the con-
vergence towards the minima is qualitatively much faster. In 3-stage variants, as seen in Fig. 7,
this convergence behaviour is also apparent quantitatively (especially in LiH − 4 and LiH − 6),
though the differences are marginal and inconclusive for the 1-stage in Fig. 6 (except for LiH − 6
until 700 iterations). Moreover, for 3-stage variants, we observe that the variant with resetting of
hyperparameters (left panel in Fig. 7) tend to diverge from the optimal cost function values after
a certain number of iterations only to converge back to the optima after training for longer. We
noted this convergence behavior is at odds with the fast convergence rates we are looking for in our
RL training. In contrast, the variant with continuous evolution of hyperparameters (right panel in
Fig. 7) do not suffer from this draw back as the cost function values consistently went lower with
the number of iterations without making a sharp turn away from the optima. Utilizing these insights
from our analysis of various SPSA variants, we employ 1- and 3-stage Adam-SPSA (with continu-
ous evolution of hyperparameters) in our noisy experiments. This helps cut down the total number
of function evaluations by half, thereby doubling the speed of our RL training. This improvement at
the algorithm level helped us simulate noisy systems that suffer from computational complexity and
large run times.

G IBM MUMBAI DEVICE NOISE CALIBRATION DATA

Table 5: Tabular representation of the median, max and 10×max noise of IBM Mumbai device. Additionally,
the qubit frequency and the anharmonicity are the same for median, max and 10×max settings and are set to
4.896 GHz and −0.33 GHz, respectively.

Noise Profile 1-Qubit Dep.
Noise

2-Qubit Dep.
Noise Readout Error Thermal Relaxation

Noise (µs)
1-Qubit

Gate Time (s)
2-Qubit

Gate Time (s)

Median 2.44× 10−4 8.25× 10−3 2.25× 10−2 T1 = 122.28µs,
T2 = 167.2µs 35× 10−9 416× 10−9

Max 1.45× 10−3 2.30× 10−2 8.7× 10−2 T1 = 122.28µs,
T2 = 167.2µs 35× 10−9 739.55× 10−8

10×Max 1.45× 10−2 2.30× 10−1 8.7× 10−1 T1 = 122.28µs,
T2 = 167.2µs 35× 10−8 739.55× 10−8

H DETAILS OF QUANTUM NOISE MODELS

We implemented multiple noise models of varying complexity to serve as a testbed for evaluat-
ing the proposed CRLQAS method. Initially, we modeled sampling (or shot) noise as indepen-
dently and identically distributed random variables sampled from a Gaussian distribution with zero
mean (Bonet-Monroig et al., 2023; Liu et al., 2022). Secondly, we modeled gate infidelities of 1-
, and 2-qubit gates as 1-, and 2-qubit depolarizing channels (Nielsen & Chuang, 2010). Thirdly,
we incorporated two physical models for state preparation and measurement (SPAM) noise. State
preparation errors were modeled by considering initial states as thermal states due to the residual
thermal population of transmons. Read-out errors were modeled as bit-flip channels applied at the
end of the circuit. Lastly, we modeled thermal relaxation and decoherence using the thermal relax-
ation channel, especially when relaxation times T1 were smaller than the coherence time T2 (Blank
et al., 2020).

We manually specified parameters for the first two noise models. Subsequently, we obtained noise
parameters from the benchmarks of the IBM Mumbai device on August 8, 2023, to create more
realistic noise models. By obtaining Kraus matrices for the gates and noise channels, we computed
Pauli-transfer matrices (PTMs) offline, eliminating the need for online computations during exper-
iments. We combined the PTMs of gate implementations with those of subsequent noise channels,
effectively obtaining noisy gate PTMs.

H.1 SAMPLING NOISE

The VQE cost function, denoted as C(θ) in Eq. 1, can be expressed in terms of random variables
Xi = ciPi. In this scenario, with given parameters θ⃗ and the observable (chemical Hamiltonian)

23

H =
∑

i ciPi, then the cost represents the mean of the sum of n such random variables:

C(θ) =

n∑
i=1

⟨Xi⟩ =
n∑

i=1

ci⟨Pi⟩ (7)

In real quantum devices, users have access to a finite sample estimator. The expectation value of
each Pauli string is estimated as P i through multiple state preparations, basis transformations, and
measurements. For each instance, the initial state is reset, and the quantum state undergoes a basis
transformation into the computational basis of the given Pauli string to compute a bit-string sample.
These bit-strings are sampled M times (shots) to estimate the eigenvalues P i with a variance of
Var(Pi) = 1/M . Using these estimatesXi = ciP i, and given parameters θ and shots per observable
M , the estimator for the cost function is as follows:

C̄(θ,M) =

n∑
i=1

X̄i =

n∑
i=1

ciP̄i (8)

Here, the difference between each Pauli-string estimate and the expectation value is denoted by a
random variable εi(M) = P i − ⟨Pi⟩, drawn from the binomial distribution with variance Var(Pi)
(Bonet-Monroig et al., 2023). Assuming Pauli string observables are measured independently, they
can be modeled as independent and identically distributed (i.i.d.) random variables (Bonet-Monroig
et al., 2023). In that case, the variance of C(θ⃗,M) can be propagated directly as follows:

s2n = Var
[
C̄
]
=

n∑
i=1

c2iσ
2
i =

1

M

n∑
i=1

c2i (9)

According to the Central Limit Theorem, in the limit n → ∞, the difference between the true cost
function and its finite-sample-based estimator converges to a normal distribution centered around
zero mean (Billingsley, 2017):

lim
n→∞

n∑
i=1

ci
(
P̄i − ⟨Pi⟩

)
= lim

n→∞

n∑
i=1

ciεi(M) ∼ N (0, sn) (10)

This expression illustrates that, in the limit where the chemical Hamiltonian has numerous Pauli-
string terms (n≫ 1), sampling Pauli-string estimation errors from the normal distribution ε(M) ∼
N (0, 1√

M
) is a reasonable approximation compared to the binomial distribution. This approxima-

tion serves as a computationally efficient model for sampling (shot) noise and is consistent with
other literature (Liu et al., 2022).

H.2 PAULI-TRANSFER MATRICES

A density matrix ρ, a complex-valued object of dimension 2N × 2N for N qubits, can represent
both the quantum statistics of a single quantum state ρ = |ψ⟩ ⟨ψ| (known as a pure state) and
the statistics of a classical ensemble of multiple quantum states ρ =

∑
i pi |ψi⟩ ⟨ψi| (known as

a mixed state). In the case of mixed states, each constituent quantum state |ψi⟩ occurs with a
probability pi, which sums up to unity. This happens because coupling with external processes like
measurement or thermal relaxation, applies a (non)unitary process to the quantum state with some
probability (Breuer & Petruccione, 2002). Both the unitary processes, normally acting in closed
quantum systems, and the above-mentioned processes can be represented by quantum channels Λ.
These channels are completely positive trace-preserving (CPTP) operators in the 2N dimensional
Hilbert space, mapping a density matrix to another, Λ : C2N×2N 7→ C2N×2N . A quantum channel
Λ acting on ρ is conventionally represented using Kraus matrices Ki:

Λ (ρ) =
∑
i

KiρK
†
i (11)

The Kraus matrix usually has the form Ki =
√
piAi. In the case of a unitary channel (e.g., a

quantum gate in a closed system), only a single unitary matrix Ai is applied with a unit probability
(pi = 1), keeping the quantum state pure. In open, noisy systems, (non)unitary operations Ai are
applied with probabilities pi < 1, resulting in a classical mixture of possible outcomes (i.e., a mixed
state). In digital quantum computers, physical noise is typically represented by applying the unitary

24

channel of a gate on a qubit, followed by the application of various quantum channels representing
gate noise on the same qubit. It is computationally advantageous to represent each of these channel
applications as a matrix product, requiring vectorization of the density matrix through algebraic
manipulation.

ρ =
∑
i,j

ρi,j |i⟩ ⟨j| → |ρ⟩Choi = Φ−1(ρ) =
∑
i,j

ρi,j |i⟩ ⊗ |j⟩ (12)

Here, representing the computational basis states given in outer-product format |i⟩ ⟨j| instead of the
tensor product |i⟩ ⊗ |j⟩, allows for vectorization in the column-major order of the density matrix.
This unrolling operation of the matrix, denoted as “vec” (Φ−1(·)), results in the Choi representation
of the density matrix. Conversely, the rolling operation back in the column-major order is known as
“unvec” (Φ(·)) (Wood et al., 2011). The isomorphism Φ−1 is a mapping from C2N×2N to C22N in
column-major ordering, and vice versa (Blank et al., 2020). In this isomorphism, the application of
Kraus matrices can be expressed as a single matrix product:

ε(ρ) = Tr1
{
Λ
(
ρT ⊗ I

)}
(13)

Here, the Choi matrix (or super-operator) ε of a channel Λ is obtained by tracing out the sub-
space of identity I . This matrix then can be used to evolve quantum states under the influence
of a quantum channel by matrix-vector multiplications, |ρ′⟩Choi = εΛ · |ρ⟩Choi. In the context
of processes characterization (Chow et al., 2012) and classical simulation of variational quantum
algorithm landscapes (Rall et al., 2019; Fontana et al., 2023; Rudolph et al., 2023) that involve
measurements using the Pauli-Liouville bases instead of the computational bases for the vector-
ization and super-operator representation (Pauli-transfer Matrix, PTM) have an extra computa-
tional advantage. In this formalism, the state, the observable, and the channel super-operators
are written either using the Pauli basis set Bpauli = 1√

2
{I,X, Y, Z} or the 0xy1 basis set

B0xy1 =
{
(I + Z)/2, X/

√
2, Y
√
2, (I − Z)/2

}
(O’Brien et al., 2017; Greenbaum, 2015). A stan-

dard quaternary notation of these bases is used to construct multi-qubit Pauli strings, Pi. To acquire
the expansion coefficients in this basis, the Hilbert-Schmidt norm, ⟨A|B⟩ = Tr

(
A†B

)
, is utilized.

ρ =
∑
i

ciPi → ci = |ρ⟩i = Tr (Piρ)

O =
∑
i

diPi → di = |O⟩i = Tr (PiO)

RΛ[i, j] = Tr {PiΛ (Pj)} → Λ (Pj) =
∑
i

KiPjK
†
i (14)

Here, |ρ⟩ and |O⟩ represent the vector representation of the state and a physical observer (e.g.,
Hamiltonian) in Pauli-Liouville basis. The i-th element of these vectors is denoted by ci and di,
which are scalars. WhileRΛ[i, j] represents the PTM element at the i-th row and j-th column. In this
formalism, the channel PTMs can both propagate the initial state forward (Schrodinger propagation)
or propagate the observable backward (Heisenberg propagation) to acquire the final expectation via
matrix-vector multiplications (Rall et al., 2019; O’Brien et al., 2017; Fontana et al., 2022; 2023).
These vectorization and super-operator schemes enable fusing gate channels with the subsequent
noise channels offline (ahead of the simulations for RL training). The PTM of a noisy gate is given
by fusing the PTMs of K channels acting on the qubit after the PTM of the gate G as R̃G =
RΛK−1

◦RΛK−2
· · · ◦RΛ0

◦RG. In our simulations, we use 0xy1 bases for N -qubit PTMs, due to
their similarity with noiseless 2N -qubit state-vector simulation, and we apply the noise models of
the real devices with actual parameters we describe in the following sub-sections.

H.3 DEPOLARIZING CHANNEL

We model the gate infidelities as 1-qubit or 2-qubit depolarizing channels (Nielsen & Chuang, 2010).
The depolarizing channels can be represented using density matrix formalism, ρ, and Kraus matri-
ces, Ki. Specifically, a 1-qubit depolarizing channel, Λ(dep)

p,q , acting on qubit q with an error proba-
bility (or the noise strength, gate infidelity, etc.) p, is defined as follows:

Λ(dep)
p,q (ρ) =

(
1− 3p

4

)
ρ+ p

4 (XqρXq + YqρYq + ZqρZq) (15)

25

In the expression above, Λ(dep)
p,q (ρ) represents the channel’s application on the density matrix, and

Xq , Yq , Zq denote the Pauli operators acting on qubit q. The qubit is left unaffected with a probabil-
ity of

(
1− 3p

4

)
, and with a probability of p

4 , it undergoes an amplitude bit-flip (XqρXq), a phase-flip
(ZqρZq), or a combination thereof (YqρYq).

Initially, we apply this noise model with the probability parameter pone = 0.1 × 10−2 upon im-
plementation of each 1-qubit gate. In other words, a 1-qubit depolarizing channel of the strength
pone = 0.1× 10−2 is initially utilized to model the rotation gate infidelities. Subsequently, we apply
this model to both the control and target qubits, qctrl and qtarg, during the implementation of the
2-qubit control NOT gate CNOT(qctrl, qtarg). In this case, a 2-qubit depolarizing channel is used
to model the CNOT gate infidelity, applying this 2-qubit noise model with a probability (or strength)
parameter ptwo = 0.5× 10−2.

To model gate infidelities in various IBM devices, we employed the following parameters. For
IBM Mumbai device (see Table 5), the median 1-qubit gate infidelity was represented by pmedian

one =
2.44 × 10−4, and the median 2-qubit gate infidelity was represented by pmedian

two = 8.25 × 10−3.
Additionally, the maximum 1-qubit gate infidelity was denoted as pmax

one = 1.45 × 10−3, and the
maximum 2-qubit gate infidelity was denoted as pmax

two = 2.30 × 10−2. We also created a more
noisy scenario by scaling these maximum infidelities by ten folds, resulting in p10max

one = 10 × pmax
one

and p10max
two = 10 × pmax

two . These parameters, representing median, max, and 10 × max infidelity
strengths, were applied as depolarizing channel strengths uniformly across all qubits and gates in
their respective experiments, assuming full device connectivity. The data for the IBM Mumbai
device was collected on August 8, 2023.

In contrast, for the IBM Ourense device, we considered individual gate infidelity information
while also factoring the qubit connectivity of the device. The qubits 0 − 1 − 2 − 3 with 1-qubit
infidelities were set as follows: p0one = 5.22× 10−4, p1one = 4.14× 10−4, p2one = 1.84× 10−4, and
p3one = 4.3×10−4. For 2-qubit gates involving qubit 1 and its neighbours, the corresponding 2-qubit
depolarizing channel strengths were determined as p01two = 9.55 × 10−3, p12two = 9.44 × 10−3, and
p13two = 1.25× 10−2. The device data used for IBM Ourense was sourced from (Du et al., 2022).

H.4 READOUT ERRORS AS BIT-FLIP CHANNEL

We incorporate readout errors into our model, inspired by (Blank et al., 2020), treating them as bit-
flip (amplitude flip) operations applied just before the measurement (Nielsen & Chuang, 2010). The
bit-flip channel, representing the readout error with strength p on qubit q, is characterized by the
following Kraus representation.

Λ(bf)
p,q (ρ) = (1− p) ρ+ pXqρXq (16)

In this scenario, the qubit q has a probability of 1−p to retain its current state, and with a probability
p, it flips its amplitude, akin to a π rotation around the x-axis in the Bloch sphere. Again, noise
profiles of two different IBM devices were implemented.

Firstly, we uniformly apply readout noise levels obtained from IBM Mumbai devices, categorized
as median and max, to all qubits in our experiments. The readout error strengths for IBM Mumbai
device are denoted as pmedian

ro = 2.25 × 10−2 and pmax
ro = 8.7 × 10−2, acquired on August 8, 2023,

as listed in Table 5. For the 10×max experiments, we use 87% readout errors, as ten times the max
readout errors rendered VQE experiments unfeasible due to signal loss.

Secondly, we account for readout errors of qubits 0 − 1 − 2 − 3 from the IBM Ourense de-
vice (Blank et al., 2020). The corresponding error values are p0ro = 1.65×10−2, p1ro = 2.38×10−2,
p2ro = 1.57× 10−2, and p3ro = 3.95× 10−2.

H.4.1 STATE PREPARATION ERRORS AND THERMAL RELAXATION CHANNEL

The state preparation errors in transmon qubits are due to residue thermal populations that can be
modelled as thermal states (Krantz et al., 2019). A transmon qubit, a quantum anharmonic oscillator
in the truncated Hilbert space, can be modeled as a k-level quantum system (a qudit) with unequal
level spacing such that the subspace of the first two levels is reserved for computation. A widely
used approximate model is a qutrit (where the infinite-dimensional Hilbert space is truncated to
k = 3) where the ground state energy is set to be zero, E0 = 0, the first excited state is determined
by the qubit frequency (ω) parameter, E0 = ℏω, and the second excited state is determined by

26

the anharmonicity parameter (δ, typically a negative number), E2 = ℏ (2ω + δ). Given the fridge
temperature T , the initial quantum state of a qubit with residual thermal populations is the following.

ρ0Z = |0⟩ ⟨0|+ exp

(
− E1

kBT

)
|1⟩ ⟨1|+ exp

(
− E2

kBT

)
|2⟩ ⟨2|

Here ρ0 denotes the initial thermal state, kB and ℏ denote the Boltzmann and reduced Planck con-
stants, and Z denotes the equipartition function Z = 1 + exp

(
− E1

kBT

)
+ exp

(
− E2

kBT

)
. The prob-

ability of the quantum state being initially in the excited state is given as pe = exp
(
− E1

kBT

)
/Z. In

our experiments, we used ωmumbai = 4.894GHz, δmumbai = −0.33GHz for the IBM Mumbai device
and we used ωourense = 5GHz, δourense = −0.33GHz for the IBM Ourense device to acquire these
parameters.

Each time qubits are reset, the decoherence, which is caused by coupling of the quantum system to
external degrees of freedom such as stray fields, allows computations to run for a certain amount
of time (coherence time) before the strictly quantum mechanical properties are lost. The thermal
relaxation time, T1, measures how long it takes for a qubit that is initially prepared in the excited
state |1⟩ (the North pole of the Bloch sphere) to decay back to the ground state |0⟩ (the South pole
of the Bloch sphere) (Krantz et al., 2019). The phase-coherence time, T2, measures how long it
takes to lose the phase information. When a qubit is initially prepared on the equator of the Bloch
sphere, such as a |+⟩ state, it can not be distinguished from other states on the equator, such as
a |−⟩ state, due to being end up in a classical mixture of these states after T2. These thermal
relaxation and decoherence processes do not happen instantly after T1 and T2 amount of time, but
the qubits experience them rather gradually as 1-, and 2-qubit gate implementations also take a finite
amount of time, ∆tone and ∆ttwo, hindering the perfect implementation of these gates beside the gate
infidelities. These gradual processes can be modeled as quantum channels that follow the application
of 1-, and 2-qubit gates (Blank et al., 2020). The effect of the thermal relaxation channels depends
on how good the initial state is prepared or the excited state probability, pe, decoherence times T1
and T2 of the quantum hardware in hand, and how fast the gates are implemented ∆tone and ∆ttwo
(for values see Table 5). For these gate durations, we can define thermal relaxation and dephasing
gate error rates ϵT1 = exp

{
−∆t

T1

}
and ϵT2 = exp

{
−∆t

T2

}
. Using these, we can define the qubit

reset probability preset = 1− ϵT1
, and the following probabilities.

pid = 1− pz − pr0 − pr1
pz = (1− preset)

(
1− ϵT1

ϵ−1
T2

)
/2

pr0 = (1− pe) preset

pr1 = pepreset (17)

Here pr0 gives the probability that qubit resets to the ground state |0⟩, pr1 gives the probability qubit
resets to the excited state |1⟩, pz gives the probability that qubit in the ground state is hit by a phase-
flip operation Z, and pid gives the probability that qubit in the ground state is hit by an identity gate
I . The regimes where T2 ≤ T1 and T2 > T1 have different channel representations (Blank et al.,
2020). The Kraus representation for the thermal-relaxation channel (TRC) acting on the qubit q
when T2 ≤ T1 follows the probabilities described above.

K0 =
√
pidI

K2 =

√
pr0
2

I + Z

2

K4 =

√
pr1
2

X + iY

2

K1 =
√
pzZ

K3 =

√
pr0
2

X − iY
2

K5 =

√
pr1
2

I − Z
2

In this regime, TRC has amplitude and phase-damping terms. Here K2 (K5) operator resets the
qubit to |0⟩ (|1⟩) with probability pr0 (pr1). Similarly K3 (K4) operator relaxes (excites) the qubit
into |0⟩ (|1⟩) with probability pr0 (pr1). While K0 and K1 implement I and Z with their respective
probabilities. In the T2 > T1 regime, the quantum channel is represented by the following Choi

27

matrix (Blank et al., 2020).

Λ =



1− pr1 0 0 ϵT2

0 pr1 0 0

0 0 pr0 0

ϵT2
0 0 1− pr0


(18)

The eigendecomposition and “unvec” operations yield Kraus matrices Kλ =
√
λΦ(vλ). For the

T2 > T1 regime, we use the analytically computed Kraus matrices given in Pennylane software
library (Bergholm et al., 2018). To compute these, the T1 and T2 times of IBM Mumbai and
IBM Ourense devices we use are the following. The ones for Mumbai devices are the median
values of the data acquisition date T1 = 122.28µs, T2 = 167.2µs, (see Table 5). And, the ones
for Ourense devices are, T 0

1 = 75.75µs, T 0
2 = 50.81µs, T 1

1 = 78.47µs, T 1
2 = 27.56µs, T 2

1 =
101.51µs, T 2

2 = 107µs, and T 3
1 = 79.54µs, T 3

2 = 78.38µs (see (Du et al., 2022)).

I SOFTWARE LEVEL SIMULATION OPTIMIZATION

Our RL agent training involves billions of queries to the classical simulator, incurring substantial
time and computational costs. In each episode, unless terminated by the random halting protocol or
by reaching a threshold value before the final action, the RL agent executes a series of actions nact
(an integer). During each action i, where i ∈ [nact], the agent appends a new 1-, or 2-qubit gate to
a quantum circuit. At the simulator level, this corresponds to compiling n(i)g = n

(i)
oqg + n

(i)
tqg gates

applied by the agent until action i. Here, n(i)g represents the total number of gates implemented
during cost function evaluation (subsequent matrix-vector multiplications) at action i, such that at
the final action i = nact, a total of nact = n

(nact)
g gates are applied. Additionally, n(i)oqg and n(i)tqg

denote the number of 1-, and 2-qubit gates compiled during action i. The cost function evaluation
takes t(i)feval ≈ tfeval amount of time for each action i. The value of t(i)feval can be approximated as an
intermediate value of tfeval even though the function evaluation time cumulatively increases with i.
Furthermore, at each action i, classical optimizers require nfeval cost function evaluations. Given a
total of ne episodes, training an RL agent roughly consumes ne × nact × nfeval × tfeval time, with an
additional 20 seconds per episode for neural network training on an NVIDIA-A100 GPU.

As of the completion of this work, Qulacs remains the most efficient classical simulation framework
for Python-based quantum circuit evaluations. This efficiency is derived from effective memory-
access, swift linear algebra facilitated by C++ SIMD optimizations, and an underlying algorithm
that handles horizontal and vertical gate fusions for named gates in noiseless scenarios (Suzuki et al.,
2021). However, the advantage of using Qulacs in our experiments diminishes when transitioning to
noisy simulations using the Kraus operator sum formalism, as the algorithmic benefits related to gate
fusions are not as prominent in this context. The total number of dense Kraus matrix multiplications
is defined as nkm = 2 (noqgnoqcnok + 2ntqgntqcntk). Here, noqc represents the number of 1-qubit
channels following 1-qubit gates, and nok denotes the number of Kraus matrices in these 1-qubit
channels. Similarly, ntqc indicates the number of 2-qubit channels following 2-qubit gates, and ntk
specifies the number of Kraus matrices in these 2-qubit channels. It is important to note that the
term for 2-qubit channels is multiplied by two, as different noise channels need to be applied at
each qubit during an evolution. Additionally, the overall number is multiplied by two because the
density matrix must be affected both from the left and the right by Kraus matrices. For mathematical
implementations of these operations, please refer to Appendix H.

Crucially, these noise simulations are performed online (during simulation) each time. As the num-
ber of qubits and gates increases, the cost function evaluation times (tfeval) grow exponentially. This
results in RL training times escalating from the scale of days in the noiseless case to months in
the noisy case, rendering it impractical to obtain prompt feedback from the training, even for basic
unit tests and hyperparameter optimization. To address these challenges, we precomputed the Pauli-
transfer matrices (PTMs) of the noisy gates before simulations and developed a GPU-based simula-
tion framework in JAX (Python) (Bradbury et al., 2018). Due to time constraints, we were unable to
implement the backward or forward propagation algorithms for sparse Paulis as prescribed in (Rall

28

et al., 2019; Fontana et al., 2023). However, we successfully implemented fast, dense matrix-vector
multiplication-based algorithms for both noiseless and noisy cases.

To guide the simulator on the gates to be implemented, we provide it with a NumPy array (Harris
et al., 2020) of dimension ng × 2. The first column enumerates the subsequent gates or PTMs in
ascending order, with the first element corresponding to the first gate, and so forth. The second
column contains the variational parameters to be implemented, with parameters for non-parametric
gates set to zero. We also provide the positions (row numbers) of this instructions array to facilitate
updating parameters in the correct order outside closed-circuit GPU computations occurring in XLA
(accelerated linear algebra library) (Sabne, 2020). A just-in-time (JIT) compiled JAX function reads
these instructions (in XLA) and, for each row (or instruction), generates a unitary matrix or PTM
using the gate number and angle. Subsequently, another JIT-compiled function takes a vector from
the previous iteration and the matrix constructed by the previous function, returning a new vector
after multiplication. One level higher, another JIT-compiled function iterates through these matrix-
vector multiplications (forward propagation) row by row using JAX’s native foriloop, carrying the
vector from the previous iteration until the end of the circuit. Finally, another JIT-compiled function
takes over this vector and either performs an inner product operation ψ†Hψ for dense Hamiltonians
in noiseless simulations or a dot product ⟨H|ρ⟩ for Hamiltonian vectors in noisy cases. All these
functions are merged into a single JIT-compiled expectation value computation subroutine. When
the user queries this subroutine with a new set of angles, it first updates the variational parameters of
the instructions array, then feeds this array to the JIT-compiled subroutine (running on GPU using
XLA instructions) to obtain a real number output. Due to the asynchronous nature of GPU comput-
ing and the current limitations of XLA, which require static tensor geometries as input and outputs,
these computational subroutines need to run concurrently with static input-output shapes to leverage
computational benefits. Our implementation takes these aspects into account. These subroutines
could be further integrated with sparse Pauli algorithms (Rall et al., 2019; Fontana et al., 2023) or
tensor network methods (Orús, 2014) to extend the scalability of these noiseless and noisy simula-
tions in terms of qubit numbers and gate counts. However, we leave this avenue for exploration in
future work.

1 3 5 7 9 11 13
Depth

0

250

500

750

1000

1250

1500

1750

Fu
nc

tio
n

ev
al

s t
im

e
(

s)

H2-2

1 3 5 7 9 11 13
Depth

0

500

1000

1500

2000

2500

3000

H2-3

1 3 5 7 9 11 13
Depth

0

2000

4000

6000

8000

10000
LiH-4

Qulacs_0 Qulacs_1 Qulacs_2 Qulacs_3 Qulacs_4 JAX_0 JAX_all

Figure 8: Computation time per VQE function evaluation in hardware-efficient ansatz (HEA) using
differing software and methods. The x-axis shows the HEA depth for the given problem. Different traces
display the implementations in different software and different noise models.

In Fig. 8, we evaluate the performance of different simulators implementing various noise models
as the hardware-efficient ansatz depths increase (i.e., with growing gate counts) for different qubit
system sizes. Noise models are identified by cumulative numbers that increase with the addition of
noise channels after their respective gates. Initially, noise model “0” represents the noiseless sim-
ulator. Subsequently, noise model “1” introduces a 1-qubit depolarizing channel after each 1-qubit
gate. Building on this, noise model “2” adds a depolarizing channel to each “ctrl” and “target”
qubit of the CNOT gate after post-implementation. Further extensions include noise model “3” in-
troducing a 1-qubit thermal relaxation channel after each 1-qubit gate, and noise model “4” which,
on top of noise model “3” adds a thermal relaxation channel to each “ctrl” and “target” qubit
of the CNOT gate. While Qulacs exhibits optimal evaluation times in the noiseless case for all qubit
numbers, the advantage diminishes with the inclusion of any noise channel, especially as gate count
and the number of dense matrix multiplications increase due to Kraus operator sum formalism (see

29

Appendix H). This trend becomes more pronounced with the addition of noise channels following
gate implementations (i.e., an increase in the noise model number), leading to an exponential in-
crease in the number of Kraus operations. In terms of quantitative results, for depth 13, JAX-PTM
yields an improvement of up to a 2.65-, 3.9-, and 9.93-fold over Qulacs_4 noise model in 2-, 3-, and
4-qubit problems, respectively. We acquired these statistics from 20000 independent runs.

In Fig. 9, we show the RL episode times concerning different noise models and software, without
implementing any random halting or early stopping of episodes, allowing each to proceed up to a
gate count of 40. We ran the RL training for each of these scenarios for 200 episodes once. The
neural network training takes approximately 20 seconds per episode. Again, in terms of quantitative
results, we observe an improvement of up to a 1.34-, 1.59-, and 3.85-fold over Qulacs_4 noise model
in 2-, 3-, and 4-qubit problems, respectively. However, excluding the neural network training time,
the improvement was more pronounced. We observed a 2-, 2.9-, and 5.74-fold speed-up for the
above problems, respectively.

0 1 2 3 4
Number of noise channels

20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0

Ep
iso

de
 ti

m
e

(s
ec

s)

H2-2

0 1 2 3 4
Number of noise channels

20

25

30

35

40

45

H2-3

0 1 2 3 4
Number of noise channels

25

50

75

100

125

150

175

200
LiH-4

JAX Qulacs v6.0

Figure 9: Computation time per episode for RL agent using differing software and methods. The x-axis
shows the number of noise channels added after their respective gate, and x = 0 corresponds to noiseless
simulations.

In conclusion, the use of PTMs enabled us to transform the N -qubit noisy simulation problem, re-
gardless of the number of noise channels, into the 2N -qubit noiseless simulation problem involving
dense matrix-vector multiplications. Utilizing JIT-compilation and GPU computation capabilities
in JAX, we achieved up to six-fold improvement in RL training while simulating noisy circuits.
This enhancement allowed us to successfully train RL agents for QAS problem under the effect of
quantum device noise.

J BEHAVIOURAL DIFFERENCE OF REAL DEVICE & CLASSICAL NOISY
SIMULATION

Recent studies suggest that despite device drift, low-level hardware noise in quantum machine
learning tasks yields outcomes where real hardware and simulations demonstrate comparable be-
havior (Rehm et al., 2023). Our comparative experiment on IBM Lagos device and the classical
simulation of its noise profile3 aligns with these findings in our context as well. Using the circuit
generated by CRLQAS method for a 4-qubit H2 molecule (see Fig. 10), we validated our hypoth-
esis by comparing measured expectation values on the device to the classical noise model used in
simulations of CRLQAS. Fig. 11 showcases that the expectation values of Pauli strings align within
one-sigma standard deviation error bars. The expectation values were computed individually for
each Pauli string which allowed for fine-grained analysis. It is noteworthy that the full Hamiltonian
expectation values also exhibit similar trends, with a measurement of −0.0615 ± 0.5295 on IBM
Lagos and −0.0335 ± 0.5294 on the noisy simulator. Our experiments were executed using the
Qiskit Runtime IBM Client API.

3We performed the classical simulation of the IBM Lagos noise profile based on the calibration data of
November 16, 2023.

30

q0

q1

q2

q3

9.43
RX

3.06
RY

3.14
RY

1.14
RX

0.619
RY

0.709
RY

0.285
RZ

0.173
RZ

0.304
RY

1.18
RZ

1.04
RY

0.127
RZ

0.407
RY

1.11
RZ

0.3
RZ

0.000151
RX

0.144
RX

3.14
RY

0.23
RX

0.000549
RY

0.000358
RZ

0
RZ

Figure 10: The parametrized circuit generated by the CRLQAS (RH, wo-IA) method for the H2 − 4
molecule.‘RH’ indicates the utilization of the random halting scheme, while ‘wo-IA’ signifies the absence of
illegal actions.

YX
XY

XY
YX ZI

II III
I

XX
YY IIZ

I

ZI
ZI

ZZ
II

ZI
IZ III
Z

IZ
ZI IZ
II

IZ
IZ

IIZ
Z

YY
XX

Pauli Strings

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Ex
pe

ct
at

io
n

Va
lu

e

IBM Lagos
Noisy Simulator

Figure 11: Comparative experiment of real hardware to classical noisy simulator. The bars in the plot
represent the expectation values of each Pauli string for H2 − 4 with the circuit depicted in Fig. 10. The colors
represent the results for the IBM Lagos (orange) and noisy simulator (green) introduced in this work.

K COMPARISON TO OTHER QAS METHODS

We compare our method CRLQAS to a modified variant of qubit-ADAPT VQE (Tang et al., 2021),
quantumDARTS (Wu et al., 2023) and RLQAS (Ostaszewski et al., 2021b) in noiseless experiments
(see Table 1 and Table 3). For noisy experiments, we compare to QCAS (Du et al., 2022) (see
Table 2). While there is a substantial amount of literature on quantum architecture search (QAS),
replicating the performance of some methods is challenging due to the lack of unified experimental
settings. Moreover, the purpose of this work was to establish the limits of RL methods in com-
bination with noisy intermediate-scale quantum hardware. Nonetheless, we provide an overview
of reported results and corresponding settings of the ground state estimation task for some QAS
approaches.

In the QAS literature, we identified two works that include the ground state energy estimation prob-
lem in their experiments. (Rattew et al., 2019) presents numerical results for their EA-based QAS
method within chemical accuracy, while (Wang et al., 2022) evaluates their one-shot super-circuit
method under simulated circuit noise, significantly impacting estimation accuracy

(Rattew et al., 2019) proposed Evolutionary Variational Quantum Eigensolver (EVQE) that uses
evolutionary programming techniques to dynamically generate and optimize quantum circuits (by
adding or removing gates). The gate set in this algorithm is composed of 1-qubit universal gates and
2-qubit controlled universal gates, which after the optimization, are decomposed into CNOT gates
and 1-qubit universal rotation gates. The noiseless experiments involved two molecules, a 6-qubit
LiH with varying interatomic bond distances and a 7-qubit BeH2 with a bond distance of 1.3Å. In

31

the noiseless case, examining Fig. 3 in (Rattew et al., 2019), the best-observed depth and CNOT
gate count were approximately 35 and 40, respectively (exact numbers not explicitly stated in the
paper). During EVQE training, the achieved error was slightly less than 1× 10−3 (no exact number
provided). On the other hand, CRLQAS (IA, wo-RH) in median statistics achieves 8 × 10−4 error
with depth and CNOT gate count of 27 and 30, respectively (see Table 3). For the noisy experiment
(where noise profiles were simulated using the Qiskit Aer QASM simulator) with a 4-qubit LiH
at a bond distance of 2.2Å, referencing Fig. 7 in (Rattew et al., 2019), the averaged noisy energy
error, depth, and number of CNOT gates over five seeds were approximately 0.036Ha, 8, and 6,
respectively. In our case, we achieved a slightly improved noisy error of 0.0356Ha with an average
of 1.33 CNOT gates and a depth of 10 across three seeds. Although the mean noisy errors and depth
are comparable, CRLQAS produces a quantum circuit with fewer CNOT gates.

(Wang et al., 2022) introduced the TorchQuantum framework based on PyTorch (Paszke et al., 2019)
and develops the QuantumNAS algorithm, a one-shot super-circuit method designed for finding
noise-adaptive quantum circuits in VQA tasks. This technique involves sharing gate parameters
among sub-circuits after one shot training to accelerate circuit evaluation. However, optimizing
the super-circuit poses a challenge, and furthermore, there is a weak correlation in performances
between sub-circuits with inherited parameters and those with optimal parameters from individual
training. Our attempt to compare with (Wang et al., 2022) was hindered by the lack of essential
information for a comprehensive analysis. More specifically, details about molecular geometries
and quantum circuits prevented us from conducting a quantitative experiment for comparison, as it
would require running their algorithm from scratch for the molecules considered in our study. Given
that we already compared to the QCAS (Du et al., 2022) algorithm (see Table 2), which is similar
to QuantumNAS, and considering the aforementioned reasons, we did not include this work in our
comparative experiments. However, a qualitative comparison was possible for the H2 molecule in
a 2-qubit system. Examining Fig. 17, the best result achieved in their experiments had an energy
error of 0.1Ha. In our H2 simulations, we achieved a mean noisy energy error over three independent
seeds of 1.116×10−3±3.41×10−4 (for IBM Mumbaimedian), which is three orders of magnitude
better than their results. Additionally, we outperformed them for IBM Mumbai max and 10 times
max noise levels, with mean noisy energy errors of 0.907± 0.008 and 0.0912± 0.004, respectively.
Unfortunately, the manuscript does not provide information about the number of gates, depth, or
parameters achieved for this experiment.

L LIST OF MOLECULES

Given the geometrical description of the molecule, and using the Born-Oppenheimer approximation,
we fix a finite basis set, in our case STO-3G, to discretize the system. Subsequently, we utilize
the OPENFERMION open-source electronic structure package (McClean et al., 2020), with PSI4
serving as the backend computational chemistry software, to generate the molecular Hamiltonians.
We describe the essential details to generate the Hamiltonians in Table 6 below.

Table 6: List of molecules considered in our simulations. The coordinates of the configuration are given in
angstrom.

Molecule Fermion to qubit mapping Configuration Number of qubits

Jordan-Wigner
(Jordan & Wigner, 1993)

H (0, 0, 0);
H (0, 0, 0.7414) 2

H2 Jordan-Wigner H (0, 0, 0);
H (0, 0, 0.7414) 3

Jordan-Wigner H (0, 0,−0.35);
H (0, 0, 0.35) 4

LiH
Parity

(Seeley et al., 2012)
Li (0, 0, 0);
H (0, 0, 3.4) 4

Jordan-Wigner Li (0, 0, 0);
H (0, 0, 2.2) 6

H2O Jordan-Wigner
H (−0.021,−0.002, 0);
O (0.835, 0.452, 0);
H (1.477,−0.273, 0)

8

32

	Introduction
	Related Work
	Curriculum Reinforcement Learning Algorithm
	Illegal actions for the RL agent
	Random Halting of the RL environment
	Tensor-based binary circuit encoding
	Adam-SPSA Algorithm with Varying Samples
	Fast GPU Simulation of Noisy Environments

	Experiments
	Noisy simulation
	Noiseless simulation

	Conclusion
	Limitations and Future Work
	Description of CRLQAS components
	Feedback-driven curriculum learning
	Illegal actions for RL agent
	Illustration of Tensor Based Encoding

	CRLQAS Implementation & Hyperparameters
	Comparison with QCAS (Du et al., 2022)
	Ablation Study of Different Components of CRLQAS
	Specifics for Adam-SPSA
	IBM Mumbai Device Noise Calibration Data
	Details of Quantum Noise Models
	Sampling Noise
	Pauli-transfer Matrices
	Depolarizing Channel
	Readout Errors as Bit-flip Channel
	State Preparation Errors and Thermal Relaxation Channel

	Software Level Simulation Optimization
	Behavioural Difference of Real Device & Classical Noisy Simulation
	Comparison to Other QAS methods
	List of molecules

