
GNNs Also Deserve Editing, and They Need It More Than Once

Shaochen (Henry) Zhong * 1 Duy Le * 2 Zirui Liu 1 Zhimeng Jiang 3 Andrew Ye 2 Jiamu Zhang 2 Jiayi Yuan 1

Kaixiong Zhou 4 Zhaozhuo Xu 5 Jing Ma 2 Shuai Xu 2 Vipin Chaudhary 2 Xia Hu 1

Abstract

Suppose a self-driving car is crashing into pedes-
trians, or a chatbot is instructing its users to con-
duct criminal wrongdoing; the stakeholders of
such products will undoubtedly want to patch
these catastrophic errors as soon as possible. To
address such concerns, Model Editing: the study
of efficiently patching model behaviors without
significantly altering their general performance,
has seen considerable activity, with hundreds of
editing techniques developed in various domains
such as CV and NLP. However, the graph
learning community has objectively fallen be-
hind with only a few Graph Neural Network-
compatible — and just one GNN-specific —
model editing methods available, where all of
which are limited in their practical scope. We ar-
gue that the impracticality of these methods lies in
their lack of Sequential Editing Robustness: the
ability to edit multiple errors sequentially, and
therefore fall short in effectiveness, as this setup
mirrors how errors are discovered and addressed
in the real world. In this paper, we delve into
the specific reasons behind the difficulty of editing
GNNs in succession and observe the root cause
to be model overfitting. We subsequently propose
a simple yet effective solution — SEED-GNN —
by leveraging overfit-prevention techniques in a
GNN-specific context to derive the first and only
GNN model editing method that scales practi-
cally. Additionally, we formally frame the task
paradigm of GNN editing and hope to inspire
future research in this crucial but currently over-
looked field. Please refer to our GitHub repository
for code and checkpoints.

*Equal contribution 1Rice University 2Case Western Reserve
University 3Texas A&M University 4North Carolina State Uni-
versity 5Stevens Institute of Technology. Correspondence to:
Shaochen (Henry) Zhong <shaochen.zhong@rice.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
When training and evaluating models, comprehensive met-
rics like classification accuracy are regarded as some of
the most pursued and crucial criteria for machine learning.
Indeed, even a slight but consistent improvement in these
metrics often transfers to immediate practical gain when
these systems are deployed. Yet, metrics that evaluate such
models at large critically lack the capability to effectively
address the particular errors that these same models may
potentially accrue over their training period. Simply classi-
fying outputs to a degree of correctness is not enough, since
two wrong outputs that appear the same on paper can
result in drastically different impacts in the real world,
as some mistakes are inherently more damaging than others.
Take, for instance, a self-driving car that wrongfully classi-
fies a sedan as an SUV versus another one that wrongfully
classifies a street-crossing child as a bunny — while both
mistakes are considered just “one wrong prediction” under
metrics like overall accuracy, the latter one is undoubtedly
more catastrophic.

Model Editing — or Knowledge Editing — aims to address
this oversight by studying the efficient patching of partic-
ular undesirable model outputs without significantly alter-
ing the model’s general behavior on unrelated input (Yao
et al., 2023; Gu et al., 2023). The approach has since been
widely adopted due to its ability to efficiently deliver (ideally
guaranteed) patches on errors that models may make. Fur-
thermore, editing techniques often carry great practical
significance due to their relevance in model development
and maintenance, as high-profile failure cases will almost
always occur during commercial deployment and after ini-
tial development (e.g., training, fine-tuning, and internal
testing). As such, the ability to efficiently address post-hoc
high-profile failure cases without expensive and perhaps
unrealistic remedies — such as a complete retraining of the
model — is not only valuable but, in some cases, the only
practical way to correct model behavior.

1.1. GNNs Deserve Model Editing Too, but Why Don’t
They Get Any?

Despite the rapid advancement of model editing in domains
like Computer Vision (CV) (Sotoudeh & Thakur, 2021;

1

https://github.com/henryzhongsc/gnn_editing

GNNs Also Deserve Editing, and They Need It More Than Once

Santurkar et al., 2021; Tanno et al., 2022), Natural Lan-
guage Processing (NLP) (Meng et al., 2023b;a; Zhu et al.,
2020; Cao et al., 2021; Mitchell et al., 2022), and others
(Mazzia et al., 2023; Cheng et al., 2023; Yu et al., 2023), the
graph learning community has largely been left behind, with
EGNN by Liu et al. (2023a) being the only Graph Neural
Network (GNN) specific model editing technique proposed.
The considerable difference in popularity between the graph
and non-graph domains in terms of model editing techniques
begs the intriguing and natural question — Why?

Although there is no absolute answer to this question, as it
depends on different researchers’ tastes, resources, exper-
tise, and exposure, we believe the measurable root of the
phenomenon to be mainly tri-fold:

Lack of recognition, as graphs are less intuitive than
text and images. On the mainstream data types (e.g., text
and image) with well-developed model editing techniques,
there are various straightforward scenarios in which incor-
rect model outputs may pose severe consequences, like the
aforementioned self-driving example. However, in common
graph-related scenarios such as social networks or recom-
mender systems, such catastrophic outcomes are not as
frequently encountered in day-to-day life, nor as “graphic”
or “intuitive” in comparison to catastrophic failure cases in
text and image space. This may lead people to overlook the
research on Graph/GNN model editing.

Nonetheless, we note that graph-based learning cer-
tainly has high-impact applications, such as in loan ap-
proval (Petrone & Latora, 2018), the detection of fake news
(Shu et al., 2017), crime prevention (Wang et al., 2022),
substance synthesis (Yu et al., 2022), drug repurpose (Hsieh
et al., 2021), and health diagnosis (Li et al., 2022). For
example, mistakes in the prediction of therapeutic drugs
can lead to the waste of resources during wet lab testing,
delaying the discovery of novel therapies and worsening
patient conditions. Similar severity can be argued should
a graph-based crime prevention model make wrong predic-
tions about potential suspects, resulting in unpredictable
high-stress police-civilian interaction without proper merit.

Lack of practical usability, as current GNN-compatible
editing techniques all exhibit inadequate Sequential Edit-
ing Robustness. Even the most successful GNN editing
method currently available (EGNN by Liu et al. (2023a))
can only afford to fix a single error or, if lucky, at most a few
(< 5) instances sequentially before suffering unacceptable
performance drops (EGNN may induce up to 49.3% drop
on overall accuracy upon multiple edits). Such a decreased
level of performance cannot support any form of practical
utilization, as those high-profile failure cases mentioned
above will always manifest in a sequential manner, where
there is certainly more than one failure case required

to be taken care of. To make things worse, the sequential
nature of error discovery implies a later occurred error case
might be the direct result of previously conducted edits;
yet, some earlier patched errors might reemerge due to the
overwrite effect of an inconsiderate later patch. Thus, we
define having strong Sequential Editing Robustness as the
ability to sequentially patch a large number of editing targets
without suffering in general performance; and we consider
it to be one of the most reflective metrics for gauging the
practical usability of an editing method.

GNNs are intrinsically less robust to editing influence
due to neighbor aggregation. As revealed in Liu et al.
(2023a), the neighborhood aggregation mechanism in GNNs
will propagate the changes made by the model editing on
one node to its neighboring nodes, or even the whole graph,
which can easily degrade the overall prediction performance
of the model, making GNN an editing-sensitive architecture
by nature. More on this in Section 4.1.

1.2. The Enemy is, Once Again, Overfitting

As mentioned in Section 1.1, GNN editing lacks both recog-
nition and practical performance, since it is intrinsically a
difficult task, resulting in the area of GNN model editing
remaining largely unexplored. In this work, we reveal that
the main reason that GNNs are editing-sensitive is not
solely due to neighborhood aggregation (or message pass-
ing) as suggested by Liu et al. (2023a), but lies more in
the simple overfitting of editing targets. To mitigate this
issue, we leverage a vanilla batching operation to stitch each
editing target at hand with a subset of training samples and
previously edited targets, resulting in edited models that
generate correct outputs and exhibit greater generalization
capabilities. Our main claims and contributions are:

• The first sequential and robust graph editing
method. We propose Sequentially Editable Graph
Neural Networks, or SEED-GNN, which employs sev-
eral lightweight operations to mitigate overfitting and
integrates seamlessly with existing editing pipelines (Liu
et al., 2023a). We find that our method performs vastly
better, is more scalable, and remains generalized in con-
trast to all existing graph-editing techniques under all
evaluations we conducted (and we evaluate plenty com-
prehensively).

• A better understanding of why GNNs are edit-sensitive.
In addition to our proposed method, we additionally pro-
vide an in-depth investigation into why graph neural net-
works react to edits so severely, and determine the primary
cause to be the overfitting of edit targets. This conclu-
sion subverts the investigation of prior art (Liu et al.,
2023a), opening a new potential direction of GNN editing
research.

• The comprehensive formalization/evaluation of the

2

GNNs Also Deserve Editing, and They Need It More Than Once

task of GNN editing. Finally, we formulate a rather
extensive set of descriptions, objectives, and evaluation
metrics specific to the task of (sequential) graph editing
for the purpose of promoting and aiding future research
in this field. We also replicated and evaluated almost all
visible GNN editing methods — as well as several intu-
itive adaptations of finetuning techniques — against these
metrics, and we plan to release all model checkpoints and
code implementation in our GitHub repository to provide
our fellow scholars with a friendly workbench.

Moreover, we must note the field of GNN model editing is
a field with one of the highest degrees of freedom, which
is often appreciated by many ML scholars. This is because
editing experiments are often extremely fast to run, yet
it is no longer bonded within the typical train-validation-
evaluation pipeline (which is especially exciting due to the
connected nature of graph data), forming a perfect play-
ground for technical creativity. We wholeheartedly invite
our fellow scholars to explore this important, overlooked,
yet opportunities-filled realm.

2. Related Work
Model editing is a field of study that rests under the wings
of safe and efficient machine learning, since properly edited
models are made more reliable without extraordinary costs
and severe service interaction like retraining. Given the
scarcity of GNN-specific editing methods, we provide a
brief walkthrough of model editing development and its
taxonomy, and refer our reader to survey works such as
Mazzia et al. (2023), Zhang et al. (2024b), and curated lists
like KnowledgeEditingPapers for a more up-to-date and
comprehensive understanding of model editing (Yao et al.,
2023).

Model Editing in Different Domains As mentioned in
the previous section, model editing is a popular realm under
various domains like Computer Vision (Sotoudeh & Thakur,
2021; Santurkar et al., 2021; Tanno et al., 2022), Natural
Language Processing (Meng et al., 2023b;a; Zhu et al., 2020;
Cao et al., 2021; Mitchell et al., 2022), interdisciplinary
areas between the two such as Multimodal Models (Cheng
et al., 2023), or some more specific areas like Safety-critical
Systems (Yu et al., 2023). Further, model-agnostic editing
techniques such as ENN by Sinitsin et al. (2020) (which
also happen to be the first editing work, to the best of our
knowledge) or even general fine-tuning techniques such as
Adapter-tuning (Houlsby et al., 2019) and LoRA (Hu et al.,
2022) may serve as a potential vehicle for the editing task.

Model Editing for Graph Neural Networks To the best
of our knowledge, EGNN by Liu et al. (2023a) is the only
GNN-specific model editing technique prior to our work.

Though some general, model-agnostic methods like ENN
(Sinitsin et al., 2020) and fine-tuning-based techniques like
Adapter-tuning (Houlsby et al., 2019) are technically GNN-
compatible, they cannot produce even grossly acceptable
performance often due to having unaligned assumptions of
(graph) data or lack of accommodation of the neighborhood
aggregation mechanism, which happens to be two major
ingredients to GNNs. This is evidenced by simply fixing
the output of one instance (a.k.a. single-edit) with ENN or
Adapter-tuning will cause more than 92.4% of general ac-
curacy drop, making the edited model completely unusable
(Table 6).

While EGNN (Liu et al., 2023a) does provide a massive per-
formance improvement upon previous migrated approaches
in terms of the single-edit evaluation, it still severely suffers
from its low Sequential Edit Robustness. An EGNN-edited
GNN will have up to 49.3% accuracy drop upon sequen-
tially editing more than ten examples (Table 5). Considering
there are almost always more than ten high-profile errors to
take care of during the span of a model’s life, EGNN, un-
fortunately, cannot fulfill the editing duty under a practical
context.

However, we authors believe EGNN’s main contribution
lies in its analytical part rather than its solutions. EGNN is
the first work to discover that the GNN architecture is nat-
urally more sensitive to editing influence in comparison to
other common architectures (e.g., MLP). More on EGNN’s
contribution in Section 4.1.

3. Preliminary: Formalizing Model Editing for
Graph Neural Networks

Given that the task of general model editing was first pro-
posed by Sinitsin et al. (2020) around 4 years ago, many of
its terms and objectives still lack consistency amongst dif-
ferent scholars and literature (Mazzia et al., 2023). Added
with the extreme scarcity of GNN editing works, the gen-
eral framework of model editing might be burdensome for
readers in the graph learning community to grasp, let alone
taking graph-specific settings into consideration. Thus, we
hereby formally conceptualize the GNN (sequential) editing
task paradigm, provide practical guidance regarding data
management, and define its evaluation criteria.

3.1. The Task Paradigm

Suppose a GNN model M0 trained with training dataset
Dtrain is then evaluated on the test set Dtest. Let us assume
that the evaluation result of output M0(Dtest) indicates the
model is generating undesired outputs on e1 = (Xe1 , Ye1)
for e1 ∈ Dtest, where (Xe1 , Ye1) are the features and label
of e1, such that M0(e1) ̸= Ye1 . If this e1 is considered “edit
worthy” due to the potential high-profile impact it entails,

3

https://github.com/henryzhongsc/gnn_editing
https://github.com/zjunlp/KnowledgeEditingPapers

GNNs Also Deserve Editing, and They Need It More Than Once

e1 is considered the editing target at hand.

We would then like to perform the editing operation Edit
upon M and editing target e1, resulting in an edited model
Edit(M0, e1) = M1, where a successful edit means
M1(e1) = Ye1 , correcting the previously wrong output
of e1 while maintaining similar performance in regards
to inputs that are unrelated to e1 — i.e., we’d like to
M0(Dtest\e1) ≈ M1(Dtest\e1).

Now suppose this edited model M1 is producing another
high profile error e2 for e2 ∈ Dtest. We should ideally
have M2 = Edit(M1, e2) where M2(e1, e2) = (Ye1 , Ye2)
and M1(Dtest\{e1, e2}) ≈ M2(Dtest\{e1, e2}). Given that
editing targets e1 and e2 likely only take a negligible por-
tion of total dataset Dtest (as otherwise the model would be
considered improperly trained, which is a separate issue)
we may relax this objective to M1(Dtest) ≈ M2(Dtest) and
formalize the following task objective for model editing:

Suppose Mn−1(en) ̸= Yen .

We would like to have Mn = Edit(Mn−1, en),

where Mn(e1, . . . , en) = (Ye1 , . . . , Yen)

and M1(Dtest) ≈M2(Dtest) ≈ · · · ≈ Mn(Dtest),

where n denotes the n-th number of editing targets.

For this paper, we limit our task to node classification where
the editing target e is always a node. This decision is made
upon the observation that the majority of high-stake GNN
applications fall under the realm of node classification tasks
and, more importantly, given that GNN model editing is a
task that is foreign to the graph learning community, we
would like our paper to be lightweight to deliver more in-
sights and guidance on how to approach the graph editing
problem. We encourage our fellow scholars to investigate
the editing potential of other graph learning tasks.

3.2. The Evaluation Criteria

There are mainly two (series of) evaluation criteria under
the model editing paradigm, which are straightforward to
understand from a glance:

• Success Rate (SR): Indicating an Edit operation is suc-
cessful. For a single-edit, suppose we’d like to conduct
Edit(Mi−1, ei) = Mi, if Mi(ei) = Yei then the Suc-
cess Rate is 100%. Otherwise, it is 0%. This is considered
the paramount metric for model editing, as we’d like to
deliver a guaranteed patch to an editing-worthy error.

• Test Drawdown (DD): Indicating the gap between pre-
edit accuracy and post-edit accuracy. Again, suppose
we have Edit(Mi−1, ei) = Mi, the Test Drawdown is
Acc(M0(Dtest)) − Acc(Mi(Dtest)) for Acc() being the
accuracy of the given output. Thus, the smaller the

drawdown, the better the performance. Yielding nega-
tive drawdown after a successful edit means not only the
edited model patched the error case, but also improved
the model’s generalizability.

However, such criteria can get complicated under a se-
quential context. E.g., under a chain of successful editing
events like Edit(Mi−1, ei) = Mi → Edit(Mi, ei+1) =
Mi+1 . . . , it is possible to discover Mi+1(ei) ̸= Yei ; mean-
ing the later Edit operation has overwritten a certain previ-
ous edit, causing the current edited model Mi+1 to produce
wrong output on a supposedly already patched instance (in
this case, ei). Suppose the model owner only cares about the
Success Rate at the time of a particular Edit with regards
to a specific editing target (e.g., ei+1), then, in this case, the
owner shall have SR = 100%. However, this is certainly
an unfaithful reflection of the reliability of the model, as it
cannot correctly process previously edited targets like ei.

To provide a faithful evaluation of the model, we utilize i-th
Edits Test Drawdown and i-th Edits Success Rate. The
former is simply the Test Drawdown of a model’s accuracy
after experiencing the i-th Edit operations, yet the latter
is defined as the accuracy of all i editing targets. Thus,
a 100% i-th Edits Success Rate implies the edited model
Mi is able to provide the correct output for all editing tar-
gets {e1, e2, . . . , ei} it has exposed to at the time of the
i-th edits, forming a reliable metric to monitor the model’s
performance under a sequential editing task.

Similar to the challenge faced by Success Rate, we note that
metrics like the i-th Edits Test Drawdown can only partially
reflect a model’s performance under a sequential editing
task. Suppose one is only monitoring the 10-th, 20-th, and
30-th Test Drawdown, it will not realize the model might
have a drastic peak of Test Drawdown after, for example,
the 16-th Edits. To account for such possibilities, we fur-
ther monitor the model’s Max Drawdown and Average
Drawdown during the lifespan of the sequential editing
task. Following the same spirit, we also report Average Suc-
cess Rate to provide a single scalar value that is reflective
of a model’s patching effect under a sequence of editing
operations.

Due to page limitation, we refer our readers to Appendix A.1
for data management guidelines regarding sequential graph
editing, where we discuss what would be the recommended
practice to obtain editing targets, as well as test samples,
under a graph-specific context.

4. Motivation
4.1. Prior Art’s Take: Neighborhood Aggregation

Makes GNNs Intrinsically Editing-Sensitive

Editable Graph Neural Network (EGNN) by Liu et al.
(2023a) is, to the best of our knowledge, the only GNN-

4

GNNs Also Deserve Editing, and They Need It More Than Once

specific model editing method available prior to our work.
As mentioned in our Related Works section (§2), EGNN
provides massive gains on the single-edit metric compared
to previous GNN-compatible editing methods, with our
replication below confirming this effect (Table 1).

Aside from its performance improvement, we authors be-
lieve the main contribution of EGNN is that it reveals that
GNN as an architecture is naturally unrobust to edits due
to its neighborhood aggregation mechanism, in contrast to
topology-free network architectures like multi-layer percep-
tron (MLP). Here, we verify MLP’s vastly superior editing
robustness over various popular GNN backbones with a
simple toy experiment (Table 1).

Table 1. Different Architectures’ Robustness Against a Single Edit.
“PE Acc.” = Pre-edit Acc., “DD” = (Test) Drawdown (lower is
better), and “SR” = Success Rate (higher is better). Please refer to
Section 3.2 for details regarding such metrics.

Dataset Backbone PE Acc. DD SR

ogbn-
arxiv

GCN 0.703 60.5 1.0
GraphSAGE 0.685 54.4 1.0
GIN 0.662 61.9 1.0
MLP 0.526 1.9 1.0

We observe that in this vanilla setting (standard gradient de-
scent towards one editing target until its output is corrected),
GNN variants are indeed much more editing-sensitive in
comparison to MLP.

EGNN’s Technical Approach. Following these observa-
tions, the authors of EGNN (Liu et al., 2023a) argued that
the best way to resolve the editing-sensitive nature of GNNs
is to completely side-step it. In particular, EGNN proposes
a frozen GNN + active MLP Ensemble with the weights of
the GNN frozen after the initial training period (serving as
M0 according to languages of the Preliminary section (§3)).
The active MLP subsequently updates its weights to realize
the editing effects, leveraging their naturally robust-to-edit
character observed above (Table 1).

The parallel design of EGNN is particularly clever as it
additionally addresses efficiency concerns, which is often
a challenge for fine-tuning-based model editing methods,
where a large memory footprint is required.

4.2. Prior Art’s Struggles: Sequential Edits

Despite EGNN’s intuitive design, it cannot handle the
scrutiny of sequential edits. This is evidenced by Table 2
below, where EGNN-edited GNNs face an at most 22.6%
test drawdown when used for 50 sequential edits. More
severely, the average success rate of EGNN across 50 edits
is at most 72.1% and as low as 37.5%, suggesting massive

network overwriting issues among different editing targets
as described in Section 3.2.

Table 2. EGNN (Liu et al., 2023a) under Sequential Edits.
Backbone
(PE Acc.)

Test Drawdown (DD) Avg DD Avg SR1th 10th 25th 50th

ogbn-products

GCN (74.90%) 0.6 38.0 30.8 34.1 30.4 0.721
Graph-
SAGE (76.37%) 0.1 3.7 16.6 16.9 10.3 0.654

Amazon Computers

GCN (85.77%) 1.8 11.4 39.8 27.2 22.6 0.465
Graph-
SAGE (83.23%) 2.2 49.0 21.2 6.7 16.0 0.375

We believe it is fair to conclude, from the aforementioned
results, that EGNN is not usable on a practical scale due
to its lack of sequential edit robustness. Under sequential
environments, the EGNN-induced Test Drawdown is far
too large to keep the edited model within usable margins.
Yet, the low Success Rates also indicate an EGNN-edited
model cannot provide a guaranteed patch under a sequential
context, with the supposedly edited model still producing
undesired outputs on previously discovered failure cases.
Given model editing techniques are often used to address
high-profile failure cases in an urgent manner, a low editing
success rate would be a major disqualifying factor.

We further note that according to EGNN’s own report (Table
2), other GNN-compatible editing methods are vastly worse
than EGNN, meaning that there currently exists no model
editing method usable for GNN maintenance in a practical
context.

4.3. Are Neighborhood Aggregation and Model Editing
Absolutely Incompatible? — Not Really.

Although EGNN makes the valid and natural case that neigh-
borhood aggregation causes GNNs to be intrinsically less
robust than architectures like MLP, whether or not there
exists a way to make a vanilla GNN model perform bet-
ter under editing tasks remains largely unexplored. This
is because EGNN simply side-steps the node aggregation
issue they discovered with their frozen GNN + active MLP
ensemble design, where the MLP is entirely parallel to the
GNN.

To fill the gap, we inspect EGNN’s procedure alongside its
undesired sequential edit results, where we notice EGNN
is essentially doing gradient descent towards just one par-
ticular edit target during each of its Edit operations. We
suspect this might be a recipe for overfitting, as even
the largest node feature we tested only has a dimension of
6805, making it an easy victim to be overfitted by a GNN
model, or a two-to-four layer MLP utilized in EGNN.

5

https://arxiv.org/pdf/2305.15529#page=8
https://arxiv.org/pdf/2305.15529#page=8

GNNs Also Deserve Editing, and They Need It More Than Once

To confirm our hypothesis, we introduce regularization ef-
fects to the editing procedure by simply mixing in 100
randomly selected training samples from training set Dtrain
(denoted as ts100 for ts100 ∈ Dtrain) to be batched together
with the editing target at hand. Namely, instead of the origi-
nal Edit(Mi−1, ei) = Mi operation, where model Mi−1

is tasked to conduct gradient descent until it correctly clas-
sify ei, we will now have Edit(Mi−1, {ei, ts100}) = Mi,
where we will conduct gradient descent upon the batch of
ei and ts100 until the batch’s output is correct.

Table 3. Batched vs. Non-Batched Performance under Sequential
Edits. “DD” of “{10, 25, 50}-th” refers to the Test Drawdown
after {10, 25, 50}-th edits.

Backbone
(PE Acc.)

Method
(Batched?)

Test Drawdown (DD) Avg DD10th 25th 50th

Amazon Computers

GCN
(85.77%)

GNN (✗) 32.9 67.1 82.2 63.9
GNN (✓) 8.0 4.4 4.3 4.7
Frozen GNN+MLP (✗) 11.4 39.8 27.2 22.6
Frozen GNN+MLP (✓) -0.6 -0.6 -0.6 -0.6

ogbn-arxiv

Graph-
SAGE
(68.45%)

GNN (✗) 64.9 65.2 64.7 59.3
GNN (✓) 7.2 9.3 5.2 7.8
Frozen GNN+MLP (✗) 10.0 17.6 15.0 17.8
Frozen GNN+MLP (✓) 1.4 1.4 1.4 1.4

We observe that batching random training samples with
the edit target dramatically improves model performance
on DD-related metrics. We highlight that this improve-
ment is present — and especially massive — upon vanilla
GNN architectures (without the parallel MLP introduced by
EGNN). This suggests while it is true that neighborhood ag-
gregation makes GNN intrinsically editing-sensitive, there
are still ways to mitigate this inherent disadvantage. We
further note that overfitting reduction via batched gradient
descent is merely one such channel, and we encourage our
fellow scholars from the graph-learning community to ex-
plore more refined designs.

4.4. Takeaway: Overfitting Mitigation Helps
(Sequential) Editing Robustness

Through the investigations conducted in this section (§4),
we may conclude that there is a strong connection between
overfitting and editing robustness. This conclusion — al-
though never been made under a graph editing context — is
non-surprising by nature, as a sequence of individual editing
targets with low feature dimensions is the perfect victim
for overfitting. Yet, the large Test Drawdown reading we
observed is more or less just another angle of the catas-
trophic forgetting (Sinitsin et al., 2020; Mazzia et al., 2023;
Zhang et al., 2024a; Cheng et al., 2023; Houlsby et al., 2019;
Zhu et al., 2020; Cao et al., 2021; Mitchell et al., 2022), a
phenomenon that scholars have observed and studied under
various different contexts. Specifically, using batching to

reduce overfitting during editing operations has been pre-
viously explored in literature like MEND (Mitchell et al.,
2022).

Since we now know the tie between (sequential) editing
robustness and overfitting, we may afford to integrate some
overfitting mitigation techniques into the graph editing pro-
cedure, aiming for improved editing performance. More on
this in the Proposed Method section below (§5).

5. Proposed Method
Inspired by the connection between overfitting and se-
quential editing robustness discussed in Section 4, we
propose Sequentially Editable Graph Neural Networks,
or SEED-GNN. SEED-GNN employs several lightweight,
architecture-agnostic batching operations to provide edit-
aware benefits such as overfitting mitigation and overwrit-
ing prevention, while simultaneously being seamlessly inte-
grable into the frozen GNN + active MLP ensemble pipeline
proposed in EGNN (Liu et al., 2023a) to leverage its effi-
ciency advantages.

5.1. Following the Frozen GNN + Active MLP
Architecture for Efficient Editing

It is intuitive that an effective model editing method should
be able to patch a sequence of errors with consistently high
success rates (in regard to all editing targets throughout
the lifespan of the model) while inducing as low of a test
drawdown as possible. However, another important aspect
— which often constitutes a qualify or disqualify factor
under a practical context — is the efficiency of the edit-
ing method. Suppose the cost of a certain editing method
exceeds the cost of retraining; while being and extreme ex-
ample unlikely to happen in practice, there will be little to
no reason to conduct model editing under this scenario. On
the other hand, the patching of high-profile failure cases is
often time-sensitive, where a runtime and resource-efficient
model editing method is often preferred.

EGNN by Liu et al. (2023a) provides decent efficiency ben-
efits over vanilla finetuning-based methods (such as full
model finetune). By only updating the stitched MLP weights
while keeping the GNN part frozen, EGNN avoids the ex-
penses that are particularly time/memory-intensive for large-
scale graph datasets, as one can “cache” the output from
frozen GNN after one pass of the input to avoid future
forward() needs, while there is no need to store the
gradients and optimizer states corresponding to the GNN
weights; as it is frozen to begin with. As a method aim-
ing for practical usability, we follow the EGNN ensemble
design for its efficiency benefits. Additionally, having an
aligned architecture may also help us to tribute the perfor-
mance gain to the following strategies we proposed, but not

6

GNNs Also Deserve Editing, and They Need It More Than Once

Editing Batch

❄️
Fr

oz
en

 G
N

N
🔥

Ac
tiv

e
M

LP

Figure 1. Main Procedure of SEED-GNN. To edit an editing target ei, we form an editing batch consisting of four types of components:
the current editing target ei itself, previous editing targets e1, . . . , ei−1, ei’s neighbors that happen to be in the train set N (ei) ∩Dtrain,
and randomly selected training samples from the train set Rand(Dtrain). We follow the Frozen GNN + Active MLP design proposed in
EGNN (Liu et al., 2023a), where we combine the output of the GNN and the MLP part as the final output of SEED-GNN’s forward(),
but only backward() update the MLP weights to host the editing effect. The weight update terminates either because the predictions of
ei and e1, . . . , ei−1 are corrected, or if the Steps budget in Table 7 is fully spent. Please refer to Section 5 for details.

some inherent properties of a different network architec-
ture. We refer our reader to Appendix C for runtime and
memory-related information.

5.2. Edit-aware Training Sample Mix-up Addresses
Neighborhood Corrosion

Following the discovery that batch editing may help with
editing robustness (§4.3), we further investigate what kind
of data is considered beneficial when batched together with
editing targets. Recall that EGNN (Liu et al., 2023a) finds
that node aggregation is detrimental to editing robustness
because of the error propagation to its neighbors. Here,
we investigate the k-hop accuracy of a randomly selected
misclassified node (a.k.a. an editing target) and find that
most of the misclassified node’s k-hop neighbors are, in
fact, correctly classified by the pre-edit GNN model in
the first place. However, a successful (but vanilla) patch
of this editing target would corrode its neighbors, resulting
in a massive accuracy drop among its k-hop neighbors (Ta-
ble 4) — we denote this phenomenon as editing-induced
neighborhood corrosion.

Table 4. Pre-edit vs. Post-edit k-Hop Acc.

GCN Cora Amazon
Computers

Amazon
Photo Coauthor-CS

1-hop Pre-edit Acc. 73.4 54.4 73.2 85.2
Post-edit Acc. 54.8 31.3 27.6 47.8

2-hop Pre-edit Acc. 77.9 71.9 80.9 91.7
Post-edit Acc. 64.6 19.9 27 61.9

3-hop Pre-edit Acc. 80.3 79.7 82.7 92.2
Post-edit Acc. 72.9 21.2 27.8 72.9

This observation is another angle of the same overfitting
issue discussed in Section 4.3, and it is likely baked in
the GNN aggregation mechanism. However, known that
1) batching editing targets with randomly selected training
samples helps editing robustness (Table 3), and 2) most of an

editing target’s neighbors are correct before editing (Table 4).
We can leverage them together by forcibly introducing the
neighbors of the editing target to be batched with the editing
target1, so that these neighbors can receive some protection
for directly contributing to the (batched) gradient calculation
during editing. Formally speaking, following the above
strategy, suppose model Mi−1 is facing an edit target ei.
We shall have:

Edit(Mi−1, { ei, N (ei) ∩Dtrain,Rand(Dtrain)}) = Mi

where |N (ei) ∩Dtrain| = α · β
and |Rand(Dtrain)| = (1− α) · β,

in such case, { ei, N (ei) ∩ Dtrain,Rand(Dtrain)} is the
editing batch, where N (ei) is the neighbors (regardless of
how many hops) of ei, β is the number of extra samples we
would like to include in the batch outside the editing targets,
and α is a balancing factor to control the ratio between
including more eligible neighbors of ei, or more randomly
selected training samples. Suppose one would like to have
100 extra samples included in the batch, with 25% of them
being eligible neighborhood nodes of the editing target and
75% of them randomly selected from the training set; we’d
have α = 0.25 and β = 100 — which is also the setting for
all reported experiments of SEED-EGNN. We share more
details of this mix-up in Algorithm 1 and provide ablation
studies regarding α and β in Appendix B.

5.3. Edit-aware Incremental Batching and Stoppage

One significant issue of the above method (or its non-
batched variants) is the model will only face just one editing
target at a time, resulting in catastrophic forgetting where
the latter editing targets overwrite the patch of previously

1Of course, to prevent data leakage, only neighbors who belong
to the training set are eligible. Please refer to Algorithm 1 for
details.

7

GNNs Also Deserve Editing, and They Need It More Than Once

concluded edits. This is evidenced by the low success
rate visible in Table 5 and Table 6. To address this is-
sue, we can simply include all historical editing targets
in the editing batch, making the editing batch essentially
{ e1, e2, . . . , ei, N (ei) ∩Dtrain,Rand(Dtrain)} during the
i-th edit. Where an Edit operation will perform gradi-
ent descent with this editing batch as input until all editing
targets {e1, e2, . . . , ei} are patched, or a certain iteration
budget is expensed.

We have conducted ablation studies to confirm the cumu-
lative effectiveness of our proposed procedure described
above. We invite interested readers to Appendix B for a
deeper and quantitative dive into the dynamics between
those sub-strategies. We also provide ablation studies re-
garding the two method-specific hyperparameters (α and β)
and design (incremental batching) of SEED-GNN, again at
Appendix B.

6. Experiments and Results
6.1. Experiment Setups

Models, Datasets, and Compared Methods. To assess
the effectiveness of SEED-GNN, we selected seven bench-
mark datasets from various fields, including common small-
scale and large-scale graph datasets like Cora (McCallum
et al., 2000), Amazon Photo (Shchur et al., 2018), Coauthor-
CS (Shchur et al., 2018), Amazon Computers (Shchur et al.,
2018), ogbn-arxiv, and ogbn-products (Hu et al., 2020).
Since model editing is aimed to address high-profile failure
cases, we additionally provide results on YelpCHI (Rayana
& Akoglu, 2015), a real-word collected fraud detection
dataset. Model coverage-wise, we integrated SEED-GNN
with four established GNN architectures, namely, GCN
(Kipf & Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2017), and GIN (Xu et al.,
2019). For clarity, the evaluation of SEED-GNN is con-
ducted in an inductive setting whenever possible, meaning
the model is trained on a subset of the graph that includes
only training nodes and then tested on the entire graph to
gauge its effectiveness.

For methods, we compare our SEED-GNN with all visible
editors under the GNN editing literature, namely, direct fine-
tuning (FT), ENN by Sinitsin et al. (2020), and EGNN by
Liu et al. (2023a). We additionally provide comparisons
with two common parameter-efficient finetuning (PEFT)
methods: Adapter-tuning (Houlsby et al., 2019) and LoRA
(Hu et al., 2022), due to their intuitive compatibility with
model editing tasks. We follow EGNN’s (Liu et al., 2023a)
setting and pipeline for an aligned comparison, unless other-
wise specified in Appendix B.

Evaluation Criteria We evaluate the effectiveness of dif-
ferent methods by i-th Edits Test DrawDown (DD) —
which is the difference between pre-edit accuracy and after
performing the i-th edit accuracy, where a smaller draw-
down indicates a better editor locality — and i-th Edits
Success Rate (SR), which is defined as the success rate of
patching all i of editing targets. We adopted these criteria in
a sequential setting, and we strongly encourage our readers
to inspect Section 3.2 for their detailed definitions.

Table 5. GNN Model Editing Experiments on Large Scale Graphs.
Please refer to Table 6 and §3.2 for further metrics specifications.

Backbone
(PE Acc.) Method Test Drawdown (Success Rate) Max DD Avg DD Avg SR1th 10th 25th 50th

Amazon Computers 13,381 Nodes 245,778 Edges 10 Classes 767 Features

GCN
(85.77%)

FT 77.1 (1.0) 32.9 (0.4) 67.1 (0.12) 82.2 (0.28) 85.1 63.9 0.30
ENN 2.2 (1.0) 77.3 (0.3) 77.3 (0.16) 77.3 (0.1) 77.3 75.7 0.21
EGNN 1.8 (1.0) 11.4 (0.7) 39.8 (0.48) 27.2 (0.38) 64.0 22.6 0.47
Adapter 77.3 (1.0) 77.3 (0.3) 82.3 (0.2) 82.9 (0.12) 85.7 73.2 0.24
LoRA 2.3 (0.0) 2.3 (0.2) 2.3 (0.28) 1.5 (0.12) 2.3 2.1 0.19
SEED-GNN 0.6 (1.0) -0.9 (1.0) -0.1 (1.0) 2.7 (1.0) 3.3 1.1 0.99

Graph-
SAGE
(83.23%)

FT 25.3 (1.0) 76.2 (0.3) 66.5 (0.28) 69.3 (0.14) 82.5 60.8 0.31
ENN -0.6 (1.0) 74.7 (0.1) 74.7 (0.12) 74.7 (0.16) 74.7 73.0 0.15
EGNN 2.2 (1.0) 49.0 (0.5) 21.2 (0.32) 6.7 (0.28) 55.3 16.0 0.38
Adapter 82.2 (1.0) 70.6 (0.3) 70.5 (0.52) 66.7 (0.16) 83.1 64.4 0.34
SEED-GNN 1.9 (1.0) 0.5 (1.0) -0.9 (1.0) -0.2 (1.0) 3.5 0.0 1.0

GIN
(66.11%)

FT 49.7 (1.0) 48.3 (0.3) 49.4 (0.48) 50.4 (0.48) 66.0 51.0 0.33
ENN 57.7 (0.0) 65.5 (0.2) 65.8 (0.2) 36.7 (0.14) 66.0 46.6 0.15
EGNN 5.7 (1.0) 0.3 (0.5) 6.9 (0.4) -6.5 (0.46) 19.3 3.40 0.51
Adapter 70.9 (1.0) 86.6 (0.1) 86.4 (0.2) 87.3 (0.1) 87.3 73.5 0.20
SEED-GNN -3.1 (0.0) -4.1 (1.0) -9.6 (1.0) -10.2 (1.0) 3.1 -8.0 0.95

ogbn-arxiv 169,343 Nodes 1,166,243 Edges 40 Classes 128 Features

GCN
(70.26%)

FT 60.5 (1.0) 42.3 (0.5) 67.5 (0.12) 66.5 (0.12) 69.1 58.5 0.22
ENN 48.2 (0.0) 48.2 (0.0) 48.2 (0.0) 48.2 (0.02) 48.2 48.2 0.01
EGNN 3.0 (1.0) 9.2 (0.9) 17.9 (0.2) 4.2 (0.14) 58.4 13.0 0.40
Adapter 48.7 (1.0) 70.0 (0.1) 64.3 (0.24) 68.4 (0.02) 70.0 60.2 0.23
LoRA 3.9 (0.0) 3.9 (0.1) 3.9 (0.04) 3.9 (0.1) 3.9 3.9 0.08
SEED-GNN -3.7 (1.0) 4.7 (1.0) 5.3 (1.0) 6.2 (1.0) 9.8 6.1 1.0

Graph-
SAGE
(68.45%)

FT 54.4 (1.0) 64.9 (0.1) 65.2 (0.12) 64.7 (0.1) 67.7 59.3 0.22
ENN 66.2 (0.0) 68.0 (0.0) 68.0 (0.04) 68.0 (0.06) 68.0 68.0 0.04
EGNN 0.6 (1.0) 10.0 (0.5) 17.6 (0.32) 15.0 (0.36) 39.8 17.8 0.40
Adapter 67.2 (1.0) 58.9 (0.2) 46.9 (0.32) 64.6 (0.14) 68.3 58.9 0.17
LoRA 2.7 (0.0) 2.7 (0.0) 2.9 (0.2) 2.1 (0.1) 3.7 2.3 0.11
SEED-GNN 0.1 (1.0) 5.8 (1.0) 5.5 (1.0) 4.8 (1.0) 11.0 4.9 1.0

GIN
(66.17%)

FT 61.9 (1.0) 46.0 (0.2) 63.6 (0.16) 63.7 (0.02) 65.9 59.9 0.16
ENN 64.9 (0.0) 41.8 (0.1) 44.9 (0.16) 44.4 (0.14) 66.1 51.6 0.10
EGNN 0.2 (1.0) 34.6 (0.6) 22.4 (0.32) 30.0 (0.22) 53.0 17.0 0.35
Adapter 65.3 (1.0) 57.9 (0.2) 63.6 (0.12) 60.1 (0.12) 65.3 54.6 0.229
SEED-GNN 0.7 (1.0) 1.1 (0.8) 4.9 (0.96) 6.7 (0.98) 8.6 5.2 0.945

ogbn-products 2,449,029 Nodes 61,859,140 Edges 47 Classes 218 Features

GCN
(74.90%)

FT 4.1 (1.0) 22.9 (0.7) 62.8 (0.48) 64.4 (0.6) 67.5 42.69 0.67
ENN 46.6 (0.0) 70.4 (0.0) 70.4 (0.0) 70.4 (0.04) 70.4 69.9 0.02
EGNN 0.6 (1.0) 38.0 (0.7) 30.8 (0.76) 34.1 (0.52) 40.6 30.4 0.72
Adapter 68.8 (1.0) 70.3 (0.1) 68.1 (0.16) 70.1 (0.1) 73.6 63.3 0.21
LoRA 4.4 (1.0) 3.9 (0.2) 1.8 (0.32) 1.7 (0.34) 4.4 2.7 0.30
SEED-GNN 3.4 (1.0) 7.7 (1.0) 7.0 (1.0) 10.7 (1.0) 12.4 8.3 1.0

Graph-
SAGE
(76.37%)

FT 13.3 (1.0) 56.0 (1.0) 59.6 (0.88) 60.7 (0.6) 66.4 55.9 0.72
ENN 2.3 (1.0) 53.7 (0.1) 72.1 (0.04) 72.1 (0.08) 72.1 62.9 0.11
EGNN 0.1 (1.0) 3.7 (0.9) 16.6 (0.36) 16.9 (0.52) 23.3 10.29 0.65
Adapter 49.8 (1.0) 68.8 (0.1) 71.0 (0.04) 74.0 (0.04) 75.2 64.2 0.23
LoRA 1.3 (0.0) 1.3 (0.1) 1.4 (0.12) 1.6 (0.14) 1.6 1.4 0.121
SEED-GNN 1.8 (1.0) 2.5 (1.0) 3.2 (1.0) 6.2 (1.0) 6.6 3.6 1.0

GIN
(65.79%)

FT 64.5 (1.0) 61.2 (0.2) 61.1 (0.12) 63.8 (0.12) 64.5 57.99 0.22
EGNN -0.2 (1.0) 22.0 (0.8) 16.0 (0.56) 15.4 (0.58) 24.7 18.2 0.62
Adapter 38.8 (1.0) 61.4 (0.1) 63.1 (0.04) 58.9 (0.06) 65.7 54.1 0.23
SEED-GNN -0.3 (0.0) 1.4 (0.9) 3.5 (0.96) 1.8 (1.0) 4.3 2.3 0.93

6.2. Results and Conclusion

Our proposed method, SEED-GNN, has showcased signif-
icant advantages in almost all reported entries. We kindly
direct our readers’ attention to two reflective metrics: Av-
erage Success Rate (Avg SR) and Average Test Drawdown
(Avg DD) (Table 5 and 6). It is clear that no other editing
method can maintain a ≈ 1.0 Avg SR except SEED-GNN,
yet SEED-GNN may deliver a constant ≤ 10% Avg DD
under all reported settings — a result vastly below all com-
paring approaches. Additionally, we provide SEED-GNN’s
results against a few alternative approaches that take advan-

8

GNNs Also Deserve Editing, and They Need It More Than Once

Table 6. GNN Model Editing Experiments on Small Scale Graphs. “DD” = Test Drawdown (lower is better), ‘SR” = Success Rate (higher
is better, where ̸= 1.0 implies insecure edits), “PE Acc.” = Pre-edit Acc. Please refer to Section 3.2 for further metrics specifications.

Backbone
(PE Acc.) Method Test Drawdown (Success Rate) Max DD Avg DD Avg SR1th 10th 25th 50th

Cora 2,485 Nodes 5,069 Edges 7 Classes 1,433 Features

GCN
(89.80%)

FT 4.4 (1.0) 28.2 (0.7) 17.0 (0.76) 37.0 (0.62) 43.2 21.1 0.73
ENN 1.2 (1.0) 13.6 (1.0) 17.8 (0.96) 43.4 (0.98) 46.8 21.6 0.87
EGNN 0.6 (1.0) 13.6 (0.8) 14.8 (0.56) 13.2 (0.44) 21.4 10.6 0.60
Adapter 57.8 (1.0) 76.0 (0.3) 82.2 (0.08) 76.0 (0.26) 82.4 74.5 0.231
SEED-GNN 0.6 (1.0) 2.4 (1.0) 3.2 (1.0) 2.6 (1.0) 5.4 3.2 1.0

Graph-
SAGE
(86.60%)

FT 1.8 (1.0) 23.0 (0.9) 27.2 (1.0) 41.4 (0.68) 47.2 28.2 0.85
ENN -1.2 (1.0) 13.6 (0.9) 28.4 (0.68) 36.0 (0.66) 39.0 25.6 0.75
EGNN 1.8 (1.0) 27.2 (0.9) 5.6 (0.52) 16.0 (0.44) 28.8 10.8 0.62
Adapter 74.6 (1.0) 75.2 (0.1) 70.8 (0.36) 79.0 (0.12) 79.2 74.3 0.251
SEED-GNN -0.4 (1.0) -0.8 (1.0) 0.2 (1.0) 1.0 (1.0) 3.0 1.0 1.0

GAT
(87.6%)

FT 8.6 (1.0) 8.0 (0.9) 33.2 (0.88) 44.2 (0.68) 42.2 24.2 0.75
ENN 1.6 (1.0) 11.2 (0.8) 12.4 (0.64) 16.8 (0.54) 19.8 13.2 0.69
EGNN 0.4 (0.1) 10.4 (0.9) 2.0 (0.36) 7.6 (0.46) 12.2 5.2 0.55
Adapter 55.6 (1.0) 80.0 (0.1) 73.8 (0.16) 55.6 (0.24) 80.0 70.40 0.24
SEED-GNN 0.4 (1.0) 1.0 (1.0) 1.6 (1.0) 1.8 (1.0) 3.2 1.2 1.0

GIN
(84.2%)

FT 30.2 (1.0) 76.4 (0.1) 70.2 (0.04) 76.8 (0.08) 76.8 65.1 0.27
ENN 45.4 (0.0) 35.2 (0.3) 49.4 (0.2) 49.8 (0.24) 73.2 49.5 0.24
EGNN 0.6 (1.0) 2.2 (0.5) 11.2 (0.48) 2.6 (0.42) 44.2 10.6 0.46
Adapter 76.2 (1.0) 52.2 (0.2) 70.4 (0.2) 72.2 (0.22) 76.8 66.0 0.29
SEED-GNN -0.4 (0.0) 0.2 (0.9) 1.2 (1.0) 1.6 (1.0) 2.6 0.70 0.90

Amazon Photo 7,487 Nodes 119,043 Edges 8 Classes 745 Features

GCN
(93.81%)

FT 78.0 (1.0) 85.4 (0.5) 62.8 (0.2) 92.6 (0.36) 93.3 80.8 0.25
ENN 83.7 (0.0) 84.2 (0.0) 84.2 (0.04) 84.2 (0.1) 77.3 75.7 0.21
EGNN 1.1 (1.0) 36.4 (0.9) 42.5 (0.6) 11.2 (0.38) 45.0 23.4 0.61
Adapter 93.3 (1.0) 49.7 (0.4) 55.9 (0.12) 88.7 (0.26) 93.3 75.6 0.30
LoRA 1.0 (1.0) 1.0 (1.0) 1.0 (0.12) 0.6 (0.08) 1.0 0.90 0.16
SEED-GNN -0.1 (1.0) 1.2 (1.0) 1.1 (1.0) 1.1 (1.0) 1.8 0.8 1.0

Graph-
SAGE
(94.36%)

FT 60.4 (1.0) 58.1 (0.6) 84.6 (0.28) 93.7 (0.12) 93.7 79.6 0.36
ENN 66.4 (0.0) 86.9 (0.2) 86.9 (0.24) 86.8 (0.14) 86.9 85.2 0.21
EGNN 1.4 (1.0) 1.0 (0.5) 5.8 (0.36) 10.9 (0.18) 27.9 9.2 0.39
Adapter 77.4 (1.0) 81.2 (0.7) 85.3 (0.2) 51.2 (0.4) 93.8 75.1 0.31
SEED-GNN 2.0 (1.0) 0.8 (1.0) 2.3 (1.0) 2.3 (1.0) 5.4 2.2 1.0

GAT
(93.15%)

FT 28.4 (1.0) 65.7 (0.6) 54.7 (0.6) 76.4 (0.46) 92.7 53.1 0.65
ENN 39.1 (0.0) 83.5 (0.1) 83.5 (0.08) 83.5 (0.12) 83.5 81.2 0.11
EGNN -0.6 (1.0) 17.6 (0.4) 24.3 (0.52) 33.5 (0.42) 82.4 26.0 0.44
Adapter 88.1 (1.0) 85.7 (0.3) 55.3 (0.16) 83.5 (0.18) 92.6 76.6 0.23
SEED-GNN -0.3 (1.0) 0.5 (1.0) 6.0 (1.0) 19.9 (0.98) 19.9 7.3 0.99

GIN
(86.11%)

FT 76.8 (1.0) 85.6 (0.1) 85.5 (0.36) 48.2 (0.14) 85.6 72.4 0.22
ENN 82.5 (1.0) 65.8 (0.3) 76.6 (0.16) 52.1 (0.2) 85.6 64.4 0.27
EGNN -1.4 (1.0) 0.0 (0.2) 20.2 (0.44) 4.2 (0.46) 33.1 9.3 0.50
Adapter 53.6 (1.0) 77.1 (0.2) 58.0 (0.16) 72.7 (0.26) 85.6 72.2 0.21
SEED-GNN -1.7 (1.0) -1.7 (0.9) -4.2 (0.96) -4.9 (1.0) 1.7 -3.60 0.96

Coauthor-CS 18,333 Nodes 81,894 Edges 15 Classes 6,805 Features

GCN
(94.43%)

FT 5.9 (1.0) 74.6 (0.7) 33.7 (0.8) 59.0 (0.46) 74.6 43.3 0.74
ENN 0.6 (1.0) 7.6 (0.8) 7.6 (0.72) 6.8 (0.6) 17.3 9.2 0.70
EGNN -0.2 (1.0) 0.0 (1.0) 1.3 (0.84) 1.7 (0.86) 1.8 0.90 0.91
Adapter 60.3 (1.0) 94.1 (0.2) 81.4 (0.24) 91.2 (0.16) 94.4 84.3 0.25
LoRA 0.4 (1.0) 0.4 (0.3) 0.4 (0.2) 0.4 (0.16) 0.4 0.4 0.22
SEED-GNN -0.1 (1.0) -0.1 (1.0) -0.2 (1.0) -0.1 (1.0) 0.1 0.0 1.0

Graph-
SAGE
(95.33%)

FT 4.3 (1.0) 62.1 (1.0) 43.1 (0.84) 66.8 (0.68) 74.4 54.6 0.88
ENN 7.6 (1.0) 10.2 (0.7) 8.5 (0.56) 18.8 (0.56) 22.0 14.0 0.65
EGNN 0.0 (1.0) 0.0 (0.9) 7.1 (0.8) 3.1 (0.8) 8.2 3.9 0.85
Adapter 94.9 (1.0) 93.0 (0.3) 93.4 (0.12) 61.2 (0.12) 95.2 86.5 0.19
SEED-GNN 0.0 (1.0) -0.1 (1.0) 0.2 (1.0) 0.7 (1.0) 1.5 0.5 1.0

GAT
(93.78%)

FT 3.2 (1.0) 54.4 (0.7) 57.3 (0.88) 56.2 (0.78) 71.7 50.7 0.86
ENN 5.0 (1.0) 65.3 (0.3) 62.2 (0.12) 61.8 (0.12) 66.4 60.5 0.22
EGNN -0.1 (1.0) 3.4 (1.0) 7.1 (1.0) 10.0 (0.94) 11.0 5.0 0.97
Adapter 93.5 (1.0) 71.2 (0.3) 86.2 (0.04) 86.9 (0.06) 93.6 84.9 0.16
SEED-GNN -0.3 (1.0) 2.2 (1.0) 1.4 (1.0) -0.5 (1.0) 2.4 0.3 1.0

GIN
(91.60%)

FT 43.0 (1,0) 84.7 (0.5) 77.3 (0.12) 91.4 (0.08) 91.4 82.2 0.24
ENN 49.6 (1.0) 91.0 (0.2) 91.0 (0.16) 91.1 (0.08) 91.2 90.0 0.19
EGNN -0.2 (1.0) -0.5 (0.9) 1.8 (0.84) 10.3 (0.74) 11.2 3.3 0.79
Adapter 78.5 (1.0) 84.7 (0.1) 77.1 (0.12) 91.3 (0.1) 91.6 79.0 0.18
SEED-GNN -0.4 (1.0) -1.0 (1.0) -1.3 (1.0) -1.1 (1.0) -0.4 -1.2 0.99

tage of SEED-GNN’s batching ingredients in Appendix D.1,
as well as evaluating SEED-GNN upon YelpCHI the real-
word collected fraud detection dataset in Appendix D.2;
both results indicate the superiority of SEED-GNN.

The above observations support our claim that SEED-GNN

is the first and only practically usable GNN model edit-
ing method as of today. And we strongly encourage fu-
ture study of the graph editing problem, as we wholeheart-
edly believe the graph-equivalent of fixing misclassifying a
street-crossing child in front of a self-driving car of course
deserves studying.

9

GNNs Also Deserve Editing, and They Need It More Than Once

Acknowledgments
This research was supported, in part, by NSF Awards OAC-
2112606, OAC-2117439, IIS-2224843, and IIS-2310260.
This work made use of the High Performance Computing
Resource in the Core Facility for Advanced Research Com-
puting at Case Western Reserve University. We give our
special thanks to the CWRU HPC team for their timely and
professional help and maintenance. The views and con-
clusions in this paper are those of the authors and do not
represent the views of any funding or supporting agencies.

Impact Statement
Our work advances the field of Graph Neural Network
Model Editing, but it also comes with various constraints
and limitations. Scope-wise, our method is limited to node
classification tasks, leaving various other graph learning
tasks, such as edge prediction and graph classification, un-
explored, though we expect our proposed method to be
adaptable to such tasks. Solution-wise, though our method
provides massive gains on all criteria compared to the few
available prior arts, it is nowhere near perfect — e.g., we
purposely highlight the Max DD metric in Table 5 and 6,
which is often a lot higher than its Avg DD and, certainly is
a welcoming aspect for improvement. We caution our read-
ers to directly adopt our method without proper evaluation
under high-stake graph learning scenarios, such as the flood
prediction scenario mentioned in (Kazadi et al., 2022).

References
Cao, N. D., Aziz, W., and Titov, I. Editing factual knowledge

in language models, 2021.

Chang, C.-Y., Chuang, Y.-N., Wang, G., Du, M., and Na,
Z. Dispel: Domain generalization via domain-specific
liberating. arXiv preprint arXiv:2307.07181, 2023.

Chen, T., Zhou, K., Duan, K., Zheng, W., Wang, P., Hu, X.,
and Wang, Z. Bag of tricks for training deeper graph neu-
ral networks: A comprehensive benchmark study. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 45(3):2769–2781, 2022.

Cheng, S., Tian, B., Liu, Q., Chen, X., Wang, Y., Chen, H.,
and Zhang, N. Can we edit multimodal large language
models? In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp.
13877–13888, December 2023.

Gu, H., Zhou, K., Han, X., Liu, N., Wang, R., and
Wang, X. Pokemqa: Programmable knowledge edit-
ing for multi-hop question answering. arXiv preprint
arXiv:2312.15194, 2023.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 30. Curran Associates,
Inc., 2017.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference on
Machine Learning, 2019.

Hsieh, K., Wang, Y., Chen, L., Zhao, Z., Savitz, S., Jiang,
X., Tang, J., and Kim, Y. Drug repurposing for covid-19
using graph neural network and harmonizing multiple
evidence. Scientific reports, 11(1):23179, 2021.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In International Conference
on Learning Representations, 2022.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Kazadi, A. N., Doss-Gollin, J., Sebastian, A., and Silva, A.
Flood prediction with graph neural networks. Climate
Change AI. Climate Change AI, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Li, T., Zhou, Z., Li, S., Sun, C., Yan, R., and Chen, X. The
emerging graph neural networks for intelligent fault di-
agnostics and prognostics: A guideline and a benchmark
study. Mechanical Systems and Signal Processing, 168:
108653, 2022.

Lina, D. H. and Silva, A. Better fair than sorry: Adversarial
missing data imputation for fair gnns, 2024.

Liu, Y. Fairgraph: Automated graph debiasing with gradient
matching. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management,
pp. 4135–4139, 2023.

Liu, Z., Zhou, K., Yang, F., Li, L., Chen, R., and Hu, X. Ex-
act: Scalable graph neural networks training via extreme
activation compression. In International Conference on
Learning Representations, 2021.

Liu, Z., Jiang, Z., Zhong, S., Zhou, K., Li, L., Chen, R.,
Choi, S.-H., and Hu, X. Editable graph neural network
for node classifications, 2023a.

10

GNNs Also Deserve Editing, and They Need It More Than Once

Liu, Z., Shengyuan, C., Zhou, K., Zha, D., Huang, X., and
Hu, X. Rsc: accelerate graph neural networks training via
randomized sparse computations. In International Con-
ference on Machine Learning, pp. 21951–21968. PMLR,
2023b.

Mazzia, V., Pedrani, A., Caciolai, A., Rottmann, K., and
Bernardi, D. A survey on knowledge editing of neural
networks, 2023.

McCallum, A. K., Nigam, K., Rennie, J., and Seymore, K.
Automating the construction of internet portals with ma-
chine learning. Information Retrieval, 3:127–163, 2000.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in gpt, 2023a.

Meng, K., Sharma, A. S., Andonian, A., Belinkov, Y., and
Bau, D. Mass-editing memory in a transformer, 2023b.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Manning,
C. D. Fast model editing at scale, 2022.

Petrone, D. and Latora, V. A dynamic approach merging
network theory and credit risk techniques to assess sys-
temic risk in financial networks. Scientific Reports, 8(1):
5561, 2018.

Rayana, S. and Akoglu, L. Collective opinion spam detec-
tion: Bridging review networks and metadata. In ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, 2015.

Rong, Y., Wang, G., Feng, Q., Liu, N., Liu, Z., Kas-
neci, E., and Hu, X. Efficient gnn explanation via
learning removal-based attribution. arXiv preprint
arXiv:2306.05760, 2023.

Santurkar, S., Tsipras, D., Elango, M., Bau, D., Torralba,
A., and Madry, A. Editing a classifier by rewriting its
prediction rules, 2021.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018.

Shu, K., Sliva, A., Wang, S., Tang, J., and Liu, H. Fake
news detection on social media: A data mining perspec-
tive. ACM SIGKDD explorations newsletter, 19(1):22–36,
2017.

Sinitsin, A., Plokhotnyuk, V., Pyrkin, D., Popov, S., and
Babenko, A. Editable neural networks. In International
Conference on Learning Representations, 2020.

Sotoudeh, M. and Thakur, A. V. Provable repair of deep
neural networks, 2021.

Sun, M., Zhou, K., He, X., Wang, Y., and Wang, X.
Gppt: Graph pre-training and prompt tuning to gener-
alize graph neural networks. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1717–1727, 2022.

Tanno, R., Pradier, M. F., Nori, A., and Li, Y. Repairing
neural networks by leaving the right past behind, 2022.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, C., Lin, Z., Yang, X., Sun, J., Yue, M., and Shahabi,
C. Hagen: Homophily-aware graph convolutional recur-
rent network for crime forecasting. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pp. 4193–4200, 2022.

Wang, G., Du, M., Liu, N., Zou, N., and Hu, X. Mitigating
algorithmic bias with limited annotations. In Joint Euro-
pean Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 241–258. Springer, 2023a.

Wang, Z., Jia, Z., Zheng, S., Zhang, Z., Fu, X., Ng, T. S. E.,
and Wang, Y. Gemini: Fast failure recovery in distributed
training with in-memory checkpoints. In Proceedings
of the 29th Symposium on Operating Systems Principles,
2023b.

Wang, Z., Xu, Z., Wu, X., and Ng, T. S. E. Cupcake:
A compression optimizer for scalable communication-
efficient distributed training. In Proceedings of Machine
Learning and Systems, 2023c.

Xie, J., Liu, Y., and Shen, Y. Explaining dynamic graph
neural networks via relevance back-propagation. arXiv
preprint arXiv:2207.11175, 2022.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019.

Yao, Y., Wang, P., Tian, B., Cheng, S., Li, Z., Deng, S.,
Chen, H., and Zhang, N. Editing large language models:
Problems, methods, and opportunities. arXiv preprint
arXiv:2305.13172, 2023.

Yu, C., Jeoung, S., Kasi, A., Yu, P., and Ji, H. Unlearning
bias in language models by partitioning gradients. In
Findings of the Association for Computational Linguis-
tics: ACL 2023, pp. 6032–6048, Toronto, Canada, July
2023. Association for Computational Linguistics.

Yu, J., Wang, J., Zhao, H., Gao, J., Kang, Y., Cao, D., Wang,
Z., and Hou, T. Organic compound synthetic accessibil-
ity prediction based on the graph attention mechanism.
Journal of Chemical Information and Modeling, 62(12):
2973–2986, 2022.

11

GNNs Also Deserve Editing, and They Need It More Than Once

Zhang, N., Yao, Y., Tian, B., Wang, P., Deng, S., Wang,
M., Xi, Z., Mao, S., Zhang, J., Ni, Y., Cheng, S., Xu, Z.,
Xu, X., Gu, J.-C., Jiang, Y., Xie, P., Huang, F., Liang, L.,
Zhang, Z., Zhu, X., Zhou, J., and Chen, H. A compre-
hensive study of knowledge editing for large language
models, 2024a.

Zhang, N., Yao, Y., Tian, B., Wang, P., Deng, S., Wang, M.,
Xi, Z., Mao, S., Zhang, J., Ni, Y., et al. A comprehensive
study of knowledge editing for large language models.
arXiv preprint arXiv:2401.01286, 2024b.

Zhao, J., Mostafa, H., Galkin, M., Bronstein, M., Zhu, Z.,
and Tang, J. Graphany: A foundation model for node
classification on any graph, 2024.

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., and Hu, X.
Towards deeper graph neural networks with differentiable
group normalization. Advances in neural information
processing systems, 33:4917–4928, 2020.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H.,
and Hu, X. Dirichlet energy constrained learning for deep
graph neural networks. Advances in Neural Information
Processing Systems, 34:21834–21846, 2021.

Zhou, K., Choi, S.-H., Liu, Z., Liu, N., Yang, F., Chen, R.,
Li, L., and Hu, X. Adaptive label smoothing to regularize
large-scale graph training. In Proceedings of the 2023
SIAM International Conference on Data Mining (SDM),
pp. 55–63. SIAM, 2023.

Zhu, C., Rawat, A. S., Zaheer, M., Bhojanapalli, S., Li, D.,
Yu, F., and Kumar, S. Modifying memories in transformer
models, 2020.

12

GNNs Also Deserve Editing, and They Need It More Than Once

A. Extended Preliminary and Proposed Method
A.1. The Data Management

Here, we provide some practical guidance in terms of the data management of graph editing tasks. Suppose a model M0 is
expecting to do n sequential edits within a graph dataset D. In an inductive setting, we should have three disjoint graphs
Dtrain, Dval, and Dtest (Hamilton et al., 2017). In practice, it is recommended to have the edited targets {e1, ..., en}
prefetched from the Dval (where M0(ei) ̸= Yei , as all editing targets need to be wrongly predicted by M to be eligible), so
that one can easily evaluate the overall test accuracy of a model M(Dtest) before and after edits without further modification2.

One important but often overlooked issue under the sequential edit paradigm is how to handle “accidentally corrected”
edit targets. Because {e1..., en} is prefetched from Dval where M0(ei) ̸= Yei , it is possible that when conducting
Edit(M0, e1) = M1, e2 is “accidentally” made correct — i.e., M1(e50) = Ye2 . In this case, the model M1 should not
perform any further option but skip e2, as e2 is not considered an error to M1 and therefore can’t trigger an Edit operation.
Many previous work, including EGNN (Liu et al., 2023a), simply loop over {e1..., en} and perform Edit operations
sequentially until all n edits are conducted. This setup is not a true reflection of how model maintenance is conducted in the
real world, as a model should not conduct Edit operation without a specific high-profile error in the first place.

A.2. Formal Procedure of Edit-aware Training Sample Mix-up

Algorithm 1 SEED-GNN Training Sample Mix-up Selection (§5.2)
Input: an edit target ei, a set of previously edited samples E = e1, e2, . . ., a set of training samples Dtrain, α, β.
Initialize: Editing batch of samples, E = {ei}, to update the model.
E = E ∪ E {Append all previously edited targets to the current editing batch.}
N (ei) = {ej |ej ∈ Dtrain ∧ dist(ei, ej) ≤ k} {The set of all k-hops neighbors of edit target.}
for ni ∈ α ∗ β randomly selected samples from N (ei) do
E = E ∪ {ni} {Append α ∗ β k-hop neighbors of ei to the editing batch.}

end for
for ri ∈ (1− α) ∗ β randomly selected samples from Dtrain do

E = E ∪ {ri} {Append (1− α) ∗ β randomly selected training samples to the editing batch.}
end for
return E

A.3. More Limitations

Given the close connections from fair learning, locality-generality trade-off, and maybe even explainable GNNs to model
editing — which are some mature graph learning subfields — we recommend that future scholars explore such areas
for insights (Lina & Silva, 2024; Wang et al., 2023a; Chang et al., 2023; Liu, 2023; Xie et al., 2022; Rong et al., 2023).
Moreover, although model editing is often treated as a post-hoc operation applicable to any trained model, whether the
editing effect would change depending on the training recipe or setup of the pre-edit model remains unexplored. This is
especially important given the popularity of different GNN training techniques, as well as the system support works (Wang
et al., 2023c;b) that come with them to make them trained faster (Liu et al., 2021; 2023b), larger (Chen et al., 2022; Zhou
et al., 2020; 2021; 2023), and more versatile (Sun et al., 2022; Zhao et al., 2024). In this work, we only evaluated our method
against four established GNN architectures trained in a vanilla fashion, leaving its compatibility with more modern GNNs
unanswered.

2The alternative setup is to select editing targets from Dtest, but then the test accuracy should be evaluated on Dtest\{e1, e2, . . . , en},
complicating the pipeline. This setup is not recommended unless the Dval is already otherwise utilized.

13

GNNs Also Deserve Editing, and They Need It More Than Once

B. Ablation Studies
In this section, we investigate the influence of various SEED-GNN-specific hyperparameters and designs: α, β (§5.2) and
incremental batching (§5.3). Here, we first report the hyperparameter settings of SEED-GNN in Table 7. We note the
following non-SEED-GNN-specific hyperparameter settings are all copied from EGNN by Liu et al. (2023a) for better
alignment except LR (where EGNN uses LR=0.01 for most experiments) — as we found this smaller LR to be better for our
proposed method (Table 11).

Table 7. Training hyperparameters / configurations of our proposed method. “Steps” is the maximum allowed edit steps per edit target.
Backbone Dataset #Layers #Hidden Channels LR Dropout Epochs α β Steps

GCN

Cora 2 32 0.001 0.1 200

0.25 100 500

A-computers 2 32 0.001 0.1 400
A-photo 2 32 0.001 0.1 400
Coauthor-CS 2 32 0.001 0.1 400
ogbn-arxiv 3 128 0.001 0.5 500
ogbn-products 3 256 0.001 0.5 500

Graph-
SAGE

Cora 2 32 0.001 0.1 200

0.25 100 500

A-computers 2 32 0.001 0.1 400
A-photo 2 32 0.001 0.1 400
Coauthor-CS 2 32 0.001 0.1 400
ogbn-arxiv 3 128 0.001 0.5 500
ogbn-products 3 256 0.001 0.5 500

GIN

Cora 2 32 0.001 0.1 200

0.25 100 500

A-computers 2 32 0.001 0.1 400
A-photo 2 32 0.001 0.1 400
Coauthor-CS 2 32 0.001 0.1 400
ogbn-arxiv 3 128 0.001 0.5 500
ogbn-products 3 256 0.001 0.5 500

GAT

Cora 2 32 0.01 0.1 200

0.25 100 500

A-computers 2 32 0.01 0.1 400
A-photo 2 32 0.01 0.1 400
Coauthor-CS 2 32 0.01 0.1 400
ogbn-arxiv 3 128 0.01 0.5 500
ogbn-products 3 256 0.01 0.5 500

B.1. Influence of SEED-GNN-specific Hyperparameters and Designs

Table 8. Ablation Study of Hyperparameter α (a.k.a. ratio of edit-aware samples in editing batch, β = 100)
Backbone
(PE Acc.) Method Test Drawdown (Success Rate) Max DD Avg DD Avg SR1th 10th 25th 50th

Cora 2,485 Nodes 5,069 Edges 7 Classes 1,433 Features

GCN
(89.80%)

α = 0 0.2 (1.0) 1.8 (1.0) 2.4 (1.0) 6.4 (1.0) 6.8 4.00 0.98
α = 0.25 0.2 (1.0) 3.2 (1.0) 3.2 (1.0) 8.0 (1.0) 8.0 4.1 1.0
α = 0.50 0.6 (1.0) 3.0 (1.0) 3.0 (0.96) 7.8 (1.0) 7.8 4.9 1.0
α = 0.75 1.4 (1.0) 3.4 (1.0) 3.4 (1.0) 6.4 (1.0) 8.4 4.9 1.0
α = 1.0 0.8 (1.0) 1.6 (1.0) 4.6 (1.0) 6.8 (1.0) 13.4 5.9 1.0

Graph-
SAGE
(86.60%)

α = 0 -0.4 (0.0) 0.6 (1.0) 1.8 (1.0) 2.6 (0.98) 4.0 2.10 0.96
α = 0.25 0.8 (1.0) -0.8 (1.0) 2.6 (1.0) 4.2 (1.0) 5.0 2.1 1.0
α = 0.50 0.4 (1.0) 0.2 (1.0) 2.0 (1.0) 4.0 (1.0) 4.0 1.7 1.0
α = 0.75 0.0 (1.0) 0.8 (1.0) 3.2 (1.0) 3.8 (1.0) 5.8 2.7 1.0
α = 1.0 -0.2 (1.0) 1.0 (1.0) 1.8 (1.0) 5.0 (1.0) 6.6 3.2 1.0

ogbn-arxiv 169,343 Nodes 1,166,243 Edges 40 Classes 128 Features

GCN
(93.81%)

α = 0 1.7 (0.0) 1.5 (0.2) 0.9 (0.24) 1.2 (0.12) 6.4 2.20 0.26
α = 0.25 1.6 (1.0) 3.2 (1.0) 8.0 (1.0) 7.6 (1.0) 27.8 10.0 0.999
α = 0.50 4.0 (1.0) 12.3 (1.0) 8.9 (0.96) 18.7 (0.98) 24.6 12.5 0.992
α = 0.75 3.2 (1.0) 10.0 (1.0) 8.7 (1.0) 10.9 (1.0) 19.6 8.7 0.994
α = 1.0 5.7 (1.0) 7.2 (1.0) 10.0 (1.0) 26.8 (1.0) 26.8 11.3 0.997

Graph-
SAGE
(86.60%)

α = 0 1.5 (1.0) 0.7 (0.2) 1.2 (0.12) 1.5 (0.26) 9.3 2.30 0.27
α = 0.25 1.1 (1.0) 6.0 (1.0) 10.4 (1.0) 7.4 (0.96) 19.3 8.6 0.996
α = 0.50 2.2 (1.0) 20.0 (1.0) 7.8 (1.0) 10.4 (1.0) 20.0 9.4 0.997
α = 0.75 1.7 (1.0) 6.0 (1.0) 6.2 (1.0) 10.5 (1.0) 22.5 10.6 0.994
α = 1.0 0.8 (1.0) 6.2 (1.0) 7.7 (1.0) 11.6 (1.0) 19.7 9.9 0.999

14

GNNs Also Deserve Editing, and They Need It More Than Once

Table 9. Ablation Study of with different Hyperparameter β (a.k.a. number of extra sample to be included in editing batch, α = 0.25)
Backbone
(PE Acc.) Method Test Drawdown (Success Rate) Max DD Avg DD Avg SR1th 10th 25th 50th

Cora 2,485 Nodes 5,069 Edges 7 Classes 1,433 Features

GCN
(89.80%)

β = 100 0.2 (1.0) 3.2 (1.0) 3.2 (1.0) 8.0 (1.0) 8.0 4.1 1.0
β = 150 0.6 (1.0) 3.0 (1.0) 2.4 (1.0) 5.6 (1.0) 7.4 4.2 1.0
β = 300 0.4 (1.0) 2.8 (1.0) 3.0 (1.0) 5.4 (1.0) 7.2 4.1 1.0
β = 500 0.2 (1.0) 3.4 (1.0) 5.8 (1.0) 6.8 (1.0) 8.6 5.50 1.00
β = 700 -0.2 (1.0) 3.4 (1.0) 4.4 (1.0) 7.2 (1.0) 7.4 4.80 1.00
β = 800 0.0 (1.0) 3.4 (1.0) 4.2 (1.0) 7.8 (1.0) 7.8 4.90 1.00

Graph-
SAGE
(86.60%)

β = 100 0.8 (1.0) -0.8 (1.0) 2.6 (1.0) 4.2 (1.0) 5.0 2.1 1.0
β = 150 0.2 (1.0) 1.2 (1.0) 2.2 (0.96) 4.8 (1.0) 4.8 2.6 1.0
β = 300 1.4 (1.0) 3.4 (1.0) 3.4 (1.0) 6.4 (1.0) 8.4 4.9 1.0
β = 500 -1.4 (1.0) 2.8 (1.0) 2.4 (1.0) 3.6 (1.0) 5.2 2.50 1.00
β = 700 -0.8 (1.0) 3.0 (1.0) 2.4 (1.0) 4.0 (1.0) 5.0 2.60 1.00
β = 800 -0.6 (1.0) 2.8 (1.0) 2.6 (1.0) 4.2 (1.0) 5.2 2.80 1.00

ogbn-arxiv 169,343 Nodes 1,166,243 Edges 40 Classes 128 Features

GCN
(89.80%)

β = 100 1.6 (1.0) 3.2 (1.0) 8.0 (1.0) 7.6 (1.0) 27.8 10.0 0.999
β = 150 2.9 (1.0) 3.0 (1.0) 3.5 (0.96) 6.4 (1.0) 13.4 6.6 0.996
β = 300 -0.2 (1.0) 2.4 (1.0) 3.4 (1.0) 4.4 (1.0) 5.0 3.2 1.0
β = 500 9.6 (0.0) 9.4 (1.0) 11.7 (0.92) 0.8 (0.1) 12.6 6.10 0.67
β = 700 8.9 (1.0) 13.7 (1.0) 0.9 (0.08) 0.6 (0.06) 13.7 2.60 0.32
β = 800 6.7 (1.0) 9.1 (1.0) 3.8 (0.52) 4.3 (0.46) 19.3 5.90 0.69

Graph-
SAGE
(86.60%)

β = 100 1.1 (1.0) 6.0 (1.0) 10.4 (1.0) 7.4 (0.96) 19.3 8.6 0.996
β = 150 2.0 (1.0) 10.2 (1.0) 6.2 (1.0) 10.0 (1.0) 15.5 7.4 0.998
β = 300 1.4 (1.0) 14.0 (1.0) 1.8 (1.0) -0.6 (1.0) 18.4 3.5 0.32
β = 500 0.8 (1.0) 5.7 (1.0) 16.6 (1.0) 2.2 (0.42) 17.3 7.90 0.91
β = 700 0.6 (1.0) 0.4 (0.1) 0.8 (0.08) 0.5 (0.04) 17.6 2.50 0.25
β = 800 1.4 (1.0) 7.3 (1.0) 1.0 (0.08) 0.8 (0.08) 16.3 3.30 0.41

Table 10. Ablation Study of Incremental Batching (§5.3)
Backbone
(PE Acc.) Method Test Drawdown (Success Rate) Max DD Avg DD Avg SR1th 10th 25th 50th

Cora 2,485 Nodes 5,069 Edges 7 Classes 1,433 Features

GCN
(89.8%)

with α = 0.25, β = 100 (§5.2) 0.2 (1.0) 0.2 (0.2) 0.2 (0.12) 0.2 (0.1) 0.2 0.2 0.16
with incremental batching (§5.3) 0.2 (1.0) 3.2 (1.0) 3.2 (1.0) 8.0 (1.0) 8.0 4.1 1.0

Graph-
SAGE (86.6%)

with α = 0.25, β = 100 0.8 (1.0) 0.8 (0.3) 0.8 (0.12) 0.8 (0.16) 0.8 0.8 0.20
with incremental batching 0.8 (1.0) -0.8 (1.0) 2.6 (1.0) 4.2 (1.0) 5.0 2.1 1.0

ogbn-arxiv 169,343 Nodes 1,166,243 Edges 40 Classes 128 Features

GCN
(70.25%)

with α = 0.25, β = 100 1.6 (1.0) 3.3 (0.1) (2.2, 0.12) 4.0 (0.12) 11.6 3.60 0.183
with incremental batching 1.6 (1.0) 3.2 (1.0) 8.0 (1.0) 7.6 (1.0) 27.8 10.0 0.99

Graph-
SAGE (68.45%)

with α = 0.25, β = 100 1.1 (1.0) 1.3 (0.2) 1.3 (0.12) 1.3 (0.08) 6.8 1.4 0.18
with incremental batching 1.1 (1.0) 6.0 (1.0) 10.4 (1.0) 7.4 (1.0) 19.3 8.6 0.996

From Table 8 and Table 9, we can observe that adding a small number of training samples (e.g., β = 100) as well as a
proper mixture of neighborhood targets (e.g., α = 0.25) to the editing batch significantly improve the performance of
reported metrics (where non-batched baseline results can be found in Table 3). Additionally, Table 10 shows the adaptation
of incremental batching directly boosts the overall Success Rate of editing.

15

GNNs Also Deserve Editing, and They Need It More Than Once

B.2. Influence of General Hyperparameters

Table 11. Ablation Study of Learning Rates

Backbone LR Test Drawdown (Success Rate) Max DD Avg DD Avg SR1th 10th 25th 50th

Cora 2,485 Nodes 5,069 Edges 7 Classes 1,433 Features

GCN

0.001 0.6 (1.0) 2.4 (1.0) 3.2 (1.0) 2.6 (1.0) 5.4 3.2 1.000
0.005 0.0 (1.0) 0.6 (1.0) 3.6 (1.0) 4.8 (1.0) 6.4 3.6 1.000
0.01 0.2 (1.0) 3.2 (1.0) 3.2 (1.0) 8.0 (1.0) 8.0 4.1 1.000
0.05 1.4 (1.0) 6.0 (1.0) 5.6 (1.0) 13.4 (1.0) 13.8 7.5 1.000
0.1 2.0 (1.0) 6.0 (1.0) 8.8 (1.0) 6.2 (1.0) 15.4 8,9 1.000

Graph-
SAGE

0.001 -0.4 (1.0) -0.8 (1.0) 0.2 (1.0) 1.0 (1.0) 3.0 1.0 1.000
0.005 1.2 (1.0) -1.0 (1.0) 1.8 (1.0) 2.4 (1.0) 4.4 1.2 1.000
0.01 0.8 (1.0) -0.8 (1.0 2.6 (1.0) 4.2 (1.0) 5.0 2.1 1.000
0.05 0.6 (1.0) 0.8 (1.0) 5.0 (1.0) 4.4 (1.0) 8.0 3.0 1.000
0.1 -0.2 (1.0) 1.0 (1.0) 5.6 (1.0) 17.0 (1.0) 25.6 10.5 0.996

GIN

0.001 -1.0 (0.0) 0.0 (0.9) 1.0 (0.96) 0.4 (1.0) 1.4 0.2 0.909
0.005 -0.6 (1.0) 0.4 (1.0) 0.6 (1.0) 0.4 (1.0) 3.6 0.6 0.977
0.01 -0.6 (1.0) -0.2 (1.0) 1.6 (1.0) 1.0 (1.0) 4.6 0.7 1.000
0.05 -0.8 (1.0) 1.6 (1.0) 1.4 (0.96) 2.9 (1.0) 4.2 0.9 0.994
0.1 2.2 (1.0) 7.4 (0.8) 2.6 (0.36) 2.6 (0.26) 13.0 3.2 0.490

ogbn-arxiv 169,343 Nodes 1,166,243 Edges 40 Classes 128 Features

GCN

0.001 3.7 (1.0) 4.7 (1.0) 5.3 (1.0) 6.2 (1.0) 9.8 6.1 0.999
0.005 3.2 (1.0) 2.5 (1.0) 7.3 (1.0) 8.4 (1.0) 12.8 6.3 0.999
0.01 1.6 (1.0) 3.2 (1.0) 8.0 (1.0) 7.6 (1.0) 27.8 10.0 0.999
0.05 7.4 (0.0) 3.4 (0.6) 1.1 (0.36) 1.1 (0.18) 9.7 2.7 0.251
0.1 9.1 (0.0) 2.3 (0.1) 2.1 (0.28) 1.5 (0.22) 9.1 2.4 0.210

Graph-
SAGE

0.001 0.1 (1.0) 5.8 (1.0) 5.5 (1.0) 4.8 (1.0) 11.0 4.9 1.000
0.005 1.1 (1.0) 10.1 (1.0) 6.8 (1.0) 5.8 (1.0) 13.2 6.4 0.999
0.01 1.1 (1.0) 6.0 (1.0) 10.4 (1.0) 7.4 (1.0) 19.3 8.6 0.996
0.05 1.1 (1.0) 0.7 (0.3) 1.8 (0.12) 0.3 (0.1) 5.0 1.5 0.172
0.1 2.0 (1.0) 1.3 (0.2) 3.5 (0.12) 1.3 (0.14) 5.4 1.8 0.186

GIN

0.001 0.6 (1.0) 1.4 (0.9) 7.3 (0.96) 8.9 (1.0) 9.4 5.5 0.949
0.005 0.7 (0.0) 10.4 (0.9) 7.5 (0.96) 4.9 (0.22) 10.7 5.6 0.742
0.01 0.4 (1.0) 5.3 (1.0) 7.8 (1.0) 9.8 (1.0) 14.6 7.9 0.998
0.05 0.2 (1.0) 3.0 (0.4) 4.6 (0.24) 5.4 (0.24) 11.7 4.6 0.255
0.1 1.5 (1.0) 2.9 (0.2) 6.4 (0.28) 9.0 (0.28) 9.0 4.5 0.255

16

GNNs Also Deserve Editing, and They Need It More Than Once

C. System Reports
In this section, we report the runtime and memory usage of different editing methods. It is observable that EGNN (Liu et al.,
2023a) and SEED-GNN are often among the most efficient methods due to the frozen GNN + active MLP ensemble design.
Where SEED-GNN shows a slight advantage on a few setups in terms of total times due to being able to patch editing targets
with fewer steps (Table 7). We also note the runtime of EGNN and SEED-GNN are based on cached GNN output utilizing
the property illustrated in Section 5.1, where the end-to-end runtime shall add the full forward() of all input cases in the
GNN part of the methods.

Table 12. Time / Memory of Editing Methods on ogbn-products

Backbone Method Editing Time (s) Total Time (s) Peak GPU Memory (MB)1th 10th 25th 50th

ogbn-products 2,449,029 Nodes 61,859,140 Edges 47 Classes 218 Features

GCN

FT 2.36 3.74 5.58 0.00 202.64 26429.04
ENN 2344.07 2343.33 2343.62 2343.63 110156.88 39708.80
EGNN 0.06 0.04 0.03 0.07 2.57 5753.07
Adapter 12.0 29.82 38.79 20.89 586.23 25410.13
LoRA 42.916 15.084 42.834 16.911 982.36 27726.438
SEED-GNN 0.033 0.047 0.00 0.065 1.442 5755.685

Graph-
SAGE

FT 2.94 2.80 0.00 4.17 141.15 27358.56
ENN 1897.08 1897.12 1896.88 1896.58 91220.18 41208.87
EGNN 0.06 0.04 0.06 0.03 1.80 4163.43
Adapter 5.53 21.82 20.47 32.70 519.67 26722.59
LoRA 24.15 1.49 0.00 2.89 595.80 28707.05
SEED-GNN 0.043 0.047 0.082 0.000 1.978 4176.591

GIN

FT 4.22 5.88 7.49 7.49 273.25 64030.91
EGNN 0.04 0.05 0.07 0.05 2.40 4167.94
Adapter 11.75 14.49 15.92 8.76 715.10 49195.40
SEED-GNN 0.034 0.054 0.080 0.120 2.599 4023.822

Table 13. Time / Memory of Editing Methods on Cora

Backbone Method Editing Time (s) Total Time (s) Peak GPU Memory (MB)1th 10th 25th 50th

Cora 2,485 Nodes 5,069 Edges 7 Classes 1,433 Features

GCN

FT 0.01 0.01 0.00 0.01 0.44 43.6
ENN 4.46 4.45 4.43 4.45 223.67 44.84
EGNN 0.01 0.00 0.06 0.00 1.75 43.32
Adapter 0.16 0.00 0.02 0.01 1.28 44.20
LoRA 0.01 0.01 0.01 0.01 1.47 43.71
SEED-GNN 0.006 0.008 0.020 0.000 0.504 45.952

Graph-
SAGE

FT 0.02 0.00 0.02 0.01 0.58 59.63
ENN 6.27 6.04 6.15 6.27 305.18 75.99
EGNN 0.03 0.01 0.02 0.07 1.75 43.42
Adapter 0.04 0.09 0.02 0.00 1.59 58.102
LoRA 0.02 0.06 0.00 0.02 1.80 59.61
SEED-GNN 0.037 0.005 0.010 0.033 0.931 53.232

GAT

FT 0.02 0.00 0.02 0.03 1.13 103.45
ENN 12.92 12.76 12.89 12.88 641.52 156.76
EGNN 0.02 0.00 0.03 0.17 2.02 45.53
Adapter 0.06 0.118 0.00 0.046 3.02 77.37
SEED-GNN 0.020 0.000 0.000 0.007 0.806 79.286

GIN

FT 0.02 0.00 0.04 0.01 0.97 86.86
ENN 15.60 15.11 15.21 15.12 759.47 112.69
EGNN 0.06 0.00 0.03 0.03 3.04 43.50
Adapter 0.05 0.02 0.02 0.02 1.06 86.50
SEED-GNN 0.063 0.011 0.000 0.010 1.298 48.182

17

GNNs Also Deserve Editing, and They Need It More Than Once

D. Extended Experiments and Results
D.1. Additional SEED-GNN Variants

We compare a few reviewer-suggested approaches, where most of them are different architectures taken on full or partial
SEED-GNN ingredients (as our batching design is architecture-agnostic). We observe that FT-SEED-GNN is the only
competitive method. However, it sometimes fell short of the Success Rate department to SEED-GNN — which is an
important aspect of an editing method as explained in Section 4.2. Moreover, since FT-SEED-GNN is based upon the full
model finetune pipeline, it is naturally a lot more resource-intensive than SEED-GNN, evidenced by readings in Appendix C;
which is also a major disadvantage for being an editing method as discussed in Section 5.1.

Table 14. Ablation Study of different editing methods with SEED-GNN ingredients on large graphs. “FT-SEED-GNN” is vanilla fine-
tuning the model with SEED-GNN ingredients (edit-aware training samples mixup, incremental batching, and stoppage). “ENN” is ENN
(Sinitsin et al., 2020) with SEED-GNN ingredients. “batched-EGNN” is EGNN (Liu et al., 2023a) training sample mixup. “EGNN-50” is
EGNN but editing all 50 edits at once.

Backbone
(PE Acc.) Method Test Drawdown (Success Rate) Max DD Avg DD Avg SR1th 10th 25th 50th

Amazon Computers 13,381 Nodes 245,778 Edges 10 Classes 767 Features

GCN
(85.77%)

FT-SEED-GNN 0.5 (0.0) 2.3 (0.7) 0.7 (0.96) 1.3 (0.96) 3.1 1.50 0.89
ENN-SEED-GNN 31.9 (1.0) 69.0 (0.1) 69.0 (0.08) 69.0 (0.12) 69.0 68.30 0.13
batched-EGNN -0.9 (1.0) -0.6 (0.4) -0.6 (0.32) -0.6 (0.26) -0.6 -0.60 0.37
EGNN-50 - - - 58.1 (0.98) - - -
SEED-GNN 0.6 (1.0) -0.9 (1.0) -0.1 (1.0) 2.7 (1.0) 3.3 1.1 0.99

Graph-
SAGE
(83.23%)

FT-SEED-GNN 0.5 (0.0) 2.3 (0.7) 0.7 (0.96) 1.3 (0.96) 3.1 1.50 0.89
ENN-SEED-GNN 67.4 (1.0) 74.1 (0.0) 83.1 (0.0) 83.1 (0.06) 83.1 80.00 0.04
batched-EGNN -0.9 (0.0) -0.9 (0.1) -0.9 (0.12) -0.9 (0.12) -0.9 -0.90 0.11
EGNN-50 - - - 38.1 (1.0) - - -
SEED-GNN 1.9 (1.0) 0.5 (1.0) -0.9 (1.0) -0.2 (1.0) 3.5 0.0 1.0

GIN
(66.11%)

FT-SEED-GNN -2.8 (1.0) -10.8 (1.0) -15.0 (0.96) -19.7 (0.98) -2.8 -11.60 0.93
ENN-SEED-GNN 35.5 (0.0) 40.1 (0.3) 63.2 (0.16) 31.6 (0.12) 66.0 43.80 0.14
batched-EGNN -3.5 (1.0) -3.5 (0.3) -3.5 (0.2) -3.5 (0.18) -3.5 -3.50 0.28
EGNN-50 - - - 10.8 (0.98) - - -
SEED-GNN -3.1 (0.0) -4.1 (1.0) -9.6 (1.0) -10.2 (1.0) 3.1 -8.0 0.95

ogbn-arxiv 169,343 Nodes 1,166,243 Edges 40 Classes 128 Features

GCN
(70.26%)

FT-SEED-GNN 3.7 (0.0) 3.3 (0.7) 2.7 (1.0) 3.6 (1.0) 6.6 3.60 0.89
ENN-SEED-GNN 12.2 (0.0) 67.3 (0.0) 67.3 (0.0) 66.8 (0.04) 69.0 65.30 0.01
batched-EGNN 4.0 (1.0) 4.0 (0.2) 11.1 (0.16) 4.2 (0.18) 11.1 4.70 0.23
EGNN-50 - - - 42.2 (0.96) - - -
SEED-GNN -3.7 (1.0) 4.7 (1.0) 5.3 (1.0) 6.2 (1.0) 9.8 6.1 1.0

Graph-
SAGE
(68.45%)

FT-SEED-GNN 3.7 (0.0) 3.3 (0.7) 2.7 (1.0) 3.6 (1.0) 6.6 3.60 0.89
ENN-SEED-GNN 18.9 (0.0) 46.9 (0.0) 46.9 (0.0) 62.6 (0.12) 66.4 53.60 0.06
batched-EGNN 1.4 (1.0) 1.4 (0.1) 1.4 (0.04) 1.4 (0.04) 1.4 1.40 0.10
EGNN-50 - - - 32.7 (1.0) - - -
SEED-GNN 0.1 (1.0) 5.8 (1.0) 5.5 (1.0) 4.8 (1.0) 11.0 4.9 1.0

GIN
(66.17%)

FT-SEED-GNN 0.6 (0.0) 4.9 (1.0) 7.0 (1.0) 5.0 (0.9) 12.6 6.40 0.90
ENN-SEED-GNN 60.3 (0.0) 62.2 (0.2) 51.2 (0.16) 51.8 (0.14) 65.6 54.50 0.14
batched-EGNN 2.5 (1.0) 3.9 (0.3) 4.4 (0.24) 4.4 (0.18) 4.4 4.00 0.26
EGNN-50 - - - 51.4 (0.86) - - -
SEED-GNN 0.7 (1.0) 1.1 (0.8) 4.9 (0.96) 6.7 (0.98) 8.6 5.2 0.945

ogbn-products 2,449,029 Nodes 61,859,140 Edges 47 Classes 218 Features

GCN
(74.90%)

FT-SEED-GNN 0.4 (1.0) 5.6 (1.0) 10.1 (1.0) 5.7 (1.0) 10.1 5.20 0.99
ENN-SEED-GNN 1.7 (0.0) 52.4 (0.1) 47.9 (0.16) 47.9 (0.14) 52.4 44.80 0.11
batched-EGNN 2.2 (1.0) 2.2 (0.3) 7.6 (0.28) 7.6 (0.26) 9.8 6.20 0.27
EGNN-50 - - - 55.3 (1.0) - - -
SEED-GNN 3.4 (1.0) 7.7 (1.0) 7.0 (1.0) 10.7 (1.0) 12.4 8.3 1.0

Graph-
SAGE
(76.37%)

FT-SEED-GNN 0.9 (1.0) 5.3 (1.0) 4.5 (0.96) 6.8 (1.0) 8.8 4.90 0.99
ENN-SEED-GNN 0.7 (1.0) 68.2 (0.2) 70.8 (0.12) 67.5 (0.14) 71.7 61.90 0.19
batched-EGNN 2.0 (1.0) 2.0 (0.3) 2.0 (0.2) 5.0 (0.26) 5.6 2.90 0.25
EGNN-50 - - - 41.0 (1.0) - - -
SEED-GNN 1.8 (1.0) 2.5 (1.0) 32. (1.0) 6.2 (1.0) 6.6 3.6 1.0

GIN
(65.79%)

FT-SEED-GNN 4.7 (0.0) 15.3 (1.0) 17.9 (0.96) 14.6 (0.98) 20.8 15.50 0.92
ENN-SEED-GNN OOM
batched-EGNN 0.2 (1.0) 0.2 (0.1) 0.2 (0.08) 0.2 (0.06) 0.2 0.20 0.12
EGNN-50 - - - 54.5 (0.98) - - -
SEED-GNN -0.3 (0.0) 1.4 (0.9) 3.5 (0.96) 1.8 (1.0) 4.3 2.3 0.93

18

GNNs Also Deserve Editing, and They Need It More Than Once

Table 15. Ablation Study of different editing methods with SEED-GNN ingredients on small graphs. “FT-SEED-GNN” is vanilla
fine-tuning the model with SEED-GNN ingredients (edit-aware training samples mixup, incremental batching, and stoppage). “ENN”
is ENN (Sinitsin et al., 2020) with SEED-GNN ingredients. “batched-EGNN” is EGNN (Liu et al., 2023a) training sample mixup.
“EGNN-50” is EGNN but editing all 50 edits at once.

Backbone
(PE Acc.) Method Test Drawdown (Success Rate) Max DD Avg DD Avg SR1th 10th 25th 50th

Cora 2,485 Nodes 5,069 Edges 7 Classes 1,433 Features

GCN
(89.80%)

FT-SEED-GNN -0.2 (0.0) 0.4 (0.9) 1.2 (0.96) 0.6 (0.98) 1.6 0.60 0.90
ENN-SEED-GNN 0.6 (1.0) 5.4 (0.9) 7.4 (0.96) 13.6 (0.98) 13.8 8.00 0.95
batched-EGNN 0.2 (1.0) 0.2 (0.1) 0.2 (0.08) 0.2 (0.06) 0.2 0.20 0.11
EGNN-50 - - - 9.6 (1.0) - - -
SEED-GNN 0.6 (1.0) 2.4 (1.0) 3.2 (1.0) 2.6 (1.0) 5.4 3.2 1.0

Graph-
SAGE
(86.60%)

FT-SEED-GNN -0.2 (0.0) 0.4 (0.9) 1.2 (0.96) 0.6 (0.98) 1.6 0.60 0.90
ENN-SEED-GNN 0.0 (1.0) 48.0 (1.0) 42.2 (1.0) 31.2 (0.98) 51.4 40.90 0.90
batched-EGNN -0.2 (1.0) -0.2 (0.2) -0.2 (0.08) -0.2 (0.1) -0.2 -0.20 0.14
EGNN-50 - - - 8.6 (1.0) - - -
SEED-GNN -0.4 (1.0 -0.8 (1.0) 0.2 (1.0) 1.0 (1.0) 3.0 1.0 1.0

GIN
(84.2%)

FT-SEED-GNN -0.8 (1.0) -3.4 (1.0) -2.4 (1.0) -1.4 (0.98) 0.4 -1.80 0.97
ENN-SEED-GNN 9.2 (1.0) 39.4 (0.4) 47.4 (0.8) 48.6 (0.76) 63.0 48.80 0.55
batched-EGNN 0.8 (1.0) 0.8 (0.1) -2.4 (0.2) -2.4 (0.12) 0.8 -1.20 0.17
EGNN-50 - - - 9.6 (0.96) - - -
SEED-GNN -0.4 (0.0) 0.2 (0.9) 1.2 (1.0) 1.6 (1.0) 2.6 0.70 0.90

Amazon Photo 7,487 Nodes 119,043 Edges 8 Classes 745 Features

GCN
(93.81%)

FT-SEED-GNN 1.5 (1.0) 4.8 (0.9) 3.7 (0.96) 8.6 (0.98) 8.6 3.20 0.93
ENN-SEED-GNN 0.8 (1.0) 63.9 (0.6) 64.0 (0.28) 64.0 (0.18) 64.0 62.50 0.34
batched-EGNN -0.4 (1.0) -0.4 (0.4) -0.4 (0.24) -0.4 (0.24) -0.4 -0.40 0.31
EGNN-50 - - - 57.9 (1.0) - - -
SEED-GNN -0.1 (1.0) 1.2 (1.0) 1.1 (1.0) 1.1 (1.0) 1.8 0.8 1.0

Graph-
SAGE
(94.36%)

FT-SEED-GNN 1.5 (1.0) 4.8 (0.9) 3.7 (0.96) 8.6 (0.98) 8.6 3.20 0.93
ENN-SEED-GNN 24.6 (0.0) 93.9 (0.0) 93.9 (0.04) 93.9 (0.08) 93.9 92.50 0.04
batched-EGNN 1.3 (1.0) 1.3 (0.1) 1.3 (0.12) 1.3 (0.14) 1.3 1.30 0.16
EGNN-50 - - - 34.0 (1.0) - - -
SEED-GNN 2.0 (1.0) 0.8 (1.0) 2.3 (1.0) 2.3 (1.0) 5.4 2.2 1.0

GIN
(86.11%)

FT-SEED-GNN -0.8 (1.0) -6.2 (1.0) -4.5 (0.96) -4.2 (0.96) 10.3 -4.10 0.94
ENN-SEED-GNN 57.2 (1.0) 48.2 (0.2) 70.8 (0.24) 48.9 (0.22) 80.0 55.70 0.20
batched-EGNN -2.5 (1.0) -2.5 (0.1) -2.5 (0.16) -2.5 (0.16) -2.5 -2.50 0.18
EGNN-50 - - - 30.8 (0.98) - - -
SEED-GNN -1.7 (1.0) -1.7 (0.9) -4.2 (0.96) -4.9 (1.0) 1.7 -3.60 0.96

Coauthor-CS 18,333 Nodes 81,894 Edges 15 Classes 6,805 Features

GCN
(94.43%)

FT-SEED-GNN 0.6 (1.0) 0.8 (1.0) 0.9 (0.96) 2.5 (1.0) 3.5 1.30 0.99
ENN-SEED-GNN 1.5 (1.0) 5.0 (1.0) 27.4 (0.92) 38.3 (0.98) 91.2 32.00 0.82
batched-EGNN -0.1 (1.0) -0.1 (0.3) -0.1 (0.4) -0.1 (0.36) -0.1 -0.10 0.39
EGNN-50 - - - 13.1 (1.0) - - -
SEED-GNN -0.1 (1.0) -0.1 (1.0) -0.2 (1.0) -0.1 (1.0) 0.1 -0.0 1.0

Graph-
SAGE
(95.33%)

FT-SEED-GNN 0.6 (1.0) 0.8 (1.0) 0.9 (0.96) 2.5 (1.0) 3.5 1.30 0.99
ENN-SEED-GNN 1.8 (1.0) 3.9 (0.8) 3.5 (0.8) 37.7 (0.72) 42.0 12.70 0.75
batched-EGNN 0.0 (1.0) 0.0 (0.2) 0.0 (0.08) 0.0 (0.06) 0.0 0.00 0.15
EGNN-50 - - - 17.8 (1.0) - - -
SEED-GNN 0.0 (1.0) -0.1 (1.0) 0.2 (1.0) 0.7 (1.0) 1.5 0.5 1.0

GIN
(91.60%)

FT-SEED-GNN 11.7 (0.0) 0.9 (0.9) 4.9 (0.92) 0.5 (1.0) 12.3 2.20 0.95
ENN-SEED-GNN 25.2 (1.0) 84.3 (0.1) 84.0 (0.28) 76.6 (0.18) 89.1 74.70 0.23
batched-EGNN 0.2 (1.0) 0.2 (0.1) 0.2 (0.08) 0.2 (0.06) 0.2 0.20 0.12
EGNN-50 - - - 47.1 (1.0) - - -
SEED-GNN -0.4 (1.0) -1.0 (1.0) -1.3 (1.0) -1.1 (1.0) -0.4 -1.2 0.99

19

GNNs Also Deserve Editing, and They Need It More Than Once

D.2. SEED-GNN on YelpCHI

Last, we embrace the criticism that most datasets illustrated in Table 5 and Table 6 are not high-profile in nature for
being rooted in shopping recommendation, citation connection, or something alike. Thus, we opt to evaluate SEED-GNN
on the YelpCHI3 (Rayana & Akoglu, 2015), which is a real-world collected dataset with the task being filtering out
dishonest/fraudulent reviews. As failing to do so may impair the interests of business owners and customers, even leading
to severe health and safety consequences due to the nature of hotels and restaurants, this dataset certainly carries a higher
“stake” than the others. Table 16 shows SEED-GNN still performs well under this real-life scrutiny.

Table 16. GNN Model Editing Experiments on Real-world Graph. “DD” = Test Drawdown (smaller is better), “SR” = Success Rate (̸=
1.0 implies insecure edits), “PE Acc.” = Pre-edit Acc. Please refer to §3.2 for further metrics specifications.

Backbone
(PE Acc.) Method Test Drawdown (Success Rate) Max DD Avg DD Avg SR1th 10th 25th 50th

YelpChi 45,954 Nodes (14.5% Fraud) 3,846,979 Edges 3 Classes 32 Features

GCN
(89.80%)

FT 0.9 (1.0) 80.6 (1.0) 95.3 (1.0) 95.3 (1.0) 95.3 89.8 1.0
ENN 3.9 (0.0) -0.5 (0.3) -0.5 (0.52) -0.5 (0.56) 3.9 -0.4 0.46
EGNN 36.4 (0.0) 80.9 (1.0) 89.6 (0.96) 93.3 (1.0) 93.3 84.2 0.94
SEED-GNN 0.3 (0.0) 1.7 (1.0) 2.5 (0.96) 7.2 (0.96) 8.8 4.2 0.90

Graph-
SAGE
(86.60%)

FT 25.3 (1.0) -4.5 (0.3) 70.1 (0.68) 15.0 (0.54) 76.7 24.3 0.49
ENN -8.8 (0.0) -8.8 (0.3) -8.8 (0.36) -8.8 (0.48) -8.8 -8.8 0.32
EGNN 7.0 (1.0) 46.6 (0.5) 65.1 (0.88) 19.1 (0.42) 83.2 37.9 0.571
SEED-GNN -4.6 (0.0) -2.9 (0.8) 5.5 (0.96) 14.2 (1.0) 14.2 3.2 0.91

GAT
(87.6%)

FT 20.2 (1.0) -14.5 (0.5) -10.8 (0.48) 44.9 (0.62) 80.1 40.4 0.63
ENN 82.9 (1.0) 82.9 (0.9) 82.9 (0.64) 82.9 (0.56) 82.9 82.9 0.70
EGNN -10.0 (1.0) 67.5 (0.5) -5.8 (0.12) 6.5 (0.18) 81.5 24.1 0.38
SEED-GNN -10.0 (1.0) -6.4 (0.9) -5.1 (0.96) -8.8 (1.0) -0.2 -7.3 0.94

GIN
(84.2%)

FT 1.7 (0.0) 16.9 (0.4) 34.2 (0.6) 23.7 (0.4) 36.2 15.7 0.37
ENN 97.2 (1.0) -2.4 (0.7) -2.4 (0.68) 95.6 (0.32) 97.2 55.9 0.50
EGNN 8.0 (1.0) 93.6 (0.9) 61.3 (0.52) 89.0 (0.82) 93.6 70.8 0.67
SEED-GNN -2.3 (0.0) -0.3 (1.0) 5.8 (0.96) 8.0 (1.0) 14.3 5.0 0.93

3https://odds.cs.stonybrook.edu/yelpchi-dataset/

20

https://odds.cs.stonybrook.edu/yelpchi-dataset/

