Published at the ICLR 2022 workshop on Objects, Structure and Causality

LEARNING TO REASON ABOUT AND TO ACT ON PHYSI-
CAL CASCADING EVENTS *

Yuval Atzmon', Eli A. Meirom{, Shie Mannor, Gal Chechik
NVIDIA Research, Israel
{yatzmon, emeirom}@nvidia.com

ABSTRACT

Reasoning and interacting with dynamic environments is a fundamental problem
in Al but it becomes extremely challenging when actions can trigger cascades
of cross-dependant events. We introduce a new learning setup called Cascade
where an agent is shown a video of a simulated physical dynamic scene, and is
asked to intervene and trigger a cascade of events, such that the system reaches
a "counterfactual” goal. For instance, the agent may be asked to “Make the blue
ball hit the red one, by pushing the green ball”. The problem is very challenging
because agent interventions are from a continuous space, and cascades of events
make the dynamics highly non-linear.

We combine semantic tree search with an event-driven forward model and devise
an algorithm that learns to search in semantic trees in continuous spaces. We
demonstrate that our approach learns to effectively follow instructions to intervene
in previously unseen complex scenes. Interestingly, it can use the observed cascade
of events to reason about alternative counterfactual outcomes.

1 INTRODUCTION

Cascades of events are wide-spread phenomena found in dynamical systems from biology (gene
expression) and physics (meteorology) to chemistry and economics (supply chains). People can
reason about such cascades and plan how to intervene to achieve a desired outcome of a system. This
builds on several human capacities: inferring causal relations, reasoning in a counterfactual way about
possible alternative dynamics of a system, and describing the goal in natural, semantic, language.
Cascading dynamical systems are therefore a fantastic test bed for studying complex reasoning. But,
how can we train computational agents to reason and intervene in a cascading dynamical system?

Here we address this question in a simulated dynamical system of a physical world, where object
interactions form a cascade of events. We describe a new supervised learning setup, called Cascade
(Figure 1). In this setup, an agent observes a cascade of events in a system of moving and static
objects. It is then provided with a desired goal for the system described in semantic terms. The agent
may intervene and manipulate one object to achieve the goal.

More concretely, we consider the following learning setup. At training time, the agent is given the
initial conditions and object trajectories of an observed cascade, a semantic goal, and the initial
conditions and trajectories of one possible solution. At test time, we sample a new unseen system and
goal. The agent only has access to the goal and the “observed” cascade, and it should predict how to
change the initial conditions to meet the goal.

This problem is very challenging for several reasons. First, the intervention space is continuous, but
is fragmented into many regions, each yielding a different outcome. The region boundaries are hard
and with no clear submodularity, as a slight change in movement direction can yield a qualitatively
different final outcome. This “butterfly effect” is indeed common in cascading systems. As a result, it
is hard to apply standard planning algorithms or gradient-based methods.

To further illustrate the difficulty of this task, consider how hard it is to even apply a “brute-force"
approach. Such an approach would actually require access to a simulator of the system to test

* A detailed version of this work is described under: https://arxiv.org/abs/2202.01108
TEqual contribution

https://arxiv.org/abs/2202.01108

Published at the ICLR 2022 workshop on Objects, Structure and Causality

Input 1: An observed cascade: Sroot =[]

t=1.42: t=2.04: t=3.04: t=4.44: o _ ., - 6
purple ball hits the right-wall purple hits gray pin yellow hits cyan cyan hits gray pin Xroot = {wi|wi € D; i=1.10"}
8 8 Wiroot = {wi|wi € Xyoot}

Input 2: An instruction:

“Push the purple ball to make the yellow hit the red, causing
the yellow to hit the black pin within 4 collisions in the chain.”

S = [su, 5w]
Xy = {xi|sw reached-from wj', wi' € W, }
Wy = {f(w}")|w}' € Wy, z; €)A(“r}

Output: A solution:

t=1.75: t=2.24: t=3.35: t=4.85:
purple ball hits the cyan ball purple hits yellow yellow hits red yellow hits black pin

Figure 1: The Cascade learning setup. Top-Left: A set of balls move freely in a confined space. Balls
may collide with walls and static pins (grey & black cylinders) and yield an “observed” cascade of events.
Arrows highlight each collision. Middle-Left: A semantic instruction is given, partially describing an alternative
(“counterfactual”) cascade of events. Bottom-Left: The agent is allowed to intervene and set the (continuous,
2D) initial velocity of the purple ball (the “pivot") to achieve the “counterfactual” cascade of events. Only
showing key frames for brevity. See the videos side by side here: https://youtu.be/ulIo-ZWC1lSw
(Anonymous). Right: Illustration of the event tree data structure.

millions of candidate interventions. Then, one would also need to train a discriminator to decide if
the simulation output satisfies the instruction goal, which is hard by itself. Needless to say, searching
exhaustively over the space of possible interventions is not feasible. Another approach would be to
train a regression model that takes the semantic goal and a representation of the “observed” cascade
and outputs the predicted intervention. We describe our experiments with this approach and explain
why such fully differentiable approaches struggle in our problem.

Here, we design a representation that focuses on the semantics of the system dynamics (Figure 1).
We call it an Event Tree. Specifically, we only keep key events where objects interact. In our physical
system, these semantic events are collisions of balls, pins, and walls. We use these collisions to
build a tree of possible behaviors of the system. In this tree, each node corresponds to a possible
collision event. Every node is connected to its children 41, ..., ¢, which correspond to k realizable
future collisions. A path in the tree therefore captures a realizable sequence of collisions. This
representation also implies a tessellation of the space of possible interventions. Each intervention (a
point in the intervention space) dictates a path in the event tree. Similar interventions often follow the
same path.

To build this event tree, we assume that we have a special kind of forward model operating at the
level of semantic events. For any given initial condition, we can query the forward model for the next
event (e.g., "which objects collide next?"), and predict the outcome of that event (the directions and
velocities of objects after they collided). Importantly, every node in the event tree is assigned a value.
We learn a function that assigns values to nodes conditioned on the instruction.

Finally, we propose a simple approach for “counterfactual” reasoning that uses the observed cascade.
We first find the path in the event tree that corresponds to the observed video. Then, we perform a
tree search in the event tree and explore first those paths that split off that observed path.

This paper makes the following contributions: (1) A new learning setup, Cascade, where an agent
observes a dynamical system and then changes its initial conditions to meet a given semantic goal. (2)
A data structure — Event Tree — and a principled probabilistic value function for searching efficiently
over the space of interventions. (3) A method to transform a tree path into a Directed Acyclic Graph
and learn its value function using a Graph Neural Network. (4) A method to use observed cascades to
guide the search in the event tree towards a “counterfactual” outcome of the system.

2 Cascade: A BENCHMARK FOR REASONING AND INTERVENING IN A
CASCADING DYNAMICS.

We designed a new environment for evaluating reasoning and intervening in cascading events. The
environment combines visual and physical modalities with semantics and action (Figure 1).

Scenes. Each scene describes a unique dynamical system. In these systems, several spheres move
freely on a frictionless table, colliding with each other and with static pins within a confined four-

https://youtu.be/u1Io-ZWC1Sw

Published at the ICLR 2022 workshop on Objects, Structure and Causality

walled space (Figure 1). Each episode describes a different scene, which includes tens of collisions.
The agent is provided with (1) An “observed” (unperturbed) video of the evolution of this system;
and (2) The initial position and velocity of each object.

Instructions. An instruction describes (1) A set of target semantic events (collisions) to be fulfilled
“Make the red ball hit the black pin”; (2) A pivot object to manipulate “You can push the green”; and
(3) constraints, of two possible types, that encourage the agent to reason about the cascade of events.
The first type is a “count” constraint, e.g. “Within 3 collisions in the chain”. The second type is an
“ancestor” constraint, e.g. “It should include hitting the top wall with the red”.

The agent’s goal. The agent’s objective is to intervene with the scene’s initial conditions by setting the
velocity vector of the pivot object to reach a set of collisions specified by the instruction. This often
requires a highly precise “trick shot”, that takes into account detailed reasoning on how downstream
events will roll out. Our instruction generation process guarantees that a solution exists, i.e, there are
feasible interventions that generate a sequence of events that satisfy the instruction.

The problem setup. An agent is given three inputs: An initial condition of the system, an “observed”
cascade (e.g., a video) of the system that starts from these initial conditions, and a semantic instruction.
The agent is asked to intervene by controlling one “pivot object” in the scene. It is allowed to adjust
its velocity (movement direction and speed) to any value in a bounded set of possible interventions
X C R, Given an instruction g, there exists a subset of possible solutions of X’ that, when played
out in the real-world, will satisfy the goal g. The goal is to predict an intervention z € X that fulfills
the instruction g.

At inference time, the agent is only given the instruction and the “observed” cascade, and it should
predict how to correctly intervene on the pivot initial conditions.

3 METHODS

Our proposed approach focuses on key “semantic” events of the dynamics (e.g., collisions). We build
a tree of possible outcomes such that a path in the tree captures a realizable cascade of events. In
addition, we learn a function that assigns values to tree nodes conditioned on the instruction.

The tree of possible futures: We now describe the main data structure used for representing the
search problem - the Event Tree. The event tree is designed to provide a searchable data structure
for sequences of events that are physically realizable. To make these searches efficient, we represent
the system behavior at the semantic level. In our concrete physical example, a semantic event s; is a
collision between two object (for example, the yellow ball “hits” the right wall). In other systems,
these could be any key interactions between system components, like “manufacturing” an item in a
supply chain. Importantly, in our approach, we require that it is possible to compute the state of the
system right after an event.

In our event tree, each node corresponds to a sequence of semantic events. The children of each node
correspond to realizable continuations of the event sequence. Namely, all possible events that could
happen after the sequence S,,. We now formally describe the properties of nodes and how we build
the edges of the Event Tree.

Tree Nodes. A node u of the event tree represents a sequence of semantic events .S, £ (81,82, 8u)-

Note that there could be many interventions in X" that lead to the same sequence of events S,,. As a
result, a node also corresponds to the subset of interventions X,, C X" that yields the sequence of
events S,,. We aggregate to a common node all interventions x € A that result in the same sequence
prefix. The root node describes the dynamical system at ¢ = 0 and its sequence of events Sy 1S
empty. Its intervention subset is X ...+ = X (See Figure 1, top). For every node, we also keep the
world-state W,,, which is the set of physical configurations of the system after yielding the sequence
Sy, for every x € X, (Figure 1). Given the world state of a current node, we then ask for the next
immediate event (next feasible immediate collision).

An event-driven forward model. The goal of the forward model is to uncover which semantic
events may occur next. Conceptually, our model takes as input a world-state w; and outputs the
next immediate semantic event. Our forward model f(-) is not a full fledged simulator as it does
not propagate time at discrete time steps but solves a set of analytic equations to find the event time,
should one occur. However, our model only provides an approximation of the dynamics of our test
bed environment. These sim-to-sim differences mimic the sim-to-real problem.

Published at the ICLR 2022 workshop on Objects, Structure and Causality

Node Expansion. Suppose we decide to expand a node u. We apply the forward model f(-) to
each world state w; € W". We then aggregate all the propagated world states which share the
same immediate next semantic event s’ to a new node u’: The event sequence of the child node v’
is S, = concat(Sy,), the corresponding interventions are X,, = {x;|s’ reached-from w;} and
Wy = {f(wi)|wi eW,,x; € Xul}.

Expanding the tree can be viewed as a tessellation refinement of the intervention space X'. At each
step, we pick one cell and split it into multiple cells, where each child cell represents a different event
that occurs after a shared sequence of events, represented by the parent cell.

If the tree is fully expanded, it covers all possible futures. However, expanding the whole tree is
expansive, because the branching ratio, or the number of events, grows quadratically with the number
of objects. In the next subsection, we discuss how we learn a scoring function and use it to guide an
efficient tree search.

Learning the value function: To find a node that satisfies the goal, we prioritize which node to
expand by learning a value function that is conditioned on the instruction g. We take a principled
probabilistic approach for setting the value function, and set it to the likelihood that the sequence
of events of € X, will satisfy the goal g, V(u) = Pr (z satisfies g|g, € X,,). This probabilistic
perspective allows us to take a maximum-likelihood approach at inference time.

A model for the value function. The model takes as inputs the instruction g and sequence of events
S, that define the node u, and predicts a scalar value. We propose to transform each sequence to a
Directed Acyclic Graph (DAG) that captures relations in the cascade of events. A node in this DAG
is an event that involves some objects (a collision), and each edge represents a dynamic (moving)
object shared by two subsequent events (Figure 2). We chose to use a popular message passing GNN
model (1) that maintains learnable node, edge and global graph representations.

Inference: Our agent searches the tree for the maximum valued node ups 4 x. Then, it randomly
selects an intervention from its intervention subset x € X,,,,, . We consider two variants.

Interventional search: The agent performs a tree search for the highest valued node. At any given
step, the agent stores a sorted list of nodes together with their values, it then picks the highest valued
node from this list and expands it. The node children are then added to the list with their predicted
values, and the agent resorts the list.

Counterfactual search: To improve the interventional search, we to use the observed cascade.
Consider the case where the sequence of the solution is complex (long sequence) and the observed
sequence diverges from the solution at a late point. In this case, it is likely that the observed will
be informative about the solution. Therefore, we start the search by expanding the nodes along the
observed sequence: For each observed node, we add its children to the list described above together
with their predicted values. We then continue the search as described by the “Interventional search”.

4 EXPERIMENTS I(cyan, purple), (red, black), (yellow, purple),

(red, yellow),..., (vellow, black), ..., (red, cyan)]

We sampled ~46 K scenes, each includes 4-6 moving balls,
0-2 pins, and 4 walls and up to 5 semantic instructions
(~4.25 on average). An episode is a pair of a scene and
one instruction.

Compared Methods. Our full-fledged approach is
ROSETTE (Reasoning On SEmanTic TreEs): Search
uses the “counterfactual” variant of the tree search (Sec-
tion 3), by first expanding the nodes along the “observed”
sequence. ROSETTE-IV: Like ROSETTE, but using Figure 2: Tllustrating how a sequence of
“Interventional search” (Section 3) without using the “ob- events (top) is transformed to a DAG (bot-
served” sequence. SEQUENTIAL: Using a sequential tom). It corresponds to the video in Figure 1
representation for a tree chain, instead of a DAG. Deep bottom.

Sets regression: Embedding the instruction and the initial world state to predict a continuous inter-
vention. Random: Sample intervention at random from an estimated distribution of ground-truth
interventions. Brute force: We train a classifier to detect goal satisfaction given a sequence of
collisions. Then, search using the event-driven forward model over 10° initial conditions.

Published at the ICLR 2022 workshop on Objects, Structure and Causality

(a) (b) (© (d)
TREE SIMULATOR TREE oes| [25 ROSETE T oss

RANDOM NA 17.6 £0.3% DIRAC DELTA 335+ 1.6% & "
DEEPSET REGRESSION NA 18.4 +£0.5% STEP 45.1+1.0% 305 055
BRUTE FORCE 33.5+1.6% 33.5+1.2% LINEAR 48.7 £ 0.7% §
SEQUENTIAL 52.3+0.8% 43.3+£0.2%

Q i ®_ ROSETTE-IV (OURS) 59.7 +0.3% %45) 0.45
ROSETTE 61.0 £ 0.5% 48.9+0.4% ROSETTE (OURS) 61.0 + 0.5% oo]

Instruction complexity Pivot 1st collision
Figure 3: (a) Success rate of our approach and baselines. (b) Tree success rate for variants of the value
function. (¢) Comparing “Counterfactual search” (ROSETTE) with “Interventional” search (ROSETTE-IV) for
easy and hard instructions. (d) As in ¢, but based on the starting point of the pivot in the sequence. 7ail means
that the first pivot collision happens after more than 5 events. ROSETTE performs significantly better, showing
improvement of 10.7% and 13% respectively.

Evaluation metrics. We consider two metrics. Simulator success rate: The success rate when rolling
out the predicted intervention using a physical simulator (2). This metric mimics experimenting in
the real world. Tree success rate : We compare the sequence of semantic events from the selected
node in our event tree with the events and constraints specified by the instruction. This metric allows
us to evaluate the performance of the value function model and tree search, independently from the
errors that may be introduced due to the event-driven forward model.

We measured the tree success rate by conditioning on properties of the instruction and scene. (1)
Condition on instruction complexity: Instructions with 2 or more constraints are marked as
“Hard”.(2) Condition on pivot first collision: The starting point of the first collision of the pivot in
the ground-truth “counterfactual” video. We aggregate the success rate over “Head” cases, where
“Pivot 1st collision” € {1...5}, covering ~80% of the test data, and the remaining “Tail” cases.

Results: Table (a) in Figure 3 describes the Tree and the Simulator success rates of ROSETTE
and compared methods. ROSETTE achieves the highest success rate for both the “Tree” success
rate (61%) and the “Simulated” success rate (48.9%). When evaluating the brute force approach
with same computational budget as ROSETTE, expanding 80 events, it performs largely worse
than ROSETTE (33.5%). However, when allowing a x20 computational budget, expanding 4000
nodes (4.5 min/episode vs 13 sec/episode), it reaches a similar success rate as ROSETTE (T'ree =
61.9%, Simulated = 53.8%).

We carried out a set of ablation experiments that quantify (1) The benefits of using the “Counterfactual
search” (2) Comparing with various value functions: (1) Figure 3(c, d) quantifies the benefit gained
by using “Counterfactual” (ROSETTE) over “Interventional” (ROSETTE-IV) search (Section 3).
(2) Table (b) in Figure 3 shows the advantage of the probabilistic formulation of the value function
(ROSETTE-1V), compared to the several heuristics described in Section 4.

Qualitative Examples: Here we provide links to qualitative examples we uploaded to YouTube, best
viewed in x0.25 slow motion. We compare ROSETTE successes with ROSETTE-IV failures. link
#1, link #2, link #3, link #4, link #5, link #6. ROSETTE followed the observed cascade along the
part of the path that was useful to satisfy the instruction. It diverged from the path when necessary,
and found a solution when long cascades were essential, while ROSETTE-IV struggled.

5 DISCUSSION

We presented a new learning setup, called Cascade, where an agent observes a cascade of events in a
dynamical system and is asked to intervene and changes its initial conditions to meet a given semantic
goal. The problem we try to solve is inherently not a standard planning problem. An action is taken
essentially only once and there is no way to change the ensuing cascade of events using additional
actions ("Fire and forget"). This problem is a complex search problem which one can conceivably try
to solve as such using brute-force methods or using some metaheuristic approaches.

We use an event tree representation and a principled probabilistic value function for searching
efficiently over the space of interventions. In addition, we show that “hot starting” the tree search
using the observed cascade improves the success rate.

Related work CLEVRER, CRAFT, CATER, IntPhys and CoPhy (3; 4; 5; 6; 7) are video under-
standing benchmarks, exploring reasoning over observed temporal and causal structures. They focus
on understanding, question answering and tracking rather than taking an action as Cascade do.
(8; 9; 10; 11), learn physical forward models that focus on object interactions, using a fixed time step,
rather than an adaptive time step like we do.

https://youtu.be/24rTpghzBeQ
https://youtu.be/24rTpghzBeQ
https://youtu.be/TZbUDNM6Qgs
https://youtu.be/y3AVVMonG4s
https://youtu.be/6DAGzlu8pfw
https://youtu.be/Jlq0-sSMoJk
https://youtu.be/C3b2O0U5n2I

Published at the ICLR 2022 workshop on Objects, Structure and Causality

REFERENCES

[1] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti,
D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl, A. Vaswani,
K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li,
and R. Pascanu, “Relational inductive biases, deep learning, and graph networks,” 2018.

[2] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire,
A. Handa, and G. State, “Isaac gym: High performance gpu-based physics simulation for robot learning,”
2021.

[3] K. Yietal., “Clevrer: Collision events for video representation and reasoning,” in /CLR, 2020.
[4] T. Ates et al., “Craft: A benchmark for causal reasoning about forces and interactions,” in NeurlPS, 2021.

[5] R.Girdhar and D. Ramanan, “Cater: A diagnostic dataset for compositional actions and temporal reasoning,”
in ICLR, 2020.

[6] R. Riochet et al., “Intphys: A framework and benchmark for visual intuitive physics reasoning,” ArXiv,
2018.

[7] F. Baradel et al., “Cophy: Counterfactual learning of physical dynamics,” in /CLR, 2020.
[8] K. Fragkiadaki et al., “Learning visual predictive models of physics for playing billiards,” 2016.

[9] P. W. Battaglia et al., “Interaction networks for learning about objects, relations and physics,” in NeurIPS,
2016.

[10] A. Lerer et al., “Learning physical intuition of block towers by example,” in ICML, 2016.

[117 W. Watters et al., “Visual interaction networks,” in NeurIPS, 2017.

	Introduction
	Cascade: A benchmark for reasoning and intervening in a cascading dynamics.
	Methods
	Experiments
	Discussion

