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Abstract
The recent Long-Range Graph Benchmark (LRGB, Dwivedi et al. 2022) intro-
duced a set of graph learning tasks strongly dependent on long-range interaction
between vertices. Empirical evidence suggests that on these tasks Graph Trans-
formers significantly outperform Message Passing GNNs (MPGNNs). In this
paper, we carefully reevaluate multiple MPGNN baselines as well as the Graph
Transformer GPS (Rampášek et al. 2022) on LRGB. Through a rigorous empiri-
cal analysis, we demonstrate that the reported performance gap is overestimated
due to suboptimal hyperparameter choices. It is noteworthy that across multiple
datasets the performance gap completely vanishes after basic hyperparameter
optimization. In addition, we discuss the impact of lacking feature normalization
for LRGB’s vision datasets and highlight a spurious implementation of LRGB’s
link prediction metric. The principal aim of our paper is to establish a higher
standard of empirical rigor within the graph machine learning community.

1 Introduction
Graph Transformers (GTs) have recently emerged as a popular alternative to conventional Message
Passing Graph Neural Networks (MPGNNs) which dominated deep learning on graphs for years. A
central premise underlying GTs is their ability to model long-range interactions between vertices
through a global attention mechanism. This could give GTs an advantage on tasks where MPGNNs
may be limited through phenomenons like over-smoothing, over-squashing, and under-reaching,
thereby justifying the significant runtime overhead of self-attention.

The Long-Range Graph Benchmark (LRGB) has been introduced by Dwivedi et al. [1] as a collection
of five datasets with strong dependence on long-range interactions between vertices:

• Peptides-func and Peptides-struct are graph-level classification and regression tasks, respectively.
Their aim is to predict various properties of peptides which are modelled as molecular graphs.

• PascalVOC-SP and COCO-SP model semantic image segmentation as a node-classification task
on superpixel graphs.

• PCQM-Contact is a link prediction task on molecular graphs. The task is to predict pairs of
vertices which are distant in the graph but in contact in 3D space.

The experiments provided by Dwivedi et al. [1] report a strong performance advantage of GTs
over the MPGNN architectures GCN [2], GINE [3], and GatedGCN [4], in accordance with the
expectations. Subsequently, GPS [5] reached similar conclusions on LRGB. We note that these two
works are strongly related and built on a shared code base. Newer research on GTs (see Section 1.1)
is commonly based on forks of this code base and often cites the baseline performance reported by
Dwivedi et al. [1] to represent MPGNNs.

Our contribution is three-fold1: First, we show that the three MPGNN baselines GCN, GINE, and
GatedGCN all profit massively from further hyperparameter tuning, reducing and even closing

1Source code: https://github.com/toenshoff/LRGB
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METHOD PEPTIDES-FUNC PEPTIDES-STRUCT
TEST AP ↑ REL IMP TEST MAE ↓ REL IMP

L
R

G
B

GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
GINE 0.5498 ± 0.0079 0.3547 ± 0.0045
GATEDGCN 0.6069 ± 0.0035 0.3357 ± 0.0006
TRANSFORMER 0.6326 ± 0.0126 0.2529 ± 0.0016
SAN 0.6439 ± 0.0075 0.2545 ± 0.0012
GPS 0.6535 ± 0.0041 0.2500 ± 0.0005

O
U

R
S

GCN 0.6860 ± 0.0050 +16% 0.2460 ± 0.0007 +30%
GINE 0.6621 ± 0.0067 +20% 0.2473 ± 0.0017 +30%
GATEDGCN 0.6765 ± 0.0047 +11% 0.2477 ± 0.0009 +26%
GPS 0.6534 ± 0.0091 ± 0% 0.2509 ± 0.0014 ± 0%

O
T

H
E

R
S

CRAWL 0.7074 ± 0.0032 0.2506 ± 0.0022
DREW 0.7150 ± 0.0044 0.2536 ± 0.0015
EXPHORMER 0.6527 ± 0.0043 0.2481 ± 0.0007
GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012
GRAPH VIT 0.6942 ± 0.0075 0.2449 ± 0.0016
G-MLPMIXER 0.6921 ± 0.0054 0.2475 ± 0.0015

(a) Hyperparameter tuning on the peptides datasets.
Best results (within stdev) in bold.
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(b) Exchanging the linear prediction head by an MLP
accounts for most of the additional performance of all
three MPGNNs, especially on Peptides-Struct

Figure 1: On both Peptides datasets, all three MPGNNs surpass GPS. On Peptides-Struct a basic
GCN model even achieves SOTA results.

the gap to graph transformers on multiple datasets. In fact, GCN yields state-of-the-art results on
Peptides-Struct, surpassing several newer graph transformers. On this dataset in particular, most of the
performance boost is due to a multi-layer prediction head instead of a linear one, again highlighting
the importance of hyperparameters. Second, we show that on the vision datasets PascalVOC-SP and
COCO-SP normalization of the input features is highly beneficial. We argue that, as in the vision
domain, feature normalization should be the default setting. Third and last we take a closer look at
the MRR metric used to evaluate PCQM-Contact. There, we demonstrate different filtering strategies
have a major impact on the results and must be implemented exactly to specification to facilitate
reliable comparisons.

1.1 Related Work

Our primary focus are the commonly used MPGNNs GCN [2], GINE [3], and GatedGCN [4] as well
as the graph transformer GPS [5]. There are many more MPGNN architectures [6–9], as well as
graph transformers [5, 10–19], see also the survey by Min et al. [20]. Many newer graph transformer
architectures have reported results on LRGB datasets, including Exphormer [16], GRIT [18] and
Graph ViT / GraphMLPMixer [19]. Several other architectures not based on transformers have also
been evaluated on LRGB, including CRaWl [21], DRew [22] and Virtual Nodes [23, 24]. Finally, we
do see a connection of our work to graph learning benchmarking projects [25, 26] that also advocate
for rigorous testing of graph learning architectures.

2 Concerns
Hyperparameters. In this paper, we argue that the results reported by Dwivedi et al. [1] are not
representative for MPGNNs and suffer from suboptimal hyperparameters. We provide new results for
the same MPGNN architectures that are obtained after a basic hyperparameter sweep. We tune the
main hyperparameters (such as depth, dropout rate, . . . ) in pre-defined ranges while strictly adhering
to the official 500k parameter budget. The exact hyperparameter ranges and all final configurations
are provided in Appendix A.1. As a point of reference, we reevalute GPS in an identical manner and
also achieve significantly improved results on three datasets with this Graph Transformer. The results
reported for GPS may therefore also be subject to suboptimal configurations. Note that we also view
the usage of positional or structural encoding (none / LapPE [10] / RWSE [27]) as a hyperparameter
that is tuned for each method, including all MPGNNs.

Feature Normalization. The vision datasets PascalVOC-SP and COCO-SP have multi-dimensional
node and edge features with values spanning different orders of magnitude for different feature
channels. Passing this input to a neural network without channel-wise normalization can cause
poorly conditioned activations. While feature normalization is standard practice in deep learning
and computer vision in particular, neither Dwivedi et al. [1] nor any subsequent works using LRGB
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METHOD PASCALVOC-SP COCO-SP
TEST F1 ↑ REL IMP TEST F1 ↑ REL IMP

L
R

G
B

GCN 0.1268 ± 0.0060⋆ 0.0841 ± 0.0010⋆

GINE 0.1265 ± 0.0076⋆ 0.1339 ± 0.0044⋆

GATEDGCN 0.2873 ± 0.0219⋆ 0.2641 ± 0.0045⋆

TRANSFORMER 0.2694 ± 0.0098⋆ 0.2618 ± 0.0031⋆

SAN 0.3230 ± 0.0039⋆ 0.2592 ± 0.0158⋆

GPS 0.3748 ± 0.0109⋆ 0.3412 ± 0.0044⋆

O
U

R
S

GCN 0.2078 ± 0.0031 +64% 0.1338 ± 0.0007 +59%
GINE 0.2718 ± 0.0054 +115% 0.2125 ± 0.0009 +59%
GATEDGCN 0.3880 ± 0.0040 +35% 0.2922 ± 0.0018 +11%
GPS 0.4440 ± 0.0065 +18% 0.3884 ± 0.0055 +13%

O
T

H
E

R
S CRAWL 0.4588 ± 0.0079 -

DREW 0.3314 ± 0.0024⋆ -
EXPHORMER 0.3960 ± 0.0027⋆ 0.3430 ±0.0008⋆

(a) Tuning results on vision datasets PascalVOC-SP
and COCO-SP. ⋆No normalization used.
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(b) The effects of feature normalization and hyperpa-
rameter tuning on PascalVOC-SP.

Figure 2: On PascalVOC-SP and COCO-SP feature normalization and further tuning improves
performance across all compared methods.

utilize it, except CRAWL [21]. We apply channel-wise linear normalization to all input features and
show that all models (baselines and GPS) profit from it in an ablation in Figure 2b.

Link Prediction Metrics. The evaluation metric on the link-prediction dataset PCQM-Contact [1] is
the Mean Reciprocal Rank (MRR) in a filtered setting, as defined by Bordes et al. [28]. For predicted
edge scores the MRR measures how a given true edge (h, t) is ranked compared to all possible
candidate edges (h, x) of the same head. As there might be multiple true tails t for each head h,
the filtered MRR removes those other true tails (false negatives) from the list of candidates before
computing the metric. This filtering avoids erroneously low MRR values due to the model preferring
other true edges and is common in link-prediction tasks. Even though Dwivedi et al. [1] explicitly
define the metric to be the filtered MRR, the provided code computes the raw MRR, i.e. keeping
other true tails in the list. We report results on PCQM-Contact in a corrected filtered setting. We
additionally provide results with an extended filtering procedure where self-loops of the form (h, h)
are also removed from the set of candidates, since these are semantically meaningless and never
positive. This is impactful as the scoring function used by Dwivedi et al. [1] is based on a symmetric
dot-product and therefore exhibits a strong bias towards self-loops.

3 Experiments
Peptides-Func and Peptides-Struct. Table 1a provides the results obtained on the test splits
of the Peptides-Func and Peptides-Struct. For the MPGNN baselines we observe considerable
improvements on both datasets as all three MPGNNs outperform GPS after tuning. The average
precision on Peptides-Func increased relatively by around 10% to 20%. GCN achieves a score of
68.60%, which is competitive with newer GTs such as GRIT or Graph ViT. The improvement on
Peptides-Struct is even more significant with a relative reduction of the MAE of 30%, fully closing
the gap to recently proposed GTs. Surprisingly, a simple GCN is all you need to match the best
known results on Peptides-Struct. The results for GPS effectively stayed the same as in the original
paper [5]. Those values thus seem to be representative for GPS.

We observed that the key hyperparameter underlying the improvements of all three MPGNNs is
the depth of the prediction head. To show this Figure 1b contains an ablation where we exchanged
the linear prediction head configured by Dwivedi et al. [1] with a 2-layer perceptron, keeping all
other hyperparameters the same. While the benefit on Peptides-Func is considerable and highly
significant, on Peptides-Struct the head depth accounts for almost the complete performance gap
between MPGNNs and GTs. GPS’ performance with linear and deeper prediction heads is largely
unchanged. For example, our GPS configurations in Table 1a use a 2-layer prediction head. Our
results indicate that the prediction targets of both datasets appear to depend non-linearly on global
graph information. In this case, MPGNNs with linear prediction heads are unable to model the target
function. Graph Transformers are not as sensitive to linear prediction heads, since each layer can
process global graph information with a deep feed-forward network. However, we would argue that
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switching to a deep predictive head represents a simpler and computationally cheaper solution to the
same issue.

PascalVOC-SP and COCO-SP. Table 2a provides the results obtained on the test splits of the
superpixel datasets PascalVOC-SP and COCO-SP. We observe significant improvements for all
evaluated methods. On PascalVOC-SP the F1 score of GatedGCN increases to 38.80% which exceeds
the original performance reported for GPS by Rampášek et al. [5]. GPS also improves significantly
to 44.40% F1. This is only one percentage point below the results achieved by CRAWL, which
currently is the only reported result with normalized features. The previously large performance gap
between GPS and CRAWL is therefore primarily explained by GPS processing raw input signals. On
COCO-SP, we observe similar results. Here GPS sets a new state-of-the-art F1 score of 38.84%.

Note that these improvements are achieved entirely through data normalization and hyperparameter
tuning. Figure 2b provides an ablation on the individual effect of normalization. We train intermediate
models with configurations identical to those used by Dwivedi et al. [1] and Rampášek et al. [5],
but with feature normalization. For GatedGCN we observe a slight performance increase but a
large reduction in the variance across random seeds. For the remaining methods, including GPS,
normalization of node and edge features already accounts for at least half of the observed performance
gain, emphasizing its importance in practice.
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Figure 3: Results on PCQM-Contact. For our own
models we provide the MRR scores with varying
levels of filtering.

PCQM-Contact. Figure 3 plots the MRR
scores obtained on the test split with various
evaluation settings as described in the link pre-
diction paragraph of Section 2. First, we pro-
vide the results originally reported for LRGB
in the literature (a). Recall that these values
are obtained in a raw setting with false nega-
tives present. We then provide results obtained
after training our own model with new hyper-
parameters (chosen based on the raw MRR) in
b). We still use the raw MRR for evaluation
in b) to measure the impact of hyperparameter
tuning. Tuning yields an absolute improvement
of around 3%. The previously reported slight
performance edge of GPS is not observable in
this setting after tuning.

In subplot c) we measure the MRR of our models in the filtered setting. Note that these values
are based on the exact same predictions as in b), but false negatives are removed. The measured
MRR increases by roughly 3% when compared to the raw setting. This shift could erroneously be
interpreted as a significant improvement when comparing to literature values obtained in a raw setting.
In d) we evaluate our models (still using the same predictions) in an extended filtered setting where
we additionally remove self-loops from the candidate pool. Compared to the filtered MRR in c) the
MRR metric increases by about 10 percentage points, indicating that self-loops strongly affect the
results. Note that in d) GPS again slightly outperforms the MPGNN baselines, in contrast to b) and c).
This means that GPS’ predictions seem to suffer overproportionally when self-loops are not filtered.
Therefore, the specific choice of how negative samples are filtered on PCQM-Contact can directly
affect the ranking of compared methods and must be considered and implemented with care.

4 Conclusion

In our experiments we observed considerable performance gains for all three MPGNN baselines.
First, this indicates that extensive baseline tuning is important for properly assessing one’s own
method, escpecially on relatively recent datasets. And second, only on the two superpixel datasets
graph transformers exhibit clear performance benefits against MPGNNs, indicating that either there
are ways to solve the other tasks without long-range interactions or graph transformers are not
inherently better at exploiting such long-range dependencies. Evaluating this further appears to be
promising direction for future research. In addition, we would invite a discussion on the best-suited
link prediction metric on PCQM-Contact.
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A Experiment Details
A.1 Hyperparameters

In the following we describe our methodology for tuning hyperparameters on the LRGB datasets.
We did not conduct a dense grid search, since this would be infeasible for all methods and datasets.
Instead we perform a “linear” hyperparameter search. We start from a empricially chosen default
config and tune each hyperparameter individually within a fixed range. Afterwards, we also evaluate
the configuration obtained by combining the best choices of every hyperparameter. From all tried
configurations we then select the one with the best validation performance as our final setting. For
this hyperparameter sweep, we resorted to a single run per configuration and for the larger datasets
slightly reduced the number of epochs. For the final evaluations runs we average results across four
different random seeds as specified by the LRGB dataset.

Overall, we tried to incorporate the most important hyperparameters which we selected to be dropout,
model depth, prediction head depth, learning rate, and the used positional or structural encoding. For
GPS we additionally evaluated the internal MPGNN (but only between GCN and GatedGCN) and
whether to use BatchNorm or LayerNorm. Thus, our hyperparamters and ranges were as follows:

• Dropout [0, 0.1, 0.2], default 0.1
• Depth [6,8,10], default 8. The hidden dimension is chosen to stay within a hard limit of 500k

parameters
• learning rate [0.001, 0.0005, 0.0001], default 0.001
• Head depth [1,2,3], default 2
• Encoding [none, LapPE, RWSE] default none
• Internal MPGNN [GCN, GatedGCN], default GatedGCN (only for GPS)
• Normalization [BatchNorm, LayerNorm] default BatchNorm (only for GPS)

On the larger datasets PCQM-Contact and COCO we reduce the hyperparameters budget slightly
for efficiency. There, we did not tune the learning rate (it had been 0.001 in every single other case)
and omitted a dropout rate of 0. We note that the tuning procedure used here is relatively simple and
not exhaustive. The ranges we searched are rather limited, especially in terms of network depth, and
could be expanded in the future. Tables 1 to 5 provide all final model configurations after tuning.
Table 6 provides the final performance on all datasets.

We make some additional setup changes based on preliminary experiments. All models are trained
with an AdamW optimizer using a cosine annealing learning rate schedule and linear warmup. This
differs from Dwivedi et al. [1], who optimized the MPGNN models with a “Reduce on Plateau”
schedule and instead matches the learning rate schedule of GPS [5]. We set the weight decay to
0.0 in all five datasets and switch to slightly larger batch sizes to speed up convergence. We also
choose GeLU [29] as our default activation function. Furthermore, we change the prediction head
for graph-level tasks such that all hidden layers have the same hidden dimension as the GNN itself.
These were previously configured to become more narrow with depth, but we could not observe any
clear benefit from this design choice. Last, all MPGNN models use proper skip connections which go
around the entire GNN layer. The original LRGB results use an implementation of GCN as provided
by GraphGym [30]. The skip connections in this implementation do not skip the actual non-linearity
at the end of each GCN layer, possibly hindering the flow of gradients. We reimplement GCN with
skip connections that go around the non-linearity. Note that these additional tweaks are not used in
our ablation studies in Figure 1b and Figure 2b when training the intermediate models where we only
change the head depth and normalization, respectively. There, we use identical model configurations
to those used in the literature.

A.2 Feature Normalization

On PascalVOC-SP and COCO-SP we apply channel-wise normalisation to the node and edge features.
For each dataset, we compute the channel-wise mean µ ∈ Rd and standard deviation σ ∈ Rd on the
train split. Here, d is the feature dimension. Each feature vector x ∈ Rd is then normalized linearly
before beigng passed to the model:

x̃i =
xi − µi

σi
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Table 1: Hyperparameters on Peptides-Func

GCN GINE GatedGCN GPS

lr 0.001 0.001 0.001 0.001
dropout 0.1 0.1 0.1 0.1
#layers 6 8 10 6
hidden dim. 235 160 95 76
head depth 3 3 3 2
PE/SE RWSE RWSE RWSE LapPE
batch size 200 200 200 200
#epochs 250 250 250 250
norm - - - BatchNorm
MPNN - - - GatedGCN
#Param. 486k 491k 493k 479k

Table 2: Hyperparameters on Peptides-Struct.

GCN GINE GatedGCN GPS

lr 0.001 0.001 0.001 0.001
dropout 0.1 0.1 0.1 0.1
#layers 6 10 8 8
hidden dim. 235 145 100 64
head depth 3 3 3 2
PE/SE LapPE LapPE LapPE LapPE
batch size 200 200 200 200
#epochs 250 250 250 250
norm - - - BatchNorm
MPNN - - - GatedGCN
#Param. 488k 492k 445k 452k

Table 3: Hyperparameters on PascalVOC-SP.

GCN GINE GatedGCN GPS

lr 0.001 0.001 0.001 0.001
dropout 0.0 0.2 0.2 0.1
#layers 10 10 10 8
hidden dim. 200 145 95 68
head depth 3 2 2 2
PE/SE RWSE none none LapPE
batch size 50 50 50 50
#epochs 200 200 200 200
norm - - - BatchNorm
MPNN - - - GatedGCN
#Param. 490k 450k 473k 501k

Table 4: Hyperparameters on COCO-SP.

GCN GINE GatedGCN GPS

lr 0.001 0.001 0.001 0.001
dropout 0.1 0.1 0.1 0.1
#layers 6 6 8 8
hidden dim. 280 195 105 68
head depth 1 1 1 1
PE/SE none none none none
batch size 50 50 50 50
#epochs 200 200 200 200
norm - - - LayerNorm
MPNN - - - GatedGCN
#Param. 500k 478k 459k 500k

Table 5: Hyperparameters on PCQM-Contact.

GCN GINE GatedGCN GPS

lr 0.001 0.001 0.001 0.001
dropout 0.1 0.1 0.1 0.0
#layers 8 8 8 6
hidden dim. 215 160 105 76
head depth 1 1 1 1
PE/SE LapPE LapPE LapPE LapPE
batch size 500 500 500 500
#epochs 150 150 150 150
norm - - - LayerNorm
MPNN - - - GatedGCN
#Param. 456k 466k 477k 478k
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Table 6: Performance of our models on the Long-Range Graph Benchmark.

METHOD PASCALVOC-SP COCO-SP PEPTIDES-FUNC PEPTIDES-STRUCT PCQM-CONTACT
TEST F1 ↑ TEST F1 ↑ TEST AP ↑ TEST MAE ↓ TEST MRR ↑

RAW FILTER EXT. FILTER

GCN 0.2078 ± 0.0031 0.1338 ± 0.0007 0.6860 ± 0.0050 0.2460 ± 0.0007 0.3424 ± 0.0007 0.3631 ± 0.0006 0.4526 ± 0.0006
GINE 0.2718 ± 0.0054 0.2125 ± 0.0009 0.6621 ± 0.0067 0.2473 ± 0.0017 0.3509 ± 0.0006 0.3725 ± 0.0006 0.4617 ± 0.0005
GATEDGCN 0.3880 ± 0.0040 0.2922 ± 0.0018 0.6765 ± 0.0047 0.2477 ± 0.0009 0.3495 ± 0.0010 0.3714 ± 0.0010 0.4670 ± 0.0004
GPS 0.4440 ± 0.0065 0.3884 ± 0.0055 0.6534 ± 0.0091 0.2509 ± 0.0014 0.3498 ± 0.0005 0.3722 ± 0.0005 0.4703 ± 0.0014
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B Additional Experiments
In Table 7 we provide extended results for the ablation study from Figure 1b. More specifically, we
evaluate both GPS and GCN models on Peptides-Struct with predictive heads of various depths. As
in Figure 1b, we study the isolated effect of this hyperparameter on the performance and leave all
other hyperparameters identical to those used by Dwivedi et al. [1].

The main observation is the large performance jump of GCN when configured with a head of depth
two or three instead of the linear head that was originally chosen. The results of GPS do not suffer
from a linear prediction head, but also do not improve further for deeper configurations. This is
probably explained by the fact that each GPS layer can already process global graph information with
a deep feed-forward network. A deeper prediction head may therefore be redundant in GPS models.

Table 7: Detailed performance on Peptides-Func for GPS and GCN with the depth of the prediction
head varying from 1 to 3 layers.

depth GCN (MAE) GPS (MAE)

1 0.3496 ± 0.0013 0.2500 ± 0.0005
2 0.2547 ± 0.0019 0.2516 ± 0.0012
3 0.2534 ± 0.0013 0.2546 ± 0.0020
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