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ABSTRACT

Existing Multimodal Large Language Models (MLLMs) suffer from increased in-
ference costs due to the additional vision tokens introduced by image inputs. In
this work, we propose Visual Consistency Learning (ViCO), a novel training algo-
rithm that enables the model to represent images of varying semantic complexities
using different numbers of vision tokens. The key idea behind our method is to
employ multiple MLP connectors, each with a different image compression ra-
tio, to downsample the vision tokens based on the semantic complexity of the
image. During training, we minimize the KL divergence between the responses
conditioned on different MLP connectors. At inference time, we introduce an im-
age router, termed Visual Resolution Router (ViR), that automatically selects the
appropriate compression rate for each image patch. Compared with existing dy-
namic high-resolution strategies, which adjust the number of visual tokens based
on image resolutions, our method dynamically adapts the number of visual to-
kens according to semantic complexity. Experimental results demonstrate that our
method can reduce the number of vision tokens by up to 50% while maintaining
the model’s perception, reasoning, and OCR capabilities. We hope this work will
contribute to the development of more efficient MLLMs. The code and models
will be released to facilitate future research.

1 INTRODUCTION

Recent advancements in Multimodal Large Language Models (MLLMs) (Zhu et al., 2025; Chen
et al., 2024c; Xiaomi, 2025; Kwai Keye et al., 2025; Anthropic, 2025; DeepMind, 2025; Wang
et al., 2024b) have demonstrated remarkable performance across a wide range of tasks, showing
tremendous potential for real-world applications. Despite these advancements, MLLMs still suffer
from the increased inference costs due to the additional vision tokens introduced by image inputs.
Taking InternVL3.5 (Wang et al., 2025b) as an example, under its default configuration (Ye et al.,
2023), each image is divided into up to 13 patches (including one thumbnail). Each patch is then
represented by 256 visual tokens, resulting in a maximum of 3,328 tokens per image. In real-world
scenarios such as document understanding or video comprehension, models are often required to
process multiple images simultaneously. In such cases, the visual component will serve as the main
body of the token sequence and constitutes the primary source of inference cost.

To address these challenges, we propose Visual Consistency Learning (ViCO), which introduces
semantic-level adaptivity in the number of visual tokens. As shown in Figure 1(a), given an image
feature map, we introduce a Visual Resolution Router (ViR) that routes each patch to different com-
pression rates: either a high-resolution representation with 256 tokens or a low-resolution represen-
tation with 64 tokens. These tokens are then concatenated with text tokens. The training procedure of
ViCO consists of two stages: (1) Consistency Training: The model is trained to minimize the KL di-
vergence between the responses conditioned on visual tokens with different compression rates. This
encourages the model to generate accurate responses even when using highly compressed visual to-
kens, thereby improving its performance and robustness under compressed visual tokens. (2) Router
Training: Although consistency training improves performance under high compression, inevitable
information loss still causes a drop in performance. To mitigate this, we introduce ViR automatically
selects the appropriate compression rate for each image patch. Those containing complex semantic
information are represented using more tokens, while simpler patches are represented using fewer
tokens. Compared with existing dynamic high-resolution strategies (Chen et al., 2024d; Wang et al.,
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Figure 1: Overall view of the ViCO pipeline and model performance. (a) The ViCO inference
pipeline, illustrating the image processing flow. (b) Bubble chart showing model performance on
general benchmarks versus first token throughput of LLM. Bubble size is positively correlated with
the number of model parameters. First token throughput is reported relative to InternVL3.5-38B,
which is set as the baseline value of 1. Detailed experimental settings are provided in Section 4.6.

2024a), which adjust the number of visual tokens based on image resolutions, our method further
determines the number of visual tokens allocated for each image patch at the semantic level. This
fine-grained control enables substantial efficiency gains with minimal performance loss.

To evaluate the effectiveness of our method, we conducted extensive experiments on benchmarks
spanning OCR, document understanding, video understanding, and multi-image reasoning. Exper-
imental results show that our method can reduce the number of visual tokens by up to 50% while
preserving the model’s perception, reasoning, and OCR capabilities. As shown in Figure 1(b),
our method maintains the original performance while improving the first token throughput of In-
ternVL3.5 series (Wang et al., 2025b) across different model scales.

Our main contributions are as follows:

(1) We introduce a novel training strategy, termed Visual Consistency Learning, which minimizes
the response distribution gap of the model between different visual token compression rates. This
enables the model to effectively utilize highly compressed visual representations without significant
performance loss.

(2) Building on ViCO, we develop a Visual Resolution Router that dynamically allocates visual
tokens to image patches based on their semantic complexity. This provides fine-grained control over
image patch representation and achieves a better trade-off between efficiency and accuracy.

(3) We perform large-scale experiments on benchmarks covering diverse multimodal recognition
and reasoning tasks. Our results demonstrate that our method can halve the number of visual tokens
while maintaining strong performance, which almost doubles inference throughput.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS.

With the development of large language models (Yang et al., 2025; OpenAI, 2025; Ouyang et al.,
2022), multimodal large language models (MLLMs) have also made remarkable progress. To lever-
age LLMs and vision foundation models that have been pre-trained on unimodal datasets, a series
of studies (Wang et al., 2024c; Liu et al., 2023a;d; Wang et al., 2025a; Li et al., 2023a) employ
a connector to align the representational spaces of vision and language. This approach allows vi-
sual feature maps to be flattened and fed into LLMs as soft prompts, achieving strong performance
through relatively low-cost incremental training. In addition, some works (Dubey et al., 2024; Luo
et al., 2025) extend pre-trained LLMs by incorporating additional vision-language fusion layers.
These layers enable the model to process tokens from different modalities with separate parameters,
reducing the gradient conflicts across different modalities. However, the introduction of a large num-
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ber of untrained parameters also brings additional training costs. More recently, several studies (Luo
et al., 2024) have explored architectures without dedicated visual encoders. These models employ
a unified Transformer to jointly process visual and textual information, eliminating the need for a
separate vision encoder and fusion layer. Although MLLMs vary in their architectural designs, most
of them adopt a dynamic high-resolution strategy (Chen et al., 2024c;d), which segments images
into patches based on their resolution to enhance the model’s perceptual capabilities. However, this
approach requires a large number of tokens to represent each image, thereby increasing the infer-
ence cost of MLLMs. In this paper, we propose a dynamic resolution strategy that is compatible
with this paradigm. Our method introduces semantic-level adaptivity in determining the number of
visual tokens needed to represent each image patch. This reduces the number of visual tokens and
consequently the inference cost, while maintaining nearly the same performance.

2.2 EFFICIENT VISION LANGUAGE MODELS.

Improving the efficiency of large vision-language models (LVLMs) has drawn increasing atten-
tion, with visual token compression emerging as one of the most widely explored directions. Early
approaches, such as LLaMA-VID (Li et al., 2024) and DeCo (Yao et al., 2024), aim to reduce re-
dundancy in visual inputs through context tokens or adaptive pooling mechanisms, thereby lowering
computational cost while retaining essential information. Similarly, MADTP (Cao et al., 2024) fur-
ther enhances efficiency by identifying redundant tokens across different modalities and selectively
removing them based on feature alignment, enabling more focused processing of relevant visual
features. A number of lightweight, training-free methods have been proposed to reduce token re-
dundancy without additional training. For instance, FastV (Chen et al., 2024a) prunes tokens in the
LLM based on attention scores, removing low-attention tokens, while similar approaches such as
SparseVLM (Zhang et al., 2024) and ToMe (Bolya et al., 2022) also reduce redundancy through
token merging or selection without requiring retraining. While these strategies provide tangible
computational benefits, their effectiveness can be limited on vision-sensitive tasks such as OCR,
where fine-grained spatial and textual details are crucial. In such scenarios, overly aggressive token
compression may lead to loss of essential visual information, highlighting the need for methods that
carefully balance efficiency with the preservation of detailed visual representations.

3 VISUAL CONSISTENCY LEARNING

To enhance recognition and perception capabilities, most existing MLLMs adopt a dynamic high-
resolution strategy, which introduces a large number of visual tokens and greatly increases the infer-
ence cost of these models. In this work, we propose Visual Consistency Learning (ViCO), a novel
training algorithm that enables the model to represent images of varying semantic complexities using
different numbers of vision tokens.

3.1 CONSISTENCY TRAINING

As shown in Figure 2, in the Consistency Training stage, the model is trained to generate consistent
output conditioned on different patch compression rates. In practice, we introduce an extra reference
model, which is frozen during training. The trained model is required to minimize the KL diver-
gence between its response distribution and that of the reference model. The training objective is
formulated as follows:

LViCO = Eξ∼R

[
1

N

N∑
i=1

KL
(
πθref (yi | y<i, I)

∥∥∥ πθpolicy (yi | y<i, Iξ)
)]

, (1)

where KL denotes the KL divergence and ξ denotes the compression ratio of the patches in each
image, which is uniformly sampled from R = [0, 1]. The corresponding ratio of patches in image
Iξ is represented as 64 tokens, while the others are represented as 256 tokens. The reference model
always performs inference with visual tokens without any compression.

3.2 ROUTER TRAINING

As illustrated in Figure 2, the Router Training stage focuses on training the Visual Resolution Router
(ViR), which is responsible for selecting an appropriate resolution for each input patch to balance

3
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Figure 2: Training procedure of Visual Consistency Learning (ViCO). During the Consistency
Training stage, the model aligns outputs under different compression rates. During the Router Train-
ing, the Visual Resolution Router (ViR) is trained to determine the appropriate compression for each
patch based on its effect on model predictions.

efficiency and fidelity. ViR is implemented as a binary classifier and trained with a standard cross-
entropy loss, while the main MLLM backbone remains frozen throughout this stage. To generate
supervision signals for ViR, we first measure the effect of patch compression on the model’s pre-
dictions. Concretely, for each patch, we calculate a loss ratio that quantifies how much the model’s
output degrades under compression. This ratio then serves as a guide for the router, indicating which
patches can be safely compressed without significantly affecting overall performance. Specifically,
for each patch, we compute a loss ratio defined as

ri =
LViCO

(
yi | I 1

16

)
LViCO

(
yi | I 1

4

) , (2)

where LViCO denotes the consistency loss introduced in Section 3.1. This ratio captures the relative
increase in loss caused by compressing the visual tokens, providing a principled measure of each
patch’s sensitivity to compression. Patches with low loss ratios can be safely compressed with min-
imal impact on the model’s output, whereas patches with high loss ratios require higher resolution
to preserve critical visual information. The binary ground-truth label for the router is then defined
based on ri:

yrouter
i =

{
0, ri < τ (compression has negligible impact)
1, ri ≥ τ (compression has significant impact),

(3)

where yrouter
i = 0 indicates that the patch can be compressed with a more aggressive strategy, and

yrouter
i = 1 indicates that the patch can be compressed with a more conservative strategy. To maintain

a balanced training signal, we store historical ri values in a sliding window and dynamically set the
threshold τ as the k-th percentile of these values. This approach typically results in roughly half
of the patches being assigned to compression, which ensures a balanced distribution of target labels
across patches. Notably, for each training sample, we randomly select a patch to compress and
estimate its pseudo-label according to Equation 3. The loss is only computed on this patch.

In practice, the predicted router value for each patch is obtained by first extracting visual token
features from the ViT backbone, aggregating them using attention pooling, and passing the resulting
patch-level feature through a lightweight MLP. This process can be defined as:

pi = Softmax
(

MLP
(
AttnPool

(
ViT(Ii)

)))
, (4)
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where p0i and p1i denote the predicted probabilities for the patch being assigned a high or low com-
pression rate, respectively. The ViR is trained to match the ground-truth labels yrouter

i using standard
cross-entropy loss.

4 EXPERIMENTS

We evaluate ViCO on InternVL3.5 models of various sizes, measuring both patch compression and
performance retention relative to the original model. To validate the effectiveness of our approach
across a wide range of domains, experiments are conducted on a diverse set of benchmarks, in-
cluding general multimodal tasks (Section. 4.2.1), OCR-related benchmarks (Section. 4.2.2), and
multi-image benchmarks and video benchmarks (Section. 4.2.3). OCR-related benchmarks are par-
ticularly sensitive to visual tokens, requiring fine-grained understanding of local details. Therefore,
in comparative (Section. 4.3) and ablation (Section. 4.4) studies, we focus primarily on these bench-
marks to provide a more discriminative evaluation.

4.1 EXPERIMENTAL SETTINGS

Benchmarks. We evaluate our approach on a diverse set of multimodal benchmarks. For
OCR-related tasks, we use OCRBench (Liu et al., 2023c), ChartQA (Masry et al., 2022), and
TextVQA (Singh et al., 2019), with InfoVQA (Mathew et al., 2022), DocVQA (Mathew et al.,
2021), and AI2D (Kembhavi et al., 2016) additionally included in comparative and ablation studies.
General multimodal tasks are evaluated on MMStar (Chen et al., 2024b), POPE (Li et al., 2023b),
MME (Fu et al., 2023), MMBench V1.1 (Liu et al., 2023b), and RealWorldQA (Corp., 2024), while
reasoning is assessed using the MMMU (Yue et al., 2023) benchmark. Multi-image understanding
is measured on BLINK (Fu et al., 2024b), MMT-Bench (Ying et al., 2024), and MMIU (Ying et al.,
2024), and video comprehension is tested on Video-MME (Fu et al., 2024a) under two settings: with
subtitles and without subtitles.

Training Details. Our experiments are conducted in two stages: consistency learning and router
learning. In the consistency learning stage, we adopt a maximum text length of 32K and use a global
batch size of 256. The learning rate follows a cosine decay schedule from 4 × 10−6 to 1 × 10−7,
and we use the AdamW optimizer. Additionally, we perform a warm-up for the newly initialized
16× downsampling MLP. In the router learning stage, only the lightweight router is unfrozen for
training, with the global batch size adjusted to 8. The routing threshold τ is set to the 60th percentile
of the predicted scores. All experiments are conducted on H200 GPUs.

4.2 MAIN RESULTS

4.2.1 RESULTS ON GENERAL BENCHMARKS

Table 1 presents the overall performance of InternVL3.5 models of different sizes (4B, 8B, 14B,
30B-MoE, 38B, and 241B-MoE) on a wide range of benchmarks, including OCRBench, ChartQA,
TextVQA, MMStar, POPE, MME, MMBench V1.1, RealWorldQA, and MMMU. We compare the
original models with their ViCO counterparts.

Across these benchmarks, each ViCO model retains over 99.6% of the original performance on av-
erage. Across all model sizes, the average retention is about 99.7%. For instance, the 8B model with
ViCO achieves nearly identical scores to its baseline on POPE (88.7 vs. 88.4) with about 81% patch
compression, together with strong results on MMStar, MMBench V1.1, and RealWorldQA, yielding
an overall average of 99.6%. Similarly, the 38B and even the largest 241B-MoE models preserve
strong performance across representative benchmarks, both maintaining around 99.6% relative to
their original versions.Notably, for the MMMU, we adopt the thinking mode, which supports out-
puts up to 64K tokens. Even with such long outputs, the performance remains almost unchanged
when using ViCO, further validating the method’s stability and robustness. Overall, this high level of
performance retention holds consistently as the model scales from 4B to 241B-MoE, demonstrating
that ViCO is both effective and scalable.
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Table 1: Performance of ViCO on InternVL3.5 models across general benchmarks, including
strongly OCR-related benchmarks. When calculating the overall score, MME is normalized from
0–2800 to 0–100. RWQA refers to RealWorldQA.

Model OCRBench ChartQA TextVQA MMStar POPE MME MMBench V1.1 RWQA MMMU Avg.

InternVL3.5-4B 82.2 86.4 77.8 65.2 88.9 2272 80.3 66.3 66.6 100.0%
+ ViCO 83.0 85.2 77.6 65.5 88.6 2239 80.5 66.5 65.9 99.7%
Ratio of Compressed Patches 73% 62% 54% 64% 80% 76% 73% 76% 69% 69.7%

InternVL3.5-8B 84.0 86.5 77.6 68.5 88.7 2380 79.5 67.5 73.4 100.0%
+ ViCO 83.9 86.7 77.8 67.5 88.4 2381 79.8 66.8 71.9 99.6%
Ratio of Compressed Patches 71% 47% 58% 67% 81% 77% 75% 75% 71% 69.1%

InternVL3.5-14B 83.2 86.1 77.3 67.7 87.7 2398 81.5 70.5 73.3 100.0%
+ ViCO 84.3 86.2 77.7 67.7 87.7 2392 81.0 71.0 73.2 100.2%
Ratio of Compressed Patches 71% 44% 64% 66% 82% 76% 75% 79% 70% 69.7%

InternVL3.5-30B-MoE 88.1 87.5 80.2 71.6 89.6 2461 84.8 72.3 75.6 100.0%
+ ViCO 87.7 87.4 79.6 70.6 89.7 2462 83.8 71.8 75.9 99.6%
Ratio of Compressed Patches 71% 62% 55% 69% 82% 76% 75% 64% 74% 69.8%

InternVL3.5-38B 88.0 88.9 82.8 71.6 90.4 2492 87.3 75.9 76.9 100.0%
+ ViCO 87.8 88.8 82.4 71.6 91.4 2496 86.8 74.8 75.0 99.6%
Ratio of Compressed Patches 67% 32% 53% 56% 70% 70% 73% 73% 64% 62.0%

InternVL3.5-241B-MoE 91.1 88.6 84.6 74.3 90.7 2525 87.4 75.2 77.7 100.0%
+ ViCO 90.7 88.3 84.2 73.7 90.5 2527 87.2 74.6 76.9 99.6%
Ratio of Compressed Patches 73% 55% 55% 60% 55% 62% 65% 77% 78% 64.4%

4.2.2 RESULTS ON OCR-RELATED BENCHMARKS

As shown in Table 1, the 8B model achieves a patch compression rate of 71% on OCRBench while
retaining virtually the same performance (84.0 vs. 83.9). On ChartQA and TextVQA, the same
model achieves 86.7 and 77.8, respectively, showing fluctuations compared to the original scores
of 86.5 and 77.6. Across all OCR-related benchmarks, the performance remains largely consistent
with the original models, demonstrating the robustness of our approach. This strong retention of
performance can be attributed to ViCO’s adaptive routing strategy. The model learns to compress
simpler patches more aggressively, using lighter modeling, while preserving the original complex
modeling for patches containing critical semantic information. As a result, ViCO enables the model
to focus on semantically important regions without losing essential details, allowing high-fidelity
performance even under substantial token compression.

4.2.3 RESULTS ON MULTI-IMAGE AND VIDEO UNDERSTANDING BENCHMARKS

As shown in Table 2, ViCO achieves substantial token compression while preserving performance.
For example, on the Video-MME benchmark with subtitles, the largest 241B-MoE model com-
presses approximately 70% of the tokens but still achieves a score of 76.6, slightly surpassing the
original model. Similar trends are observed across other models: the 38B model compresses 63%
of Video-MME tokens and maintains almost 100% of its performance, while smaller models retain
over 99% of their original scores after being compressed.

Across all multi-image and video benchmarks, the average performance remains consistently high,
demonstrating that ViCO effectively accelerates token processing without sacrificing accuracy. This
is achieved through our adaptive token compression strategy, which reduces computation on less
informative patches while preserving complex modeling for semantically important regions. As a
result, the model efficiently handles long visual sequences and maintains robust performance on
tasks that require understanding across multiple images or video frames.

4.3 COMPARISON WITH EXISTING METHODS

As shown in Table 3, we evaluate our method against two recent token reduction approaches, FastV
and SparseVLM, using a comparable average compression ratio on general benchmarks. Unlike our
approach, these baselines rely on manually pre-defined hyperparameters and cannot adapt compres-
sion dynamically across tasks. Consequently, although their overall scores decrease only slightly,
they exhibit substantial performance drops on vision-sensitive benchmarks such as OCR. In contrast,
our method automatically assesses the semantic importance of tokens, allowing it to apply stronger
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Table 2: Performance of ViCO on InternVL3.5 models across multi-image and video bench-
marks. For Video-MME, both the subtitle and non-subtitle settings are evaluated using 64-frame
inputs.

Model BLINK MMT-Bench MMIU Video-MME Avg.
no sub with sub

InternVL3.5-4B 59.5 64.3 49.2 65.4 68.6 100.0%
+ ViCO 58.3 64.2 49.1 65.1 68.1 99.2%
Ratio of Compressed Patches 74% 62% 66% 47% 47% 59.2%

InternVL3.5-8B 59.5 66.7 49.4 66.0 68.6 100.0%
+ ViCO 58.9 67.1 50.7 66.1 68.7 100.4%
Ratio of Compressed Patches 74% 61% 56% 40% 40% 54.2%

InternVL3.5-14B 57.6 68.0 51.3 67.9 68.6 100.0%
+ ViCO 59.2 67.9 50.5 67.9 68.7 100.3%
Ratio of Compressed Patches 77% 63% 67% 55% 55% 63.4%

InternVL3.5-30B-MoE 60.0 66.6 55.1 68.7 71.8 100.0%
+ ViCO 60.2 66.9 54.5 69.0 71.4 99.9%
Ratio of Compressed Patches 72% 60% 56% 42% 42% 54.4%

InternVL3.5-38B 60.9 71.8 58.9 70.9 74.2 100.0%
+ ViCO 62.2 71.5 59.6 71.3 74.0 100.6%
Ratio of Compressed Patches 64% 54% 51% 63% 63% 59%

InternVL3.5-241B-MoE 61.4 72.7 61.3 72.9 76.5 100.0%
+ ViCO 64.8 72.0 61.4 73.7 76.6 101.1%
Ratio of Compressed Patches 61% 58% 55% 70% 70% 62.8%

Table 3: Ablation and comparative study of ViCO across general and strongly OCR-dependent
benchmarks. Experiments are conducted on InternVL3.5-8B. For DocVQA and InfoVQA, the
validation sets are used for performance evaluation.

Model DocVQA ChartQA InfoVQA TextVQA OCRBench AI2D MMStar BLINK Avg.

Vanilla 91.3 86.5 79.1 77.6 84.0 84.0 68.5 59.5 100.0%
Vanilla + VIR 57.9 78.0 69.4 71.1 75.1 83.5 64.7 54.7 87.9%
Vanilla w/o dynamic res. 56.2 75.0 38.6 64.0 68.7 83.0 64.1 56.0 80.2%

FastV 87.5 84.0 71.6 76.9 81.0 83.0 64.2 56.8 95.9%
SparseVLM 75.9 84.9 55.2 76.5 77.7 84.1 66.4 54.5 91.2%

ViCO (All Compress) 85.8 84.5 68.9 74.8 80.6 83.2 66.3 55.4 95.1%
ViCO (Random Compress) 88.8 85.9 73.3 76.8 83.0 83.3 66.6 57.4 97.6%
ViCO (Image-level ViR) 89.2 86.5 79.1 76.7 82.9 84.2 67.4 56.8 98.8%
Ratio of Compressed Patches 69% 36% 12% 65% 78% 32% 75% 88% 56.9%

ViCO 90.8 86.7 78.6 77.8 83.9 83.7 67.5 58.9 99.6%
Ratio of Compressed Patches 60% 47% 21% 58% 71% 42% 67% 74% 55.0%

compression on vision-insensitive tasks like BLINK while retaining more tokens on vision-critical
benchmarks such as InfoVQA, thereby avoiding significant degradation in performance.

4.4 ABLATION STUDY

Settings. We conduct ablation experiments on the InternVL3.5-8B model. To evaluate the con-
sistency training stage, we construct the Vanilla with VIR variant by applying the router decisions
from the fully trained ViCO model to the original model. For the router training stage, we test three
variants: (1) All Compression: all patches are compressed indiscriminately; (2) Random Routing:
patches are routed randomly at the same compression ratios as the ViCO model; (3) Image-Level
Routing: the router operates at the image level instead of the patch level. Additionally, we perform
an experiment on the original InternVL3.5-8B model without dynamic resolution.

Effect of Consistency Training. As shown in Table 3, directly applying the final-stage ViCO router
to the InternVL3.5 model causes a substantial performance drop (e.g., OCRBench drops from 84.0
to 75.1), indicating that the InternVL3.5 model cannot handle interleaved visual tokens at different
compression rates. Disabling dynamic resolution in InternVL3.5 also reduces visual tokens signif-
icantly but severely degrades performance on vision-sensitive benchmarks. These results highlight
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Figure 3: Visualization of Routing Results of the InternVL3.5-8B ViCO Model. White-shaded
patches are compressed to 64 tokens, while unshaded patches retain 256 tokens. Each patch is
annotated with the router’s confidence score, where higher values indicate a stronger tendency for
compression.

the necessity of Consistency Training, which allows the model to process interleaved tokens at vary-
ing downsampling rates while maintaining strong performance.

Effect of Router Training. As shown in Table 3, to validate the effectiveness of the router, we first
evaluate a naive variant in which all visual tokens are compressed indiscriminately . This setting
achieves a performance retention of 95.1%, indicating that uniform compression alone can harm
model performance. Next, we test a variant where all patches are routed randomly to different
compression rates while keeping the overall compression ratio identical to ViCO with VIR. This
variant achieves 97.6% performance retention, still falling short of the 99.6% retained by our full
ViCO with trained router. These results demonstrate that our router effectively learns to dynamically
adjust patch-wise compression based on semantic content, with patches containing rich semantic
information being lightly compressed, whereas patches with simpler content are more aggressively
compressed. This learned adaptive routing enables a balanced trade-off between efficiency and
model performance.

Effect of Compression Granularity. As shown in Table 3, we further investigate the impact of
routing granularity by training a router that performs image-level compression instead of patch-
level. In this variant, the router decides whether to compress all visual tokens of an image based
on the overall image semantics. This image-level routing achieves 98.8% performance retention,
slightly lower than the 99.6% obtained with patch-level routing. At the same time, image-level
routing is overly coarse and lacks fine-grained semantic awareness. This causes the router to be
highly sensitive to the dominant content of each image, leading to drastically different compression
tendencies across datasets. For instance, only 12% of patches are compressed on InfoVQA, whereas
88% are compressed on BLINK. Such variability leads to unstable compression behavior. These
results highlight the advantage of patch-level routing in ViCO, which achieves more balanced and
semantically informed token compression.

4.5 VISUALIZATION OF IMAGE ROUTING

Settings. We visualize the routing results of our proposed Visual Resolution Router on several
representative examples from the benchmarks introduced earlier. The routing is performed using
the InternVL3.5-8B ViCO model, following the same evaluation settings as in the performance
tests.Patches with router scores above 0.5 are treated as less critical and routed to higher compression
(64 tokens), while those below 0.5 are routed to lower compression rates.

Results. As shown in Figure 3, our router is able to distinguish between semantically complex and
simple patches. Regions containing salient objects, such as people, animals, or other key subjects, as
well as areas with text carrying rich semantic information, are routed to lower compression rates and
largely preserved at their original resolution. In contrast, relatively homogeneous background areas,
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Table 4: Throughput of LLM under different token compression rates. Ori. refers to the original
non-compressed model. We evaluate token compression rates of 25%, 50%, and 75% to measure
the resulting speedup. All values are reported as speedup factors (×) relative to the non-compressed
baseline.

Model Input Type LLM Throughput @ token compression

Ori. 25% 50% 75%

8B 10 patches + 64 text tokens 1.00× 1.29× 1.97× 3.76×
10 patches + 512 text tokens 1.00× 1.30× 1.76× 2.77×

30B 10 patches + 64 text tokens 1.00× 1.30× 1.99× 3.77×
10 patches + 512 text tokens 1.00× 1.29× 1.80× 2.72×

38B 10 patches + 64 text tokens 1.00× 1.33× 1.99× 3.80×
10 patches + 512 text tokens 1.00× 1.30× 1.77× 2.76×

241B 10 patches + 64 text tokens 1.00× 1.34× 2.00× 3.76×
10 patches + 512 text tokens 1.00× 1.32× 1.81× 2.87×

which contain less critical information, are routed to higher compression rates. Importantly, being
routed to higher compression does not imply that a patch is unimportant. Instead, it indicates that
such information can be adequately represented with fewer resources. This selective compression
strategy effectively reduces computational cost while allowing the model to focus more on patches
that carry significant semantic content, ensuring that key visual information is retained for the LLM’s
processing. Additional visualizations are provided in Appendix C.

4.6 THROUGHPUT ANALYSIS

Settings. We deploy our ViCO models using the LMDeploy (Contributors, 2023) framework and
evaluate different model scales, namely 8B, 30B, 38B, and 241B, under varying image–text ratios
and compression rates. Using a real deployment framework ensures that the evaluation more ac-
curately reflects practical inference performance. For throughput simulation, each request contains
10 visual patches with text inputs of length 512 or 64 tokens. The LLM’s first-token throughput
is measured over 2000 requests, which are sent concurrently to the API using 32 threads, and the
results are reported as relative speedup compared to the non-compressed baseline. We set the tensor
parallelism of the 241B model to 8, and to 1 for all other models.

Results. As shown in Table 4, applying token compression substantially improves the LLM’s pro-
cessing efficiency across all model scales and input settings. Specifically, compressing 50% of
visual tokens consistently achieves over 1.75× speedup, while further increasing the compression
ratio leads to even larger gains. Notably, smaller text input lengths benefit more from high com-
pression than longer text inputs, as the relative proportion of compressed visual tokens is higher.
These results demonstrate that our method not only reduces computational overhead theoretically
but also yields significant practical acceleration during model inference, confirming the effectiveness
of visual token compression for large-scale multimodal models.

5 CONCLUSION

In this work, we propose Visual Consistency Learning (ViCO), which enables the model to repre-
sent images of varying semantic complexities using different numbers of vision tokens. Compared
with existing dynamic high-resolution strategies, which adjust the number of visual tokens based on
image resolutions, our method dynamically adapts the number of visual tokens according to seman-
tic complexity. Experimental results demonstrate that our method can reduce the number of vision
tokens by up to 50% while maintaining the model’s perception, reasoning, and OCR capabilities.
Additional ablation studies further validate the effectiveness of each proposed module. By making
decisions based on visual semantics, ViCO enables the model to efficiently focus computation on
the most informative regions of an image, providing insights for future research on adaptive visual
representations. We hope this work will contribute to the development of more efficient MLLMs.
The code and models will be released to facilitate future research.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were only employed for light linguistic refinement, such as pol-
ishing sentences and correcting grammatical errors. They were not involved in the formulation or
development of the core ideas presented in this article.

B PERFORMANCE OF VICO ON SMALL-SCALE MODELS

We also evaluate ViCO on smaller InternVL3.5 models 1B and 2B across a range of benchmarks,
including general multimodal, OCR-related, multi-image, and video benchmarks. Tables 5 and 6
show that the models retain nearly all of their original performance, demonstrating that our approach
remains effective even on smaller-scale models.

Table 5: Performance of ViCO on InternVL3.5 small-scale models across general benchmarks.
When calculating the overall score, MME is normalized from 0–2800 to 0–100. RWQA refers to
RealWorldQA.

Model OCRBench ChartQA TextVQA MMStar POPE MME MMBench V1.1 RWQA Avg.

InternVL3.5-1B 79.2 78.0 71.2 50.6 86.8 1910.2 69.9 57.6 100.0%
+ ViCO 78.8 77.4 71.1 50.8 86.2 1905.8 69.1 56.9 99.4%
Ratio of Compressed Patches 70% 40% 56% 60% 80% 73% 72% 75% 65.8%

InternVL3.5-2B 83.7 80.8 76.7 57.5 87.2 2123.3 76.6 62.0 100.0%
+ ViCO 83.3 79.8 76.2 57.7 87.2 2101.0 76.7 60.7 99.4%
Ratio of Compressed Patches 68% 36% 60% 61% 77% 73% 71% 66% 64.0%

Table 6: Performance of ViCO on InternVL3.5 small-scale models across multi-image and
video benchmarks. For Video-MME, both the subtitle and non-subtitle settings are evaluated using
64-frame inputs.

Model BLINK MMT-Bench MMIU Video-MME Avg.
no sub with sub

InternVL3.5-1B 44.0 54.5 45.2 52.4 55.0 100.0%
+ ViCO 43.9 54.3 43.9 52.9 54.9 99.5%
Ratio of Compressed Patches 69% 57% 56% 63% 63% 61.6%

InternVL3.5-2B 51.3 58.5 44.9 58.3 61.2 100.0%
+ ViCO 51.3 58.7 45.5 59.1 61.4 100.6%
Ratio of Compressed Patches 69% 58% 48% 73% 73% 64.2%

C VISUALIZATION OF ROUTER

As shown in Figures 4 and 5, we visualize the Visual Resolution Router from the InternVL3.5-8B
ViCO model, demonstrating additional routing results across different patch layouts.
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Figure 4: Routing results of the InternVL3.5-8B ViCO model on images split into 3×3 patches.
Grey-shaded patches are compressed to 64 tokens, while unshaded patches retain 256 tokens. Each
patch is annotated with the router’s confidence score, where higher values indicate a stronger pref-
erence for compression.
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Figure 5: Routing results of the InternVL3.5-8B ViCO model on images split into 3×4 patches.
Grey-shaded patches are compressed to 64 tokens, while unshaded patches retain 256 tokens. Each
patch is annotated with the router’s confidence score, where higher values indicate a stronger pref-
erence for compression.
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