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Abstract

Graph coarsening aims to reduce the size of a large graph while preserving some
of its key properties, which has been used in many applications to reduce com-
putational load and memory footprint. For instance, in graph machine learning,
training Graph Neural Networks (GNNs) on coarsened graphs leads to drastic
savings in time and memory. However, GNNs rely on the Message-Passing (MP)
paradigm, and classical spectral preservation guarantees for graph coarsening do
not directly lead to theoretical guarantees when performing naive message-passing
on the coarsened graph.
In this work, we propose a new message-passing operation specific to coarsened
graphs, which exhibit theoretical guarantees on the preservation of the propagated
signal. Interestingly, and in a sharp departure from previous proposals, this op-
eration on coarsened graphs is often oriented, even when the original graph is
undirected. We conduct node classification tasks on synthetic and real data and
observe improved results compared to performing naive message-passing on the
coarsened graph.

1 Introduction

In recent years, several applications in data science and machine learning have produced large-scale
graph data [20, 5]. For instance, online social networks [13] or recommender systems [40] routinely
produce graphs with millions of nodes or more. To handle such massive graphs, researchers have
developed general-purpose graph reduction methods [4], such as graph coarsening [32, 7]. It
consists in producing a small graph from a large graph while retaining some of its key properties, and
starts to play an increasingly prominent role in machine learning applications [7].

Graph Neural Networks. Machine Learning on graphs is now largely done by Graph Neural
Networks (GNNs) [37, 27, 5]. GNNs are deep architectures on graph that rely on the Message-
Passing paradigm [16]: at each layer, the representation H l

i ∈ Rdl of each node 1 ≤ i ≤ N , is
updated by aggregating and transforming the representations of its neighbours at the previous layer
{H l−1

j }j∈N (i), where N (i) is the neighborhood of i. In most examples, this aggregation can be
represented as a multiplication of the node representation matrix H l−1 ∈ RN×dl−1 by a propagation
matrix S ∈ RN×N related to the graph structure, followed by a fully connected transformation. That
is, starting with initial node features H0, the GNN Φθ outputs after k layers:

H l = σ
(
SH l−1θl

)
, Φθ(H

0, S) = Hk , (1)

where σ is an activation function applied element-wise (often ReLU), θl ∈ Rdl−1×dl are learned
parameters and θ = {θ1, . . . , θk}. We emphasize here the dependency of the GNN on the propagation
matrix S. Classical choices include mean aggregation S = D−1A or the normalized adjacency
S = D− 1

2AD− 1
2 , with A the adjacency matrix of the graph and D the diagonal matrix of degrees.

When adding self-loops to A, the latter corresponds for instance to the classical GCNconv layer [27].
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An interesting example is the Simplified Graph Convolution (SGC) model [42], which consists in
removing all the non-linearity (σ = id the identity function). Surprisingly, the authors of [42] have
shown that SGC reaches quite good performances when compared to non-linear architectures and
due to its simplicity, SGC has been extensively employed in theoretical analyses of GNNs [46, 26].

Graph coarsening and GNNs. In this paper, we consider graph coarsening as a preprocessing step
to downstream tasks [11, 21]: indeed, applying GNNs on coarsened graphs leads to drastic savings in
time and memory, both during training and inference. Additionally, large graphs may be too big to fit
on GPUs, and mini-batching graph nodes is known to be a difficult graph sampling problem [14],
which may no longer be required on a coarsened graph. A primary question is then the following: is
training a GNN on a coarsened graph provably close to training it on the original graph? To
examine this, one must study the interaction between graph coarsening and message-passing.

There are many ways of measuring the quality of graph coarsening algorithms, following different
criteria [10, 32, 7]. A classical objective is the preservation of spectral properties of the graph
Laplacian, which gave birth to different algorithms [32, 8, 4, 24, 33]. Loukas [32] materializes this
by the so-called Restricted Spectral Approximation (RSA, see Sec. 2) property: it roughly states
that the frequency content of a certain subspace of graph signals is approximately preserved by the
coarsening, or intuitively, that the coarsening is well-aligned with the low-frequencies of the Laplacian.
Surprisingly, the RSA does not generally lead to guarantees on the message-passing process at the
core of GNNs, even for very simple signals. That is, simply performing message-passing on the
coarsened graph using Sc, the naive propagation matrix corresponding to S on the coarsened graph
(e.g. normalized adjacency of the coarsened graph when S is the normalized adjacency of the original
one) does not guarantee that the outputs of the GNN on the coarsened graph and the original graph
will be close, even with high-quality RSA.

Contribution. In this paper, we address this problem by defining a new propagation matrix SMP
c

specific to coarsened graphs, which translate the RSA bound to message-passing guarantees: we
show in Sec. 3.3 that training a GNN on the coarsened graph using SMP

c is provably close to training it
on the original graph. The proposed matrix SMP

c can be computed for any given coarsening and is not
specific to the coarsening algorithm used to produce it1, as long as it produces coarsenings with
RSA guarantees. Interestingly, our proposed matrix SMP

c is not symmetric in general even when S is,
meaning that our guarantees are obtained by performing oriented message-passing on the coarsened
graph, even when the original graph is undirected. To our knowledge, the only previous work to
propose a new propagation matrix for coarsened graphs is [21], where the authors obtain guarantees
for a specific GNN model (APPNP [28]), which is quite different from generic message-passing.

Related Work. Graph Coarsening originates from the multigrid-literature [36], and is part of a
family of methods commonly referred to as graph reduction, which includes graph sampling [19],
which consists in sampling nodes to extract a subgraph; graph sparsification [38, 1, 31], that focuses
on eliminating edges; or more recently graph distillation [22, 45, 23], which extends some of these
principles by authorizing additional informations inspired by dataset distillation [41].

Some of the first coarsening algorithms were linked to the graph clustering community, e.g. [9]
which used recursively the Graclus algorithm [10] algorithm itself built on Metis [25]. Linear
algebra technics such as the Kron reduction were also employed [32] [12]. In [32], the author
presents a greedy algorithm that recursively merge nodes by optimizing some cost, with the purpose
of preserving spectral properties of the coarsened Laplacian. This is the approach we use in our
experiments (Sec. 4). It was followed by several similar methods with the same spectral criterion
[8, 4, 24, 33]. Since modern graph often includes node features, other approaches proposed to take
them into account in the coarsening process, often by learning the coarsening with specific regularized
loss [29, 34]. Closer to this work, [11] proposes an optimization process to explicitely preserve the
propagated features, however with no theoretical guarantees and only one step of message-passing.
While these works often seek to preserve a fixed number of node features as in e.g. [29]), the RSA
guarantees [32] leveraged in this paper are uniform over a whole subspace: this stronger property is
required to provide guarantees for GNNs with several layers.

1Note however that SMP
c must be computed during the coarsening process and included as an output of the

coarsening algorithm, before eventually discarding the original graph.
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Graph coarsening has been intertwined with GNNs in different ways. It can serve as graph pooling
[44] within the GNN itself, with the aim of mimicking the pooling process in deep convolutional
models on images. In the recent literature, the terms “coarsening” and “pooling” tend to be a bit
exchangeable. For instance, some procedures that were initially introduced as pooling could also be
used as pre-processing step, such as Graclus [10], introduced by [9] as a pooling scheme, see also
[17]. Graph pooling is often data-driven and fully differentiable, such as Diffpool [44], SAGPool
[30], and DMoN [39]. Theoretical work on their ability to distinguish non homomorphic graphs
after pooling have been conducted [3]. In return, GNNs can also be trained to produce data-driven
coarsenings, e.g. GOREN [6] which proposes to learn new edge weights with a GNN. As mentioned
before, in the framework we consider here, graph coarsening is a preprocessing step with the aim
of saving time and memory during training and inference [21]. Here few works derive theoretical
guarantees for GNNs and message-passing, beyond the APPNP architecture examined in [21]. To
our knowledge, the proposed SMP

c is the first to yield such guarantees.

Outline. We start with some preliminary material on graph coarsening and spectral preservation
in Sec. 2. We then present our main contribution in Sec. 3: a new propagation matrix on coarsened
graphs that leads to guarantees for message-passing. As is often the case in GNN theoretical
analysis, our results mostly hold for the linear SGC model, however we still outline sufficient
assumptions that would be required to apply our results to general GNNs, which represent a major
path for future work. In Sec. 4 we test the proposed propagation matrix on real and synthetic data,
and show how it leads to improved results compared to previous works. The code is available
at https://gitlab.inria.fr/anjoly/mp-guarantees-graph-coarsening, and proofs are
deferred to App. A.

Notations. For a matrix Q ∈ Rn×N , its pseudo-inverse Q+ ∈ RN×n is obtained by replacing its
nonzero singular values by their inverse and transposing. For a symmetric positive semi-definite
(p.s.d.) matrix L ∈ RN×N , we define L

1
2 by replacing its eigenvalues by their square roots, and

L− 1
2 = (L+)

1
2 . For x ∈ RN we denote by ∥x∥L =

√
x⊤Lx the Mahalanobis semi-norm associated

to L. For a matrix P ∈ RN×N , we denote by ∥P∥ = max∥x∥=1 ∥Px∥ the operator norm of P ,
and ∥P∥L = ∥L 1

2PL− 1
2 ∥. For a subspace R, we say that a matrix P is R-preserving if x ∈ R

implies Px ∈ R. Finally, for a matrix X ∈ RN×d, we denote its columns by X:,i, and define
∥X∥:,L =

∑
i ∥X:,i∥L.

2 Background on Graph Coarsening

We mostly adopt the framework of Loukas [32], with some generalizations. A graph G with N nodes
is described by its weighted adjacency matrix A ∈ RN×N . We denote by L ∈ RN×N a notion
of symmetric p.s.d. Laplacian of the graph: classical choices include the combinatorial Laplacian
L = D − A with D = D(A) := diag(A1n) the diagonal matrix of the degrees, or the symmetric
normalized Laplacian L = IN −D− 1

2AD− 1
2 . We denote by λmax, λmin respectively the largest and

smallest non-zero eigenvalue of L.

Coarsening matrix. A coarsening algorithm takes a graph G with N nodes, and produces a
coarsened graph Gc with n < N nodes. Intuitively, nodes in G are grouped in “super-nodes” in Gc

(Fig. 1), with some weights to outline their relative importance. This mapping can be represented via
a coarsening matrix Q ∈ Rn×N :

Q =

{
Qki > 0 if the i-th node of G is mapped to the k-th super-node of Gc

Qki = 0 otherwise

The lifting matrix is the pseudo-inverse of the coarsening matrix Q+, and plays the role of inverse
mapping from the coarsened graph to the original one. The coarsening ratio is defined as r :
r = 1− n

N . That is, the higher r is, the more coarsened the graph is.

A coarsening is said to be well-mapped if nodes in G are mapped to a unique node in Gc, that is,
if Q has exactly one non-zero value per column. Moreover, it is surjective if at least one node is
mapped to each super node:

∑
i Qki > 0 for all k. In this case, QQ⊤ is invertible diagonal and

Q+ = Q⊤(QQ⊤)−1. Moreover, such a coarsening is said to be uniform when mapping weights
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are constant for each super-nodes and sum to one: Qki = 1/nk for all Qki > 0, where nk is the
number of nodes mapped to the super-node k. In this case the lifting matrix is particularly simple:
Q+ ∈ {0, 1}N×n (Fig. 1d). For simplicity, following the majority of the literature [32], in this paper
we consider only well-mapped surjective coarsenings (but not necessarily uniform).
Remark 1. Non-well-mapped coarsenings may appear in the literature, e.g. when learning the
matrix Q via a gradient-based optimization algorithm such as Diffpool [44]. However, these methods
often include regularization penalties to favor well-mapped coarsenings.

Restricted Spectral Approximation. A large part of the graph coarsening literature measures
the quality of a coarsening by quantifying the modification of the spectral properties of the graph,
often represented by the graph Laplacian L. In [32], this is done by establishing a near-isometry
property for graph signals with respect to the norm ∥ · ∥L, which can be interpreted as a measure of
the smoothness of a signal across the graph edges. Given a signal x ∈ RN over the nodes of G, we
define the coarsened signal xc ∈ Rn and the re-lifted signal x̃ ∈ RN by

xc = Qx, x̃ = Q+xc = Πx (2)

where Π = Q+Q. Loukas [32] then introduces the notion of Restricted Spectral Approximation
(RSA) of a coarsening algorithm, which measures how much the projection Π is close to the identity
for a class of signals. Since Π is at most of rank n < N , this cannot be true for all signals, but only
for a restricted subspaceR ⊂ RN . With this in mind, the RSA constant is defined as follows.
Definition 1 (Restricted Spectral Approximation constant). Consider a subspace R ⊂ RN , a
Laplacian L, a coarsening matrix Q and its corresponding projection operator Π = Q+Q. The RSA
constant ϵL,Q,R is defined as

ϵL,Q,R = sup
x∈R,∥x∥L=1

∥x−Πx∥L (3)

In other words, the RSA constant measures how much signals inR are preserved by the coarsening-
lifting operation, with respect to the norm ∥ · ∥L. Given some R and Laplacian L, the goal of a
coarsening algorithm is then to produce a coarsening Q with the smallest RSA constant possible.
While the “best” coarsening argminQ ϵL,Q,R is generally computationally unreachable, there are
many possible heuristic algorithms, often based on greedy merging of nodes. In App. B.1, we give
an example of such an algorithm, adapted from [32]. In practice,R is often chosen as the subspace
spanned by the first eigenvectors of L ordered by increasing eigenvalue: intuitively, coarsening the
graph and merging nodes is more likely to preserve the low-frequencies of the Laplacian.

While ϵL,Q,R ≪ 1 is required to obtain meaningful guarantees, we remark that ϵL,Q,R is not
necessarily finite. Indeed, as ∥ · ∥L may only be a semi-norm, its unit ball is not necessarily compact.
It is nevertheless finite in the following case.

Proposition 1. When Π is ker(L)-preserving, it holds that ϵL,Q,R ≤
√

λmax/λmin.

Hence, some examples where ϵL,Q,R is finite include:
Example 1. For uniform coarsenings with L = D − A and connected graph G, ker(L) is the
constant vector2, and Π is ker(L)-preserving. This is the case examined by [32].
Example 2. For positive definite “Laplacians”, ker(L) = {0}. This is a deceptively simple solution
for which ∥ · ∥L is a true norm. This can be obtained e.g. with L = δIN + L̂ for any p.s.d. Laplacian
L̂ and small constant δ > 0. This leaves its eigenvectors unchanged and add δ to its eigenvalues, and
therefore does not alter the fundamental structure of the coarsening problem.

Given the adjacency matrix A ∈ RN×N of G, there are several possibilities to define an adjacency
matrix Ac for the graph Gc [21, 29]. A natural choice that we make in this paper is

Ac = (Q+)⊤AQ+ . (4)

In the case of a uniform coarsening, (Ac)kℓ equals the sum of edge weights for all edges in the
original graph between all nodes mapped to the super-node k and all nodes mapped to ℓ. Moreover,
we have the following property, derived from [32].

2Note that this would also work with several connected components, if no nodes from different components
are mapped to the same super-node.
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Figure 1: Example of uniform coarsening. (a): original graph G; (b): coarsened adjacency matrix
Ac; (c) representation of the proposed SMP

c when S = A; (d): corresponding matrices Q,Q+,Π.

Proposition 2. Assume that the coarsening Q is uniform and consider combinatorial Laplacians
L = D(A)−A and Lc = D(Ac)−Ac. Then Lc = (Q+)⊤LQ+, and

∀x ∈ R, (1− ϵL,Q,R)∥x∥L ≤ ∥xc∥Lc ≤ (1 + ϵL,Q,R)∥x∥L (5)

This draws a link between the RSA and a notion of near-isometric embedding for vectors inR. Note
that the proposition above is not necessarily true when considering normalized Laplacians, or non
uniform coarsenings. In the next section, we propose a new propagation matrix on coarsened graphs
and draw a link between the RSA constant ϵL,Q,R and message-passing guarantees.

3 Message-Passing on coarsened graphs

In the previous section, we have seen that coarsenings algorithms generally aim at preserving the
spectral properties of the graph Laplacian, leading to small RSA constants ϵL,Q,R. However, this
generally does not directly translate to guarantees on the Message-Passing process that is at the
core of GNNs, which as mentioned in the introduction is materialized by the matrix S. In this
section, we propose a new propagation matrix such that small RSA constants leads to preserved
message-passing, which then leads to guarantees for training GNNs on coarsened graphs.

3.1 A new propagation matrix on coarsened graph

Given a graph G with a propagation matrix S and a coarsened graph Gc with a coarsening matrix Q,
our goal is to define a propagation matrix SMP

c ∈ Rn×n such that one round of message-passing on
the coarsened signal xc followed by lifting is close to performing message-passing in the original
graph: Q+SMP

c xc ≈ Sx. Assuming that the propagation matrix S = fS(A) is the output of a function
fS of the graph’s adjacency matrix, the most natural choice, often adopted in the literature [11], is
therefore to simply take Sc = fS(Ac), where Ac is the adjacency matrix of the coarsened graph
defined in (4). However, this does not generally leads to the desired guarantees: indeed, considering
for instance S = A, we have in this case Q+Scxc = Q+(Q+)⊤AΠx, which involves the quite
unnatural term Q+(Q+)⊤. For other choices of normalized S, the situation is even less clear. Some
authors propose different variant of Sc adapted to specific cases [21, 44] (see Sec. 4), but none offers
generic message-passing guarantees. To address this, we propose a new propagation matrix:

SMP
c = QSQ+ ∈ Rn×n . (6)

This expression is conceptually simple: it often amounts to some reweighting. For instance, when
S = A and in the case of uniform coarsening, we have (SMP

c )kℓ = (Ac)kℓ/nk (Fig. 1c). Despite
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this simplicity, we will see that under some mild hypotheses this choice indeed leads to preservation
guarantees of message-passing for coarsenings with small RSA constants.

Orientation. An important remark is that, unlike all the examples in the literature, and unlike
the adjacency matrix Ac defined in (4), the proposed matrix SMP

c is generally asymmetric, even
when S is symmetric. This means that our guarantees are obtained by performing directed message-
passing on the coarsened graph, even when the original message-passing procedure was undirected.
Conceptually, this is an important departure from previous works. However SMP

c becomes “more”
symmetric when Q+ and QT becomes more similar. This is for instance the case when Q induces a
balanced partition, where each supernodes has the same number of ancestors (which can be targeted
by some pooling algorithms). On the contrary, the difference between Q and Q+ is more pronounced
when supernodes are of very different sizes,which may happen for highly irregular graphs.

3.2 Message-Passing guarantees

In this section, we show how the proposed propagation matrix (6) allows to transfer the spectral
approximation guarantees to message-passing guarantees, under some hypotheses. First, we must
make some technical assumptions relating to the kernel of the Laplacian.
Assumption 1. Assume that Π and S are both ker(L)-preserving.

Moreover, since spectral approximation pertains to a subspaceR, we must assume that this subspace
is left unchanged by the application of S.
Assumption 2. Assume that S isR-preserving.

As mentioned before, for Examples 1 and 2, the projection Π is ker(L)-preserving. Moreover,R is
often chosen to be the subspace spanned by the low-frequency eigenvectors of L and in this case,
all matrices of the form S = αIN + βL for some constant α, β are both ker(L)-preserving and
R-preserving. Hence, for instance, a primary example in practice is to choose GCNconv [27] with
S = D(Â)−

1
2 ÂD(Â)−

1
2 with Â = A+ IN , and to compute a coarsening with a good RSA constant

for the “Laplacian” L = (1+δ)IN −S with small δ > 0 andR spanned by eigenvectors of L. In this
case, Assumptions 1 and 2 are satisfied. This is the implementation we choose in our experiments.

We now state the main result of this section.
Theorem 1. Define SMP

c as (6). Under Assumption 1 and 2, for all x ∈ R,

∥Sx−Q+SMP
c xc∥L ≤ ϵL,Q,R∥x∥L (CS + CΠ) (7)

where CS := ∥S∥L and CΠ := ∥ΠS∥L.

Sketch of proof. The Theorem is proved in App. A. The proof is quite direct, and relies on the fact
that, for this well-designed choice (6) of SMP

c , the lifted signal is precisely Q+SMP
c xc = ΠSΠx. Then,

bounding the error incurred by Π using the RSA, we show that this is indeed close to performing
message-passing by S in the original graph.

This theorem shows that the RSA error ϵL,Q,R directly translates to an error bound between Sx and
Q+SMP

c xc. As we will see in the next section, this leads to guarantees when training a GNN on
the original graph and the coarsened graph. First, we discuss the two main multiplicative constant
involved in Thm. 1.

Multiplicative constants. In full generality, for any matrix M we have ∥M∥L ≤
∥M∥

√
λmax/λmin. Moreover, when M and L commute, we have ∥M∥L ≤ ∥M∥. As mentioned

before, choosing S = αIN + βL for some constants α, β is a primary example to satisfy our assump-
tions. In this case CS = ∥S∥L ≤ ∥S∥. Then, if S is properly normalized, e.g. for the GCNconv
[27] example outlined above, we have ∥S∥ ≤ 1. For combinatorial Laplacian L = D −A however,
we obtain ∥S∥ ≤ |α| + |β|N . We observed in our experiments that the combinatorial Laplacian
generally yields poor results for GNNs.

For CΠ, in full generality we only have CΠ ≤ CS∥Π∥L ≤ CS

√
λmax

λmin
, since Π is an orthogonal

projector. However, in practice we generally observe that the exact value CΠ = ∥ΠS∥L is far better
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than this ratio of eigenvalues (e.g. we observe a ratio of roughly CΠ ≈ (1/10) ·
√

λmax/λmin in our
experiments). Future work may examine more precise bounds in different contexts.

3.3 GNN training on coarsened graph

In this section, we instantiate our message-passing guarantees to GNN training on coarsened graph,
with SGC as a primary example. To fix ideas, we consider a single large graph G, and a node-level
task such as node classification or regression. Given some node features X ∈ RN×d, the goal is
to minimize a loss function J : RN → R+ on the output of a GNN Φθ(X,S) ∈ RN (assumed
unidimensional for simplicity) with respect to the parameter θ:

min
θ∈Θ

R(θ) with R(θ) := J(Φθ(X,S)) (8)

where Θ is a set of parameters that we assume bounded. For instance, J can be the cross-entropy
between the output of the GNN and some labels on training nodes for classification, or the Mean
Square Error for regression. The loss is generally minimized by first-order optimization methods on θ,
which requires multiple calls to the GNN on the graph G. Roughly, the computational complexity of
this approach is O(T (N + E)D), where T is the number of iterations of the optimization algorithm,
D is the number of parameters in the GNN, and E is the number of nonzero elements in S. Instead,
one may want to train on the coarsened graph Gc, which can be done by minimizing instead3:

Rc(θ) := J(Q+Φθ(Xc, S
MP
c )) (9)

where Xc = QX . That is, the GNN is applied on the coarsened graph, and the output is then lifted to
compute the loss, which is then back-propagated to compute the gradient of θ. The computational
complexity then becomes O(T (n+ e)D + TN), where e ≤ E is the number of nonzeros in SMP

c ,
and the term TN is due to the lifting. As this decorrelates N and D, it is in general much less costly.

We make the following two assumptions to state our result. Since our bounds are expressed in terms
of ∥ · ∥L, we must handle it with the following assumption.
Assumption 3. We assume that there is a constant CJ such that

|J(x)− J(x′)| ≤ CJ∥x− x′∥L (10)

For most loss functions, it is easy to show that |J(x)− J(x′)| ≲ ∥x− x′∥, and when L is positive
definite (Example 2) then ∥ · ∥ ≤ 1√

λmin
∥ · ∥L. Otherwise, one must handle the kernel of L, which

may be done on a case-by-case basis of for an appropriate choice of J .

The second assumption relates to the activation function. It is here mostly for technical completeness,
as we do not have examples where it is satisfied beyond the identity σ = id, which corresponds to the
SGC architecture [42] often used in theoretical analyses [46, 26].
Assumption 4. We assume that:

i) σ isR-preserving, that is, for all x ∈ R, we have σ(x) ∈ R. We discuss this constraint below.

ii) ∥σ(x)−σ(x′)∥L ≤ Cσ∥x−x′∥L. Note that most activations are 1-Lipschitz w.r.t. the Euclidean
norm, so this is satisfied when L is positive-definite with Cσ =

√
λmax/λmin.

iii) σ and Q+ commute: σ(Q+y) = Q+σ(y). This is satisfied for all uniform coarsenings, or when
σ is 1-positively homogeneous: σ(λx) = λσ(x) for nonnegative λ (e.g. ReLU).

Item i) above means that, whenR is spanned by low-frequency eigenvectors of the Laplacian, σ does
not induce high frequencies. In other words, we want σ to preserve smooth signal. For now, the only
example for which we can guarantee that Assumption 4 is satisfied is when σ = id and the GNN is
linear, which corresponds to the SGC architecture [42]. As is the case with many such analyses of
GNNs, non-linear activations are a major path for future work. A possible study would be to consider
random geometric graphs for which the eigenvectors of the Laplacian are close to explicit functions,
e.g. spherical harmonics for dot-product graphs [2]. In this case, it may be possible to explicitely
prove that Assumption 4 holds, but this is out-of-scope of this paper.

Our result on GNNs is the following.
3Note that we apply the GNN on the coarsened graph, but still lift its output to compute the loss on the

training nodes of the original graph. Another possibility would be to also coarsen the labels to directly compute
the loss on the coarsened graph [21], but this is not considered here. See App. B.2 for more discussion.
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Theorem 2. Under Assumptions 1-4: for all node features X ∈ RN×d such that X:,i ∈ R, denoting
by θ⋆ = argminθ∈Θ R(θ) and θc = argminθ∈Θ Rc(θ), we have

R(θc)−R(θ⋆) ≤ CϵL,Q,R∥X∥:,L (11)

with C = 2CJC
k
σCΘ(CS +CΠ)

∑k
l=1 C̄

k−l
Π Cl−1

S where C̄Π := ∥ΠSΠ∥L and CΘ is a constant that
depends on the parameter set Θ.

The proof of Thm. 2 is given in App. A.3. In this proof, to apply the Theorem 1, we apply the RSA to
each nodes features column. It relies on the assumption that each column of the nodes features X:,i

belongs to the preserved spaceR. This assumption seems reasonable for homophilic datasets (Cora,
Citeseer) and large preserved space . The Theorem states that training a GNN that uses the proposed
SMP
c on the coarsened graph by minimizing (9) yields a parameter θc whose excess loss compared

to the optimal θ⋆ is bounded by the RSA constant. Hence, spectral approximation properties of the
coarsening directly translates to guarantees on GNN training. The multiplicative constants CS , CΠ

have been discussed in the previous section, and the same remarks apply to C̄Π.

4 Experiments

Setup. We choose the propagation matrix from GCNconv [27], that is, S = fS(A) =

D(Â)−
1
2 ÂD(Â)−

1
2 with Â = A+IN . As detailed in the previous section, we take L = (1+δ)IN−S

with δ = 0.001 and R as the K first eigenvectors of L (K = N/10 in our experiments), ensuring
that Assumptions 1 and 2 are satisfied. In our experiments, we observed that the combinatorial
Laplacian L = D − A gives quite poor results, as it corresponds to unusual propagation matrices
S = αIN + βL, and the constant CS = ∥S∥L is very large. Hence our focus on the normalized case.

On coarsened graphs, we compare five propagation matrices:

• SMP
c = QSQ+, our proposed matrix

• Sc = fS(Ac), the naive choice

• Sdiag
c = D̂′−1/2

(Ac +C)D̂′−1/2, proposed in [21], where C is the diagonal matrix of the nk and
D̂′ the corresponding degrees. This yields theoretical guarantees for APPNP when S is GCNconv;

• Sdiff
c = QSQ⊤, which is roughly inspired by Diffpool [44];

• Ssym
c = (Q+)⊤SQ+, which is the lifting employed to compute Ac (4).

10−2 10−1

r

10−6

10−4

10−2

100

102

104 SMP
c

Sdiffc

Ssymc

Sc

Sdiagc

CεL,Q,R

Figure 2: Message-Passing error for different prop-
agation matrices.

Coarsening algorithm. Recall that the pro-
posed SMP

c can be computed for any coarsening,
and that the corresponding theoretical guaran-
tees depend on the RSA constant ϵL,Q,R. In
our experiments, we adapt the algorithm from
[32] to coarsen the graphs. It takes as input
the graph G and the coarsening ratio desired
r and output the propagation matrix SMP

c and
the coarsening matrix Q used for lifting. It is
a greedy algorithm which successively merges
edges by minimizing a certain cost. While orig-
inally designed for the combinatorial Laplacian,
we simply adapt the cost to any Laplacian L, see
App. B.1. Note however that some mathemat-
ical justifications for this approach in [32] are
no longer valid for normalized Laplacian, but
we find in practice that it produces good RSA
constants.

A major limit of this algorithm is its computational cost, which is quite high since it involves large
matrix inversion and SVD computation. Hence we limit ourselves to middle-scale graphs like Cora
[35] and Citeseer [15] and one larger graph with Reddit [18] in the following experiments. The
design of more scalable coarsening algorithms with RSA guarantees is an important path for future
work, but out-of-scope of this paper.
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Message passing preservation guarantees To evaluate the effectiveness of the proposed prop-
agation matrix, we first illustrate the theoretical message passing preservation guarantees (Thm. 1
and 2) on synthetic graphs, taken as random geometric graph, built by sampling 1000 nodes with
coordinates in [0, 1]2 and connecting them if their distance is under a given threshold (details in
App. B.3). For each choice of propagation matrix and different coarsening ratio, we compute numer-
ically ∥Skx − Q+(SMP

c )kxc∥L for various signals x ∈ R. We perform Np = 6 message-passing
steps to enhance the difference between propagation matrices. We evaluate and plot the upper bound
defined by ϵL,Q,R(CS+CΠ)

∑k
l=1 C̄

k−l
Π Cl−1

S (seen in the proof of Theorem 2 in App. A.3) in Fig. 2.
We observe that our propagation matrix incurs a significantly lower error compared to other choices,
and that as expected, this error is correlated to ϵL,Q,R, which is not the case for other choices. More
experiments can be found in App. B.4.

Node classification on real graphs. We then perform node classification experiments on real-world
graphs, namely Cora [35] and Citeseer [15], using the public split from [43]. For simplicity, we
restrict them to their largest connected component4, since using a connected graph is far more
convenient for coarsening algorithms (details in App. B.3). The training procedure follows that of
Sec. 3.3: the network is applied to the coarsened graph and coarsened node features, its output is lifted
to the original graph with Q+, and the label of the original training graph nodes are used to compute
the cross-entropy loss, which is then back-propagated to optimize the parameters θ (pseudocode in
App. B.2). Despite the lifting procedure, this results in faster training than using the entire graph
(e.g., by approximately 30% for a coarsening ratio of r = 0.5 when parallelized on GPU). For
downstream tasks we introduce a novel metric to analyze a specific coarsening : "Max acc possible".
It corresponds to the optimal prediction over the super-nodes of the coarsened graph (all the nodes
coarsened in a super nodes has the same prediction, optimally the majority label of this cluster). It
might be hard to achieve as the optimal assignment for the validation nodes or training nodes can be
different. It allows comparing different coarsenings for classification task without training models on
it. We test SGC [42] with Np = 6 and GCNconv [27] with Np = 2 on four different coarsening ratio:
r ∈ {0.3, 0.5, 0.7} where Np is the number of propagation. Each classification results is averaged
on 10 random training.

Results are reported in Table 1 and Table 2. We observe that the proposed propagation matrix SMP
c

yields better results and is more stable, especially for high coarsening ratio. The benefits are more
evident when applied to the SGC architecture [42], for which Assumption 4 of Thm. 2 is actually
satisfied, than for GCN, for which ReLU is unlikely to satisfy Assumption 4. It is also interesting to
notice that training on coarsened graphs sometimes achieve better results than on the original graph.
This may be explained by the fact that, for homophilic graphs (connected nodes are more likely to
have the same label), nodes with similar labels are more likely to be merged together during the
coarsening, and thus become easier to predict for the model. The detailed hyper-parameters for each
model and each dataset can be found in appendix B.5.

Table 1: Accuracy in % for node classification with SGC and different coarsening ratio

SGC Cora Citeseer

r 0.3 0.5 0.7 0.3 0.5 0.7

Ssym
c 16.8± 3.8 16.1 ± 3.8 16.4 ± 4.7 17.5 ± 3.8 18.6 ± 4.6 19.8 ± 5.0

Sdiff
c 50.7 ± 1.4 21.8 ± 2.2 13.6 ± 2.8 50.5 ± 0.2 30.5 ± 0.2 23.1 ± 0.0
Sc 79.3 ± 0.1 78.7 ± 0.0 74.6 ± 0.1 74.1 ± 0.1 72.8 ± 0.1 72.5 ± 0.1

Sdiag
c 79.9 ± 0.1 78.7 ± 0.1 77.3 ± 0.0 73.6 ± 0.1 73.4 ± 0.1 73.1 ± 0.4

SMP
c (ours) 81.8 ± 0.1 80.3 ± 0.1 78.5 ± 0.0 73.9 ± 0.1 74.6 ± 0.1 74.2 ± 0.1

Max acc possible 96.5 92.5 88.9 93.5 90.5 84.5
Full Graph 81.6 ± 0.1 73.6 ± 0.0

Scaling to larger Datasets We performed experiments on the Reddit Dataset [18], which is
approximately 100 times bigger than Cora or Citeseer. The Message-Passing error for different
coarsening propagation matrices is reported in Table 3 with the node prediction results on two
coarsening ratio r = 90% and r = 99% (their number of nodes,and edges can be found in App B.3),
the details of the hyperparameters and coarsening procedure are in B.6. Our propagation matrix for

4hence the slight difference with other reported results on these datasets
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Table 2: Accuracy in % for node classification with GCNconv and different coarsening ratio

GCNconv Cora Citeseer

r 0.3 0.5 0.7 0.3 0.5 0.7

Ssym
c 80.1 ± 1.3 78.1 ± 1.3 30.8 ± 2.5 71.0 ± 1.4 62.5 ± 11 52.7 ± 3.6

Sdiff
c 81.9 ± 1.0 74.5 ± 0.9 62.6 ± 7.1 72.7 ± 0.4 71.2 ± 1.7 37.6 ± 0.9
Sc 81.2 ± 0.8 79.9 ± 0.9 78.1 ± 1.0 71.7 ± 0.6 70.7 ± 1.0 67.1 ± 3.1

Sdiag
c 81.4 ± 0.8 80.4 ± 0.8 78.6 ± 1.3 72.1 ± 0.6 70.2 ± 0.8 69.3 ± 1.9

SMP
c (ours) 82.1 ± 0.5 79.8 ± 1.5 78.2 ± 0.9 72.8 ± 0.8 72.0 ± 0.8 70.0 ± 1.0

Max acc possible 96.5 92.5 88.9 93.5 90.5 84.5
Full Graph 81.6 ± 0.6 73.1 ± 1.5

coarsened graphs achieved a better Message-Passing error, close to the RSA-constant computed in
the coarsened graph. It is consistent with the fact the Message-Passing error is bounded by Theorem
1 with our propagation matrix. Similarly, for the node prediction results, our propagation matrix SMP

c
achieves good results with the SGC model, close to the maximum accuracy possible on the given
coarsening. Our propagation matrix is still competitive with the GCNconv model and achieved better
results on the biggest coarsening ratio. These experiments show the effectiveness of our method on
large graphs for which coarsening as a preprocessing step is crucial: indeed, on most small-scale
machines with single GPU, the Reddit dataset is too large to fit in memory and requires adapted
strategies.

Table 3: Accuracy in % for node classification on Reddit Dataset and Message passing errors

Reddit Dataset SGC GCNconv MP error

r 0.90 0.99 0.90 0.99 0.90 0.99

Ssym
c 37.1 ± 6.6 3.7 ± 5.5 48.1 ± 8.9 34.8 ± 4.0 4.73e16 2.07e27

Sdiff
c 18.3 ± 0.0 14.9 ± 0.0 71.3 ± 1.0 18.7 ± 1.7 0.92 1.00
Sc 87.5 ± 0.1 37.3 ± 0.0 88.0 ± 0.1 54.2 ± 2.4 2.46 1.75

Sdiag
c 87.6 ± 0.1 37.3 ± 0.0 88.1 ± 0.2 55.5 ± 1.8 2.45 1.74

SMP
c (ours) 90.2 ± 0.0 64.1 ± 0.0 84.4 ± 0.3 60.3 ± 0.9 0.22 0.88

Max Acc Possible 93.4 64.7 93.4 64.7 Not applicable
Full Graph 94.9 Non computable (OOM) Not applicable

5 Conclusion

In this paper, we investigated the interactions between graph coarsening and Message-Passing for
GNNs. Surprisingly, we found out that even for high-quality coarsenings with strong spectral
preservation guarantees, naive (but natural) choices for the propagation matrix on coarsened graphs
does not lead to guarantees with respect to message-passing on the original graph. We thus proposed
a new message-passing matrix specific to coarsened graphs, which naturally translates spectral
preservation to message-passing guarantees, for any coarsening, under some hypotheses relating
to the structure of the Laplacian and the original propagation matrix. We then showed that such
guarantees extend to GNN, and in particular to the SGC model, such that training on the coarsened
graph is provably close to training on the original one.

There are many outlooks to this work. Concerning the coarsening procedure itself, which was not the
focus of this paper, new coarsening algorithms could emerge from our theory, e.g. by instantiating
an optimization problem with diverse regularization terms stemming from our theoretical bounds.
The scalability of such coarsening algorithms is also an important topic for future work. From a
theoretical point of view, a crucial point is the interaction between non-linear activation functions
and the low-frequency vectors in a graph (Assumption 4). We focused on the SGC model here, but a
more in-depth study of particular graph models (e.g. random geometric graphs) could shed light on
this complex phenomenon, which we believe to be a major path for future work.
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A Proofs

We start by a small useful lemma.
Lemma 1. For all ker(L)-preserving matrices M , we have ∥Mx∥L ≤ ∥M∥L∥x∥L.

Proof. Take the orthogonal decomposition x = u + v where u ∈ ker(L) and v ∈ ker(L)⊥. Then,
since ∥x∥L = ∥v∥L, L− 1

2L
1
2 v = v and ∥Mu∥L = 0,

∥Mx∥L ≤ ∥Mv∥L = ∥L 1
2ML− 1

2L
1
2 v∥ ≤ ∥M∥L∥v∥L

A.1 Proof of Proposition 2

Proof. The fact that Lc = (Q+)LQ+ in this particular case is done by direct computation. It results
that ∥xc∥Lc

= ∥L 1
2Πx∥ and

| ∥x∥L − ∥xc∥Lc
| ≤ ∥L 1

2x− L
1
2Πx∥ = ∥x−Πx∥L ≤ ϵL,Q,R∥x∥L

by definition of ϵL,Q,R.

A.2 Proof of Theorem 1

Proof. Since x ∈ R and S isR-preserving, we have

∥Π⊥x∥L ≤ ϵL,Q,R∥x∥L
where Π⊥ = IN − Π, and similarly for Sx. Moreover, under Assumption 1, both Π and S are
ker(L)-preserving, such that ∥ΠSx∥L ≤ ∥ΠS∥L∥x∥L for all x. Then

∥Sx−Q+SMP
c xc∥L = ∥Sx−ΠSΠx∥L

= ∥Sx−ΠSx+ΠSx−ΠSΠx∥L
= ∥Π⊥Sx+ΠSΠ⊥x∥L
≤ ∥Π⊥Sx∥L + ∥ΠSΠ⊥x∥L
≤ ϵL,Q,R∥Sx∥L + ∥ΠS∥L∥Π⊥x∥L
≤ ϵL,Q,R∥Sx∥L + ϵL,Q,R∥ΠS∥L∥x∥L = ϵL,Q,R∥x∥L (CS + CΠ)

A.3 Proof of Theorem 2

Recall that the GNN is such that H0 = X , and

H l = σ(SH l−1θl) ∈ RN×dℓ , Φθ(X,S) = Hk ∈ RN

Similarly, for the GNN on coarsened graph we denote by H0
c = Xc and its layers

H l
c = σ(SMP

c H l−1
c θl) ∈ Rn×dℓ , Φθ(Xc, S

MP
c ) = Hk

c ∈ RN

For some set of parameters θ of a GNN, we define

Cθ,l = sup
i

∑
j

|θlij |, C̄θ,l =

l∏
p=1

Cθ,p

We start with a small lemma.
Lemma 2. Define

Bl = Bl(X) :=
∑
i

∥H l
:,i∥L (12)

Then we have
Bl ≤ C̄θ,lC

l
SC

l
σ∥X∥:,L (13)
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Proof. From assumption 4 we have ∥σ(x)∥L ≤ Cσ∥x∥L. Then, since S is ker(L)-preserving from
Assumption 1, by Lemma 1∑

i

∥H l
:,i∥L =

∑
i

∥σ(SH l−1θl:,i)∥L ≤ Cσ

∑
i

∥SH l−1θl:,i∥L

≤ Cσ(sup
j

∑
i

|θlji|)
∑
j

∥SH l−1
:,j ∥L ≤ CσCθ,lCSBl−1

Since B0 = ∥X∥:,L, we obtain the result

Proof. We start with classical risk bounding in machine learning

J(Φθc(X,S))− J(Φθ⋆(X,S)) = J(Φθc(X,S))− J(Q+Φθc(Xc, S
MP
c ))

+ J(Q+Φθc(Xc, S
MP
c ))− J(Q+Φθ⋆(Xc, S

MP
c ))

+ J(Q+Φθ⋆(Xc, S
MP
c ))− J(Φθ⋆(X,S))

≤ 2 sup
θ∈Θ
|J(Φθ(X,S))− J(Q+Φθ(Xc, S

MP
c ))|

since θc minimizes J(Q+Φθ(Xc, S
MP
c )). For all θ, by Assumption 3, we have

|J(Φθ(X,S))− J(Q+Φθ(Xc, S
MP
c ))| ≤ CJ∥Φθ(X,S)−Q+Φθ(Xc, S

MP
c )∥L (14)

We will prove a recurrence bound on

El :=
∑
i

∥H l
:,i −Q+(H l

c):,i∥L

From Assumption 4,

El =
∑
i

∥σ(SH l−1(θl):,i)−Q+σ(SMP
c H l−1

c (θl):,i)∥L

=
∑
i

∥σ(SH l−1(θl):,i)− σ(Q+SMP
c H l−1

c (θl):,i)∥L

≤ Cσ

∑
i

∥SH l−1(θl):,i −Q+SMP
c H l−1

c (θl):,i∥L

≤ Cσ

∑
j

(∑
i

|(θl)ji|

)
∥SH l−1

:,j −Q+SMP
c (H l−1

c ):,j∥L

We then write

∥SH l−1
:,j −Q+SMP

c (H l−1
c ):,j∥L ≤ ∥SH l−1

:,j −Q+SMP
c QH l−1

:,j ∥L + ∥Q+SMP
c QH l−1

:,j −Q+SMP
c (H l−1

c ):,j∥L

Then note that, since both S and σ are R-preserving, for all l, i we have that (H l):,i ∈ R. We can
thus apply Theorem 1 to the first term:

∥SH l−1
:,j −Q+SMP

c QH l−1
:,j ∥L ≤ ϵL,Q,R(CS + CΠ)∥H l−1

:,j ∥L

The second term is 0 when l = 1 since H0
c = QH0. Otherwise, using QQ+ = In, and since under

Assumption 1 both S and Π are ker(L)-preserving, applying Lemma 1:

∥Q+SMP
c QH l−1

:,j −Q+SMP
c (H l−1

c ):,j∥L = ∥Q+SMP
c Q(H l−1

:,j −Q+(H l−1
c ):,j)∥L

= ∥ΠSΠ(H l−1
:,j −Q+(H l−1

c ):,j)∥L
≤ ∥ΠSΠ∥L∥H l−1

:,j −Q+(H l−1
c ):,j∥L

At the end of the day, we obtain

El ≤ CσCθ,l(ϵL,Q,R(CS + CΠ)Bl−1 + C̄ΠEl−1)

≤ Cl
σC̄θ,lC

l−1
S (CS + CΠ)ϵL,Q,R∥X∥:,L + CσCθ,lC̄ΠEl−1
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using Lemma 2, and E1 ≤ ϵL,Q,RCσCθ,1(CS + CΠ)∥X∥:,L. We recognize a recursion of the form
un ≤ anc+ bnun−1, which leads to un ≤

∑n
p=2 ap

∏n
i=p+1 bi + u1

∏n
i=2 bi, which results in:

Ek ≤ ϵL,Q,R∥X∥:,LCk
σC̄θ,k, (CS + CΠ)

k∑
l=1

C̄k−l
Π Cl−1

S (15)

This concludes the proof with CΘ = maxθ∈Θ C̄θ,k.

B Coarsening algorithm and experimental details

B.1 Adaptation of Loukas Algorithm

You can find below the pseudo-code of Loukas algorithm. This algorithm works by greedy selection
of contraction sets (see below) according to some cost, merging the corresponding nodes, and iterate.
The main modification is to replace the combinatorial Laplacian in the Loukas code by any Laplacian
L = fL(A), and to update the adjacency matrix according to (4) at each iteration and recompute L,
instead of directly updating L as in the combinatorial Laplacian case. Note that we also remove the
diagonal of Ac at each iteration, as we find that it produces better results. The output of the algorithm
is the resulting coarsening Q, as well as SMP

c = QSQ+ for our application.

Algorithm 1 Loukas Algorithm

Require: Adjacency matrix A, Laplacian L = fL(A), propagation matrix S, a coarsening ratio r ,
preserved spaceR, maximum number of nodes merged at one coarsening step : ne

1: nobj ← int(N −N × r) the number of nodes wanted at the end of the algorithm.
2: compute cost matrix B0 ← V V TL−1/2 with V an orthonormal basis ofR
3: Q← IN
4: while n ≥ nobj do
5: Make one coarsening STEP l
6: Create candidate contraction sets.
7: For each contraction C, compute cost(C, Bl−1, Ll−1) =

∥ΠCBl−1(B
T
l−1Ll−1Bl−1)

−1/2∥LC
|C|−1

8: Sort the list of contraction set by the lowest score
9: Select the lowest scores non overlapping contraction set while the number of nodes merged is

inferior to min(n− nobj , ne)
10: Compute Ql, Q+

l , uniform intermediary coarsening with contraction sets selected
11: Bl ← QlBl−1

12: Q← QlQ
13: Al ← (Q+

l )
⊤Al−1Q

+
l − diag((Q+

l )
⊤Al−1Q

+
l )1n)

14: Ll−1 = fL(Al−1)
15: n← min(n− nobj , ne)
16: end while
17: IF uniform coarsening THEN Q← row-normalize(QlQ)
18: Compute SMP

c = QSQ+

19: return Q,SMP
c

The terms ΠC and LC are some specific projection of the contraction set, their explicit definition can
be find in Loukas work [32]. We did not modify them here and leave their eventual adaptation for
future work.

Enforcing the iterative/greedy aspect In our adaptation we also add a parameter ne to limit the
number of nodes contracted at each coarsening step. In one coarsening step, when a contraction set C
is selected, we merge |C| nodes. In practice Loukas proposed in its implementation to force ne =∞
and coarsen the graph in one single iteration. We observed empirically better results by diminishing
ne and combining it with enforcing the uniform coarsening (Appendix B.4).
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Candidate contraction Set. Candidate contractions sets come in two main flavors: they can be
each two nodes linked by edges, or the neighborhood of each nodes (so-called "variation edges" and
"variation neighborhood" versions). In practice, as the neighborhood are quite big in our graphs, it is
not very convenient for small coarsening ratio and give generally poor results. We will use mainly
the edges set as candidate contraction sets and adjust the parameter ne to control the greedy aspect of
this algorithm.

Uniform Coarsening At each coarsening step, in Loukas algorithm Ql is uniform by construction.
Nonetheless the product of uniform coarsening is not necessarily an uniform coarsening. Then, we
propose an option to force the uniform distribution in the super-nodes in the Loukas algorithm by
normalize the non zero values of each line of the final coarsening matrix Q. We observe that uniform
coarsening gives better results for ϵL,Q,R, and works better for our message passing guarantees. See
Appendix B.4.

B.2 Discussion on Training procedure

The pseudocode of our training procedure is detailed in Algo. 2.

Algorithm 2 Training Procedure

Require: Adjacency A, node features X , desired propagation matrix S, preserved spaceR, Lapla-
cian L, a coarsening ratio r

1: Q, SMP
c ← Coarsening-algorithm(A,L, S, r,R)

2: Xc ← QX
3: Initialize model (SGC or GCNconv)
4: for Nepochs iterations do
5: compute coarsened prediction Φθ(S

MP
c , Xc)

6: uplift the predictions : Q+Φθ(S
MP
c , Xc)

7: compute the cross entropy loss J(Q+Φθ(S
MP
c , Xc))

8: Backpropagate the gradient
9: Update θ

10: end for

Note that it is different from the procedure of [21] which computes labels for the super-nodes (using
the majority label in the coarsening cluster) and do not use the uplifting matrix Q+. We find this
procedure to be less amenable to semi-supervised learning, as super-nodes may merge training and
testing nodes, and prefer to uplift the output of the GNN in the original graph instead. Additionally,
this preserves the theoretical guarantees of Sec. 3. Our procedure might be slightly lower but we find
the uplifting operation to be of negligible cost compared to actual backpropagation.

B.3 Presentation of dataset

Synthetic Dataset Random geometric graph is built by sampling nodes with coordinates in [0, 1]2

and connecting them if their distance is under a given threshold. For the experiment on illustrating
the message passing preservation guarantees, we sample 1000 nodes with a threshold of 0.05 (fig 3 ).

Table 4: Characteristics of Cora and CiteSeer Datasets

Dataset # Nodes # Edges # Train Nodes # Val Nodes # Test Nodes
Cora 2,708 10,556 140 500 1,000
Cora PCC 2,485 10,138 122 459 915

Citeseer 3,327 9,104 120 500 1,000
Citeseer PCC 2,120 7,358 80 328 663

Real World datasets We restrict the well known Cora and Citeseer to their principal connected
component(PCC) as it more compatible with coarsening as preprocessing. Indeed, the loukas
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Figure 3: Example of a random Geometric graph

algorithm tend to coarsen first the smallest connected components before going to the biggest which
leads to poor results for small coarsening ratio. However working with this reduced graph make the
comparison with other works more difficult as it is not the same training and evaluating dataset.

For the Reddit dataset ( 1 PCC) its characteristics and of its coarsened version as well of the Reddit
and Cora coarsened dataset can be find in the table 5

Table 5: Characteristics of Reddit, Cora, Citeseer and its coarsen version

Dataset # Nodes # Edges # Features #classes
Reddit 232,965 114,615,892 602 41
Reddit90 23,298 8,642,864 602 41
Reddit99 2,331 10,838 602 41

Cora PCC 2,485 10,138 1,433 7
Cora70 746 3,716 1,433 7

Citeseer PCC 2,120 7,358 3,703 6
Citeseer70 636 2,122 3,703 6

B.4 Discussion of hyperparameters and additional experiments

In the following section, we will use two different view of the same plot, to focus on different parts.
We use the log-log scale (fig 4a) to put the focus on low coarsening ratio and on the upper bound. We
use the linear scale (fig 4b) to compare more precisely our propagation matrix with Sdiag

c and Sc for
higher coarsening ratio.
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Figure 4: Uniform coarsening with ne = 5N/100 and Normalized Laplacian

Uniform coarsening We observe that forcing uniform coarsening gives better ϵL,Q,R and thus
better message passing guarantees . It is shown in the figure 5 for ne = 5N/100 with N the number
of Nodes of the graph (1000 here).
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Figure 5: Coarsening with ne = 5N/100 and Normalized Laplacian

Bounding ne. For high coarsening ratio, we observe limits of the variation edges defined as Loukas
with ne → ∞ as it gives bigger ϵL,Q,R and thus worse curve for our propagation matrix in the
coarsened graph (fig 6).

B.5 Hyper-parameters for Table 1 and Table 2

For all experiments, we preserve K eigenvectors of the normalized Laplacian defined as L =
IN (1 + δ) − S with δ = 0.001 and K = 10%N where N is the number of nodes in the original
graph. We apply our adapted version of Loukas coarsening algorithm with ne = 5%N for SGC Cora,
SGC Citeseer and GCN citeseer and ne →∞ for GCN Cora (variation edges as defined by Loukas).
For SGC cora and SGC Citeseer we make 6 propagations as preprocessing for the features. For GCN
Cora and Citeseer we use 2 convolationnal layer with a hidden dimension of 16. For all experiments
we use an Adam Optimizer wit a learning rate of 0.05 and a weight decay of 0.01.

B.6 Hyper-parameters for Table 3

For the experiment on Reddit Dataset, we preserve K eigenvectors of the normalized Laplacian
defined as L = IN (1 + δ) − S with δ = 0.001 and K = 400 eigenvectors to be computationally
efficient (10%N being too big). We apply our adapted version of Loukas coarsening algorithm with
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Figure 6: Uniform coarsening for Normalized Laplacian

ne = 10%N for SGC Reddit and GCN Reddit. We computed 6 propagations for Reddit SGC and
2 for Reddit GCN. We keep the same hidden dimension as for Cora and Citeseer. For the reddit
experiments, we use an Adam Optimizer wit a learning rate of 0.1 and a weight decay of 0.0.
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NeurIPS Paper Checklist

i) Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: This is a mostly theoretical paper. Theorems and their implications are described in
abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

ii) Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: This is a mostly theoretical paper. Hypotheses are illustrated by examples and
limitations are discussed. For experiments, scalability is discussed.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

iii) Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
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Justification: Proofs are provided in Appendix.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
iv) Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Code is included as supplementary material, and can be run on any computer.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
i) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
ii) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
iii) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

iv) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

v) Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: Code is included as supplementary material, and use only open-source Python
libraries.
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Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

vi) Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: All details are described in Appendix, and the code in supplementary material.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

vii) Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Standard deviations are reported in Table results.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

viii) Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: This is small-scale code: it can be run on any computer in reasonable time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

ix) Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This is a mostly theoretical paper. The code use only open-source Python libraries.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

x) Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This is a mostly theoretical paper. We do not anticipate significant societal impact
as a direct result of our work. Future algorithmic work on scalability of graph coarsening could
include such discussion, but this is relatively out-of-topic for this paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

xi) Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not include such model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

xii) Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The original paper for Cora and Citeseer is cited. Details are given in Appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

xiii) New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

xiv) Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

xv) Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may

be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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