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Abstract

As large language models (LLMs) are increas-001
ingly used in high-stakes domains, accurately002
assessing their confidence is crucial. Humans003
typically express confidence through epistemic004
markers (e.g., “fairly confident”) instead of nu-005
merical values. However, it remains unclear006
whether LLMs consistently use these markers007
to reflect their intrinsic confidence due to the008
difficulty of quantifying uncertainty associated009
with various markers. To address this gap, we010
first define marker confidence as the observed011
accuracy when a model employs an epistemic012
marker. We evaluate its stability across mul-013
tiple question-answering datasets in both in-014
distribution and out-of-distribution settings for015
open-source and proprietary LLMs. Our results016
show that while markers generalize well within017
the same distribution, their confidence is incon-018
sistent in out-of-distribution scenarios. These019
findings raise significant concerns about the re-020
liability of epistemic markers for confidence021
estimation, underscoring the need for improved022
alignment between marker based confidence023
and actual model uncertainty.024

1 Introduction025

LLMs have grown increasingly powerful, yet their026

application in mission-critical tasks is still hindered027

by reliability issues (Zhang et al., 2024; Maynez028

et al., 2020). Therefore, accurately measuring out-029

put confidence is crucial for their reliable deploy-030

ment (Li et al., 2024a; Pedapati et al., 2024; Beigi031

et al., 2024). Traditionally, black-box confidence032

estimation in LLMs primarily relies on direct nu-033

merical outputs (e.g., “30% confidence”) or re-034

sponse consistency (Xiong et al., 2024; Chen and035

Mueller, 2024; Li et al., 2024b), while white-box036

methods mainly utilize logits, internal states as037

information source (Geng et al., 2024). However,038

natural language is the primary interface for human-039

LLM interaction. Instead of relying solely on ab-040

stract numerical measures, humans often use epis-041

Clearly

Fairly Certain

Undoubtedly

Does Siri know geometry?

No, I am .fairly certain

Groundtruth: No

fairly certain

Groundtruth: Yes

Can a banana get a virus?

Yes, I am .fairly certain

Groundtruth: No

fairly certain

Groundtruth: Yes N=20

N=11

Marker Confidence = 20 / 31 ≈ 64.52%

# Occurrence: 31 # True: 20 # False: 11

Figure 1: An example of our framework calculating
the marker confidence of “fairly certain” for GPT-4o
on StrategyQA. We calculate the confidence for all the
markers across seven models and seven datasets.

temic markers, such as “I am not sure” or “it is un- 042

likely that,” to convey uncertainty (Wallsten, 1986; 043

Erev and Cohen, 1990; Juanchich et al., 2017; Ka- 044

davath et al., 2022). This similar recognition of un- 045

certainty markers is essential for effective commu- 046

nication (Willems et al., 2019; Belém et al., 2024), 047

which potentially makes it valuable for LLMs to 048

adopt a similar practice (Yona et al., 2024). 049

However, it remains unexplored whether LLMs 050

are capable of incorporating these epistemic mark- 051

ers in their responses to express their intrinsic con- 052

fidence stably and consistently. Previous works 053

have primarily concentrated on the misalignment 054

between human and LLM recognition of epistemic 055

markers (Zhou et al., 2024; Tang et al., 2024; 056

Belém et al., 2024), concluding that models always 057

fail to accurately convey confidence in words (Yona 058

et al., 2024). In fact, human interpretations of mark- 059

ers are not completely identical (Pennekamp et al., 060
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2024), so even if these markers may not align well061

with human reasoning, they can still be useful if062

the model maintains a consistent internal mapping063

between markers and their actual accuracy. Thus,064

previous studies questioning the reliability of mark-065

ers may be insufficient, as they have not examined066

whether LLMs can consistently apply their own067

confidence framework.068

To address this gap, we investigate whether epis-069

temic markers produced by LLMs reliably reflect070

their confidence in question-answering tasks. By071

defining marker confidence as the accuracy of re-072

sponses when a model uses a specific marker to073

convey confidence, we calculate the marker con-074

fidence with various models and datasets. Addi-075

tionally, we propose seven evaluation metrics to076

systematically assess the stability of these mark-077

ers in both in-distribution and out-of-distribution078

contexts. Our findings show that while markers079

perform well within similar distributions, their sta-080

bility declines in out-of-distribution contexts. Addi-081

tionally, we compare a range of widely used models082

and conclude that the more powerful ones demon-083

strate a better understanding of epistemic markers.084

2 Related Work085

Our work primarily intersects with confidence esti-086

mation in LLMs and studies about epistemic mark-087

ers. Please find related works in Appendix A.088

3 Study Design089

3.1 Formalization090

Confidence of Epistemic Markers. Let W de-091

note an epistemic marker, D = {Q1, Q2, . . . , Qn}092

a labeled dataset, and M a model. We define the093

confidence associated with each epistemic marker094

as Conf(W,D,M), computed as the accuracy of095

the answers that explicitly include marker W when096

the model provides responses. To compute the097

marker confidence for a specific epistemic marker098

Wi, we use model Mk to generate answers for all099

questions in the training set of dataset Dj and then100

extract the subset QWi ⊆ Dj consisting of ques-101

tions whose generated answers contain Wi. The102

marker confidence is defined as:103

Conf(Wi, Dj ,Mk) =
1

|QWi |
∑

q∈QWi

I
(
Mk(q)

)
,104

where QWi is the set of questions whose generated105

answers contain the epistemic marker Wi and I(·)106

is the indicator function, which is 1 if the answer 107

generated by Mk for question q is correct, and 0 108

otherwise. An example is provided in Figure 1. 109

3.2 Methods 110

We calculate Conf (Wi, Dj ,Mk) for all combina- 111

tions of generated markers, datasets and mod- 112

els (Wi, Dj ,Mk) in Appendix B.1 to provide an 113

all-rounded insight into the marker distributions. 114

Specifically, we propose seven metrics to system- 115

atically evaluate the stability and consistency of 116

LLM generated epistemic markers: 117

(1) I-AvgECE In-domain Average ECE reflects 118

how well the marker confidence of the model aligns 119

with its actual accuracy in a consistent setting 120

within the same distribution. 121

(2) C-AvgECE Cross-domain Average ECE as- 122

sesses the calibration error of the marker confi- 123

dence and the actual accuracy, further reflecting 124

the robustness of the model’s marker confidence in 125

out-of-domain scenarios. 126

(3) NumECE Numerical ECE measures the overall 127

calibration of the model’s numerical confidence 128

outputs across all datasets. All ECE-related metrics 129

are desired with a lower value, indicating better 130

calibration performance on the target dataset. 131

(4) MAC Marker Accuracy Correlation reflects 132

the correlation between marker confidence and the 133

model accuracy on different datasets. The metric 134

is calculated based on Pearson coefficient, so 0 in 135

this value represents no linear correlation and 1 136

indicates direct propotional relationship between 137

the marker confidence and model’s accuracy. 138

(5) MRC Marker Ranking Correlation measures 139

the model’s ability to maintain a consistent marker 140

confidence ranking across different datasets. The 141

metric is calculated based on Spearman coefficient 142

(de Winter et al., 2016), so 0 in this value repre- 143

sents no correlation and 1 indicates totally identical 144

between markers’ confidence rankings. 145

(6) I-AvgCV In-domain Average CV captures 146

the dispersion of the model-generated confidence 147

scores within each dataset. A relatively higher I- 148

AvgCV value indicates a more decentralized distri- 149

bution of markers within the dataset, demonstrating 150

a stronger ability to distinguish between different 151

markers. 152

(7) C-AvgCV Cross-domain Average CV measures 153

the consistency of the model’s marker-based confi- 154

dence across different datasets. A higher C-AvgCV 155

value indicates a greater dispersion of marker con- 156

fidence across various datasets, suggesting the 157
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Model Marker Confidence Rank Density

I-AvgECE ↓ C-AvgECE ↓ NumECE ↓ C-AvgCV ↓ MAC MRC ↑ I-AvgCV

Llama-3.1-8B-Instruct 10.09 15.95 22.70 20.80 60.91 11.37 20.48
Qwen2.5-7B-Instruct 7.85 23.60 21.84 31.29 68.06 11.85 22.39
Qwen2.5-14B-Instruct 7.66 20.38 17.98 26.44 73.95 34.60 23.83
Qwen2.5-32B-Instruct 4.78 10.40 8.86 19.24 78.20 36.97 16.26
Mistral-7B-Instruct-v0.3 10.58 24.81 24.46 28.52 84.57 10.54 21.01
GPT-4o 8.55 11.84 7.56 15.72 76.44 27.54 14.30
GPT-4o-mini 7.65 17.15 12.79 21.98 87.68 16.48 20.61
Average 8.17 17.73 16.60 23.43 75.69 21.34 19.84

Table 1: Model performance across seven metrics. For each metric, the data for the best performing model is bolded.
For analytical experiments about markers, we only consider those appear no less than 10 times to eliminate the
effect of randomness (see Appendix B.4.2). All values listed in the table are expressed as percentage (%).

model’s instability regarding marker confidence.158

More details about the design and implementa-159

tion of the metrics can be found in Appendix B.4.1.160

4 Experiments and Analysis161

Models and Datasets. We experiment with two162

mainstream open-source and five proprietary LLMs163

over seven datasets from various domains. More164

introduction can be found in Appendix B.1.165

Baseline. Inspired by previous comparison about166

using numerical values and uncertainty expression167

in words to express confidence level (Jaffe-Katz168

et al., 1989; Knapp et al., 2016), we apply the169

method of directly prompting the model to express170

a numerical confidence as baseline for comparison.171

The prompt designed to elicit epistemic markers172

and numerical confidence is in Appendix B.1.173

Our main experiment results are in Table 1.174

4.1 Main Findings175

While the in-distribution marker confidence is176

relatively stable, it lacks robustness across dif-177

ferent datasets. This conclusion is supported by178

the observation that I-AvgECE values consistently179

remain lower than NumECE and C-AvgECE val-180

ues are notably higher than NumECE for 6 out of181

7 models, indicating that models exhibit shortcom-182

ings in generalizing marker confidence to different183

distributions and datasets.184

More direct evidence to support the conclusion185

may be inferred from the C-AvgCV of the models.186

The average C-AvgCV of 0.2343 highlights that187

marker confidence is highly sensitive to distribution188

shifts, aligning with the observed high value in C-189

AvgECE. Notably, we observed that stronger mod-190

els (e.g., GPT-4o, Qwen2.5-32B-Instruct) might191

exhibit smaller C-AvgCV values.192

We further examine the relationship between 193

marker confidence and model accuracy across dif- 194

ferent datasets using MAC. For 5 out of 7 of the 195

models, the MAC value is over 0.7, which indi- 196

cates that marker confidence are positively related 197

to the model’s accuracy in a strict manner. This 198

also suggests that marker confidence is fragile un- 199

der distribution shifts, highlighting models’ lack of 200

robust understanding of epistemic markers. 201

Models fail to maintain a consistent ordering 202

of epistemic markers across different domains. 203

The overall low values of MRC suggest that mod- 204

els do not preserve a consistent ranking of markers 205

when applied to datasets with different distribu- 206

tions. We notice that larger models appear to have 207

a better grasp at maintaining a stable ordering of 208

markers. However, both the maximum and average 209

MRC indicates low consistency performance, sug- 210

gesting a lack of robust understanding of marker 211

relative confidence. 212

The values of the marker confidence are highly 213

concentrated. Since models are expected to ex- 214

press a wide range of confidence including extreme 215

values which is necessary in mission-critical senar- 216

ios (Alam et al., 2017; Bhise et al., 2018), We 217

expect the models to clearly differentiate the epis- 218

temic markers by obtaining a relatively uniform 219

distribution and containing markers with a confi- 220

dence near 0% or 100%. However, we found the I- 221

AvgCV values typically range from approximately 222

0.14 and 0.24, demonstrating a concentrated distri- 223

bution with minor difference. Additionally, only 224

4 out of 49 settings (dataset, model pair) include 225

markers with confidence under 10% when only 226

those occur no less than 10 times are counted, indi- 227

cating significant failure in expressing uncertainty. 228
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Figure 2: Model’s marker confidence varies greatly across different datasets. We plot the heatmap of the marker
confidence of GPT-4o and Qwen2.5-32B-Instruct across different datasets, illustrating that even the best models
exhibit substantially different confidence levels in various contexts. The markers in the graph are randomly selected
from the shared markers of all datasets.
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Figure 3: The rankings of the model’s marker confidence fluctuates significantly across different datasets.
We plot the scatter diagram for the marker confidence rankings of the best performing models, but still discovered
that the rankings are extremely unstable. The markers in the graph are randomly selected from the shared markers
across all datasets.

4.2 Correlation between Performance and229

Marker Consistency230

In Section 4.1, we notice that the statistics in Ta-231

ble 1 suggest that larger models demonstrate a232

better understanding of epistemic markers, as evi-233

denced by lower C-AvgCV values and higher MRC234

values. In this section, we quantitatively evaluate235

the relationship between a model’s accuracy and236

its corresponding C-AvgCV and MRC values.237

Specifically, for a given model Mk, we use its av-238

erage accuracy across all datasets as a comprehen-239

sive measure of its performance. We then compute240

the Pearson Correlation Coefficient between each241

model’s overall accuracy and both its C-AvgCV242

and MRC. The results show a correlation coeffi-243

cient of −0.88 between model accuracy and C-244

AvgCV, and a correlation coefficient of 0.75 be-245

tween model accuracy and MRC. These findings in-246

dicate a strong negative relationship between model247

accuracy and C-AvgCV and a strong positive rela-248

tionship between model accuracy and MRC. This249

suggests that more powerful models exhibit greater250

stability in marker confidence across datasets, as 251

well as a more consistent ordering of markers. 252

5 Conclusion 253

Our study evaluates whether LLMs can reliably 254

express confidence using epistemic markers. We 255

define marker confidence as the observed accuracy 256

of responses containing specific markers, conduct 257

extensive experiments and evaluate the results with 258

several metrics. The results show that the marker 259

confidence shifts significantly under distribution 260

changes, following the trend of model accuracy, 261

which highlights poor stability. Additionally, mod- 262

els struggle to effectively differentiate between 263

markers and maintain consistent marker rankings 264

across datasets. These findings suggest that the 265

LLM generated markers to express their confidence 266

is unreliable and requires improved alignment be- 267

tween verbal confidence and actual performance. 268

Our work contributes to more consistent confidence 269

estimation frameworks, ultimately facilitating reli- 270

able and trustworthy LLM responses. 271
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Limitation272

Human language is remarkable for its complex-273

ity, variability, and rich connotations, particularly274

when expressing uncertainty. Within a complete275

linguistic system, factors like sentence structure276

can significantly influence confidence, which is277

often difficult to quantify with epistemic markers278

alone. Moreover, in the context of long-form com-279

munication, it is clear that confidence cannot be280

simply measured by the confidence values of epis-281

temic markers. To facilitate simplicity in evalua-282

tion and to focus on the study of epistemic markers,283

we adopt a relatively idealized approach: using284

epistemic markers generated by LLMs in closed-285

source QA tasks to represent the confidence of the286

responses while keeping them relatively brief. Ad-287

ditionally, epistemic markers may carry different288

meanings across cultures and languages. However,289

we only consider epistemic markers in English.290

Despite our idealized conditions and using state-291

of-the-art models, LLMs still fail to consistently292

align epistemic markers with their true confidence293

levels, revealing that the issue lies not only with294

our approach but also with the models themselves.295

While they perform well in question-answering296

tasks, they do not truly understand epistemic mark-297

ers (Zhou et al., 2023), struggle to express consis-298

tent confidence in these markers, and have difficulty299

aligning their confidence expressions with human300

expectations (Belém et al., 2024). This points to301

a deeper challenge in model behavior, suggesting302

that future research should focus on addressing303

fundamental gaps in model linguistic alignment.304

Ethics Statement305

Our work contains no offensive contents and have306

no potential risks.307
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(Cobbe et al., 2021), MMLU (Hendrycks et al.,313

2021), CSQA (Talmor et al., 2019), MedMCQA314

(Pal et al., 2022), and CaseHOLD (Zheng et al.,315

2021), are shared under either the CC BY-SA li-316

cense, Apache License Version 2.0, or the MIT317

License, all of which permit their use for research318

purposes. As for language models, we access all319

open-source LMs via the Huggingface Hub (Wolf320
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A Related Work 680
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white-box and black-box methods, distinguished 685

by whether they utilize the model’s internal infor- 686

mation. White-box methods leverage the internal 687

states of LLMs, with key approaches including 688

information-based methods that analyze these in- 689
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Burns et al., 2023), such as perplexity (Fomicheva 691

et al., 2020; Zong et al., 2024), the negative log 692

probability of generated tokens (Duan et al., 2024), 693

and others. In the field of black-box methods, Lin 694

et al. (2022) first introduces the concept verbal 695

confidence that prompts LLM to output its confi- 696

dence directly. Most subsequent methods are based 697

on either directly prompting the model to gener- 698

ate an output or consistency sampling (Lin et al., 699

2024; Xiong et al., 2024; Chen and Mueller, 2024). 700

However, previous methods primarily focus on pro- 701

cessing numerical values to estimate the LLM’s 702

confidence, leading to a research gap in exploring 703

LLM confidence expression through linguistic pat- 704

terns, especially epistemic markers. 705

Studies on Epistemic Markers. Epistemic mark- 706

ers are essential for expressing confidence in con- 707
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versation, playing a key role in human-LLM inter-708

actions (Hu et al., 2023). Recent studies have exam-709

ined the reliability of LLMs in mastering epistemic710

markers, primarily investigating their interpretation711

of various uncertainty expressions. For instance,712

Tang et al. (2024) and Belém et al. (2024) use713

sentence templates with uncertainty expressions714

to prompt the model to assess overall confidence,715

though this approach is limited by the fixed na-716

ture of the templates, restricting generalizability.717

Zhou et al. (2023) and Zhou et al. (2024) argue718

that LLMs often mimic marker distributions from719

training data rather than truly understanding them,720

with the latter highlighting a tendency for over-721

confidence. Lee et al. (2024) also examine epis-722

temic markers but focus on robustness and biases723

in model interpretations. While these studies inves-724

tigate LLM generation of epistemic markers, our725

work aligns most closely with Yona et al. (2024),726

which directly challenges the ability of LLMs to ac-727

curately convey confidence using epistemic mark-728

ers. However, they employ LLM-as-a-judge and729

few-shot prompting to assess the numerical confi-730

dence of uncertainty expressions, introducing po-731

tential bias (Chen et al., 2024; Ye et al., 2024; Ma732

et al., 2023). Additionally, they use human judges733

to assess the quality of LLM judges, which essen-734

tially aligns the model’s interpretation of markers735

with human understanding. This approach is simi-736

lar to other works in the field, which also focus on737

aligning human and LLM recognition of epistemic738

markers. However, as long as LLMs maintain a739

consistent framework for incorporating epistemic740

markers to express confidence, we can learn from741

its intrinsic mapping of marker usage and align it742

with human expectations through external means.743

B Technical Details744

B.1 Experiment Setup745

Models We incorporate a range of commonly746

used LLMs of different scales, including Llama-747

3.1-8B-Instruct (Touvron et al., 2023), Qwen2.5-748

7B-Instruct, Qwen2.5-14B-Instruct, Qwen2.5-32B-749

Instruct (Yang et al., 2024), Mistral-7B-Instruct-750

v0.3 (Jiang et al., 2023), GPT-4o (OpenAI, 2024b),751

GPT-4o-mini (OpenAI, 2024a). For all models, we752

use a temperature of 0.5 to balance between logical753

consistency and creativity. All the open-source754

models are run on 4 NVIDIA A6000 (40G) GPUs755

with BF16.756

We observed that instruction-tuned models ex-757
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Figure 4: The number of epistemic markers that six
different models generated in BoolQ and CSQA dataset.
The results indicate that the instruct-tuned models ex-
hibit much better linguistic diversity than base models
in expressing confidence, which is desired by our exper-
iment.

hibit greater variation and demonstrate better lin- 758

guistic diversity when using epistemic markers. Al- 759

though we also tested some base models, we found 760

that for the same dataset, they emitted significantly 761

fewer markers compared to the instruction-tuned 762

models (See Figure 4) . As a result, we chose to 763

focus our experiments on instruction-tuned models 764

instead. 765

Datasets We benchmark the LLMs’ responses 766

with confidence expression using epistemic mark- 767

ers using the following seven datasets requiring 768

knowledge in different domains: 1) Factual and 769

commonsense knowledge: BoolQ (Clark et al., 770

2019), StrategyQA (Geva et al., 2021), CSQA 771

(Talmor et al., 2019). 2) Mathematical reasoning: 772

GSM8K (Cobbe et al., 2021). 3) Medical reason- 773

ing: MedMCQA (Pal et al., 2022). 4) Law reason- 774

ing: CaseHOLD (Zheng et al., 2021). 5) Mixed 775

factual datasets: MMLU (Hendrycks et al., 2021). 776

Prompt The prompts used in our experiments 777

are shown in Table 3. We performed several permu- 778

tations on the prompt with Llama-3.1-8B-Instruct 779

on StrategyQA and found that both accuracy and 780
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marker confidence varied only slightly. Conse-781

quently, we randomly selected one version and782

conducted all subsequent experiments using it.783

B.2 Model Sources784

This section clarifies the sources of the models785

used in our study. For methods involving LLMs,786

we utilize their instruction fine-tuned versions (see787

Appendix B.1 for more details) accessed via the788

Hugging Face Hub (Wolf et al., 2020). Specifically,789

for Llama-3.1-8B-Instruct, we employ the version790

meta-llama/Llama-3.1-8B-Instruct. The models re-791

lated to Qwen include Qwen/Qwen2.5-7B-Instruct,792

Qwen/Qwen2.5-14B-Instruct, and Qwen/Qwen2.5-793

32B-Instruct. For Mistral-7B-Instruct-v0.3, we use794

mistralai/Mistral-7B-Instruct-v0.3.795

B.3 Detailed Implementation796

Data Preprocessing We applied data preprocess-797

ing methods to the datasets. For GSM8K, we trans-798

formed it into a binary-question dataset for con-799

venience. Specifically, for half of the questions800

Qi with even index in GSM8K, we first extracted801

the correct answer Ai, then used a question tem-802

plate to create a binary question by incorporating803

(Qi, Ai) and setting the correct binary answer to804

“yes.” For the remaining half of the questions Qj ,805

we randomly selected an answer Aj different from806

the correct answer, and used the same question tem-807

plate to create a binary question by incorporating808

(Qj , Aj) and setting the correct binary answer to809

“no.” The question template and two examples are810

given in Table 4. For the training set of the MMLU,811

due to its massive size, we randomly sampled a812

subset of 20000 QA-pairs for the MMLU training813

set. For MedMCQA dataset, for the convenience of814

evaluation, we pick the subset of the answer with815

only one correct answer. We then randomly sample816

9686 QA-pairs for the MedMCQA training set and817

2422 for its test set. For BoolQ, we did not expose818

the model to the “passage” part and treated it as a819

closed-book question-answering dataset in our ex-820

periment. Since CaseHOLD isn’t explicit split into821

training set and test set, we divide the former 80%822

as training set and the rest as test set. A detailed823

statistics for our dataset usage is on Table 2.824

Epistemic Marker Extraction For each model,825

we extract the epistemic marker from each response826

by few-shot prompting (Brown et al., 2020) the827

same model to recognize the epistemic markers828

emitted by itself. We manually examined a sub-829

Dataset Train Size Test Size

BoolQ 9427 3270
StrategyQA 2061 229
GSM8K 7473 1319
MMLU 20000 14041
CSQA 9741 1221
MedMCQA 9686 2422
CaseHOLD 8396 2099

Table 2: A detailed statistcs of our dataset usage.

set of each dataset and find out most of them are 830

able to recognize the epistemic markers. For the 831

unrecognized ones or the one that didn’t match 832

the desired format, we unified use GPT-4o-mini to 833

extract its epistemic markers. According to Zhou 834

et al. (2024), models are relunctant to express confi- 835

dence in words, so we also provided responses that 836

did not include any epistemic markers as few-shot 837

samples, and those with no markers are grouped 838

together as a special epistemic marker. 839

B.4 Evaluation Metrics 840

This section introduces the evaluation metrics in 841

detail and explain our experiment settings. 842

B.4.1 Detailed Implementation and Formulas 843

Our evaluation metrics are categorized into three 844

kinds: ECE-based (Xiong et al., 2024), CV-based 845

(Jalilibal et al., 2021) and Spearman/Pearson coef- 846

ficient based (Su and Li, 2021; Xiong et al., 2004), 847

aiming to reflect the calibration error, the degree of 848

dispersion and correlation respectively. 849

NumECE, I-AvgECE, and C-AvgECE To eval- 850

uate the calibration of model-generated confidence, 851

we introduce three metrics: NumECE, I-AvgECE, 852

and C-AvgECE. Since the latter two are based on 853

generalization of marker confidence, these metrics 854

assess the model’s stability on marker confidence, 855

considering both within-domain (I-AvgECE) and 856

cross-domain (C-AvgECE) scenarios and compar- 857

ing with number-based methods. 858

NumECE measures the overall calibration of the 859

model’s outputted numerical confidence. For each 860

dataset Dj , we compute the expected calibration 861

error (ECE-num) based on the model’s numerical 862

confidence on the test set. The final NumECE is the 863

average of these ECE values across all datasets, pro- 864

viding a comprehensive evaluation of the model’s 865

confidence calibration. 866
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Binary Question Multiple Choice Question

Eliciting epistemic
markers

User: The following is a binary
question. When responding, answer
with a binary answer from [choices]
and incorporate only one epistemic
marker to reflect your confidence
level. You must include your binary
answer at the beginning of your re-
sponse then respond with the epis-
temic markers in a concise and brief
manner.
The question is: [Question]
And your answer is:

User: The following is a multiple
choice question. When responding,
answer with a letter from [choices]
and incorporate only one epistemic
marker to reflect your confidence
level. You must include your choice
of letter at the beginning of your re-
sponse then respond with the epis-
temic markers in a concise and brief
manner.
The question is: [Question]
The options are: [Options]
And your answer is:

Eliciting numerical
values

User: The following is a binary ques-
tion. When responding, answer with
a binary answer from [choices] and
incorporate a number between 0 and
100 to reflect your confidence level.
You must include your binary an-
swer at the beginning of your re-
sponse then respond with the confi-
dence score in a concise and brief
manner.
The question is: [Question]
And your answer is:

User: The following is a multiple
choice question. When responding,
answer with a letter from [choices]
and incorporate a number between
0 and 100 to reflect your confidence
level. You must include your choice
of letter at the beginning of your re-
sponse then respond with the confi-
dence score in a concise and brief
manner.
The question is: [Question]
The options are: [Options]
And your answer is:

Table 3: Our prompt to elicit epistemic markers and numerical confidence values. The text inside the square brackets
is filled with actual content in the dataset. Specifically, choices are capital letters that represent the options (e.g., “A,
B, C, D” or “A, B, C, D, E”) for multiple choice questions and “yes or no” for binary questions.

I-AvgECE focuses on the model’s performance867

within the same domain, where the training and868

test datasets are identical. For each dataset Dp,869

we calculate the marker-based expected calibration870

error (ECE-mar) by using the marker’s confidence871

Conf(Wi, Dp,Mk) obtained from the training set872

of Dp on the test set of it when the model also emits873

Wi as confidence expression. The final I-AvgECE874

is obtained by averaging these values across all875

datasets as well.876

C-AvgECE evaluates the model’s ability to877

generalize its marker confidence across dif-878

ferent datasets. For each pair of distinct879

datasets (Dp, Dq), where Dp ̸= Dq, we calcu-880

late the marker-based expected calibration error881

ECE-mar(Dp, Dq,Mk). This is done by using the882

model’s confidence Conf(Wi, Dp,Mk) on the train-883

ing dataset Dp to estimate the model’s marker con-884

fidence on the test set of Dq, thereby measuring the 885

model’s ability to transfer its marker confidence to 886

a new dataset. The final C-AvgECE is computed 887

by averaging the ECE-mar values across all dataset 888

pairs, providing insight into the model’s robustness 889

in handling cross-distribution variations. The math- 890

ematical formulas of three ECE-based metrics is 891

given by: 892

NumECE =
1

|D|
∑

Dj∈D

ECE-num(Dj ,Mk), 893

I-AvgECE =
1

|D|
∑

Dp∈D

ECE-mar(Dp, Dp,Mk), 894

C-AvgECE =
1

|D| ∗ (|D| − 1)
∗ 895∑

Dp,Dq∈D
Dp ̸=Dq

ECE-mar(Dp, Dq,Mk), 896
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Question Template
For the question [original question], is the answer [original answer] its correct answer?
Sample 1
Qi: Each bird eats 12 beetles per day, each snake eats 3 birds per day, and each jaguar eats 5 snakes per
day. If there are 6 jaguars in a forest, how many beetles are eaten each day?

Ai: 1080 (The correct answer is 1080)

Integrated binary question: For the question ‘Each bird eats 12 beetles per day, each snake eats 3 birds per
day, and each jaguar eats 5 snakes per day. If there are 6 jaguars in a forest, how many beetles are eaten
each day?”, is the answer 1080 its correct answer?

Binary answer: Yes.
Sample 2
Qj : James writes a 3 - page letter to 2 different friends twice a week. How many pages does he write a
year?

Aj : 223 (Randomly generated answer, the correct answer is 624)

Integrated binary question: For the question ‘James writes a 3 - page letter to 2 different friends twice a
week. How many pages does he write a year?”, is the answer 223 its correct answer?

Binary answer: No.

Table 4: Data pre-processing method used in GSM8K. The text inside the square brackets is replaced by actual
content in the dataset. Sample 1 keeps the original correct answer and incorporate it into the binary answer while
setting the binary answer to “Yes.” Sample 2 randomly generates a wrong answer and set the binary answer to “No.”

where |D| is the total number of datasets897

(D1, D2, . . . , Dn). Note that for all ECE values,898

we use a ECE bin number of N, where N is the899

number of confidence predictions.900

I-AvgCV and C-AvgCV To quantify the concen-901

tration and variation of marker confidence, we pro-902

pose I-AvgCV and C-AvgCV. These metrics assess903

how dispersed and consistent marker confidence904

is within individual datasets and across datasets,905

respectively.906

I-AvgCV measures the concentration of marker907

confidence within a single dataset. For each908

dataset Dj , we calculate the coefficient of varia-909

tion (CV) of the confidence of different markers910

Conf(Wi, Dj ,Mk). The final I-AvgCV is the av-911

erage CV value across all datasets, providing an912

overall measure of confidence concentration.913

It is important to note that while we expect the914

distribution of marker confidence to be more dis-915

persed, we are not claiming that greater dispersion916

is inherently better. Our desired result for models917

is to cover a relatively wide range of confidence918

values across all markers, while also clearly differ-919

entiating between different markers. This would 920

facilitate more effective confidence expression in a 921

variety of scenarios. However, as shown in Table 1, 922

the average I-AvgCV value marker is lower than 923

0.2, which indicates that the marker confidence is 924

highly concentrated, leading us to conclude that 925

the model fails to clearly differentiate between the 926

markers. 927

C-AvgCV evaluates the consistency of marker 928

confidence across datasets. For each shared marker 929

(markers that appear in each dataset) Wi, we com- 930

pute the CV of the marker confidence across differ- 931

ent datasets and then average these values over all 932

shared markers. The final C-AvgCV quantifies the 933

consistency of model-generated confidence across 934

multiple datasets. 935

The mathematical formulations for I-AvgCV 936

and C-AvgCV are given by: 937

CV (Dj ,Mk) =
σ(Dj ,Mk)

µ(Dj ,Mk)
, 938

I-AvgCV(Mk) =
1

|D|

|D|∑
j=1

CV (Dj ,Mk), 939
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CV (Wi,Mk) =
σ(Wi,Mk)

µ(Wi,Mk)
,940

C-AvgCV(Mk) =
1

|W |

|W |∑
i=1

CV (Wi,Mk),941

where |W | is the number of shared markers across942

every datasets for model Mk, σ(Dj ,Mk) is the943

standard deviation of the confidence scores for all944

markers in dataset Dj for model Mk, µ(Dj ,Mk)945

is the mean of the confidence scores for all mark-946

ers in dataset Dj for model Mk, σ(Wi,Mk) is947

the standard deviation of the confidence scores for948

the marker Wi across different datasets for model949

Mk and µ(Wi,Mk) is the mean of the confidence950

scores for the marker Wi across different datasets951

for model Mk.952

MRC To assess the alignment of marker rankings953

across datasets, we introduce a metric based on954

the Spearman rank correlation coefficient: Marker955

Rank Correlation (MRC). This metric capture the956

degree of consistency in marker confidence rank-957

ings across datasets.958

Specifically, For each pair of datasets (Dp, Dq),959

we compute the Spearman rank correlation coef-960

ficient between the confidence rankings of shared961

markers. The final MRC for the model is the aver-962

age correlation across all dataset pairs. The mathe-963

matical formulations for MRC are given by:964

MRC =
1

|P |
∑

(Dp,Dq)∈P
Dp ̸=Dq

ρ(Dp, Dq),965

where W1, . . . ,Wi are all the epistemic markers966

that shared by Dp and Dq, S(X,Y ) denotes the967

Spearman rank correlation coefficient between the968

rankings of X and Y and Conf(Wi, Dj ,Mk) rep-969

resents the confidence of marker Wi for model Mk970

on dataset Dj .971

MAC To analyze whether the confidence of972

markers and the accuracy of the model are posi-973

tively correlated, we propose the Marker Accuracy974

Correlation (MAC) based on the Pearson correla-975

tion coefficient.976

Specifically, for a given model Mk, we con-977

sider the confidence of a specific shared marker Wi,978

which is present across all datasets associated with979

Mk. We then compute the Pearson correlation coef-980

ficient between the set of marker confidences across981

these datasets and the model’s overall accuracies on 982

the same datasets. Finally, we compute the average 983

of the correlation coefficients ρ(Wi,Mk) across all 984

shared markers Wi to obtain the overall correlation 985

coefficient for the model, denoted as MAC(Mk). 986

It’s mathematical formula is given by: 987

MAC(Mk) =
1

|W |
∑

Wi∈W

ρ(Wi,Mk), 988

where W is the set of all shared markers Wi, |W | 989

is the number of all shared markers and ρ(Wi,Mk) 990

is the Pearson correlation coefficient between the 991

confidence of marker Wi and the model’s accuracy 992

on all the datasets. 993

These metrics provide a quantitative assess- 994

ment of the consistency and concentration of 995

model-generated confidence values across different 996

datasets. 997

B.4.2 Marker Filtering 998

We conduct all marker analytical experiments 999

(namely C-AvgCV, MAC, MRC, and I-AvgCV) 1000

by filtering markers that occur fewer than 10 times 1001

in the training set. This filtering is necessary be- 1002

cause our method of quantifying marker confidence 1003

is accuracy-based. If the sample size for a partic- 1004

ular marker is too small, its corresponding confi- 1005

dence values can be heavily influenced by random 1006

variations. For instance, if the marker “unsure” ap- 1007

pears only once in the training set and the response 1008

happens to be correct, the marker confidence for 1009

“unsure” would be 100%, which may not accurately 1010

reflect the model’s true intent. Previous works also 1011

show that confidence expression could be more re- 1012

flective for humans when the it is determined in 1013

a crowd-source manner (Pennekamp et al., 2024), 1014

which supports our setting. We have enough shared 1015

markers (more than ten for each model) after im- 1016

plementing the filter, which ensures the reliability 1017

of our experiment. 1018

On the other hand, all epistemic markers ob- 1019

tained from the training set are used for the exper- 1020

iment related to ECE values. Since the estimated 1021

confidence for each question in the test set is de- 1022

rived from the marker confidence in the training 1023

set, it is essential to ensure that the vast majority 1024

of markers in the test set can be mapped to corre- 1025

sponding markers in the training set. This approach 1026

is reasonable since the low frequency of marker oc- 1027

currences results in minimal impact on the overall 1028

calibration performance. 1029
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