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Abstract

Event detection is a classic natural language
processing task. However, the constantly
emerging new events make supervised methods
not applicable to unseen types. Previous zero-
shot event detection methods either require pre-
defined event types as heuristic rules or resort to
external semantic analyzing tools. To overcome
this weakness, we propose an end-to-end frame-
work named Zero-Shot Event Detection Based
on Ordered Contrastive Learning and Prompt-
Based Prediction (ZEOP). By creatively intro-
ducing multiple contrastive samples with or-
dered similarities, the encoder can learn event
representations from both instance-level and
class-level, which makes the distinctions be-
tween different unseen types more significant.
Meanwhile, we utilize the prompt-based predic-
tion to identify trigger words without relying on
external resources. Experiments demonstrate
that our model detects events more effectively
and accurately than state-of-the-art methods.

1 Introduction

As a classic NLP task, event detection aims to iden-
tify events from natural language text. Most tradi-
tional supervised event detection methods (Nguyen
and Grishman, 2018; Wadden et al., 2019; Lin et al.,
2020) rely on a great number of event-specific an-
notated texts. However, in practice, obtaining large-
scale and high-quality annotated data requires sig-
nificant expertise and expensive resources. In the
real-world scenarios shown in Figure 1, the con-
stantly emerging of new events without annotated
samples, making supervised event detection meth-
ods no longer applicable.

To solve this challenge, the zero-shot event de-
tection task is proposed to automatically discover
and classify new events from unstructured texts in
the absence of manual annotation. Following previ-
ous works (Zhang et al., 2015; Huang et al., 2018;
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Figure 1: Zero-Shot Event Detection. A training dataset
with a few known event types is already annotated man-
ually. The Internet continually produce unlabeled text
data every second, which contains a large number of
new event types.

Huang and Ji, 2020; Wang et al., 2021), we denote
the known types as seen types and the new types
as unseen types. "Unseen" means that the event
labels of samples are not visible to the model.

Recently, multiple zero-shot event detection
methods have been proposed and show better per-
formance than supervised methods on zero-shot
tasks. However, they (Huang et al., 2018; Zhang
et al., 2021b; Lyu et al., 2021; Huang and Ji, 2020)
all require predefined event types as heuristic rules
or external semantic analyzing tools. For example,
event names are used to query trigger words by
semantical similarity, or the part-of-speech tagging
tools are used to find nouns and verbs in the text as
candidate trigger words. In these ways, human ef-
fort and external resources are still necessary when
detecting new event types. There is also a problem
of error accumulation across the tools and models.

To overcome the above weakness, this paper pro-
poses an end-to-end model named Zero-Shot Event
Detection Based on Ordered Contrastive Learn-
ing and Prompt-Based Prediction. The main idea
is introducing contrastive learning to move away
from the dependence on heuristic rules for unseen
event detection. As shown in Figure 2, traditional
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Figure 2: Traditional contrastive learning (left) only dis-
tinguish between positive and negative samples, while
ordered contrastive learning (right) constructs an or-
dered sequence of contrastive samples by the similarity
to the original sample.

contrastive learning simply divide samples into
two opposite classes: positive or negative, while
we construct four contrastive samples with differ-
ent similarities to the original sample. Then, the
ordered contrastive learning can draw a stronger
distinction between different unseen type events
by learning the partial order relationship of dif-
ferent contrastive samples. Meanwhile, in order
to discover new event types without relying on
heuristic rules, we utilize the prompt-based predic-
tion (Brown et al., 2020; Schick and Schütze, 2021;
Gao et al., 2021a) for trigger words identification,
which has been proved to be an efficient few-shot
learner.

The main work of this paper has the following
three points:

• We proposed a zero-shot event detection
model based on ordered contrastive learning.
By constructing multiple contrastive samples
with ordered similarities, the encoder could
learn a better representation of unseen types.

• We creatively introduce the prompt-based pre-
diction into the zero-shot event detection prob-
lem for trigger words identification, which re-
moved the dependency on predefined event
structures and heuristic rules.

• Experiments on two English datasets demon-
strate that the both supervised and zero-shot
event detection performance are improved
via ordered contrastive learning and prompt-
based prediction.

2 Related Work

2.1 Zero-shot event detection

The transfer learning-based zero-shot methods
mainly rely on a predefined event structure as
heuristic rules. In other words, models must know
the unseen event name (e.g Attack) and the el-
ements (e.g Attacker) consist of unseen events.
Huang et al. (2018) and Zhang et al. (2021b) cluster
unseen events by label semantic similarity with the
help of semantic structures analyzing tools such
as Abstract Meaning Representation (AMR) or Se-
mantic Role Labeling (SRL). Additionally, Lyu
et al. (2021) need to define QA queries for un-
seen event types manually. Although Huang and
Ji (2020) proposed SS-VQ-VAE to discover new
event types without human assistance, external part-
of-speech tagging tool is needed to find candidate
trigger words. Meanwhile, the semi-supervised
loss function could only roughly separate all un-
seen event samples from seen events. And the vari-
ational autoencoder focuses on the feature learning
of single instance. So it is still challenging to clus-
ter unseen events into multiple new types.

2.2 Contrastive learning

Contrastive learning aims to learn high-quality fea-
ture representations through self-supervision. The
core of contrastive learning is constructing posi-
tive and negative sample pairs. For labeled data,
the construction is relatively simple, where ran-
dom sampling by supervise label works in most
cases. For unsupervised learning with unlabeled
data, it needs more strategy to construct sample
pairs. Wang et al. (2021); Logeswaran and Lee
(2018) treat the target sentence’s context as a posi-
tive sample. Wang et al. (2020) proposed various
sample editing methods based on word masking
and shuffle. Gao et al. (2021b) introduce a dropout
mask for constructing contrastive samples, which
doesn’t need any textual edit. These approaches
focus on instance-level feature contrastive and only
divide samples into positive and negative. Zhang
et al. (2021a) try to overcome this weakness by op-
timizing a top-down clustering loss. Considering
that class-level features learning is as essential as
instance-level features, it’s necessary to improve
the traditional contrastive learning framework for
the zero-shot event detection task.
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Figure 3: The architecture overview of ZEOP.

2.3 Prompt-based prediction
Prompt-based prediction (Brown et al., 2020;
Schick and Schütze, 2021; Gao et al., 2021a) treats
the NLP downstream task as a masked language
modeling problem. The language model first gen-
erates a label word to a given prompt defined by
a task-specific template. Then the label word is
mapped to downstream task output space. In this
way, knowledge can be extracted from pretrained
language models at low cost, which makes full use
of pre-training corpus. This is an ideal approach for
event trigger word identification in the zero-shot
event detection task scenario, because it doesn’t
relay on any heuristic rules or external tools as
multiple approaches mention in Section 2.1,

3 Methodology

The architecture overview of Zero-Shot Event De-
tection Based on Ordered Contrastive Learning and
Prompt-Based Prediction (ZEOP) is shown in Fig-
ure 3. Given a set of seen events S and unseen
events U , all samples are first input into the con-
trastive sample generator as the original sample xi,
where a list of multiple contrastive samples is con-
structed as {s1, . . . , s4}. Subsequently, the event
encoder encodes event mentions as embedding vec-
tor ei, and the prototypical network predicts proba-
bility distribution over event types as pi. Ordered
contrastive loss is calculated for all samples, and su-
pervised loss is calculated only for samples of seen
events. Model parameters in the event encoder and
prototypical network could be updated by gradient
backward.

3.1 Contrastive sample generator
In this paper, we aim to resolve the zero-shot event
detection task. On the one hand, seen events sam-
ples could offer supervised labels, which are ideal
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Figure 4: How contrastive samples are constructed for
unseen types. The Φ denotes random sample operation.

class-level contrastive samples. On the other hand,
there are also some unseen events samples without
supervised labels, which could only be used for
instance-level contrastive samples. Therefore, we
construct four constructive samples, including both
class-level and instance-level, which are shown in
Figure 4. The similarities between these contrastive
and original samples differ from strong to weak.

3.1.1 Dropout sample

Dropout mask is proposed by (Gao et al., 2021b),
which passes the same sentence to the pre-trained
encoder twice. Because the network nodes of the
encoder are randomly dropped when training, a
different event embedding will be obtained for the
second time. The dropout sample should be consid-
ered the most similar contrastive sample with the
same input sentences.

3.1.2 Rewrite sample

The rewrite sample is textually edited from the
original event mention. In order to ensure the con-
sistency of semantics, we choose the back transla-
tion (Fadaee and Monz, 2018) for event mention
rewriting. Rewrite samples should be considered
the secondary similar contrastive sample because
they keep the original event trigger and elements.

3.1.3 Homogeneous sample

Homogeneous samples are events with the homo-
geneous event type. For seen events, the homoge-
neous samples are random sampled from events
with same label {si ∈ S|si.type = xi.type}. For
unseen types, the label of the original event is in-
visible for the model, so the homogeneous samples
are randomly sampled from all unseen types U .
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Figure 5: Prompt-based trigger word prediction. The
prompt template is populated with the event mention
and encoded by a pre-trained BERT. The contextual
vector corresponding to the [MASK] tag is used for
trigger prediction.

3.1.4 Heterogeneous sample
Heterogeneous samples are events with heteroge-
neous types. For seen events, heterogeneous types
mean seen events with a different label {si ∈
S|si.type 6= xi.type}. For unseen events, the het-
erogeneous type means all seen types S due to the
label of the original event is invisible for the model.

It should be noted that a homogeneous sample
may have a different label with the original sam-
ple. But it could be guaranteed that heterogeneous
samples always have different label. Therefore the
heterogeneous samples are regarded as the least
similar contrastive samples.

3.2 Event encoder
Following existing zero-shot event detection ap-
proaches (Huang and Ji, 2020; Zhang et al., 2021b),
the best embedding feature for an event should be
the contextual vector of trigger words. The prob-
lem is how to identify the trigger words under the
zero-shot setup. Inspired by (Brown et al., 2020;
Schick and Schütze, 2021; Gao et al., 2021a), we
utilize the prompt-based prediction for trigger word
identification, which doesn’t rely on any heuristic
rules or external semantic analyzing tools.

3.2.1 Trigger word prediction
As shown in Figure 5, we use "This is event about
[MASK]. <event mention>" as prompt template,
where the [MASK] is the trigger word that pre-
trained BERT (Devlin et al., 2019) language model
should predict, and the <event mention> is the text
describing an event. In specific, given a BERT
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Figure 6: Event type prediction by prototype network.
The query vector is the result of element-wise adding
the contextual vector of [CLS] and [MASK] token.

input sequence t = {w0, w1, w2, . . . , wL}, where
wi is the ith token of the template sentence, we
obtain a word distribution pm(wm = wi|t) over all
the words in the event mention.

3.2.2 Event type prediction

For event type prediction, we introduce prototype
network (Snell et al., 2017). It defines a prototype
matrix C ∈ Rn×h, where each row represents the
prototype of one embedded event type ci and h
is the embedding dim of BERT. The number of
embedding types is n = k + l, where k is the
number of seen event types and l is the number
of unseen event types. The value of the prototype
matrix is randomly initialized and keeps updating
while training the model. As shown in Figure 6,
give a query vector x, the distribution over event
types is calculated by the prototypical network as
follow:

p(y = i |x) =
exp(−d(f(x), ci))∑
i′ exp(−d(f(x), ci′))

(1)

where d(x, ci) is the Euclidean distance between
embedding vector x and ci.

One event type may correspond to multiple trig-
ger words in the event detection task. If only the
predicted trigger words were used as the query
point, samples with the same event type would be
mapped to hidden space with large distances. So
we add the contextual vector of [CLS] and [MASK]
token as query vector x to balance event type and
trigger words features.



3.3 Ordered contrastive loss
The design goal of the contrastive loss function is
to narrow the distance between similar samples and
push away different samples. To better represent
unseen events under the zero-shot setting, the pro-
posed ordered contrastive learning constructs two
represent contrastive samples (Dropout Sample and
Rewrite Sample), an inner-cluster contrastive sam-
ple (Homogeneous Sample), and an inter-cluster
contrastive sample (Heterogeneous Sample). Given
four contrastive samples with different similarities
to the original sample, we designed a novel ordered
contrastive loss function by expanding the contrast
loss function in (Hadsell et al., 2006). Our model
could learn the partial order relationship in similar-
ity: Dropout Sample > Rewrite Sample > Homo-
geneous Sample > Heterogeneous Sample. Thus
model will distinguish between different unseen
type events more significant.

Let p0, p1, p2, p3, and p4 be the event type prob-
ability distribution of the original, dropout, rewrite,
homogeneous, and heterogeneous samples, respec-
tively. The distance between contrastive samples
and the original sample are calculated as d1, d2, d3,
and d4:

di = Wp(pi, p0), i ∈ {1, 2, 3, 4} (2)

Considering the vectors to be compared are
probability distribution, we utilize Wasserstein dis-
tance (Kolouri et al., 2019) as the distance function
Wp. Compared to Euclidean distance and cosine
distance commonly used in contrastive learning,
Wasserstein distance could better measure the dif-
ference between probability distributions.

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
X×Y

dp(x, y)dγ(x, y)

) 1
p

(3)
The similarities between contrastive samples and

the original sample decrease. Four distances may
form an increasing list. For seen events, this list
is strictly increasing. For unseen events, this list
is not strictly increasing because the homogeneous
sample may carry a different label. Therefore, the
ordered contrastive loss for sample x is calculated
as:

Lc = d1 + Lm(d2, d1) + Lm(d3, d2)

+

{
Lm(d4, d3) x ∈ S
Lm(d4, d2) x ∈ U

(4)

Table 1: Statistics of datasets. The |V | and |D| are the
number of samples and event types. The last two rows
are the mean and standard deviation of samples by type.

Dataset
ACE-2005 FewShotED
|V | |D| |V | |D|

Seen 2316 17 40893 50
Unseen 1489 16 33439 50
Total 3805 33 74332 100
Mean 115.30 743.32
Stdev 206.32 2828.47

where Lm(dx, dy) is the margin loss:

Lm(dx, dy) = max(0,margin− (dx−dy)) (5)

3.4 Supervised loss
Since the first k rows of the prototype matrix corre-
spond to the seen event types, we could also apply
supervised learning for seen events in addition to
the contrastive learning. With the label and trigger
word visible to the model, the negative log loss
function is calculated as:

Ls =

{
−ŷxlog(yx)− ẑxlog(zx) x ∈ S
0 x ∈ U

(6)

where ŷx and ẑx are the ground truth label of event
type and trigger words, respectively.

The complete loss of ZEOP is the sum of ordered
contrastive loss and supervised loss

Loss = Lc + Ls (7)

4 Experiments

4.1 Implementation
We implement our model in PyTorch (Paszke et al.,
2019) with Transformer Library (Wolf et al., 2020)
and choose bert-base-uncased as the pre-trained
language model. For back translation, we use
Argos Translate1 and set Chinese as the interme-
diate language. For model training, we use the
AdamW(Loshchilov and Hutter, 2019) optimizer
with batch size of 32, and the learning rate is grid
searched in [1e−7, 1e−4] for parameters of BERT,
[1e − 4, 1e − 2] for non-BERT parameters. The
margin in contrastive loss is set to 1, and the un-
seen event types count l is set to the actual value
of the dataset. With above settings, the total num-
ber of parameters in ZEOP is 109.53 million, of

1https://www.argosopentech.com



Table 2: Comparison with different baseline. The results are averaged across 3 runs with random seed 2020, 2021,
and 2022.

Model
ACE-2005 FewShotED

F1-Seen F1-Unseen NMI FM F1-Seen F1-Unseen NMI FM
SCCL 0.5999 0.3190 0.3259 0.2403 0.8717 0.3640 0.2647 0.3462
SS-VQ-VAE 0.6988 0.3509 0.2515 0.4269 0.9208 0.4364 0.1722 0.5762
BERT-OCL 0.6040 0.3751 0.4532 0.2551 0.9017 0.2160 0.4157 0.1894
ZEO 0.7566 0.4230 0.3771 0.4253 0.9361 0.5456 0.4792 0.6410
ZEOP 0.7771 0.4591 0.3797 0.4913 0.9306 0.5814 0.4831 0.7139

which 109.51 million (99.98%) belong to the pre-
trained BERT. All the experiments are performed
on a Linux server with four RTX 3090 GPUs. The
code of all experiments is available at GitHub2.

4.2 Dataset

We evaluate the proposed model on two datasets in
English. Ace-20053 is a widely used (Huang et al.,
2018; Huang and Ji, 2020; Zhang et al., 2021b;
Lyu et al., 2021) dataset for the event detection
task. FewShotED (Deng et al., 2020) is a dataset
proposed for the few-shot event detection task. To
balance the sample count between seen and unseen
types, we first sort the event types by the decreas-
ing order of the sample count. Then take event
types at the odd position as seen types and the even
position as the unseen type. For example, given
a list of event type list t1, t2, t3, t4 sorted by sam-
ple count, the t1 and t3 will be mark as seen event
types, the t2 and t4 will be mark as unseen event
types. The Statistics of the processed dataset are
shown in table 1. We may assume that each sam-
ple only belong to one event type. In comparison,
the number of samples and types in the ACE-2005
dataset is smaller than FewShotED. The problem
of sampling bias is more evident on FewShotED.
These datasets will be randomly divided into train-
ing set, validation set, and test set at a ratio of 8:1:1.

4.3 Evaluation

We set up two tasks for evaluation: supervised
event detection for seen events and zero-shot event
detection for unseen events. The f1 score will be
used as the common metric for two tasks. For seen
events, the predicted labels are directly output by
the model. For unseen events, the predicted labels
are mapped from model outputs by the Hungarian
Algorithm. Additionally, following (Huang and
Ji, 2020; Zhang et al., 2021a), Normalized Mutual

2https://github.com/KindRoach/NAACL-ZEOP
3https://catalog.ldc.upenn.edu/LDC2006T06

Info (NMI) and Fowlkes Mallows (FM) will be
used for unseen events detection to evaluate the
clustering performance.

4.4 Baseline

Considering that the zero-shot event detection task
focused in this study has no available pre-defined
event types, many approaches mentioned in Sec-
tion 2.1 are not applicable because they require
event type names or QA queries as model input. So
we use the following approaches as the experimen-
tal baselines.

• SCCL (Zhang et al., 2021a): A state-of-the-
art model designed for unsupervised text clus-
tering could detect new event types from un-
seen event mentions. We use the contextual
vector of same candidate trigger words as SS-
VQ-VAE instead of [CLS] token as event men-
tion representation to fit event detection task.

• SS-VQ-VAE (Huang and Ji, 2020): A semi-
supervised zero-shot event Detection model
uses the variational autoencoder as regular-
izer. It considers all noun and verb concepts
that can be mapped to OntoNotes senses as
candidate trigger words.

• BERT-OCL: We fine-tune a BERT with the
ordered contrastive framework proposed in
this paper, where the distance between the
contrastive sample and the original sample is
calculated by Euclidean distance. Once event
encoding is obtained, KNN algorithm is ap-
plied to seen events detection as the classifier
and K-means algorithm is applied to unseen
event detection as the cluster.

• ZEO: The version of ZEOP don’t identify
event trigger word by prompt-based predic-
tion, and use the same heuristic rules as SS-
VQ-VAE to identify candidate trigger words.



Table 3: Ablation study for different contrastive samples.

Model
ACE-2005 FewShotED

F1-Seen F1-Unseen NMI FM F1-Seen F1-Unseen NMI FM
ZEOP-woCL 0.8365 0.4082 0.3477 0.4523 0.9658 0.5078 0.4803 0.5396
+Dropout 0.8128 0.4219 0.3789 0.5545 0.9650 0.5467 0.4637 0.7263
+Rewrite 0.8279 0.3732 0.3382 0.4994 0.9591 0.5402 0.4743 0.7246
+Homogeneous 0.7433 0.4238 0.3569 0.5463 0.9378 0.5625 0.4453 0.6741
ZEOP 0.7771 0.4591 0.3797 0.4913 0.9306 0.5814 0.4831 0.7139

Table 4: Ablation study for different contrastive distance metrics.

Model
ACE-2005 FewShotED

F1-Seen F1-Unseen NMI FM F1-Seen F1-Unseen NMI FM
ZEOP-Eu 0.8170 0.3533 0.3465 0.3152 0.9648 0.4505 0.4656 0.4770
ZEOP-Kl 0.7910 0.3543 0.3960 0.2515 0.9245 0.3236 0.4465 0.3188
ZEOP 0.7771 0.4591 0.3797 0.4913 0.9306 0.5814 0.4831 0.7139

4.5 Overall performance

The overall performance of ZEOP and all baseline
approaches are shown in Table 2. Our proposed
model achieved the best overall performance on
two datasets for both seen and unseen event detec-
tion tasks, except the BERT-OCL takes the lead
on Normalized Mutual Info on ACE-2005, which
may be due to the small number of samples in the
dataset. The prototypical network used by ZEOP
needs more samples to train its prototype matrix
of classes, while Bert-OCL could directly use the
embedding result of pre-trained bert. Besides, we
could observe that: 1) Comparing the evaluation of
ZEO and ZEOP, although ZEO shows a slight per-
formance advantage on F1 score on FewShotED for
seen event detection task, other metrics proved that
prompt-based prediction gives model better perfor-
mance than heuristic rules as trigger word identifier.
2) The SCCL and BERT-OCL show worse perfor-
mance than SS-VQ-VAE on seen event detection
task, which demonstrates that supervised learning
is still necessary and could not be replaced by con-
trastive learning.

4.6 Ablation study

To explore the effect of four contrastive samples,
we conduct an ablation experiment by introduc-
ing them one by one to the ZEOP-woCL model,
which takes no contrastive samples. The compari-
son of their performance is shown in Table 3. As
all contrastive samples are added to the model, the
performance improves on the unseen event detec-
tion task, but there is a performance decrease on
the seen event detection task. This demonstrates
that contrastive learning does help the model to

learn a better representation of unseen types, but
its training objectives will conflict with the goal of
supervised learning.

What’s more, we also validate the effect of
Wasserstein distance as the distance metric in the
ordered contrastive loss. Table 4 indicates that the
ZEOP model using Wasserstein distance performs
better on unseen event detection task than ZEOP-
Eu using Euclidean distance and ZEOP-Kl using
Kullback-Leibler divergence. However, Euclidean
distance shows better results on seen event detec-
tion task.

4.7 Qualitative analysis
For qualitative analysis, we visualize all unseen
types samples in the dataset by t-SNE 4. As Fig-
ure 7 and Figure 8 show, the model with ordered
contrastive learning (ZEOP and BERT-OCL) could
learn a better representation of unseen types than
other baselines. The larger the number of samples
a type contains, the better cluster will be achieved.
Overall, the classification of unknown event types
is significantly more complex than known types,
and only a small number of types with large sam-
ple sizes are correctly classified. Many clusters
could not be mapped one-to-one to the actual event
type with the absence of supervision learning. The
model may use event elements such as subject and
location as clustering features rather than the event
type itself.

4.8 Hyperparameter sensitivity analysis
The number of clusters is an essential hyperparam-
eter in the clustering problem. In order to explore

4https://scikit-learn.org/stable/modules/generated/
sklearn.manifold.TSNE.html



Figure 7: Visualization of unseen types on ACE-2005. Each color indicates a ground truth type.

Figure 8: Visualization of unseen types on FewShorED. Each color indicates a ground truth type.

the impact of parameter unseen types l on the per-
formance of ZEOP, we conduct a hyperparameter
experiment by setting l to the 1, 2, 3, 4, and 5 times
of the actual number of unseen types. As shown in
Figure 9, ZEOP suffers a slight performance drop
when unseen type numbers increase. The model is
more likely to classify the same event type into dif-
ferent clusters. In practice, properly estimating the
approximate number range of unknown event types
will help the model to achieve a better performance.

5 Conclusion

In order to solve the problem of zero-shot event
detection, this paper proposes an end-to-end model
named Zero-Shot Event Detection Based on Or-
dered Contrastive Learning and Prompt-Based Pre-
diction. By creatively introducing multiple con-
trastive samples with different similarities, the con-
trastive loss is extended from pairwise compari-
son to list-wise comparison. Therefore, the model
could learn a better representation across instance-
level and class-level. Meanwhile, the prompt-based
prediction is utilized to identify event trigger words
without relying on heuristic rules. Experiments
demonstrate that our method can significantly im-
prove the accuracy of identifying unseen event
types while keeping the ability to classify seen
event types. Future research should consider the po-

Figure 9: Effects of unseen types number.



tential effects of the initialization of the prototype
matrix in the prototypical network more carefully.
A better initial value may reduce the need for large
training samples and speed up model training.
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