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Abstract

Bayesian Neural Networks provide a principled framework for uncertainty quantification by
modeling the posterior distribution of network parameters. However, exact posterior inference
is computationally intractable, and widely used approximations like the Laplace method
struggle with scalability and posterior accuracy in modern deep networks. In this work, we
revisit sampling techniques for posterior exploration, proposing a simple variation tailored
to efficiently sample from the posterior in over-parameterized networks by leveraging the
low-dimensional structure of loss minima. Building on this, we introduce a model that learns
a deformation of the parameter space, enabling rapid posterior sampling without requiring
iterative methods. Empirical results demonstrate that our approach achieves competitive
posterior approximations with improved scalability compared to recent refinement techniques.
These contributions provide a practical alternative for Bayesian inference in deep learning.

Figure 1: We propose a novel sampling scheme to approximate the posterior of a trained network. When
the loss landscape of a trained network over its parameters (blue regions) is low on a very low-dimensional
curve (white region), a simple Hessian (H 1) fails in capturing its distribution. Our sampling scheme is
composed of two iterative steps: randomly perturb a given solution (yellow points) then refine to minimize
the loss function over the given dataset (orange points). This proposed scheme allows to estimate posteriors
of arbitrary shapes and it is well suited when the space of solutions in a network are much lower dimensional
than the parameter space.
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1 Introduction

Bayesian Neural Networks (BNNs) have emerged as a principled framework for uncertainty quantification in
deep learning by treating model parameters as random variables and inferring their posterior distribution.
This Bayesian perspective is crucial for tasks requiring reliable decision-making under uncertainty, including
medical diagnosis (Leibig et al.| [2017)), autonomous driving (Feng et al., 2018)), and weather forecasting
(Cofino et al., [2002). Despite their appeal, the high dimensionality and non-linearity of modern neural
network parameter spaces render exact posterior inference intractable, requiring the development of efficient
approximation techniques.

A widely used method to make a deterministic, already-trained neural network Bayesian is the Laplace
approximation, which estimates the posterior distribution of the parameters as a Gaussian centered at
the Maximum a Posteriori (MAP) estimate (MacKay], [1992; Daxberger et al., [2021)). This approach is
particularly convenient due to its simplicity and post-hoc applicability. However, the Laplace approximation
faces significant challenges in modern deep networks. The computation and inversion of the Hessian scale
poorly with network size (Martens, |2010), and its reliance on local curvature limits its ability to capture
the complex, non-linear geometry of the posterior in over-parameterized models (Fort & Jastrzebski, [2019;
Bergamin et al., 2024)).

In contrast, sampling techniques, though less frequently used in recent years, can be surprisingly effective
in exploring the posterior when the parameter space of loss minima resides on a much lower-dimensional
manifold than the full parameter space (Garipov et al. [2018). By leveraging this property, sampling methods
can efficiently explore the posterior with fewer samples, especially in over-parameterized settings. However,
relying on sampling for posterior estimation can still be computationally expensive if every new inference
requires a fresh sampling process. These limitations highlight the need for a method that combines the
efficiency of sampling-based exploration with a more scalable and flexible posterior representation.

In this work, we propose a variation of a sampling method to explore the geometry of the loss landscape
in the parameter space of neural networks. Our approach perturbs parameters around the MAP estimate
using a set of drift directions and refines them with gradient updates, effectively maintaining computational
efficiency as the network size increases. Using the data collected from our sampling process, we introduce a
novel objective function to learn a structured latent representation of the posterior by deforming the original
parameter space. This learned representation enables the direct generation of new parameter samples without
relying on computationally expensive iterative sampling or restrictive variational inference approximations.
We refer to these two components collectively as MetricBINN. Empirically, we demonstrate the efficacy of
our method in estimating uncertainty from trained models in both regression and classification tasks. In
particular, our approach produces better-calibrated uncertainty estimates than Gaussian approximations,
especially on real-world datasets and high-dimensional tasks.

2 Related Work

Bayesian Neural Networks. BNNs provide a principled approach to uncertainty quantification by treating
the network parameters 6 as random variables and modeling their posterior distribution p(f | D). However,
exact inference is intractable due to the high dimensionality of parameter spaces in modern neural networks.
Various methods have been proposed to approximate the posterior. Variational Inference (VI) approximates
the posterior by optimizing a surrogate distribution, often in the form of a mean-field Gaussian (Graves| 2011;
Blundell et al., 2015). Extensions to hierarchical and amortized variational methods have improved scalability
but often struggle to capture complex posterior structures (Zhang et al., [2018). The Laplace Approximation
(LA) defines the posterior locally around the MAP estimate using a Gaussian distribution (MacKayy, [1998;
Daxberger et al., [2021). Despite its simplicity and efficiency, it is limited by its reliance on local curvature
and the Gaussian assumption. Sampling-based methods such as Stochastic Gradient Langevin Dynamics
(SGLD) (Welling & Tehl [2011) and Hamiltonian Monte Carlo (HMC) (Neal, [2011) generate posterior samples
by simulating stochastic dynamics. While these methods are more flexible, their computational cost often
makes them impractical for large-scale neural networks.
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Improving Posterior Samples. To address these limitations, recent works have sought to refine and
extend the Laplace approximation by introducing more expressive approximate posteriors. [Kristiadi et al.
(2022) combines Laplace approximation with normalizing flows for a non-Gaussian posterior, refining the base
Gaussian distribution. Similarly, Immer et al.| (2021) refines Laplace approximation by leveraging Gaussian
variational methods and Gaussian processes, improving linearized Laplace posterior accuracy. [Miller et al.
(2017) iteratively builds a mixture model to improve the posterior approximation by adding components
to the variational distribution. |[Eschenhagen et al.| (2021)) combines multiple pre-trained models to form a
weighted sum of Laplace approximations, improving posterior flexibility. [Havasi et al.| (2021 introduced
auxiliary variables to locally refine mean-field variational approximations, achieving better fit in regions of
interest. Bergamin et al.| (2024]) extends the Laplace approximation by leveraging Riemannian geometry to
model the posterior distribution on a manifold, improving accuracy for non-linear loss landscapes.

In this paper, we reevaluate the efficiency of sampling methods for posterior estimation, particularly in the
context of over-parameterized neural networks. Through empirical results, we demonstrate that our proposed
simple sampling framework can outperform modern posterior refinement techniques in efficiency and accuracy.
Furthermore, our novel use of an autoencoder moves beyond the Gaussian formulation of the posterior,
enabling a flexible, easy-to-sample representation that significantly improves performance. This approach
allows us to capture the non-linear geometry of the posterior while maintaining computational simplicity,
addressing key limitations of both classical and modern refinement methods.

3 Preliminaries

BNNs provide a principled framework for quantifying uncertainty in neural network predictions by treating
the model parameters as random variables. This section introduces the relevant background on BNNs;,
discusses the Laplace approximation for posterior estimation, and highlights its limitations.

Consider an independent and identically distributed (i.i.d.) dataset D = {(=;,y;)}, where x; € RP and
yi € RC. Let fp: RP — R® denote a parametric function (e.g., a neural network) with parameters § € R¥.
The goal is to model the predictive distribution: p(y' | 2/, D) = [p(y’ | 2/,0)p(6 | D) df, where p(6 | D) is
the posterior distribution of the parameters given the dataset. Bayesian inference provides a framework
for estimating the posterior p(f | D) using Bayes’ theorem: p(f | D) = %7 where p(D | 0) is the
likelihood of the data, p(#) is the prior distribution over the parameters, and p(D) is the marginal likelihood or
evidence. In practice, computing the evidence p(D) is often intractable, making direct posterior computation
challenging.

3.1 Laplace Approximation

The Laplace approximation is a classic method for approximating the posterior distribution p(6 | D) using a
Gaussian centered at the MAP estimate. Let £(0) denote the regularized negative log-likelihood:

L(0) = —1logp(D | ) — alogp(6), (1)

where « is a regularization coefficient and depends on the choice of prior for the parameters. Assuming this
to be the Normal distribution, the regularization can be rewritten as an Euclidean norm.

One of the main advantages of the Laplace approximation is that it allows to define a posterior distribution
given an already fully trained network, post-hoc. When given a fully trained network we assume access to
the set of parameters, 0%, that minimize the loss function of Equation I} This is the MAP solution. The
exponential of this loss function is proportional to the posterior distribution as p(6 | D) « p(D | 8)p(9).
Laplace approximation methods propose to approximate the posterior distribution with a second-order Taylor
expansion around the MAP of the loss function. This results in a Gaussian approximation of the parameters
with the mean being the MAP solution and the covariance being the inverse of the Hessian computed in the
MAP. The posterior can then be defined as:

q(0) = N(0", H™Y), (2)

where H = V2L£(0*) is the Hessian of the loss function at 6*.
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Figure 2: Posterior samples for Regression task. The blue points represent the dataset, the orange lines are
samples from the estimated posteriors. The standard Laplace approximation fails in recovering the true
parameter distribution. Our proposed sampling method correctly captures the uncertainty in the data gap.

3.2 Limitations of the Laplace Approximation

While widely used, the Laplace approximation has several limitations:

1. Local Approximation: It captures only the local curvature of the loss landscape around #*, ignoring
the broader structure of the posterior, which can be highly non-Gaussian in high-dimensional spaces
(Wilson & Izmailovl [2020).

2. Scalability: Computing and inverting the Hessian is computationally expensive for large-scale neural

networks, limiting its applicability to small models (Martens) 2010)).

3. Positive-Definiteness: In over-parameterized networks, the Hessian is often not positive definite,
making it difficult to define a valid Gaussian approximation. Regularization or approximate methods
are sometimes used to mitigate this issue, but these approaches can introduce biases (Daxberger|

et al, 2021).

The limitations of the Laplace approximation motivate the need for alternative methods that better capture
the true posterior distribution. Specifically, the posterior for BNNs often lies on a complex, non-linear
manifold in parameter space, which the Laplace approximation fails to represent. This motivates our
approach, which combines efficient exploration of the parameter space with a flexible latent representation to
better approximate the posterior.

4 Method

To address the limitations of the Laplace approximation and improve posterior estimation in BNNs, we
propose MetricBNN, a two-step framework. The first step involves locally exploring the parameter space
around the MAP estimate using a simple sampling method. The second step learns a latent representation to
construct a flexible posterior distribution that captures the complex geometry of the parameter space.

4.1 Exploring Neighbor Solutions

Given a trained neural network with parameters 8* that minimize the regularized loss function (Equation, the
parameter space of deep networks is known to exhibit a high degree of redundancy due to overparameterization
and reparametrization invariances [Fort & Jastrzebski| (2019); |Garipov et al. (2018]). These properties create a
connected, lower-dimensional manifold of near-optimal solutions surrounding the MAP estimate 6*. This
phenomenon, often referred to as the linear connectivity assumption, suggests that different sets of parameters




Under review as submission to TMLR

Sampling Distribution MetricBNN Distribution SVD Approximation

Figure 3: Estimated posterior for the regression task. The blue points represent the dataset and in orange
the mean and standard deviation of posteriors sampled from the estimated distributions. A naive SVD
approximation of the solutions found with the sampling scheme fails in representing correctly the true
posterior. Our proposed MetricBNN posterior correctly approximates it.

can achieve similar performance, even when interpolating between them (Garipov et all |2018; [Fort &
[Jastrzebskil 2019} [Brea et al.| [2019).

In particular, empirical studies on the loss landscapes of neural networks have shown that minima are often
connected by low-loss paths, forming smooth and structured regions in the parameter space (Garipov et al.
2018)). This implies that the posterior distribution is not confined to a single mode but instead spans a
broader, non-linear manifold. Capturing this geometric complexity is crucial for accurately modeling the
posterior. By exploring neighboring solutions around 6*, we aim to gather representative samples that reflect
the underlying structure of this manifold, providing a richer and more accurate approximation of the posterior
distribution.

Estimating the posterior distribution of the parameters amounts to identifying the distribution of these
solutions. To achieve this, we propose collecting a set of such solutions using the following sampling technique
(MetricBNN sampling):

1. Initialization: Start with IV particles, each initialized at the MAP estimate 6%, i.e., 6; .

2. Random Drift Assignment: Assign each particle a random drift vector d;, sampled as a unit
vector with uniform orientation in the parameter space.

3. Iterative Exploration: For T time steps, update each particle’s position as:
(a) Drift: Perturb the particle by adding the corresponding random drift.

é?,t-l-l = 91'7,*, + - dl (3)

(b) Refinement: After each drift update, refine the particle’s position using M steps of gradient
descent to ensure alignment with the loss landscape.

07y =00y — Vel (O ,) (4)

Oii1 =004, (5)

This procedure generates a set of IV x T viable solutions near 6*. These samples represent a local exploration
of the posterior distribution of interest, capturing the diversity of solutions around the MAP estimate.
Figure b) illustrates an example of these solutions for a two-dimensional regression problem.

While sampling methods have traditionally been considered computationally expensive for high-dimensional
neural networks, leading to their relative neglect in favor of variational inference and other approximation
techniques (MacKayl, [1998; Blundell et al., 2015)), we argue that these concerns warrant re-evaluation in light
of the linear connectivity assumption. Specifically, the high redundancy and structured geometry of neural
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Figure 4: Estimated posterior for the Banana classification task. The orange and yellow points represent the
data of the two classes in the classification dataset. In blue is the value of the uncertainty of the posteriors
sampled from the estimated distributions.

network parameter spaces suggest that meaningful posterior exploration can be achieved through efficient
sampling on a lower-dimensional, connected manifold of solutions (Garipov et al., 2018; [Fort & Jastrzebski,
. This implies that the computational complexity of sampling methods may scale more favorably with
the dimensionality of modern networks than previously assumed.

The empirical covariance matrix of the collected solutions provides an improved local Gaussian approximation
of the posterior distribution. However, due to the extreme non-linearity of the solution manifold, a Gaussian
approximation alone fails to accurately capture the true structure of the posterior distribution. Addressing
this limitation requires moving beyond the Gaussian assumption.

4.2 Defining a Posterior

While the empirical covariance of the collected samples provides a basic Gaussian approximation, it fails to
capture the non-linear geometry of the posterior, see Figure [3] Addressing this limitation requires moving
beyond the Gaussian assumption. Given that the drift applied in the Drift step is small enough, we can
assume that every element in between two sets of parameters is a viable solution. The curve defined by all
the samples can, however, be arbitrarily non-linear. To overcome this, we propose to learn a representation
that maps the parameters into a structured latent space where the collected trajectories of parameters are
linearly distributed.

We define a latent representation through an autoencoder framework:

e ¢:0 — Z: An encoder that maps neural network parameters  to a latent space Z C R¥.

L. Z — ©: A decoder that reconstructs parameters 6 from the latent space.

) (p_
The training dataset for the autoencoder consists of the collected samples, i.e., Dy. The goal is to learn a
latent space where the posterior distribution is well-structured and linearly interpolable. We achieve this by
optimizing the following loss function:

L=l AL+ Ly, (6)
with:
2
£e =Eo, | (60 ¢l - 1) |, @
£ =Ep, [log (le(0) — #(0")])]. ®
£a=Ep, [lls™(¢(6)) ~ 0I] )

where 6 and 0’ are two sets of parameters of the same trajectory and successive time step while #” is another
randomly sampled set of parameters. Both A, and A_ are scalar values. The role of these terms is as follows:
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e L : encourages local distances between successive samples are preserved.

e L_: encourages these sets of parameters to stretch in the learned latent space by maximizing every
pair-wise distance.

e L4: encourages reconstruction, mapping latent representations back to their original parameter space.

Using the trained autoencoder, we define the posterior distribution in the latent space Z, MetricBNN posterior.
Each trajectory of samples is treated as independent, with a uniform probability assigned to each trajectory.
Along each trajectory, we place a uniform probability between the MAP solution and the last sample of such
trajectory, i.e., ; 7. Sampling from the posterior involves: Sample a trajectory index ¢ uniformly, Sample a
scaling factor € ~ Uniform(0, 1). Compute the parameter sample:

0 =07 (p(07) + ¢ (0(0i1) — (67))) - (10)

This method captures the broader geometry of the posterior while maintaining computational efficiency. We
provide a pseudo-code of the whole method in Appendix [B]

5 Experiments

In this section, we evaluate the ability of our proposed method to approximate the posterior efficiently. We
first assess the quality of our sampling technique in capturing model uncertainty using simple regression
and classification tasks. We then analyze the computational complexity of our approach as the network size
increases. Finally, we present quantitative results on real-world datasets, evaluating the negative log-likelihood
(NLL) and classification accuracy of our posterior distribution.

For all experiments, we compare our proposed method
against the standard Laplace Approximation and the Rie-
mannian Laplace Approximation proposed in [Bergamin
et al.[(2024), both with and without linearization. Both
approaches use the Gauss-Newton Hessian approximation — 121
and optimize the prior precision using marginal likeli-
hood estimation. These methods, similarly to us, serve
as post-hoc Bayesian inference techniques that estimate
the parameter posterior without requiring modifications

144

104

to the training process. & 57 ¢
We conduct experiments across four different settings: 41
5]
Simple Regression: We evaluate our method on the
one-dimensional regression problem introduced in [Snelson 0 1 2 3 a 5

& Ghahramani| (2005)). The dataset consists of 200 points, tog Time

with 50 held out to assess the model’s ability to estimate Figure 5: Trade-off between network size and
uncertainty. We use a fully connected neural network with  computational complexity on the regression task.
three hidden layers of 32 units and ReLU activations. In blue is the Laplace Approximation, in orange

is the Riemannian reformulation, in green is our

Simple Classification: We test our method on the proposed MetricBNN method. Each method is
Banana dataset, a two-dimensional binary classification  tested in its NLL performance (lower is better) on

task with 5,300 points, of which 30% are reserved for the test set with an increasing number of hidden
testing. We use a fully connected network with two hidden Jayers in the network (numbers in the figure). Our

layers of 6 units and Tanh activations. proposed method does not considerably increase

in computational complexity with an increase in
Classification on UCI Datasets: To evaluate perfor- the network size.

mance on real-world structured data, we experiment with
six classification datasets from the UCI repository (Markelle et al.l [2023). We use a fully connected network
with two hidden layers of 32 units and ReLU activations.
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Table 1: Quantitative results on the UCI datasets,

and Computation Time (s).

including Negative Log Likelihood (NLL), lower is better,

Model Australian Breast Glass Tonosphere Vehicle Waveform

LA 0.71 £ 0.06 0.73 &£ 0.07 2.28 £ 0.28 0.72 £ 0.09 0.8 = 0.16 0.88 £ 0.09

A Riem LA 0.54 £ 0.07 0.59 + 0.1 1.42 +£0.21 0.17 +£0.02 0.65 +0.02 0.3 +0.01
E Lin LA 0.69 4 0.04 0.61 4 0.04 3.59 £+ 1.17 0.42 £+ 0.04 0.68 £ 0.01 0.4 4+ 0.02
Riem Lin LA 0.74 &+ 0.05 232074 1592+ 0.056 13.5+£0.66 0.65+0.01 0.38 & 0.02
MetricBNN 0.66 + 0.05 0.57 £0.04 1.07 +0.07 0.17 £0.05 0.69 £0.02 0.3 +0.01

° LA 1.88 £+ 0.98 1.54 £ 0.8 1.56 £+ 0.67 1.88 + 0.72 3.0 £1.95 2.68 + 0.48
§ Riem LA 4.36 &+ 4.06 2.42 + 1.61 3.69 £+ 3.63 2.38 £ 1.61 3.33 £ 3.0 3.26 £ 2.45
& Lin LA 1.86 + 1.0 1.52 + 0.4 1.55 + 0.48 1.89 + 0.65 3.05 £1.95 2,68 & 0.31
éo Riem Lin LA 1.9+ 1.04 1.63 £ 0.6 1.67 £ 0.54 1.93 + 0.65 3.08 +£1.42 2.69 + 1.53
MetricBNN 1.66 + 0.34 1.61 £ 0.29 1.64 + 0.32 1.76 + 0.35 1.8 £ 0.36 1.82 + 0.41

Image Classification:

For high-dimensional problems, we experiment with the MNIST (LeCunl 1998) and

FashionMNIST (Xiao et al., 2017)) datasets. In line with standard practice, we use a shallow convolutional
neural network with two convolutional layers followed by three fully connected layers with Tanh activations.

5.1 Scalability of the Proposed Sampling Method

Approximating the posterior distribution in neural networks is challenging due to the high-dimensional and
non-linear nature of the parameter space. The standard Laplace approximation has been shown to struggle
in these settings (Ritter et all |2018; [Lawrence, |2001)), as it assumes a Gaussian posterior, which may not
align well with the actual distribution. Our proposed sampling method provides a more flexible alternative,
allowing for a tighter and better-calibrated posterior that is independent of the loss landscape’s curvature.
Figure [2] compares our method with the Laplace approximation on the toy regression task, demonstrating a
significantly improved uncertainty estimation.

Beyond accuracy, scalability is a key factor in
Bayesian inference for deep networks. Many pos-
terior approximation techniques rely on computing
second-order derivatives, making them computation-
ally expensive as the network size grows. To assess

Table 2: Quantitative results on image datasets, in-
cluding Negative Log Likelihood (NLL), lower is better,
and Computation Time (s).

the computational trade-off, we analyze the inference

Model MNIST FMNIST
time and NLL performance as the number of layers N
in the network increases. Figure [5| presents these Ri L LA ?ﬁ i 8(1)‘;’ 21'224f006028

= lem . . . .

.resul'ts for our metl}od, the' standard Laplace approx- 3 Lin LA 0.96 &+ 0.08 1.27 + 0.13
imation, and the Riemannian Laplace approximation = Riem Lin LA 0.62 + 0.09 0.87 + 0.07
(Bergamin et al., 2024). Our results show that while MetricBNN ~ 0.13 + 001 0.6 + 0.1
Hessian-based methods scale poorly, our sampling N
approach maintains a reasonable computational cost g Ri L LA ggg i :1))(1)2 gg? i igg
while preserving accuracy. Furthermore, our learned & Ll?:lL A 3' 64 & 2’ 30 3' 67 &+ 2’ 96
lat'ent posterior mod'el enables rapid parameter sam- 2 Riem Lin LA 3.90 + 3.18  3.91 + 3.29
pling, further reducing the overhead compared to H MetricBNN ~ 3.61 + 2.84  3.67 + 2.86

iterative sampling.

5.2 Quality of the Proposed Geometric Posterior

A potential concern is whether the posterior obtained via our sampling method could be approximated using
a naive covariance computation, similar to the Laplace approximation. However, as shown in Figure 3] this
approach still does not yield accurate uncertainty estimates. By contrast, our latent posterior representation
effectively captures the true posterior structure, demonstrating the benefits of learning a structured parameter
space.
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The same observations hold for classification tasks. Figure [] illustrates the posterior obtained on the Banana
dataset, where our method produces a more calibrated uncertainty estimate than Laplace-based approaches,
particularly in high-uncertainty regions. This suggests that our method generalizes well beyond regression
problems and provides a practical alternative for Bayesian classification.

5.3 Performance on UCI Regression and Image Classification

We further evaluate our approach to real-world structured data by testing it on standard UCI regression
benchmarks. Table [1| reports NLL results, showing that our method remains competitive with Laplace-based
refinements while being significantly more efficient. This demonstrates that our method offers a good balance
between accuracy and computational cost.

To assess performance in high-dimensional settings, we train convolutional neural networks on MNIST
and FashionMNIST. Table [ presents classification accuracy and NLL results. As expected, performance
differences become more pronounced as network complexity increases. While Laplace-based methods suffer
from computational inefficiencies in these settings, our approach maintains strong performance while remaining
scalable.

Our experiments highlight three key takeaways:

e Our sampling-based posterior exploration provides a more flexible and well-calibrated uncertainty
estimate than the Laplace approximation, particularly as network size increases.

e The proposed latent posterior model enables efficient posterior sampling, avoiding the computational
overhead of iterative methods.

e Our approach remains competitive in terms of NLL and classification accuracy on real-world datasets
while being significantly more computationally efficient than Hessian-based refinements.

6 Conclusions

In this work, we proposed a simple variation of sampling-based techniques tailored to explore the posterior
geometry of Bayesian Neural Networks efficiently, even in over-parameterized settings. By leveraging the
low-dimensional structure of loss minima, our method achieves competitive posterior approximations while
maintaining scalability as network size increases. Additionally, we introduced a model that learns a deformation
of the parameter space based on the collected samples, enabling rapid posterior sampling without requiring
iterative methods. Our empirical results demonstrate that this approach improves posterior accuracy and
computational efficiency compared to recent refinement techniques. These contributions provide a practical
and flexible framework for Bayesian inference in deep learning, offering new directions for scalable uncertainty
quantification in complex models.
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A Experimental Details

This section provides additional details regarding the experimental setup, including the models, hyper-
parameters, and computational settings.

A.1 Experimental Setup

We evaluate our method across four types of tasks: toy regression, toy classification, structured classification
from the UCI repository, and high-dimensional image classification.

Toy Regression. We consider the Snelson 1D regression dataset (Snelson & Ghahramani, [2005), consisting
of 200 points, with 50 held out for evaluating uncertainty estimation. We use a fully connected neural network
with three hidden layers of 32 units and ReLU activations. The model is trained using the Adam optimizer
with a learning rate of 1 x 1072, batch size of 200, and L2 regularization of 0.01 for 50,000 epochs.

For the sampling procedure of our approach, we used a drift-scaling factor of @ = 0.001 and performed
T = 1000 sampling steps. At each step, we updated the parameters using M = 10 gradient refinement steps
to improve posterior estimates. We initialized N = 10 particles, each following a perturbed trajectory in the
parameter space, with a drift step scaled by an inner learning rate of n = 0.001. For the autoencoder-based
posterior model, we projected the sampled parameter trajectories into a structured latent space of k = 32
dimensions. The autoencoder was trained using batch size 1024 for 1000 epochs, optimizing the contrastive
loss with weight coefficients A, = 1.0 and A_ = 1.0. The architecture consists of an encoder with two fully
connected hidden layers of 256 units and ReLU activations, and a decoder with a symmetric structure of two
hidden layers with 256 units and ReLLU activations. Training was performed using the Adam optimizer.

Toy Classification. For classification, we use the Banana dataset, a 2D binary classification problem with
5300 points, of which 30% are used for testing. The network consists of two hidden layers with 16 units and
Tanh activations. The training procedure follows the regression setup, except with a smaller batch size (32)
and 2500 training epochs. For our model, we use the same parameters as in the regression task except for
a=0.1and T = 100.

Structured Data (UCI Datasets). To evaluate our method in structured classification settings, we test
on six datasets from the UCI repository (Markelle et al. 2023)), using a fully connected architecture with
two hidden layers of 32 units and ReLU activations. The training follows the same schedule as before, with
a batch size of 32 and 1000 training epochs. Our method is estimated with the same parameters as in the
classification experiment except for 7' = 50 steps, using M = 10 gradient refinements.

High-Dimensional Image Classification. For large-scale experiments, we train Bayesian neural networks
on MNIST (LeCun, [1998) and FashionMNIST (Xiao et all 2017). We use a shallow convolutional neural
network consisting of two convolutional layers, followed by three fully connected layers, with Tanh activations.
Training follows the same setup as UCI experiments, but with a reduced number of epochs (100). Our method
follows the same parameters as in the UCI experiment.

A.2 Scalability and Computational Complexity

To conduct the experiment on the computational complexity depicted in Figure [f] we used a fully connected
network with hidden layers from 1 to 5. Each layer with 15 units and Tanh as activation function. For each
architecture, we measure the inference time and negative log-likelihood (NLL) performance, comparing our
method with the standard Laplace approximation and Riemannian Laplace approximation (Bergamin et al.,
2024) on the Regression experiment. All experiments were conducted on an NVIDIA RTX3080 GPU.

B Pseudocode
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Algorithm 1 Proposed Posterior Approximation Method

Require: Trained neural network fy, dataset D, drift scaling «, sampling steps 7', gradient steps M, particles
N, inner learning rate n, autoencoder latent dimension k, training epochs E
Ensure: Approximate posterior g(6)

1: Phase 1: Parameter Sampling
2: Initialize N particles at 6* (MAP estimate)
3: for each particle:i=1,..., N do
4: Sample random drift direction d; <= o, v~ N(0,1)
5: for each stept=1,...,T do
6: Apply drift: 0, = 0;+—1 + ad;
7 for each gradient step m =1,..., M do
8: Refine using gradient descent:
9: Qi,t — gi,t — anﬁ(Hm)
10: end for
11: end for
12: end for
13: Store all sampled parameters © = {6; ;}
14: Phase 2: Learning Latent Posterior Representation
15: Train an autoencoder ¢ : © — Z using;:
16: for epoch e =1,...,F do
17: Sample minibatch of subsequent parameters 6,60’ ~ ©
18: Compute latent embeddings: z = ¢(#) and 2’ = p(0’)
19: Compute negative parameters by reshuffling the batch: 2"
20: Compute contrastive loss:
o Ly = (|- 2|~ 1/T)?
22: L_ = —log(||z —2"||)
2 Lo=|lgmi(z) 0]
24: Update autoencoder using £L = A Ly +A_L_ + AgLyg
25: end for

)
@

Posterior Approximation and Sampling

Sample trajectory index j ~ Categorical({zmax,; }évzl)

Sample interpolation factor € ~ 2(0,1)

Compute latent posterior sample: z = z2map + €(Zmax,j — 2MAP)
: Map to parameter space: 0 = ¢~ 1(z2)

: return Posterior sample 6

W oW N NN
e Y X
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