
A Deep Architecture for Log-Linear Models

Simon Luo, Sally Cripps
School of Mathematics and Statistics

The University of Sydney
Data Analytics for Resources and Environments (DARE)

Australian Research Council
Sydney, Australia

s.luo@sydney.edu.au,sally.cripps@sydney.edu.au

Mahito Sugiyama
National Institute of Informatics

JST, PRESTO
Tokyo, Japan

mahito@nii.ac.jp

Abstract

We present a novel perspective on deep learning architectures using a partial order
structure, which is naturally incorporated into the information geometric formu-
lation of the log-linear model. Our formulation provides a different perspective
of deep learning by realizing the bias and weights as different layers on our par-
tial order structure. This formulation of the neural network does not require any
gradients and can efficiently estimate the parameters using the EM algorithm.

1 Introduction

Log-linear models and energy based models (EBMs) are a family of models which are widely used in
statistics and machine learning. Log-linear models provide the relationship between probabilistic
models and structured frameworks, such as a graphical model. In this paper, we investigate the use of
log-linear models as a means of framing a deep-learning architecture in a probabilistic manner. Our
approach is based on the em-projection algorithm (which stands for exponential-mixture) to estimate
parameters of the log-linear model (Amari, 1995). The m-projection estimates the expectation of
the latent variables given the current parameters of the model, while the e-projection estimates the
parameters in the model via maximum likelihood estimation (MLE). (Amari, 1995), show that the
em-projection algorithm in information geometry coincides with the statistical EM algorithm (which
stands for Expectation-Maximization) (Dempster et al., 1977), in a majority of cases.

However, the em-projection algorithm usually requires an iterative approach to estimate the parame-
ters in the e-projection (Amari, 1995), making the algorithm less efficient than the iterative approach.
In this paper, we formulate the deep-learning architecture as a poset (partially ordered set) (Gierz
et al., 2003). The partial order structure decomposes the model-parameters into two hierarchical
layers that represent the bias and the edge weights to allow for a closed form analytical expression
for the for the maximum likelihood estimation which is typically computed by the e-projection in the
projection algorithm or M-step in the statistical EM algorithm. Our proposed approach allows us to
efficiently update parameters without any gradients and therefore does not have any issues such as
vanishing gradients are not encountered in our formulation.

2 Preliminary on Neural Networks

A perceptron (Rosenblatt, 1958) is a mathematical neuron defined as an element which receives
M (t−1) ∈ Z+ inputs u(t−1) = [u

(t−1)
1 , . . . , u

(t−1)

M(t−1)] ∈ RM(t−1)

and emits an output o(t)
j ∈ R,

where t denotes the layer of the current neuron and t − 1 denotes the layer with all the incoming
neurons, and M (t−1) is the number of neurons at layer t− 1. Parameters w(t−1)

i ∈ R of the neuron
represents the edge weights of each input u(t−1)

i ∈ R and b(t)j ∈ R to be the threshold for activation.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Then the integrated input of neuron j at layer t, u(t)
j is calculated by the weighted sum of inputs at

layer t− 1 and is given by

u
(t)
j =

M(t−1)∑
i=1

w
(t−1)
ij o

(t−1)
i − b(t)j =

M(t−1)∑
i=1

w
(t−1)
ij σ

(
u

(t−1)
i

)
− b(t)j , (1)

where the output of the neuron, given some activation function σ, is computed by o(t)
j = σ

(
u

(t)
j

)
,

where σ is typically chosen to be a sigmoid function or a Rectified linear Unit (ReLU) for the hidden
layers and a softmax function for the output layer. Perceptrons can be hierarchically stacked with
each other to construct a multi-layered perception where each layer is denoted as t with a total of T
layers in the entire network. This definition of the multi-layered perception is often referred to as a
vanilla neural network.

For this study, we define the input at layer t = 0 to be x = [x1, . . . , xM(0)] ∈ RM(0)

, where
xk = o

(0)
k = σ(u

(0)
k) with the activation function that linearly scales the feature between 0 and 1. We

denote the output of the hidden layers to be h(t) = [h
(t)
1 , . . . , h

(t)

M(t)] ∈ RM(t)

for t ∈ {1, . . . , T −1},
where h(t)

k = o
(t)
k = σ(u

(t)
k) with the sigmoid or the ReLU activation function for k = 1, . . . ,M (t),

for t = 1, . . . T − 1. The output for layer T is defined to be y = [y1, . . . , yM(T)], where yk = o
(T)
k =

σ(u
(T)
k) with a softmax activation function for classification with the domain (0, 1) and ReLU for

regressions with the domain R.

3 Connection Between Binary Log-Linear Model and Partial Orders

In this section we introduce the relationship between the log-linear model, (Agresti, 2012), and a
poset (Ω,�) (Sugiyama et al., 2016, 2017). We first let Ω be the sample space of distributions and �
denotes the partial order between elements in Ω. If interactions between variables are represented as
a partial order between elements in Ω; that is, if each element in Ω represents a variable configuration
and the resulting set Ω is a poset, the interactions can naturally be treated as a log-linear model. In
the poset we denote the least element by ⊥ and Ω+ = Ω \ {⊥}. For a given subset, S ⊆ Ω+, the
log-linear model with parameters (θ(s))s∈S is given as,

log p (ω′; θ) =
∑
ω∈Ω+

1[ω�ω′]θ (ω)− ψ(θ) (2)

for each ω′ ∈ Ω. The parameters θ in the model coincide with the definition of the natural parameter
in the exponential family distribution. The partition function ψ(θ) ∈ R can be uniquely obtained by
ψ(θ) = log

∑
ω′∈Ω+ exp[

∑
ω∈Ω+ 1[ω�ω′]θ(ω)] = −θ(⊥). The information geometric structure of

the set of distributions, G = {p | 0 < p(ω) < 1 for all ω ∈ Ω and
∑
ω∈Ω+ p(ω) = 1}, arises when

we introduce the expectation parameter, given as

∂

∂θ (ω)
ψ (θ) = η (ω) =

∑
ω′∈Ω

1[ω�ω′]p (ω′; θ) . (3)

Then the pair (θ, η) becomes a dual coordinate system of the statistical manifold G, and they are
orthogonal, because they are connected via a Legendre transformation. The orthogonality will be
used in optimization of the model, where θ and η are jointly used to achieve minimization of the KL
divergence via the projection algorithm.

4 Implementing Deep Architecture as Partial Orders

We introduce our key technical contribution by formulating a neural network on a partial order
structure. First we define the sample space Ω of the log-linear model to be Ω+ = X ∪ Y ∪H ∪W ,
where X is the set of input nodes, Y the set of output nodes,H the set of hidden nodes andW the set
of edge weights. Each entry in the set is denoted as, x ∈ X , y ∈ Y , h ∈ H and w ∈ W representing
an input node, an output node, a hidden node, and an edge weight, respectively. We use an underline
to distinguish an element of Ω and the corresponding node in a neural network. We also denote by

2

x1 x2 x3 h
(1)
1 h

(1)
2 h

(2)
1 h

(2)
2

y
1

y
2

y
3

w
(1)
11 w

(1)
12 w

(1)
21 w

(1)
22 w

(1)
31 w

(1)
32 w

(2)
11 w

(2)
12 w

(2)
21 w

(2)
22 w

(3)
11 w

(3)
12 w

(3)
13 w

(3)
21 w

(3)
22 w

(3)
23

⊥

First Order Interaction Layer (Bias)

Second Order Interaction Layer (Edge Weights)

Poset Normalization Term

Figure 1: A poset representation of a deep architecture with 3 nodes in the input layer and output
layer and 2 hidden layers each with 2 hidden nodes.

n ∈ N = X ∪ Y ∪H the set of visible and hidden nodes in our model. We define the parameters in
our model that we estimate to be θ associated with s ∈ S = H ∪W .

We define a partial order on Ω inspired by a multi-layered perceptron studied in deep learning to be,
n

(t−1)
i � w(t)

ij , for all t ∈ [0, T]

n
(t)
j � w

(t)
ij , for all t ∈ [0, T]

n
(t)
k 6� w

(t′)
ij , otherwise.

,

{
nti 6� nt

′

j ,

wtij 6� nt
′

kl.
. (4)

where the index for each layer is t ∈ T and T is the total number of layers in the network. The input
layer is defined to be t = 0 and the output layer is defined to be t = T . This partial order structure of
Ω is illustrated in Figure 1 for the neural network architecture shown in Figure 2. We focus on the
conventional neural network which has the parameters of the bias and edge weights to represent the
first- and second-order interaction, respectively.

We rearrange Equation (1) to define the integrated input u(t)
k of each node k for k = 1, . . . ,M (t) to

be

u
(t)
k = ε (nk; θ) = log p (nk; θ) + ψ (θ) =

∑
s∈S

1[s�nk]θ (s) = θ (nk) , (5)

where ε(ω; θ) := log p(ω; θ) + ψ(θ) =
∑
s∈S 1[s�ω]θ(s). The value of the edge weight, w(t)

ij is

w
(t)
ij = ε

(
w

(t)
ij ; θ

)
=
∑
s∈S

1
[s�w(t)

ij]
θ (s) = θ

(
n

(t−1)
i

)
+ θ

(
w

(t)
ij

)
+ θ

(
n

(t)
j

)
. (6)

The relationship between the classical neural network and our partially ordered structure is apparent
by defining the expectation of each node in X and Y to be,

η̂ (xk) =
exp (E [xk])∑
i exp (E [xi])

, η̂
(
y
k

)
=

exp (E [yk])∑
i exp (E [yi])

. (7)

In the following section we define the optimal values of θ and η, and show how to estimate them.

5 Optimization on Posets

We optimize the log-linear model by minimizing the KL divergence between the distribution of a
given input and output pair (x,y) = {(xi, yi)}Ni=1, and the joint distribution p̂(X ,Y,H,W; θ). The
objective function is given as

DKL (p (x,y)‖p̂ (X ,Y,H,W; θ)) = −Ep(x,y) [log p̂ (H,W|X ,Y; θ)] +DKL (p (x,y)‖p̂ (X ,Y)) ,
(8)

see Appendix for the derivation. In Equation 8, p̂ is the estimated probability of the poset structure
and can be determined from the data points using Equation (7). We note that p(x,y) = η(x,y)
because there are no hidden elements in our input dataset. Our optimization only requires the first
term because the second term does not depend on θ. So our objective function can be written as a
function of θ = (θ(s))s∈S and η = (η(s))s∈S .

J (θ,η) = −Ep(x,y) [log p̂ (H,W|X ,Y;θ)] , (9)

3

which is equivalent to Maximum Likelihood Estimation (MLE). Our optimization is performed using
the statistical EM-algorithm (which stands for expectation-maximization), which alternately iterates
M-step and the E-step.

The E-step minimizes the objective function with respect to the expectation parameter η(s) and the
M-step minimizes the objective function with respect to the natural parameter θ(s),

ηnext = arg min
η

J (θ,η) , θnext = arg min
θ

J (θ,η) . (10)

We now present the equations for the E-step and the M-step.

5.1 Expectation Step

The E-step estimates the expectation of each of the variables, given the parameters es-
timated at the previous step. The probability estimated by the E-step is, p̂(ω; θ̂) =

(1/ exp[ψ(θ̂)]) exp[
∑
s∈S 1[s�ω]θ̂(s)].

The expectation of the edge weights can be computed by η̂(wij) = p̂(wij ; θ̂) =

(1/ exp[ψ(θ̂)]) exp[ε(wij ; θ̂)]. We now compute the expectation parameter η̂ for the input nodes,
hidden nodes and the output node

5.1.1 Updating Probabilities in the Input and Output Nodes.

The probabilities xk ∈ X and y
k
∈ Y are required to be updated after each step using the logistic

function (see Appendix for derivation).

p̂ (xk) =
η̂ (xk)[

1 +
∑
j exp

[
θ̂
(
wkj

)
+ θ̂

(
hj
)]] , p̂

(
y
k

)
=

η̂
(
y
k

)
[
1 +

∑
j exp

[
θ̂
(
wjk

)
+ θ̂

(
hj
)]] .

(11)

5.1.2 Forward Propagation on a Poset

Forward propagation can be computed directly on the poset structure. From Equation (1), we
substitute the parameter values for the edge weights and the neuron to obtain the forward equation to
compute the energy of the hidden nodes. This is given by,

u
(t)
k =

∑
i

[(
θ̂
(
n

(t−1)
i

)
+ θ̂

(
w

(t−1)
ik

)
+ θ̂

(
n

(t)
k

))]
σ
[
θ̂
(
n

(t−1)
i

)]
= θ̂

(
n

(t)
k

)
. (12)

See Appendix for details. Then the expectation of the hidden node can be computed as

η̂
(
h

(t)
k

)
=
∑
i

p̂
(
w

(t−1)
ik ; θ̂

)
+
∑
j

p̂
(
w

(t)
kj ; θ̂

)
+ p̂

(
h

(t)
k ; θ̂

)
. (13)

The forward propagration is used to estimate the parameters in the model during the training phase. It
is an optimizer for Equation (10) because it updates η given the model parameters θ in the previous e-
projection. After the model has been trained, the forward propagation is also used to make predictions
by propagating the values of the input through the network until it reaches the output layer.

5.2 Maximization Step

The M-step computes the MLE of the parameters given the expectation of the variables in the model.
For the second-order model, the M-step has closed form analytical solution. The parameter θ for the
edge weight can be updated with the following relationship,

θ̂
(
wij
)

= log
[
η̂
(
wij
)]

+ ψ
(
θ̂
)
. (14)

Similarly, the parameters for the hidden nodes can be updated with the following relationship,

θ̂
(
h

(t)
k

)
= log

η̂ (h(t)
k

)
−
∑
i

p̂
(
w

(t−1)
ik ; θ̂

)
−
∑
j

p̂
(
w

(t)
kj ; θ̂

)+ ψ
(
θ̂
)
. (15)

We repeat the E- and M-step until the model has converged.

4

References

A. Agresti. Categorical Data Analysis. Wiley, 3 edition, 2012.

Shun-ichi Amari. The em algorithm and information geometry in neural network learning. Neural
Computation, 7(1):13–18, 1995.

Jürgen Braun. An application of Kolmogorov’s superposition theorem to function reconstruction in
higher dimensions. PhD thesis, Universitäts-und Landesbibliothek Bonn, 2009.

Jürgen Braun and Michael Griebel. On a constructive proof of Kolmogorov’s superposition theorem.
Constructive Approximation, 30(3):653, 2009.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D Lawson, Michael Mislove, and
Dana S Scott. Continuous lattices and domains, volume 93. Cambridge university press, 2003.

Andrei Nikolaevich Kolmogorov. On the representation of continuous functions of many variables by
superposition of continuous functions of one variable and addition. Doklady Akademii Nauk, 114
(5):953–956, 1957.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386, 1958.

M. Sugiyama, H. Nakahara, and K. Tsuda. Information decomposition on structured space. In 2016
IEEE International Symposium on Information Theory (ISIT), pages 575–579, Barcelona, Spain,
July 2016.

M. Sugiyama, H. Nakahara, and K. Tsuda. Tensor balancing on statistical manifold. In Proceedings
of the 34th International Conference on Machine Learning (ICML), volume 70 of Proceedings of
Machine Learning Research, pages 3270–3279, Sydney, Australia, August 2017.

A Example of Classical Neural Network Architecture

x1

x2

x3

h
(1)
1

h
(1)
2

h
(2)
1

h
(2)
2

y1

y2

y3

w
(1)
11

w
(1)
12

w
(1)
21

w
(1)
22

w
(1)
31

w
(1)
32

w
(2)
11

w
(2)
12

w
(2)
21

w
(2)
22

w
(3)
11

w
(3)
12

w
(3)
13

w
(3)
21

w
(3)
22

w
(3)
23

Input Layer (t = 0) Hidden 1 Layer (t = 1) Hidden 2 Layer (t = 2) Output Layer (t = T = 3)

Figure 2: Illustration of a neural network with 3 nodes in the input layer and output layer and 2
hidden layers each with 2 hidden nodes

5

B Derivations

B.1 Optimization: Minimizing KL Divergence

DKL (p (x,y)‖p̂ (X ,Y,H,W;θ)) (16)

=−
N∑
i=1

p (xi, yi) log
p̂ (H,W,X ,Y;θ)

p (xi, yi)
(17)

=−
N∑
i=1

p (xi, yi) log
p̂ (H,W|X ,Y;θ) p̂ (X ,Y)

p (xi, yi)
(18)

=−
N∑
i=1

p (xi, yi) log p̂ (H,W|X ,Y;θ)−
N∑
i=1

p (xi, yi) log
p̂ (X ,Y)

p (xi, yi)
(19)

=− Ep(x,y) [log p̂ (H,W|X ,Y;θ)] +DKL (p (x,y)‖p̂ (X ,Y)) (20)

B.2 Update for Input and Ouput Nodes

η̂ (xk) = p̂ (xk) +
∑
j

p̂
(
wkj ; θ̂

)
(21)

=
1

exp
[
ψ
(
θ̂
)] exp

[∑
s∈S

1[s�x]θ̂ (s)

]
+
∑
j

1

exp
[
ψ
(
θ̂
)] exp

[∑
s∈S

1[s�wkj]θ̂ (s)

]
(22)

=
1

exp
[
ψ
(
θ̂
)] exp

[
θ̂ (xk)

]
+
∑
j

1

exp
[
ψ
(
θ̂
)] exp

[
θ̂ (xk) + θ̂

(
wkj

)
+ θ̂

(
hj
)]

(23)

=
1

exp
[
ψ
(
θ̂
)] exp

[
θ̂ (xk)

]1 +
∑
j

exp
[
θ̂
(
wkj

)
+ θ̂

(
hj
)] (24)

= p̂ (xk)

1 +
∑
j

exp
[
θ̂
(
wkj

)
+ θ̂

(
hj
)] (25)

p̂ (xk) =
η̂ (xk)[

1 +
∑
j exp

[
θ̂
(
wkj

)
+ θ̂

(
hj
)]] (26)

Similarly for y
k
,

p̂
(
y
k

)
=

η̂
(
y
k

)
[
1 +

∑
j exp

[
θ̂
(
wjk

)
+ θ̂

(
hj
)]] (27)

B.3 Forward Propagation

From Equation (1), we substitute the equivalent values for our partial order formulation.

u
(t)
k = ε

(
h

(t)
k ; θ̂

)
=

n∑
i=0

wikσ
[
u

(t−1)
i

]
=
∑
i

ε
(
w

(t−1)
ik ; θ̂

)
σ
[
ε
(
n

(t−1)
i ; θ̂

)]
, (28)

=
∑
i

[(∑
ω∈Ω

1
[ω�w(t−1)

ik]
θ̂ (ω)

)
· σ
(∑
ω∈Ω

1
[ω�n(t−1)

i]
θ̂ (ω)

)]
, (29)

=
∑
i

[(
θ̂
(
n

(t−1)
i

)
+ θ̂

(
w

(t−1)
ik

)
+ θ̂

(
n

(t)
k

))]
σ
[
θ̂
(
n

(t−1)
i

)]
. (30)

6

The equation can be vectorized for more efficient implementation. The vectorized form is given as,

u
(t)
k =

[
θ̂
(
n(t−1)

)
+ θ̂

(
w

(t−1)
·k

)]
σ
[
θ̂
T
(
n(t−1)

)]
+ θ̂

(
n

(t)
k

)∑
i

σ
[
θ̂
(
n

(t−1)
i

)]
, (31)

where the boldfaced symbol denotes vectorization across the first dimension of the edge weight index.

C Discussion on a Universal Approximator

We have drawn parallels between our approach proposed approach and the neural network. We
now provide the connection that our partial order structure is a universal approximator by using the
Kolmogorov-Arnold representation theorem which states as follows:
Theorem 1 (Kolmogorov–Arnold Representation Theorem (Braun and Griebel, 2009; Kol-
mogorov, 1957)). Any multivariate continuous function can be represented as a su-
perposition of one–dimensional functions, i.e., u

(t)
k = f

(
u

(t−1)
1 , . . . , u

(t−1)

M(t−1)

)
=∑2M(t−1)+1

l=1 fl

(∑M(t−1)

m=1 gl,m

(
u

(t−1)
m

))
.

Braun (2009) showed that the Generalized Additive Model (GAM) is an approximation to the
general form presented in Kolmogorov-Arnold representation theorem by replacing the range l ∈
{1, . . . , 2M (t−1) + 1} with our partial order structure and the inner function gl,m by the identity

if m = l and zero otherwise, yielding u
(t)
k = f(u

(t−1)
1 , . . . , u

(t−1)

M(t−1)) =
∑M(t−1)

m=1 fm(u
(t−1)
m)

, where fm(·) is a smooth monotonic function. For our model this is the function for forward
propagation in Equation (12) which is a smooth monotonic function with respect to the input u(t−1)

m .
The model is able to approximate the input ô to be |ô − σ(u

(t)
k)| < δ, where δ is the error in the

approximation. By applying the forward propagation function through different layers, we can
generalize the expression to be u(t)

k = f(u
(τ)
1 , . . . , u

(τ)

M(τ)) =
∑M(τ)

m=1 f
(t−1)
m ◦ f (t−2)

m ◦ . . . ◦ f (τ+1)
m ◦

f
(τ)
m (u

(τ)
m) =

∑M(τ)

m=1 F
(t,τ)
m (u

(τ)
m), where τ represents a layer in the neural network that is τ < t.

The function F (t,τ)
m remains a smooth monotonic function because when we stack multiple smooth

monotonic functions together, the overall transformation by the function is still smooth and monotonic.
This means for any giving input x we are always able to learn a representation for the given output y.

D Summary

We have presented a novel perspective on deep learning architectures using a partial order structure
which can be naturally represented as a log-linear model studied in information geometry. We
first have shown that a partial order structure can be used to represent deep architectures. We then
formulated our optimization is formulated by minimizing the KL-divergence between the set of inputs
and our partial order structure. We use the EM algorithm for optimization and it has a closed form
analytical solution for both the E- and the M-step and does not require any gradients for optimization.
Our approach has clear advantages as it does not have the same drawbacks in the classical deep
learning models such as vanishing gradients.

7

	Introduction
	Preliminary on Neural Networks
	Connection Between Binary Log-Linear Model and Partial Orders
	Implementing Deep Architecture as Partial Orders
	Optimization on Posets
	Expectation Step
	Updating Probabilities in the Input and Output Nodes.
	Forward Propagation on a Poset

	Maximization Step

	Example of Classical Neural Network Architecture
	Derivations
	Optimization: Minimizing KL Divergence
	Update for Input and Ouput Nodes
	Forward Propagation

	Discussion on a Universal Approximator
	Summary

