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Inferentially-Private Private Information

ABSTRACT
Information disclosure can compromise privacy when revealed in-

formation is correlated with private information. We consider the

notion of inferential privacy, which measures privacy leakage by

bounding the inferential power a Bayesian adversary can gain by

observing a released signal. Our goal is to devise an inferentially-
private private information structure that maximizes the informative-

ness of the released signal, following the Blackwell ordering princi-

ple, while adhering to inferential privacy constraints. To achieve

this, we devise an efficient release mechanism that achieves the

inferentially-private Blackwell optimal private information struc-

ture for the setting where the private information is binary. Ad-

ditionally, we propose a programming approach to compute the

optimal structure for general cases given the utility function. The

design of our mechanisms builds on our geometric characteriza-

tion of the Blackwell-optimal disclosure mechanisms under privacy

constraints, which may be of independent interest.

ACM Reference Format:
. 2024. Inferentially-Private Private Information. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 16 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Information disclosure is essential to enabling cooperation between

entities. However, the information an agent reveals can be corre-

lated with private information that should not be revealed. For ex-

ample, publicly-traded companies are required to release quarterly

earnings reports. These earnings reports are closely correlated to

the company’s business strategy, which may be considered private.

Hence, businesses may be incentivized to tailor the information in

their earnings report to maximize the signal (the state of their over-

all finances) while minimizing disclosure about private information

(their business strategy) [11]. More generally, privacy concerns

stemming from information disclosure are a pervasive problem that

inhibits data sharing and disclosure [20].

In such scenarios of information disclosure, it is natural to ask

how much information an observer can infer about private infor-

mation. Inferential privacy captures precisely this notion [8, 12].

Roughly, inferential privacy requires that the adversary’s posterior

over the secret values is within some bounded ratio of the adver-

sary’s prior (a formal definition is provided in §2). Hence natural

questions include: how should one release information subject to an
inferential privacy guarantee? What mechanism should one use? Can
we find mechanisms that release some state subject to an inferential
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privacy constraint, while also maximizing the utility of a downstream
decision maker who sees only the released information?

We study these questions under the following setting. Consider

a random variable 𝑌 ∈ {0, 1}, also called the state, which represents

the information wewant to release (e.g., whether quarterly earnings

are good or bad). We also consider a sensitive random variable (or

secret) 𝑆 ∈ S, whereS is a finite set. In our earlier example, 𝑆 might

represent the company’s business strategies, which should remain

private. The state 𝑌 and the private information 𝑆 are correlated:

they are jointly drawn from a distribution P (𝑆,𝑌 ), which is assumed

to be known to both the data holder (e.g., the company) and the

observer (e.g., viewers of the earnings report). We aim to design an

information disclosure mechanism that releases an output signal
random variable 𝑇 ∈ T for some (possibly infinite) set T of output

signals. 𝑇 should be informative about 𝑌 , without revealing too

much information about 𝑆 . More precisely, we assume there is

a reward function 𝑟 over the state 𝑌 and the decision maker’s

corresponding action 𝐴, and our utility 𝑢 over the output signal

𝑇 is defined as the expected reward maximized over the decision

maker’s actions, under a certain output signal. Hence, our goal is

to design an information structure (which corresponds to a joint

distribution P (𝑆,𝑌 ,𝑇 )) that maximizes expected utility over output

signal 𝑇 , subject to an inferential privacy constraint.

Recently, He et al. [14] studied a special case of this problem

under a "perfect" inferential privacy constraint (0-inferential pri-

vacy as in Definition 2.1); that is, they constrain their information

structure to not leak any information about 𝑆 . In other words, the

observer’s posterior over the secret 𝑆 should be the same as their

prior. Their privacy constraint can be viewed as a special, extreme

case of inferential privacy. He et al. [14] demonstrate a closed-form

information structure that simultaneously achieves perfect privacy

and Blackwell-optimality (§2), which is also proved to achieve max-

imal utility. Their information structure is optimal in the sense

that no information structure can be more informative without

revealing information about the sensitive information 𝑆 .

In this work, we generalize the formulation of He et al. [14]

to accommodate the more general inferential privacy constraint,

rather than requiring perfect privacy. In particular, the parametric

definition of inferential privacy enables us to explore a broader

spectrum of privacy-utility trade-offs. As the inferential power of

the adversary varies, so does the utility for the decision maker.

We find instances where the decision maker’s utility significantly

increases by merely loosening the perfect privacy constraint to

a stringent inferential privacy level. Specifically, we demonstrate

that at any given (nonzero) level of inferential privacy, there is

an instance where the difference in utility between mechanisms

ensuring perfect privacy and those optimizing utility under the

inferential privacy constraint can be arbitrarily large (Prop. 5.1).

Note that under our formulation, inferential privacy can be viewed

as a special case of other recent formulations for private information

disclosure [24]. We discuss our choice of privacy metric in §2.

Our main results are:

1
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(1) Geometric characterization of Blackwell-optimal solu-
tions:We provide a geometric characterization of Blackwell-

optimal information structures subject to the inferential pri-

vacy constraint. A direct implication of our characterization

is a bound on the number of signals required to satisfy the

privacy constraint. While in principle, the number of possible

output signals (i.e., the cardinality of T ) required by the opti-

mal structure can be unbounded, we show that it suffices to

have at most |T | = 3|S| + 1 possible signals to achieve Black-
well optimality. As a result, a Blackwell-optimal, inferentially

private information structure is exactly computable; when the

number of possible secrets is constant, it is computable in poly-

nomial time. Our geometric characterization involves tiling a

two-dimensional space with |S| · |T | cells, each of which has

its width and length and is associated with a positive state (i.e.,

the true state has value 𝑌 = 1) or a negative one (i.e., 𝑌 = 0). A

particular tiling of these cells fully determines the joint distri-

bution over the state, secret, and output signal P (𝑌, 𝑆,𝑇 ). We

show that a Blackwell-optimal solution must always have an

“upper-left" property—that is, the tiles associated with a positive

state are located in the upper left region of this two-dimensional

space. This upper-left characterization is a generalization of the

result in [14], which does not require this condition. Our char-

acterization further constrains the ratio of the widths of cells

that are stacked on top of each other in the two-dimensional

space based on the inferential privacy condition. This structural

result enables us to substantially reduce the solution space.

(2) Closed-form solution for binary secrets:We obtain a closed-

form expression for an inferentially-private, Blackwell-optimal

information structure when the secret is binary, i.e., |S| = 2.

Notably, by virtue of Blackwell optimality, this information

structure universally optimizes any decision-theoretic prob-

lem with a utility function convex in the posterior P (𝑌 |𝑇 ).
Our analysis first makes the observation that an informative

information structure will choose to maximize a subset of con-

ditional probabilities P (𝑇 |𝑆). Then to derive the optimal infor-

mation structure, we analyze the dominant point of these condi-

tional probabilities (in the sense that their values are maximized

simultaneously, subject to the inferential privacy constraint,

which constrains each conditional probability individually).

We demonstrate that under inferential privacy constraints and

Blackwell optimal structure, this dominant point exists, which

enables us to derive the closed-form optimal solution and to

show its uniqueness up to equivalent transformations.
1

(3) Lower bound on utility gains under inferential privacy
(binary secrets):When secrets are binary, we show that under

a nonzero inferential privacy constraint, there exists a convex

utility function such that the expected optimal utility can be

arbitrarily larger than that under perfect privacy (Prop. 5.1).

We demonstrate utility gains for common utility functions (e.g.,

quadratic), showing that by relaxing privacy constraints from

perfect privacy to 𝜀 ≈ 1, we can increase utility by up to 2×.
(4) Program to compute optimal solution for non-binary

secrets: When there aremore than two secrets (i.e., |S| > 2), we

1
We use the term equivalent transformation to refer to transformations that split or

merge equivalent signals in terms of the posteriors P (𝑌 |𝑇 ) and P (𝑆 |𝑇 ) . A formal

definition is provided in Definition 4.2.

provide a programming approach to compute the inferentially

private information structure that is optimal for any specified

utility function in the downstream decision-making problem.

Related works. Our work uses the definition of Inferential privacy
that was formulated in Ghosh and Kleinberg [12], which measures

how much information about the secret an adversary can infer

from a disclosed correlated signal (precise definition in §2.1). This

privacy notion is also studied in many previous works under dif-

ferent names, e.g, Bhaskar et al. [3], Dalenius [8], Dwork et al.

[10], Kasiviswanathan and Smith [17].

Optimal information disclosure without privacy constraints has

been explored extensively in the literature of Bayesian persua-

sion [2, 9, 15, 16]. More recently, a line of research has started the

investigation of optimal information disclosure under privacy con-

straints. Under the perfect privacy constraint, He et al. [14] studied

the informativeness of the private private signal and designed an

maximally informative structure for information disclosure. Strack

and Yang [23] extended He et al. [14] by considering multiple states

and agents, and adopting the same form of privacy notion that

requires strict independence between the output signal and secrets

(albeit conditioned on auxiliary information). Their extension is

complementary to ours; combining the two generalizations may

be an interesting direction for future work. The perfect privacy

constraint is also adopted in the worst-case information structure

for auctions [1, 7]. Under differential privacy constraints [10], sev-

eral works studied information disclosure [6, 13, 21]. They consider

the scenarios where a third party aims to disseminate information

about data collected from a number of data contributors, while

protecting individual privacy, which is different to our settings.

Our work shares a similar motivation to prior work on pufferfish
privacy [18, 22], which aims to study the privacy of correlated data,

while they assume the prior distribution P (𝑆,𝑌 ) is unknown to the

adversary. Specifically, when the prior P (𝑆,𝑌 ) is given, we show
that pufferfish privacy is equivalent to inferential privacy in §2.

Relation to He et al. [14]. Generalizing the results of He et al. [14]
to accommodate an inferential privacy guarantee is not straight-

forward. With the generalized privacy constraints, the space of all

possible information structures becomes much larger, and finding

the optimal correlation between the state, the sensitive informa-

tion, and the revealed signal becomes much more challenging. Our

characterization only provides necessary conditions for the optimal

structure, and can be viewed as an extension of the upward-closed

set representation in [14] in the discrete setting. The relaxation

of perfect privacy prevents us from using the classical result of

Lorentz [19] about “sets of uniqueness", as in [14]. Hence, finding

sufficient conditions for optimality is more challenging and Lemma

4.3 is based on entirely new techniques (details in §4.3).

2 PROBLEM FORMULATION
We want to maximize information disclosure about a random vari-

able of interest 𝑌 while minimizing information disclosure about a

sensitive random variable 𝑆 . The random variable of interest and

the sensitive random variable are jointly drawn from a prior distri-

bution P (𝑆,𝑌 ), which is commonly known. In this work, we focus

on a binary 𝑌 ∈ {0, 1}.
2
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We aim to disclose an output signal that reveals information

about 𝑌 . The output signal 𝑇 can be represented as a random vari-

able that is correlated with 𝑌 . Our goal is to design an informa-
tion structure, which we define as the joint probability distribution

P (𝑆,𝑌 ,𝑇 ). This information structure has a one-to-one correspon-

dence with our information disclosuremechanism, which we define

as P (𝑇 |𝑌, 𝑆). We next present our privacy and utility metrics.

2.1 Privacy Metric
An important principle in the study of information disclosure is

that “access to a statistical database should not enable one to learn

anything about an individual that could not be learned without

access" [8]. This qualitative notion is formalized in the definition

of inferential privacy (IP) [12] as follows.

Definition 2.1 (Inferential Privacy (IP)). An information
structure P (𝑆,𝑌 ,𝑇 ) is 𝜀-inferentially-private about 𝑆 if

P (𝑆 = 𝑠1 |𝑇 = 𝑡)
P (𝑆 = 𝑠2 |𝑇 = 𝑡) ≤ 𝑒

𝜀 · P (𝑆 = 𝑠1)
P (𝑆 = 𝑠2)

, ∀𝑠1, 𝑠2 ∈ S, 𝑡 ∈ T . (1)

This definition can equivalently be written as

P (𝑇 = 𝑡 |𝑆 = 𝑠1)
P (𝑇 = 𝑡 |𝑆 = 𝑠2)

≤ 𝑒𝜀 , ∀𝑠1, 𝑠2 ∈ S, 𝑡 ∈ T . (2)

Relation to pufferfish privacy. The notion of pufferfish privacy
[18] was proposed to measure information disclosure about a secret

random variable. It is defined as for all 𝑠1, 𝑠2 ∈ S, 𝑡 ∈ T , 𝜃 ∈ Θ:

P (𝑇 = 𝑡 |𝑆 = 𝑠1, 𝜃 ) ≤ 𝑒𝜀P (𝑇 = 𝑡 |𝑆 = 𝑠2, 𝜃 ) + 𝛿, (3)

where Θ represents the set of possible distributions P (𝑆,𝑌 ). Built
upon pufferfish privacy, several privacy notions, such as attribute

privacy [24], are proposed by specifying S and Θ. As we assume

P (𝑆,𝑌 ) is fixed and known, Θ is a singleton set. Under this con-

dition, we note that pufferfish privacy and attribute privacy are

equivalent to inferential privacy when 𝛿 = 0. However, in general,

pufferfish privacy can accommodate a set of distributions Θ that is

not a singleton; in this case, pufferfish privacy is a stronger privacy

notion than inferential privacy.

2.2 Informativeness and Utility
Drawing from the formulation of [14], we measure the informative-

ness of 𝑇 about 𝑌 using the notion of Blackwell ordering [4].

Definition 2.2 (Blackwell ordering). A random variable 𝑇1
is more informative than𝑇2 about 𝑌 if 𝑌 → 𝑇1 → 𝑇2 forms a Markov
chain. In this case, we say information structure P (𝑌,𝑇1) Blackwell
dominates information structure P (𝑌,𝑇2), and denote this condition
as P (𝑌,𝑇1) ⪰ P (𝑌,𝑇2).

Blackwell ordering has several useful properties, which are out-

lined in the following result.

Theorem 2.1 (Properties of Blackwell ordering [4, 5]). When
𝑌 ∈ {0, 1} is binary, let random variable 𝑄1 = P (𝑌 = 1|𝑇1) ∈ [0, 1]
be the posterior about 𝑌 = 1 after observing 𝑇1. Similarly, we define
𝑄2 = P (𝑌 = 1|𝑇2). Then the following statements are equivalent:

(1) Information structure P (𝑌,𝑇1) Blackwell dominates informa-
tion structure P (𝑌,𝑇2).

(2) 𝑄1 is amean-preserving spread of𝑄2, i.e., the distribution of
𝑄1 can be derived by first taking a draw from the distribution
of 𝑄2 and then adding mean-0 noise, which can depend on
the draw.

(3) For any convex function 𝑢, E[𝑢 (𝑄1)] ≥ E[𝑢 (𝑄2)].

From the definition of Blackwell ordering, we define 𝜀-inferentially-

private Blackwell optimality as follows.

Definition 2.3 (𝜀-Inferentially-Private Blackwell optimal-

ity). Given P (𝑌, 𝑆), an information structure P (𝑌, 𝑆,𝑇 ) is an 𝜀-
inferentially-private Blackwell optimal information structure if there
exists no other 𝜀-inferentially-private P (𝑌, 𝑆,𝑇 ′) that has P (𝑌,𝑇 ′) ⪰
P (𝑌,𝑇 ).

Additionally, P (𝑌,𝑇 ′) and P (𝑌,𝑇 ) are equivalent if P (𝑌,𝑇 ′) ⪰
P (𝑌,𝑇 ) and P (𝑌,𝑇 ) ⪰ P (𝑌,𝑇 ′).

He et al. [14] show that for 0-inferential privacy with a binary

secret, there exists a unique (up to equivalent transformations)

Blackwell-optimal information structure, and they provide a closed-

form expression for it (details in §3).

Utility. We consider a decision-theoretic formulation in which

the decision maker receives a reward 𝑟 (𝑦, 𝑎) under the state 𝑦 and

their corresponding action 𝑎. The binary state 𝑌 can be inferred

from the output signal 𝑇 by the posterior P𝑌 |𝑇 . We let 𝑞𝑡 = P(𝑌 =

1|𝑇 = 𝑡). Under a certain output signal 𝑡 , we denote the utility as

the maximal expected reward the decision maker can get, i.e.,

𝑢 (𝑞𝑡 ) = max

𝑎
E𝑦 [𝑟 (𝑦, 𝑎) ] = max

𝑎
{𝑞𝑡 · 𝑟 (1, 𝑎) + (1 − 𝑞𝑡 ) 𝑟 (0, 𝑎) } . (4)

Since under a fixed action 𝑎, rewards 𝑟 (1, 𝑎) and 𝑟 (0, 𝑎) are fixed,
𝑢 (𝑞𝑡 ) is a convex piecewise linear function over 𝑞𝑡 . The goal of

signal release mechanism design is to maximize the expected utility,

i.e., E𝑡 [𝑢 (𝑞𝑡 )], for the decision maker with any reward function.

Since Eq. (4) is convex, the result of Thm. 2.1 implies that iden-

tifying a Blackwell-optimal information structure also helps in

finding a utility-maximizing structure. Indeed, we will show in §5

that when the secret is binary, the inferentially-private Blackwell-

optimal structure universally maximizes the expected utility under

any convex function.

3 GEOMETRIC VISUALIZATION OF
INFORMATION STRUCTURES

As in prior work [14], we will use a visual representation of infor-

mation structures to clarify the meaning of our geometric char-

acterization. An information structure P (𝑆,𝑌 ,𝑇 ) can be drawn as

a grid, where each column corresponds to a value of the output

signal 𝑇 , and each row corresponds to a value of the secret 𝑆 . The

color of each point in this plot denotes the posterior probability

P (𝑌 = 1|𝑆,𝑇 ), with white denoting P (𝑌 = 1|𝑆,𝑇 ) = 0 and dark yel-

low denoting P (𝑌 = 1|𝑆,𝑇 ) = 1 (light yellow denotes “in between"

real values in (0, 1)). For example, Fig. 1 below illustrates one pos-

sible information structure with S = {𝑠0, 𝑠1} and T = {𝑡1, 𝑡2, 𝑡3}.
Fig. 1 fully defines the information structure: P (𝑌 = 𝑦 |𝑆 = 𝑠,𝑇 = 𝑡)

is determined by the color of each cell, P (𝑆 = 𝑠) is determined by

the height of row 𝑠 , and P (𝑇 = 𝑡 |𝑆 = 𝑠) is determined by the width

of the (𝑠, 𝑡) cell. These quantities jointly determine the full distri-

bution P (𝑌, 𝑆,𝑇 ), since P(𝑆,𝑌 ,𝑇 ) = P(𝑌 |𝑆,𝑇 ) · P(𝑇 |𝑆) · P(𝑆). From
the information structure, we can in turn determine the disclosure

3
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mechanism represented by P (𝑇 |𝑆,𝑌 ) because P(𝑇 |𝑆,𝑌 ) = P(𝑆,𝑌,𝑇 )
P(𝑆,𝑌 )

and P (𝑆,𝑌 ) is known. Since P (𝑆) is known, it suffices to use P (𝑇 |𝑆)
and P (𝑌 |𝑆,𝑇 ) to characterize a policy.

𝑠*

𝑠!

𝑡! 𝑡" 𝑡(

𝟏𝟎

𝟏

ℙ(𝑡!|𝑠!) ℙ(𝑡"|𝑠!) ℙ(𝑡#|𝑠!)

ℙ(𝑡!|𝑠$) ℙ(𝑡"|𝑠$) ℙ(𝑡#|𝑠$)

ℙ(𝑠$)

ℙ(𝑠!)

Figure 1: Information structure of P (𝑆,𝑌 ,𝑇 ). We use the term
“column" to denote a set of cells with fixed output signal
𝑡 ∈ T ; in our terminology, each column need not be a single
rectangle, as shown in the column outlined in red for 𝑡2.
Each row corresponds to a secret 𝑠 ∈ S. For each cell, the
color represents the posterior probability P (𝑌 = 1|𝑆,𝑇 ) (dark
yellow is 1, light yellow is some value between 0 and 1, and
white is 0). The height of each row represents P (𝑆), and the
width of each cell represents P (𝑇 |𝑆).

Interpretation of privacy constraints. Notice that to satisfy an

𝜀-inferential privacy guarantee, we need that
P(𝑇=𝑡 |𝑆=𝑠1 )
P(𝑇=𝑡 |𝑆=𝑠2 ) ≤ 𝑒

𝜀
for

all 𝑡 ∈ T . This means that in any column of the figure, the ratio

of cell widths must lie in the range [𝑒−𝜀 , 𝑒𝜀 ]. Consequently, for a
0-inferential privacy constraint (as in He et al. [14]), we require

that in a column, all cells have the same width; this implies that

each column is a rectangle.

Blackwell-optimal structure from [14]. For a binary secret and

binary state 𝑌 , [14] provides the Blackwell-optimal information

structure under a perfect privacy constraint, i.e., 0-inferential pri-

vacy, as shown in Thm. 3.1. We introduce the notation 𝑞𝑠 to denote

the probability that the signal 𝑌 = 1 given the secret signal 𝑆 = 𝑠:

𝑞𝑠 ≜ P (𝑌 = 1|𝑆 = 𝑠) .
Note that 𝑞𝑠 is given by the prior, and can be viewed as a constant.

Theorem 3.1 ([14]). With binary state 𝑌 ∈ {0, 1} and binary
secret 𝑆 ∈ {𝑠0, 𝑠1}, where P (𝑌 = 1|𝑆 = 𝑠0) ≥ P (𝑌 = 1|𝑆 = 𝑠1), given
the joint distribution P (𝑆,𝑌 ), the 0-inferentially-private Blackwell
optimal information structure is unique up to equivalent transforma-
tions: T = {𝑡1, 𝑡2, 𝑡3},

P (𝑇 = 𝑡1 |𝑆 = 𝑠0) = P (𝑇 = 𝑡1 |𝑆 = 𝑠1) = 𝑞𝑠1 ,
P (𝑇 = 𝑡2 |𝑆 = 𝑠0) = P (𝑇 = 𝑡2 |𝑆 = 𝑠1) = 𝑞𝑠0 − 𝑞𝑠1 ,
P (𝑇 = 𝑡3 |𝑆 = 𝑠0) = P (𝑇 = 𝑡3 |𝑆 = 𝑠1) = 1 − 𝑞𝑠0 ,
P (𝑌 = 1|𝑇 = 𝑡1) = P (𝑌 = 1|𝑆 = 𝑠0,𝑇 = 𝑡2) = 1,

P (𝑌 = 1|𝑇 = 𝑡3) = P (𝑌 = 1|𝑆 = 𝑠1,𝑇 = 𝑡2) = 0.

The optimal structure is visualized in Fig. 2. Under the optimal

information structure, P (𝑌 |𝑆,𝑇 ) is either 0 or 1, i.e., each cell is

either dark yellow or white, and the dark yellow cells are in the

upper left corner of the grid (we formally define ‘upper left’ in

Definition 4.1). In this information structure, observe that the prob-

ability P (𝑇 = 𝑡 |𝑆 = 𝑠) is the same for all values of 𝑠 . In other words,

each “column" is a rectangle in the perfect privacy setting, whose

width is equal to P (𝑇 = 𝑡 |𝑆 = 𝑠). Also note that in this example,

signals 𝑡1 and 𝑡3 deterministically reveal 𝑌 : if 𝑇 = 𝑡1, then 𝑌 = 1

with probability 1, whereas if 𝑇 = 𝑡3, then 𝑌 = 0 with probability 1.

𝑠*

𝑠!

𝑡! 𝑡" 𝑡(

𝟏𝟎

𝟏

ℙ 𝑡! 𝑠$ = 𝑞%! ℙ 𝑡# 𝑠$ = 1 − 𝑞%"

ℙ(𝑠$)

ℙ(𝑠!)

𝑞- ≜ ℙ(𝑌 = 1|𝑆 = 𝑠)

ℙ 𝑡" 𝑠$ = 𝑞%" − 𝑞%!

Figure 2: Blackwell-optimal structure with perfect privacy
constraint. T = {𝑡1, 𝑡2, 𝑡3}. The width of each cell is deter-
mined by the P (𝑌 = 1|𝑆), and each cell is either dark yellow
or white, indicating P (𝑌 |𝑆,𝑇 ) ∈ {0, 1}.

4 GEOMETRIC CHARACTERIZATION OF IP
BLACKWELL-OPTIMAL SOLUTIONS

In this section, we provide a geometric characterization of Blackwell-

optimal information structures that also guarantee inferential pri-

vacy (IP). Even though the space of possible information structures

is uncountably infinite, our characterization can be used to signifi-

cantly limit the search space. For example, we will use the charac-

terization to conclude that we only need to consider information

structures with |T | ≤ 3|S| + 1 output states (Thm. 4.1).

This characterization has three components:

(1) For any Blackwell-optimal information structure, it must hold

that P (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡) ∈ {0, 1}. In otherwords, as inHe et al.
[14], all cells in our visualization are either white or yellow.

(2) For any output signal 𝑡 ∈ T such that P (𝑌 = 1|𝑇 = 𝑡) ≠ {0, 1},
and for any 𝑠1, 𝑠2 ∈ S, it must hold that

P(𝑇=𝑡 |𝑆=𝑠1 )
P(𝑇=𝑡 |𝑆=𝑠2 ) ∈ {1, 𝑒

𝜀 , 𝑒−𝜀 },
and the values 𝑒𝜀 and 𝑒−𝜀 can be reached by some (𝑠1, 𝑠2) pairs.
In other words, if a column is not all yellow or all white, then

there are exactly two cell widths in the column, and their ratio

is either 𝑒𝜀 or 𝑒−𝜀 , so the IP constraint is met with equality.

(3) A Blackwell-optimal structure should be “upper-left" and “lower-

right”, which roughly means that the yellow cells are adjacent

and located in the top left corner of the visualization, and the

cells with largerwidth, i.e., P (𝑇 = 𝑡 |𝑆 = 𝑠) = max𝑠′ P (𝑇 = 𝑡 |𝑆 = 𝑠′)
are adjacent and located in the top left or bottom right corners

of the visualization. (We state this more precisely in §4.3.)

We next discuss each of these in greater detail.

4.1 Geometric characterization of P (𝑌 |𝑆,𝑇 )
We first show that P (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡) can only be 0 or 1 for any

inferentially-private Blackwell optimal information structure.

4
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Lemma 4.1. For anyP (𝑌, 𝑆) and 𝜀, an 𝜀-inferentially-private Black-
well optimal information structure P (𝑌, 𝑆,𝑇 ) must satisfy that for
all 𝑠 ∈ S, 𝑡 ∈ T : P (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡) ∈ {0, 1}.

The proof is in App. A. As illustrated in Fig. 3, each cell cor-

responds to a pair of secret 𝑠 and output 𝑡 , and yellow cells indi-

cate that P (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡) = 1, while white cells indicate that

P (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡) = 0. This condition also holds for the perfect

privacy setting, a special case of inferential privacy (Thm. 3.1).

𝑠*

𝑠!

𝑡! 𝑡+𝑡" 𝑡( 𝑡)

𝟏

𝟏

𝟎

Figure 3: Under an inferentially-private Blackwell optimal
information structure, P (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡) ∈ {0, 1},∀𝑠 ∈ S, 𝑡 ∈
T . I.e., every cell in the visualization is white or dark yellow.

4.2 Geometric characterization of P (𝑇 |𝑆)
We first define T̃ as T̃ = {𝑡 : P (𝑌 = 1|𝑇 = 𝑡) ∉ {0, 1}} . For any
𝑡 ∈ T̃ , we analyze the relationship of P (𝑇 = 𝑡 |𝑆 = 𝑠) for all 𝑠 .

Lemma 4.2. For anyP (𝑌, 𝑆) and 𝜀, an 𝜀-inferentially-private Black-
well optimal information structure P (𝑌, 𝑆,𝑇 ) must have the inferen-
tial privacy constraints binding for any 𝑡 ∈ T̃ . Specifically, for any
𝑡 ∈ T̃ , let 𝐿𝑡 = min𝑠 P (𝑇 = 𝑡 |𝑆 = 𝑠) and 𝐻𝑡 = max𝑠 P (𝑇 = 𝑡 |𝑆 = 𝑠).
We have 𝐻𝑡 = 𝑒𝜀 · 𝐿𝑡 , and P (𝑇 = 𝑡 |𝑆 = 𝑠) is either 𝐿𝑡 or 𝐻𝑡 for all 𝑠 .

The proof is in App. B. As illustrated in Fig. 4, when a column

associated with output 𝑡 ∈ T is neither all-yellow nor all-white, we

have P (𝑇 = 𝑡 |𝑆 = 𝑠) ∈ {𝐿𝑡 , 𝐻𝑡 } ,∀𝑠 ∈ S. In other words, there are

only two possible cell widths in the column, which we call “wide"

and “narrow". We illustrate wide cells with red outlines to represent

secret-output pairs (𝑠, 𝑡) with P (𝑇 = 𝑡 |𝑆 = 𝑠) = 𝐻𝑡 , and use narrow
cells with blue outlines to represent secret-output pairs (𝑠, 𝑡) with
P (𝑇 = 𝑡 |𝑆 = 𝑠) = 𝐿𝑡 .

4.3 Upper left characterization
Based on Lemmas 4.1 and 4.2, we define regionsA,B, C as follows.

A = {(𝑠, 𝑡) : P (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡) = 1, 𝑠 ∈ S, 𝑡 ∈ T },

B = {(𝑠, 𝑡) : (𝑠, 𝑡) ∈ A, P (𝑇 = 𝑡 |𝑆 = 𝑠) = 𝐻𝑡 , 𝑠 ∈ S, 𝑡 ∈ T̃ },

C = {(𝑠, 𝑡) : (𝑠, 𝑡) ∉ A, P (𝑇 = 𝑡 |𝑆 = 𝑠) = 𝐻𝑡 , 𝑠 ∈ S, 𝑡 ∈ T̃ }.

We next characterize upper-left and lower-right regions:

Definition 4.1. A regionA is T -upper-left if for any
(
𝑠𝑖 , 𝑡 𝑗

)
∈ A,

(𝑠𝑘 , 𝑡𝑙 ) ∈ A, ∀𝑘 ≤ 𝑖, 𝑙 ≤ 𝑗, 𝑠𝑘 ∈ S, 𝑡𝑙 ∈ T .

A region C is T̃ -lower-right if for any (𝑠𝑘 , 𝑡𝑘 ) ∈ C,

(𝑠𝑘 , 𝑡𝑙 ) ∈ C, ∀𝑘 ≥ 𝑖, 𝑙 ≥ 𝑗, 𝑠𝑘 ∈ S, 𝑡𝑙 ∈ T̃ .

𝑠*

𝑠!

𝑡! 𝑡" 𝑡+𝑡( 𝑡)

𝟏

𝟏

𝟎

Figure 4: Under an inferentially-private Blackwell-optimal
information structure with S = {𝑠0, 𝑠1} and T̃ =

{𝑡2, 𝑡3, 𝑡4}, P (𝑇 = 𝑡2 |𝑆 = 𝑠1) = 𝐻𝑡2 , P (𝑇 = 𝑡3 |𝑆 = 𝑠0) = 𝐻𝑡3 ,
P (𝑇 = 𝑡4 |𝑆 = 𝑠1) = 𝐻𝑡4 , illustrated by cells with red outlines,
P (𝑇 = 𝑡2 |𝑆 = 𝑠0) = 𝐿𝑡2 , P (𝑇 = 𝑡3 |𝑆 = 𝑠1) = 𝐿𝑡3 , P (𝑇 = 𝑡4 |𝑆 = 𝑠0) =
𝐿𝑡4 , illustrated by cells with blue outlines, and𝐻𝑡 = 𝑒𝜀 ·𝐿𝑡 ,∀𝑡 ∈
{𝑡2, 𝑡3, 𝑡4}.

Intuitively, upper-left means that starting from any cell in the

region, every cell above it and/or to the left is also part of the region.

Similarly, lower-right means that for any cell in the region, all cells

below and/or to the right of the cell are also in the region.

Lemma 4.3. Consider any 𝜀-inferentially-private Blackwell optimal
information structure P (𝑌, 𝑆,𝑇 ). Suppose 𝑠1, . . . , 𝑠𝑛 ∈ S are ordered
in decreasing order of P (𝑌 = 1|𝑆 = 𝑠), and 𝑡1, . . . , 𝑡𝑘 ∈ T are ordered
in decreasing order of P (𝑌 = 1|𝑇 = 𝑡). Then the regionA is T -upper-
left, region B is T̃ -upper-left, and region C is T̃ -lower-right.

The proof is in App. C. An example is shown in Fig. 5; the yellow

cells form the region A, the cells in yellow with red outlines form

the region B, and cells in white with red outlines form the region C.
The regionA is T -upper-left, region B is T̃ -upper-left, and region
C is T̃ -lower-right. The upper-left characterization of region A is

also true in the perfect privacy setting, while the characterizations

of regions B and C are specific to the inferential privacy setting.

𝑠"

𝑠(

𝑡! 𝑡" 𝑡+𝑡( 𝑡)

𝑠!

𝟏

𝟏

𝟎

Figure 5: Under an inferentially-private Blackwell optimal
information structure with S = {𝑠1, 𝑠2, 𝑠3} and T̃ = (𝑡2, 𝑡3, 𝑡4),
region A is illustrated as the yellow cells, region B is illus-
trated as the yellow cells with red outlines, and region C is
illustrated as the white cells with red outlines. The region
A is T -upper-left, region B is T̃ -upper-left, and region C is
T̃ -lower-right.

Remark on proof techniques. Lemma 4.3 can be viewed as an ex-

tension of the upward-closed set representation in [14, Theorem

3] in the discrete setting. The relaxation of the privacy constraint
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(𝜀 > 0) introduces a fundamental difference to the underlying ge-

ometry and the previous technique of He et al. [14] for the perfect

privacy setting, which uses the classical result on sets of unique-

ness by Lorentz [19], can no longer be applied. As a result, finding

the sufficient condition for optimality is much more challenging

and Lemma 4.3 is based on entirely new techniques. The key idea

is to identify “microstructures” that cannot appear in an optimal

structure. We prove that information structures without such “mi-

crostructures” must have 𝑆 and𝑇 that can be reordered to exhibit a

structure that can be represented by three upward-closed sets, as

opposed to one in the perfect privacy case.

4.4 Cardinality of the Output Signal Set
The geometric characterization of the 𝜀-inferentially-private Black-

well optimal information structure allows us to upper bound the

number of outputs needed to construct an optimal information

structure.
2
We first define the equivalent transformation as follows.

Definition 4.2 (Eqivalent Transformation). The equivalent
transformation of an information structure P (𝑆,𝑌 ,𝑇 ) consists of one
or multiple operations shown as follows. Denote ˆP

(
𝑌, 𝑆,𝑇

)
as the

information structure after transformation.

• Split. Split an output signal 𝑡𝑖 into a set of equivalent signals
ˆT𝑖 that share the same geometric pattern:

P (𝑇 = 𝑡𝑖 ) =
∑︁
𝑡 ∈ ˆT𝑖

ˆP
(
𝑇 = 𝑡

)
,

P (𝑌 = 1|𝑇 = 𝑡𝑖 ) = ˆP
(
𝑌 = 1|𝑇 = 𝑡

)
, ∀𝑡 ∈ ˆT𝑖 ,

P (𝑆 = 𝑠 |𝑇 = 𝑡𝑖 ) = ˆP
(
𝑆 = 𝑠 |𝑇 = 𝑡

)
, ∀𝑠 ∈ S, 𝑡 ∈ ˆT𝑖 .

• Merge. Merge a set of signals T𝑖 to an equivalent signal 𝑡𝑖
that shares the same geometric pattern:∑︁
𝑡 ∈T𝑖

P (𝑇 = 𝑡) = ˆP
(
𝑇 = 𝑡𝑖

)
,

P (𝑌 = 1|𝑇 = 𝑡) = ˆP
(
𝑌 = 1|𝑇 = 𝑡𝑖

)
, ∀𝑡 ∈ T𝑖 ,

P (𝑆 = 𝑠 |𝑇 = 𝑡) = ˆP
(
𝑆 = 𝑠 |𝑇 = 𝑡𝑖

)
, ∀𝑠 ∈ S, 𝑡 ∈ T𝑖 .

We say that
ˆP
(
𝑌, 𝑆,𝑇

)
is an equivalent information structure to

P (𝑌, 𝑆,𝑇 ) if it can be obtained by equivalent transformation.

Theorem 4.1. Given P (𝑆,𝑌 ) and 𝜀 > 0, for any 𝜀-inferentially-
private Blackwell optimal information structure, there exists an equiv-
alent information structure P (𝑌, 𝑆,𝑇 ) that has |T | ≤ 3|S| + 1.

The proof is shown in App. D.

5 MECHANISM DESIGN: BINARY SECRET
The geometric characterization of inferentially-private Blackwell

optimal information structures significantly reduces the search

space for solutions. However, it does not allow us to trivially deter-

mine a Blackwell-optimal solution in general. We next design an

2
Note that the analysis of the geometric characterization in Lemmas 4.1 to 4.3 does

not rely on the existence of a finite-size Blackwell optimal structure.

information disclosure mechanism that achieves an 𝜀-inferentially-

private Blackwell optimal information structure when the secret is

binary, i.e., S = {𝑠0, 𝑠1}. We provide an optimal disclosure mecha-

nism that is closed-form, only uses 4 output signals, and is unique

up to equivalent transformations. The designed mechanism uni-

versally maximizes the expected utility E𝑡 [𝑢 (𝑞𝑡 )], where 𝑞𝑡 =

P (𝑌 = 1|𝑇 = 𝑡), of the decision maker under any reward function.

We defer the analysis of general secrets with 𝑛 > 2 possible

values, i.e., S = {𝑠1, . . . , 𝑠𝑛}, to App. I. The main result is to derive

a set of programs that lead to an optimal solution for any given

utility function in the downstream decision-making problem. The

design of the programs depends on our geometric characterization,

which ensures that each program is linear.

5.1 Geometric characterization: binary secret
We first start by presenting the geometric characterization under

the special case of a binary secret. Let 𝑞𝑠 = P(𝑌 = 1|𝑆 = 𝑠), 𝑞𝑡 =
P(𝑌 = 1|𝑇 = 𝑡) and 𝑝𝑡 = P(𝑇 = 𝑡). Denote 𝑙 ( 𝑗 )

𝑖
= P(𝑇 = 𝑡𝑖 |𝑆 =

𝑠 𝑗 ), where 𝑗 ∈ {0, 1}, and 𝒍 =
{
𝑙
( 𝑗 )
𝑖

}
𝑖∈ |T |, 𝑗∈{0,1}

. In other words,

𝑙
( 𝑗 )
𝑖

is the width of the cell in the 𝑖th column and the 𝑗th row. As

discussed in §3, we can fully determine the information structure of

P (𝑆,𝑌 ,𝑇 ) by specifying the values of 𝑙 ( 𝑗 )
𝑖

and P (𝑌 |𝑆,𝑇 ), and in turn
determines the disclosure mechanism. The following lemma shows

the characterization of a Blackwell-optimal information structure

P (𝑌, 𝑆,𝑇 ) by specifying the constraints on values of 𝑙
( 𝑗 )
𝑖

, which in

turn can specify P (𝑌 |𝑆,𝑇 ) together with Lemmas 4.1 and 4.3.

Lemma 5.1 (Feasibility condition). Given P (𝑆,𝑌 ) and 𝜀 > 0,
for any 𝜀-inferentially-private Blackwell optimal information struc-
ture withS = {𝑠0, 𝑠1}, there exists an equivalent information structure
P (𝑌, 𝑆,𝑇 ) that satisfies |T | ≤ 4 and its associated 𝒍 values have the
following properties:

• 𝑙 (1)
1

and 𝑙 (0)
4

are fixed to be:

𝑙
(1)
1

= 𝑞𝑠1 , 𝑙
(0)
4

= 1 − 𝑞𝑠0 , (5)

• 𝒍 ensure the disclosure policy satisfies the IP constraint with:

𝑙
(0)
2

𝑙
(1)
2

=
𝑙
(1)
3

𝑙
(0)
3

= 𝑒𝜀 , (6)

𝑙
(0)
1
∈
[
𝑒−𝜀𝑙 (1)

1
, 𝑒𝜀𝑙
(1)
1

]
, 𝑙

(1)
4
∈
[
𝑒−𝜀𝑙 (0)

4
, 𝑒𝜀𝑙
(0)
4

]
, (7)

• 𝒍 are valid probabilities:∑︁
𝑖∈[4]

𝑙
( 𝑗 )
𝑖

= 1, ∀𝑗 ∈ {0, 1} , (8)

𝑙
( 𝑗 )
𝑖
≥ 0, ∀𝑖 ∈ [4], 𝑗 ∈ {0, 1} . (9)

The proof is shown in App. E. The geometric characterization

of the optimal structure with binary secret is illustrated in Fig. 6.

For the cell that corresponds to the secret 𝑠𝑖 and the output 𝑡 𝑗 ,

∀𝑖 ∈ {0, 1} , 𝑗 ∈ [4], the vertical length represents P (𝑆 = 𝑠𝑖 ) and
the horizontal length represents 𝑙

(𝑖 )
𝑗

= P
(
𝑇 = 𝑡 𝑗 |𝑆 = 𝑠𝑖

)
.

Recall that our geometric characterization of Blackwell-optimal

solutions implies that, as in the case of perfect inferential privacy,

the information structure must satisfy the property that each cell
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Figure 6: Geometric characterization of an 𝜀-inferentially-
private Blackwell optimal information structure with a bi-
nary secret. There are at most four output signals 𝑡1, 𝑡2, 𝑡3, 𝑡4;
signals 𝑡1 and 𝑡4 completely reveal the signal 𝑌 . For short-
hand, we use 𝑙 ( 𝑗 )

𝑖
to represent P

(
𝑇 = 𝑡𝑖 |𝑆 = 𝑠 𝑗

)
. Cells with the

same border color correspond to the same output signal 𝑇 .
The widths of the cells in the bottom-left and top-right cor-
ners are fully determined by Eq. (5) in Lemma 5.1: namely,
𝑙
(1)
1

= 𝑞𝑠1 and 𝑙
(0)
4

= 1−𝑞𝑠0 . The ratio between thewidths of the

cells with purple or green outlines satisfies 𝑙
(0)
2

𝑙
(1)
2

=
𝑙
(1)
3

𝑙
(0)
3

= 𝑒𝜀 , ac-

cording to Eq. (6). The widths of the cells in top-left and
bottom-right corners satisfy 𝑙

(0)
1
∈

[
𝑒−𝜀𝑙 (1)

1
, 𝑒𝜀𝑙
(1)
1

]
, 𝑙
(1)
4
∈[

𝑒−𝜀𝑙 (0)
4
, 𝑒𝜀𝑙
(0)
4

]
respectively, according to Eq. (7).

is either dark yellow or white, i.e., P (𝑌 |𝑆,𝑇 ) ∈ {0, 1}, and the dark

yellow cells are in the upper left region of the grid. Further, Eq. (5)

implies that the bottom left and top right cells have a width that is

fixed and independent of the IP constraint. Note that, as with the

perfect privacy result of He et al. [14], the outermost signals 𝑡1 and

𝑡4 fully reveal the state 𝑌 . However, recall that the perfect privacy

case required at most three output signals. Lemma 5.1 implies that

four output signals are sufficient; we show in §5.2 that in some

cases, four output signals are also necessary. Moreover, while the

inner columns for 𝑡2 and 𝑡3 have a cell width ratio that is exactly 𝑒𝜀

(thus meeting the IP constraint with equality), the first and fourth

columns have a ratio of cell widths that does not necessarily meet

the IP constraint with equality. Hence, the main difficulty of finding

a Blackwell-optimal mechanism is to identify the exact width and

cell width ratio for the first and fourth columns.

5.2 Mechanism design
We split this section into two steps. First, we present our main

result for the binary case, which is a Blackwell-optimal information

structure under an 𝜀-IP constraint. Then we demonstrate how this

information structure leads to an information disclosure mecha-

nism, and analyze its utility compared to an optimal mechanism

under a perfect privacy constraint.

5.2.1 Step 1: Determine the Blackwell-Optimal Solution. Recall that
our geometric characterization in Lemma 5.1 fixed the size of the

bottom left and top right cells of any Blackwell-optimal structure

(i.e., bottom orange cell and top black cell in Fig. 6). Next, we specify

the sizes of the other cells. To maximize utility, we want the top

left and bottom right cells, i.e., 𝑙
(0)
1

and 𝑙
(1)
4

, to be as wide as pos-

sible, since they deterministically reveal 𝑌 . In principle, these two

cell widths could depend on each other. For instance, increasing

𝑙
(0)
1

might force 𝑙
(1)
4

to shrink, for the solution to remain feasible.

However, in this subsection, we show that this is not the case: 𝑙
(0)
1

and 𝑙
(1)
4

can be maximized simultaneously.

We first show formally that in order to maximize expected utility,

we want 𝑙
(0)
1

and 𝑙
(1)
4

to be as large as possible. We define the

feasible dominant point as follows.

Definition 5.1 (Feasible dominant point). 𝒍 is a feasible dom-

inant point if it satisfies the feasibility constraints in Lemma 5.1 and
if for any point 𝒍′ that satisfies the feasibility constraints, it holds that
𝑙
(0)
1
≥ 𝑙 ′ (0)

1
and 𝑙 (1)

4
≥ 𝑙 ′ (1)

4
.

The following lemma shows that there exists a unique feasible

dominant point, and it maximizes expected utility under any convex

utility function.

Lemma 5.2. There exists a unique feasible dominant point. For
any convex utility function 𝑢, the objective function E𝑡 [𝑢 (𝑞𝑡 )] is
maximized if and only if 𝒍 is the feasible dominant point.

The proof is shown in App. F. Combining with Thm. 2.1, we

know that the inferentially-private Blackwell optimal information

structure is determined by the feasible dominant point. We next

provide the unique inferentially-private Blackwell optimal infor-

mation structure. This structure is unique up to transformations of

the structure that merge equivalent output signals.

Theorem 5.1. Let 𝑅1 =
𝑞𝑠

0

𝑞𝑠
1

and 𝑅2 =
1−𝑞𝑠

1

1−𝑞𝑠
0

. Given the joint dis-
tribution P (𝑆,𝑌 ) and 𝜀, the following information structure is the
unique 𝜀-inferentially-private Blackwell-optimal information struc-
ture (unique up to equivalent transformations) that universally maxi-
mizes the expected utility under any convex utility function: 𝒍 satisfies
conditions in Lemma 5.1 , and

When: Then:
𝑅1 ≤ 𝑒𝜀 , 𝑅2 ≤ 𝑒𝜀 𝑙

(1)
2

= 𝑙
(1)
3

= 0

𝑅1 ≤ 𝑒𝜀 , 𝑅2 > 𝑒𝜀 , or
𝑅1 > 𝑒𝜀 , 𝑅2 > 𝑒𝜀 , 𝑞𝑠1 ≥ 1

1+𝑒𝜀
𝑙
(1)
2

= 0,

𝑙
(1)
3

= 1 − 𝑞𝑠1 − 𝑒𝜀 (1 − 𝑞𝑠0 )
𝑅1 > 𝑒𝜀 , 𝑅2 ≤ 𝑒𝜀 , or
𝑅1 > 𝑒𝜀 , 𝑅2 > 𝑒𝜀 , 𝑞𝑠0 ≤ 1

1+𝑒−𝜀
𝑙
(1)
2

= 𝑒−𝜀𝑞𝑠0 − 𝑞𝑠1 ,
𝑙
(1)
3

= 0

𝑅1 > 𝑒𝜀 , 𝑅2 > 𝑒𝜀 , 𝑞𝑠0 >
1

1+𝑒−𝜀 ,
𝑞𝑠1 <

1

1+𝑒𝜀
𝑙
(1)
2

= 1

𝑒𝜀+1 − 𝑞𝑠1 ,
𝑙
(1)
3

= 𝑒𝜀𝑞𝑠0 − 𝑒2𝜀

𝑒𝜀+1
The proof is shown in App. G. As illustrated in Fig. 7, there

are six regions of problem parameters, which depend on both the

prior and 𝜀, that determine how many (and which) signals we need.

When 𝑅1 ≤ 𝑒𝜀 , 𝑅2 ≤ 𝑒𝜀 , i.e., the original secret-state structure

P (𝑆,𝑌 ) already satisfies the inferential privacy constraint, we can

just release the actual state and therefore 𝑇 = {𝑡1, 𝑡4}. When 𝑅1 ≤
𝑒𝜀 , 𝑅2 > 𝑒𝜀 or 𝑅1 > 𝑒𝜀 , 𝑅2 ≤ 𝑒𝜀 , the original secret-state structure
P (𝑆,𝑌 ) satisfies the inferential privacy constraint only when 𝑌 = 1

or 𝑌 = 0, and we need to introduce an additional signal to ensure

the inferential privacy constraint is met. When 𝑅1 > 𝑒𝜀 , 𝑅2 > 𝑒𝜀 ,

i.e., the original secret-state structure P (𝑆,𝑌 ) does not satisfy the

inferential privacy constraint, the number of output signal required
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depends on the value of 𝑞𝑠1 or 𝑞𝑠0 . When 𝑞𝑠1 ≥ 1

1+𝑒𝜀 or 𝑞𝑠0 ≤
1

1+𝑒−𝜀 , only three signals are required. Otherwise, we need four

output signals to achieve a Blackwell optimal structure under the

inferential privacy constraint.

𝑅!

𝑅"

𝑒#

𝑒#
𝒯 =
{𝑡!, 𝑡"}

𝒯 = {𝑡!, 𝑡#, 𝑡"}

𝒯 =
{𝑡!, 𝑡$, 𝑡"}

If 𝑞!! ≥
"

"#$"
:

𝒯 = {𝑡!, 𝑡$, 𝑡"}
If 𝑞!# ≤

"
"#$$"

:

𝒯 = {𝑡!, 𝑡#, 𝑡"}
Otherwise:
𝒯 = {𝑡!, 𝑡#, 𝑡$, 𝑡"}

Figure 7: Output siginal setT with different𝑅1, 𝑅2.When𝑅1 ≤
𝑒𝜀 , 𝑅2 ≤ 𝑒𝜀 , P (𝑆,𝑌 ) already satisfies the inferential privacy
constraint, and we can just release the actual state with two
output signals. When 𝑅1 ≤ 𝑒𝜀 , 𝑅2 > 𝑒𝜀 or 𝑅1 > 𝑒𝜀 , 𝑅2 ≤ 𝑒𝜀 ,
P (𝑆,𝑌 ) satisfies the inferential privacy constraint only when
𝑌 = 1 or𝑌 = 0, and an additional signal is required.When𝑅1 >

𝑒𝜀 , 𝑅2 > 𝑒𝜀 , the number of output signal required depends on
the value of 𝑞𝑠1 or 𝑞𝑠0 .

5.2.2 Step 2: Determine the information disclosuremechanism. Based
on the inferentially-private Blackwell optimal information structure

in Thm. 5.1, and the fact that P(𝑆,𝑌 ,𝑇 ) = P(𝑌 |𝑆,𝑇 ) · P(𝑇 |𝑆) · P(𝑆)
and P(𝑇 |𝑆,𝑌 ) = P(𝑆,𝑌,𝑇 )

P(𝑆,𝑌 ) , we can design the universally optimal

mechanism, represented by P (𝑇 |𝑆,𝑌 ), as in Corollary 5.1.

Corollary 5.1. Given P (𝑆,𝑌 ) and 𝜀, the universally optimal
𝜀-inferentially-private mechanism that maximizes the objective func-
tion E𝑡 [𝑢 (𝑞𝑡 )] under any convex utility function 𝑢 is unique up to
equivalent transformations:

P (𝑇 = 𝑡1 |𝑆 = 𝑠1, 𝑌 = 1) = 1,

P (𝑇 = 𝑡𝑖 |𝑆 = 𝑠0, 𝑌 = 1) = 𝑙 (0)
𝑖

/
𝑞𝑠0 , ∀𝑖 ∈ {1, 2, 3},

P (𝑇 = 𝑡4 |𝑆 = 𝑠0, 𝑌 = 0) = 1,

P (𝑇 = 𝑡𝑖 |𝑆 = 𝑠1, 𝑌 = 0) = 𝑙 (1)
𝑖

/ (
1 − 𝑞𝑠1

)
, ∀𝑖 ∈ {2, 3, 4},

where the values of 𝒍 are shown in Thm. 5.1.

The universally optimal mechanism is unique given P (𝑆,𝑌 ) and
𝜀, and fully reveals the state when 𝑆 = 𝑠1, 𝑌 = 1 or 𝑆 = 𝑠0, 𝑌 = 0.

5.2.3 Utility gains under inferential privacy. In general, relaxing

perfect privacy to 𝜀-IP can lead to significant utility gains. We can

show that under an inferential privacy constraint of 𝜀 > 0, there

exists a Lipschitz-continuous, convex utility function such that the

maximal expected utility is arbitrarily larger than it would have

been under perfect privacy constraints, i.e., with IP level 𝜀 = 0.

Proposition 5.1. Denote the maximal achievable expected utility
under perfect privacy constraint as𝑈0, and the maximal achievable
expected utility under inferential privacy constraint 𝜀 > 0 as 𝑈𝜀 . For
any 𝜀 > 0, Δ ∈ R, there exists a joint distribution P (𝑆,𝑌 ) and a
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Figure 8: Expected utility gain under the optimal mechanism
for three utility functions and inferential privacy constraints
𝜀. By relaxing 𝜀 to ln 3 or 2 ln 3, the utility of the optimal
mechanism at 𝜀 = 0 can be improved by up to 5×, depending
on the data distribution.

𝐿-Lipschitz convex utility function 𝑢, where 𝐿 ≤ 3Δ
(
1 + 2

𝑒𝜀−1

)
, such

that𝑈𝜀 −𝑈0 ≥ Δ.

The proof is shown in App. H. We illustrate the utility gain

of relaxing a perfect privacy constraint to an 𝜀-IP constraint for

some examples in Fig. 8. We define utility gain as the ratio of the

maximal expected utility under inferential privacy constraint 𝜀 to

the utility under a perfect privacy constraint, i.e., 𝜀 = 0. We set

P (𝑆 = 𝑠0) = P (𝑆 = 𝑠1) = 0.5 and vary 𝑞𝑠0 , 𝑞𝑠1 in Figs. 8(a) and 8(b).

We consider three convex utility functions 𝑢 (𝑞𝑡 ) including piece-
wise linear 𝑢 (𝑞𝑡 ) = |2𝑞𝑡 − 1|, quadratic 𝑢 (𝑞𝑡 ) = (2𝑞𝑡 − 1)2, and
the (shifted) negative binary entropy function 𝑢 (𝑞𝑡 ) = 𝑞𝑡 log𝑞𝑡 +
(1 − 𝑞𝑡 ) log (1 − 𝑞𝑡 ) + 1.

Figure 8 shows that when 𝑞𝑠 is imbalanced, relaxing inferential

privacy to a level of 𝜀 = ln 3 (left) or 𝜀 = 2 ln 3 (right) can give

utility gains of 2× and 5×, respectively. In other words, even under

relatively strong privacy parameters, a small relaxation in privacy

can give a significant gain in utility.

6 CONCLUSION
In this work, we generalize the private private information struc-

tures of He et al. [14] from a perfect privacy constraint to an

inferentially-private privacy constraint. To devise a Blackwell opti-

mal disclosure mechanism under such an inferential privacy con-

straint, we first derive a geometric characterization of the cor-

responding optimal information structure. This characterization

facilitates exact analysis in special cases. In the binary secret set-

ting, we obtain a closed-form expression for an inferentially-private

Blackwell-optimal information structure, which is universally op-

timal in the sense that it maximizes the expected utility under

any convex utility function. We finally provide a programming

approach to compute the optimal solution for a specified utility

function when the secret is nonbinary.

Our work leaves several important questions unanswered. For

example, in the case of general (non-binary) secrets, it is unclear

how to derive a closed-form expression for a Blackwell-optimal

mechanism. Another important assumption we have made is that

the prior P (𝑌, 𝑆) is known a priori. Understanding how to relax

this assumption (thereby approaching a privacy definition akin to

pufferfish privacy) while still providing optimality guarantees is an

interesting direction.
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APPENDIX
A PROOF OF LEMMA 4.1

Proof. For a distribution P (𝑌, 𝑆,𝑇 ) that hasP (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡)
= 𝑘 ∈ (0, 1) for some 𝑠 and 𝑡 , we can split 𝑡 into two signals 𝑡1 and

𝑡2 such that

Pnew (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡1) = 1,

Pnew (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡2) = 0,

Pnew (𝑌 = 1|𝑆 = 𝑠′,𝑇 = 𝑡1) = Pnew (𝑌 = 1|𝑆 = 𝑠′,𝑇 = 𝑡2)
= P(𝑌 = 1|𝑆 = 𝑠′,𝑇 = 𝑡), ∀𝑠′ ≠ 𝑠,

while keeping the posterior of 𝑆 after seeing 𝑡1 or 𝑡2 the same as

P (𝑆 |𝑇 = 𝑡) by letting

Pnew (𝑆 = 𝑠′,𝑇 = 𝑡1) = P
(
𝑆 = 𝑠′,𝑇 = 𝑡

)
· Pnew (𝑆 = 𝑠,𝑇 = 𝑡1)

P (𝑆 = 𝑠,𝑇 = 𝑡) ,

Pnew (𝑆 = 𝑠′,𝑇 = 𝑡2) = P
(
𝑆 = 𝑠′,𝑇 = 𝑡

)
· Pnew (𝑆 = 𝑠,𝑇 = 𝑡2)

P (𝑆 = 𝑠,𝑇 = 𝑡) .

We can get that

Pnew (𝑌 = 1|𝑇 = 𝑡1) = Pnew (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡1) · Pnew (𝑆 = 𝑠 |𝑇 = 𝑡1)

+
∑︁
𝑠′≠𝑠

Pnew (𝑌 = 1|𝑆 = 𝑠′,𝑇 = 𝑡1) · Pnew (𝑆 = 𝑠′ |𝑇 = 𝑡1)

= P (𝑆 = 𝑠 |𝑇 = 𝑡) +
∑︁
𝑠′≠𝑠

P
(
𝑌 = 1|𝑆 = 𝑠′,𝑇 = 𝑡

)
· P

(
𝑆 = 𝑠′ |𝑇 = 𝑡

)
= P (𝑌 = 1|𝑇 = 𝑡) + (1 − 𝑘) P (𝑆 = 𝑠 |𝑇 = 𝑡)
> P (𝑌 = 1|𝑇 = 𝑡) ,

as well as

Pnew (𝑌 = 1|𝑇 = 𝑡2) = Pnew (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡2) · Pnew (𝑆 = 𝑠 |𝑇 = 𝑡2)

+
∑︁
𝑠′≠𝑠

Pnew (𝑌 = 1|𝑆 = 𝑠′,𝑇 = 𝑡2) · Pnew (𝑆 = 𝑠′ |𝑇 = 𝑡2)

=
∑︁
𝑠′≠𝑠

P
(
𝑌 = 1|𝑆 = 𝑠′,𝑇 = 𝑡

)
· P

(
𝑆 = 𝑠′ |𝑇 = 𝑡

)
= P (𝑌 = 1|𝑇 = 𝑡) − 𝑘 · P (𝑆 = 𝑠 |𝑇 = 𝑡)
< P (𝑌 = 1|𝑇 = 𝑡) .

Therefore, Pnew (𝑌 = 1|𝑇 ) is amean-preserving spread of P (𝑌 = 1|𝑇 ).
FromThm. 2.1, we know that the new Pnew (𝑌,𝑇new) Blackwell dom-

inates P (𝑌,𝑇 ), but the reverse is not true; and the privacy guarantee
is preserved as the posterior of 𝑆 after seeing 𝑡1 or 𝑡2 is the same as

P (𝑆 |𝑇 = 𝑡). Therefore a distribution with P (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡) ∈
(0, 1) cannot be an inferentially-private Blackwell optimal informa-

tion structure. □

B PROOF OF LEMMA 4.2
Proof. Based on inferential privacy constraint, we know that

∀𝑡, 𝑠1, 𝑠2, P(𝑇=𝑡 |𝑆=𝑠1 )
P(𝑇=𝑡 |𝑆=𝑠2 ) ∈ [𝑒

−𝜀 , 𝑒𝜀 ]. Therefore, we can get that

𝐻𝑡

𝐿𝑡
=

max𝑠 P (𝑇 = 𝑡 |𝑆 = 𝑠)
min𝑠 P (𝑇 = 𝑡 |𝑆 = 𝑠) ∈

[
1, 𝑒𝜀

]
.

Suppose there exists 𝑡 withP (𝑌 = 1|𝑇 = 𝑡) ∈ (0, 1) andP (𝑇 = 𝑡 |𝑆 = 𝑠)
∈ (𝐿𝑡 , 𝑒𝜀𝐿𝑡 ) for some 𝑠 , we can split 𝑡 into two signals 𝑡1 and 𝑡2
such that

Pnew (𝑇 = 𝑡1 |𝑆 = 𝑠) = 1

2
P (𝑇 = 𝑡 |𝑆 = 𝑠) + 𝛿,

Pnew (𝑇 = 𝑡2 |𝑆 = 𝑠) = 1

2
P (𝑇 = 𝑡 |𝑆 = 𝑠) − 𝛿,

∀𝑠′ ≠ 𝑠 :
Pnew (𝑇 = 𝑡1 |𝑆 = 𝑠′) = Pnew (𝑇 = 𝑡2 |𝑆 = 𝑠′) = 1

2
P (𝑇 = 𝑡 |𝑆 = 𝑠′) ,
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where𝛿 ∈
(
0,min

{
1

2
P (𝑇 = 𝑡 |𝑆 = 𝑠) − 1

2
𝐿𝑡 ,

𝑒𝜀

2
𝐿𝑡 − 1

2
P (𝑇 = 𝑡 |𝑆 = 𝑠)

}]
.

We can easily check that the constructed structure Pnew (𝑌, 𝑆,𝑇 )
satisfies the inferential privacy constraints. Based on Lemma 4.1,

we know that ∀𝑠0 ∈ S : P (𝑌 = 1|𝑇 = 𝑡, 𝑆 = 𝑠0) = Pnew (𝑌 =

1|𝑇 = 𝑡1, 𝑆 = 𝑠0) = Pnew (𝑌 = 1|𝑇 = 𝑡2, 𝑆 = 𝑠0) ∈ {0, 1}. Since
P (𝑌 = 1|𝑇 = 𝑡) ∈ (0, 1), when P (𝑌 = 1|𝑇 = 𝑡, 𝑆 = 𝑠) = 1, we can

get that

Pnew (𝑌 = 1 |𝑇 = 𝑡1 )

= Pnew (𝑌 = 1 |𝑆 = 𝑠,𝑇 = 𝑡1 ) ·
Pnew (𝑇 = 𝑡1 |𝑆 = 𝑠 ) · P (𝑆 = 𝑠 )∑

𝑠0∈S Pnew (𝑇 = 𝑡1 |𝑆 = 𝑠0 ) · P (𝑆 = 𝑠0 )

+
∑︁
𝑠′≠𝑠

Pnew (𝑌 = 1 |𝑆 = 𝑠′,𝑇 = 𝑡1 ) ·
Pnew (𝑇 = 𝑡1 |𝑆 = 𝑠′ ) · P (𝑆 = 𝑠′ )∑

𝑠0∈S Pnew (𝑇 = 𝑡1 |𝑆 = 𝑠0 ) · P (𝑆 = 𝑠0 )

= P (𝑌 = 1 |𝑆 = 𝑠,𝑇 = 𝑡 ) ·
1

2
P (𝑇 = 𝑡 |𝑆 = 𝑠 ) · P (𝑆 = 𝑠 ) + 𝛿P (𝑆 = 𝑠 )

1

2
P (𝑇 = 𝑡 ) + 𝛿P (𝑆 = 𝑠 )

+
∑︁
𝑠′≠𝑠

P
(
𝑌 = 1 |𝑆 = 𝑠′,𝑇 = 𝑡

)
·

1

2
P (𝑇 = 𝑡 |𝑆 = 𝑠′ ) · P (𝑆 = 𝑠′ )
1

2
P (𝑇 = 𝑡 ) + 𝛿P (𝑆 = 𝑠 )

= P (𝑌 = 1 |𝑇 = 𝑡 ) · P (𝑇 = 𝑡 )
P (𝑇 = 𝑡 ) + 2𝛿 · P (𝑆 = 𝑠 ) +

2𝛿 · P (𝑆 = 𝑠 )
P (𝑇 = 𝑡 ) + 2𝛿 · P (𝑆 = 𝑠 )

> P (𝑌 = 1 |𝑇 = 𝑡 ) ,

as well as

Pnew (𝑌 = 1 |𝑇 = 𝑡2 )

= Pnew (𝑌 = 1 |𝑆 = 𝑠,𝑇 = 𝑡2 ) ·
Pnew (𝑇 = 𝑡2 |𝑆 = 𝑠 ) · P (𝑆 = 𝑠 )∑

𝑠0∈S Pnew (𝑇 = 𝑡2 |𝑆 = 𝑠0 ) · P (𝑆 = 𝑠0 )

+
∑︁
𝑠′≠𝑠

Pnew (𝑌 = 1 |𝑆 = 𝑠′,𝑇 = 𝑡2 ) ·
Pnew (𝑇 = 𝑡2 |𝑆 = 𝑠′ ) · P (𝑆 = 𝑠′ )∑

𝑠0∈S Pnew (𝑇 = 𝑡2 |𝑆 = 𝑠0 ) · P (𝑆 = 𝑠0 )

= P (𝑌 = 1 |𝑆 = 𝑠,𝑇 = 𝑡 ) ·
1

2
P (𝑇 = 𝑡 |𝑆 = 𝑠 ) · P (𝑆 = 𝑠 ) − 𝛿P (𝑆 = 𝑠 )

1

2
P (𝑇 = 𝑡 ) − 𝛿P (𝑆 = 𝑠 )

+
∑︁
𝑠′≠𝑠

P
(
𝑌 = 1 |𝑆 = 𝑠′,𝑇 = 𝑡

)
·

1

2
P (𝑇 = 𝑡 |𝑆 = 𝑠′ ) · P (𝑆 = 𝑠′ )
1

2
P (𝑇 = 𝑡 ) − 𝛿P (𝑆 = 𝑠 )

= P (𝑌 = 1 |𝑇 = 𝑡 ) · P (𝑇 = 𝑡 )
P (𝑇 = 𝑡 ) − 2𝛿 · P (𝑆 = 𝑠 ) −

2𝛿 · P (𝑆 = 𝑠 )
P (𝑇 = 𝑡 ) − 2𝛿 · P (𝑆 = 𝑠 )

< P (𝑌 = 1 |𝑇 = 𝑡 ) .

When P (𝑌 = 1|𝑇 = 𝑡, 𝑆 = 𝑠) = 1, similarly, we can get that

Pnew (𝑌 = 1|𝑇 = 𝑡1)

=
∑︁
𝑠′≠𝑠

P
(
𝑌 = 1|𝑆 = 𝑠′,𝑇 = 𝑡

)
·
1

2
P (𝑇 = 𝑡 |𝑆 = 𝑠′) · P (𝑆 = 𝑠′)
1

2
P (𝑇 = 𝑡) + 𝛿P (𝑆 = 𝑠)

= P (𝑌 = 1|𝑇 = 𝑡) · P (𝑇 = 𝑡)
P (𝑇 = 𝑡) + 2𝛿 · P (𝑆 = 𝑠)

< P (𝑌 = 1|𝑇 = 𝑡) ,
as well as

Pnew (𝑌 = 1|𝑇 = 𝑡2)

=
∑︁
𝑠′≠𝑠

P
(
𝑌 = 1|𝑆 = 𝑠′,𝑇 = 𝑡

)
·
1

2
P (𝑇 = 𝑡 |𝑆 = 𝑠′) · P (𝑆 = 𝑠′)
1

2
P (𝑇 = 𝑡) − 𝛿P (𝑆 = 𝑠)

= P (𝑌 = 1|𝑇 = 𝑡) · P (𝑇 = 𝑡)
P (𝑇 = 𝑡) − 2𝛿 · P (𝑆 = 𝑠)

> P (𝑌 = 1|𝑇 = 𝑡) .
Therefore, Pnew (𝑌 = 1|𝑇 ) is amean-preserving spread of P (𝑌 = 1|𝑇 ),
and thus, the new Pnew (𝑌,𝑇 ) Blackwell dominates P (𝑌,𝑇 ), but the
reverse is not true. □

C PROOF OF LEMMA 4.3
Proof. We first define sets A𝑡 , B𝑡 , and C𝑡 as follows. For each

𝑡 ∈ T̃ , defineA𝑡 to be the set of 𝑠 ∈ S that hasP (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡)
= 1, and define B𝑡 to be the set of 𝑠 ∈ A𝑡 that has P (𝑇 = 𝑡 |𝑆 = 𝑠) =
𝐻𝑡 , and define C𝑡 to be the set of 𝑠 ∉ A𝑡 that has P (𝑇 = 𝑡 |𝑆 = 𝑠) =
𝐻𝑡 .

Similar to the definition of A𝑡 , B𝑡 , and C𝑡 , we define D𝑠 to be
the set of 𝑡 ∈ T̃ that has P (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡) = 1, and define E𝑠
to be the set of 𝑡 ∈ D𝑠 that has P (𝑇 = 𝑡 |𝑆 = 𝑠) = 𝐻𝑡 , and define F𝑠
to be the set of 𝑡 ∉ D𝑠 that has P (𝑇 = 𝑡 |𝑆 = 𝑠) = 𝐻𝑡 .

We introduce 0-1 crossing blocks and H-L crossing blocks, and

show that both types of crossing blocks cannot exist in a Blackwell

optimal information structure.

Definition C.1 (0-1 crossing blocks). A 0-1 crossing block is
defined by 𝑠1, 𝑠2 ∈ S and 𝑡1, 𝑡2 ∈ T̃ with

P (𝑌 = 1|𝑠1, 𝑡1) = 0, P (𝑌 = 1|𝑠1, 𝑡2) = 1,

P (𝑌 = 1|𝑠2, 𝑡1) = 1, P (𝑌 = 1|𝑠2, 𝑡2) = 0.

In other words, we have 𝑠1 ∉ A𝑡1 , 𝑠1 ∈ A𝑡2 , 𝑠2 ∈ A𝑡1 , and 𝑠2 ∉ A𝑡2 .

Definition C.2 (H-L crossing blocks). An H-L crossing block
is defined by 𝑠1, 𝑠2 ∈ S and 𝑡1, 𝑡2 ∈ T̃ with either (1) or (2),

(1) it holds that 𝑠1 ∈ B𝑡1 , 𝑠1 ∈ A𝑡2 \ B𝑡2 , 𝑠2 ∉ A𝑡1 , 𝑠2 ∈ A𝑡2 , in
other words, we have

P (𝑌 = 1|𝑠1, 𝑡1) = 1, P (𝑇 = 𝑡1 |𝑠1) = 𝐻𝑡1 ,
P (𝑌 = 1|𝑠1, 𝑡2) = 1, P (𝑇 = 𝑡2 |𝑠1) = 𝐿𝑡2 ,
P (𝑌 = 1|𝑠2, 𝑡1) = 0, P (𝑌 = 1|𝑠2, 𝑡2) = 1.

(2) it holds that 𝑠1 ∈ A𝑡1 \ C𝑡1 , 𝑠1 ∈ C𝑡2 , 𝑠2 ∉ A𝑡1 , 𝑠2 ∈ A𝑡2 , in
other words, we have

P (𝑌 = 1|𝑠1, 𝑡1) = 0, P (𝑇 = 𝑡1 |𝑠1) = 𝐿𝑡1 ,
P (𝑌 = 1|𝑠1, 𝑡2) = 0, P (𝑇 = 𝑡2 |𝑠1) = 𝐻𝑡2 ,
P (𝑌 = 1|𝑠2, 𝑡1) = 0, P (𝑌 = 1|𝑠2, 𝑡2) = 1.

Lemma C.1. A Blackwell optimal information structure must not
have a 0-1 crossing block or an H-L crossing block.

Proof. We first prove that a “0-1 crossing block” cannot exist.

For simplicitywewrite 𝑝11 = P (𝑆 = 𝑠1,𝑇 = 𝑡1) and 𝑝12, 𝑝21, 𝑝22 sim-

ilarly. Suppose a distribution P (𝑌, 𝑆,𝑇 ) has a “0-1 crossing block”.
We show that we can slightly change P (𝑌, 𝑆,𝑇 ) to P̃ (𝑌, 𝑆,𝑇 ) so that
P̃ (𝑌,𝑇 ) Blackwell dominates P (𝑌,𝑇 ), while preserving the mar-

ginal distribution P (𝑌, 𝑆) and P (𝑆,𝑇 ). We change the conditional

distribution as follows

P̃ (𝑌 = 1|𝑠1, 𝑡1) = 𝛿1, P̃ (𝑌 = 1|𝑠1, 𝑡2) = 1 − 𝑝11
𝑝12
· 𝛿1,

P̃ (𝑌 = 1|𝑠2, 𝑡1) = 1 − 𝑝11
𝑝21
· 𝛿2, P̃ (𝑌 = 1|𝑠2, 𝑡2) =

𝑝11

𝑝22
· 𝛿2,

where 𝛿1, 𝛿2 ∈ (0, 1) will be determined later. We keep P (𝑆,𝑇 ) the
same and it is not difficult to see that P (𝑌, 𝑆) is preserved. We

set 𝛿1, 𝛿2 in a way that P̃ (𝑌 = 1|𝑇 ) is a mean-preserving spread

of P (𝑌 = 1|𝑇 ), i.e., the posteriors after observing 𝑇 are only more
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“extreme”. By simple calculation, we have

P̃ (𝑌 = 1,𝑇 = 𝑡1)

=
∑︁
𝑠

P̃ (𝑌 = 1,𝑇 = 𝑡1, 𝑆 = 𝑠)

= P̃ (𝑌 = 1,𝑇 = 𝑡1, 𝑆 = 𝑠1) + P̃ (𝑌 = 1,𝑇 = 𝑡1, 𝑆 = 𝑠2)
+ P (𝑌 = 1,𝑇 = 𝑡1, 𝑆 ≠ 𝑠1, 𝑠2)

= 𝑝21 + 𝑝11 (𝛿1 − 𝛿2) + P (𝑌 = 1,𝑇 = 𝑡1, 𝑆 ≠ 𝑠1, 𝑠2)
= 𝑝11 (𝛿1 − 𝛿2) + P (𝑌 = 1,𝑇 = 𝑡1) .

The last equality holds because P (𝑌 = 1,𝑇 = 𝑡1, 𝑆 = 𝑠1) = 0 and

P (𝑌 = 1,𝑇 = 𝑡1, 𝑆 = 𝑠2) = 𝑝21. Therefore

P̃ (𝑌 = 1|𝑇 = 𝑡1) =
𝑝11

P (𝑇 = 𝑡1)
· (𝛿1 − 𝛿2) + P (𝑌 = 1|𝑇 = 𝑡1) .

Similarly,

P̃ (𝑌 = 1|𝑇 = 𝑡2) = −
𝑝11

P (𝑇 = 𝑡2)
· (𝛿1 − 𝛿2) + P (𝑌 = 1|𝑇 = 𝑡2) .

By our assumption that P (𝑠, 𝑡) > 0 for all 𝑠, 𝑡 , we have 𝑝11 > 0

and P (𝑌 = 1|𝑇 = 𝑡1) , P (𝑌 = 1|𝑇 = 𝑡2) ∈ (0, 1). Then by choosing

𝛿1 > 𝛿2 when P (𝑌 = 1|𝑇 = 𝑡1) > P (𝑌 = 1|𝑇 = 𝑡2) and 𝛿1 < 𝛿2
when P (𝑌 = 1|𝑇 = 𝑡1) ≤ P (𝑌 = 1|𝑇 = 𝑡2), we make the posteriors

more extreme. The new distribution 𝑃 preserves the inferential

privacy constraint because the marginal distribution of 𝑆 and 𝑇

keeps the same, i.e., P̃ (𝑆,𝑇 ) = P (𝑆,𝑇 ).
Similarly, we can prove that a “H-L crossing block” cannot exist

either. Suppose P (𝑌, 𝑆,𝑇 ) has a “H-L” crossing block of the first

type. (The proof for the second type is entirely similar.) Let 𝑝1 =

P (𝑆 = 𝑠1), 𝑝21 = P (𝑆 = 𝑠2,𝑇 = 𝑡1), and 𝑝22 = P (𝑆 = 𝑠2,𝑇 = 𝑡2). We

again slightly change P (𝑌, 𝑆,𝑇 ) to P̃ (𝑌, 𝑆,𝑇 ) by

P̃ (𝑇 = 𝑡1 |𝑆 = 𝑠1) = P (𝑇 = 𝑡1 |𝑆 = 𝑠1) −
𝛿1

𝑝1
,

P̃ (𝑇 = 𝑡2 |𝑆 = 𝑠1) = P (𝑇 = 𝑡2 |𝑆 = 𝑠1) +
𝛿1

𝑝1
,

P̃ (𝑌 = 1|𝑠2, 𝑡1) =
1

𝑝21
· 𝛿2,

P̃ (𝑌 = 1|𝑠2, 𝑡2) = 1 − 1

𝑝22
· 𝛿2

Again, by simple calculation we have P̃ (𝑌 = 1|𝑇 = 𝑡1) = 1

P(𝑇=𝑡1 ) ·
(𝛿1 − 𝛿2) + P (𝑌 = 1|𝑇 = 𝑡1) and P̃ (𝑌 = 1|𝑇 = 𝑡2) = − 1

P(𝑇=𝑡2 ) ·
(𝛿1 − 𝛿2) + P (𝑌 = 1|𝑇 = 𝑡2). Therefore by choosing 𝛿1 > 𝛿2 when

P (𝑌 = 1|𝑇 = 𝑡1) > P (𝑌 = 1|𝑇 = 𝑡2) and𝛿1 < 𝛿2 whenP (𝑌 = 1|𝑇 = 𝑡1)
≤ P (𝑌 = 1|𝑇 = 𝑡2), we make the posteriors more extreme. The new

distribution 𝑃 will preserve the inferential privacy constraint when

we choose small enough 𝛿1 and 𝛿2. Because (1) by the definition

of “H-L crossing blocks” and B𝑡 , we have P (𝑇 = 𝑡1 |𝑆 = 𝑠1) = 𝐻𝑡 ,
P (𝑇 = 𝑡2 |𝑆 = 𝑠1) = 𝐿𝑡 , so by slightly decreasing P (𝑇 = 𝑡1 |𝑆 = 𝑠1) =
𝐻𝑡 and increasing P (𝑇 = 𝑡2 |𝑆 = 𝑠1) = 𝐿𝑡 , the inferential privacy

constraint is still satisfied; (2) we do not change the the marginal

distribution of P (𝑆,𝑇 ) when 𝑆 = 𝑠2, i.e., P̃ (𝑠2, 𝑡1) = P (𝑠2, 𝑡1) and
P̃ (𝑠2, 𝑡2) = P (𝑠2, 𝑡2).

□

If an information structure P (𝑌, 𝑆,𝑇 ) does not have a “0-1 cross-
ing block”, then for any pair of 𝑡1, 𝑡2 ∈ T̃ , we either haveA𝑡1 ⊆ A𝑡2

or A𝑡2 ⊆ A𝑡1 . (Otherwise, an arbitrary 𝑠1 ∈ A𝑡2 \ A𝑡1 and an ar-

bitrary 𝑠2 ∈ A𝑡1 \ A𝑡2 and 𝑡1, 𝑡2 will form a “0-1 crossing block”.)

Similarly, for any pair of 𝑠1, 𝑠2 ∈ S, we either have D𝑠1 ⊆ D𝑠2 or
D𝑠2 ⊆ D𝑠1 .

Lemma C.2. Consider any Blackwell optimal information structure
P (𝑌, 𝑆,𝑇 ). For any pair 𝑡1, 𝑡2 ∈ T̃ , if A𝑡1 ⊂ A𝑡2 , then we must have
B𝑡1 ⊆ B𝑡2 and C𝑡2 ⊆ C𝑡1 . For any pair of 𝑠1, 𝑠2 ∈ S, if D𝑠1 ⊂ D𝑠2 ,
then we must have E𝑠1 ⊆ E𝑠2 and F𝑠2 ⊆ F𝑠1 .

Proof. We prove that for any pair 𝑡1, 𝑡2 ∈ T̃ , ifA𝑡1 ⊂ A𝑡2 , then
we must have B𝑡1 ⊆ B𝑡2 and C𝑡2 ⊆ C𝑡1 . The proof for D, E, F is

entirely similar.

Consider any 𝑡1, 𝑡2 ∈ T̃ with A𝑡1 ⊂ A𝑡2 . We first prove that we

must have B𝑡1 ⊆ B𝑡2 . Suppose to the contrary, B𝑡1 is not a subset of
B𝑡2 , we claim that there must exist an “H-L crossing” block. We first

find a valid 𝑠1. Since B𝑡1 is not a subset of B𝑡2 , we can find 𝑠1 with

𝑠1 ∈ B𝑡1 and 𝑠1 ∉ B𝑡2 . By definition, B𝑡1 ⊆ A𝑡1 , and by assumption,

A𝑡1 ⊂ A𝑡2 , therefore it is guaranteed that 𝑠1 ∈ B𝑡1 ⊆ A𝑡1 ⊂ A𝑡2 .
So we find an 𝑠1 with 𝑠1 ∈ B𝑡1 and 𝑠1 ∈ A𝑡2 \ B𝑡2 . We then find

a valid 𝑠2. Since A𝑡1 ⊂ A𝑡2 , we can find 𝑠2 with 𝑠2 ∈ A𝑡2 and

𝑠2 ∉ A𝑡1 . Then by definition, 𝑠1, 𝑠2, 𝑡1, 𝑡2 form an “H-L crossing”

block. Therefore, we must have B𝑡1 ⊆ B𝑡2 .
Next, we show that for any 𝑡1, 𝑡2 ∈ T̃ with A𝑡1 ⊂ A𝑡2 , we must

have C𝑡2 ⊆ C𝑡1 . Suppose to the contrary, C𝑡2 is not a subset of C𝑡1 ,
we claim that there must exist an “H-L crossing” block. We first

find a valid 𝑠1. Since C𝑡2 is not a subset of C𝑡1 , we can find 𝑠1 with

𝑠1 ∈ C𝑡2 and 𝑠1 ∉ C𝑡1 . By our definition and our assumption, C𝑡2 ⊆
A𝑡2 ⊂ A𝑡1 , therefore it is guaranteed that 𝑠1 ∈ C𝑡2 ⊆ A𝑡2 ⊂ A𝑡1 .
So we find an 𝑠1 with 𝑠1 ∈ C𝑡2 and 𝑠1 ∈ A𝑡1 \ C𝑡1 . We then find

a valid 𝑠2. Because A𝑡1 ⊂ A𝑡2 , we can find 𝑠2 with 𝑠2 ∈ A𝑡2 and
𝑠2 ∉ A𝑡1 . Then by definition, 𝑠1, 𝑠2, 𝑡1, 𝑡2 form an “H-L crossing”

block. Therefore we must have C𝑡2 ⊆ C𝑡1 . □

Now we are ready to prove Lemma 4.3. Suppose we sort 𝑠 ∈ S
from largest D𝑠 to smallest D𝑠 , and sort 𝑡 ∈ T̃ from largest A𝑡 to
smallest A𝑡 . Then we must have the region of A𝑡 being an upper-

left region. Otherwise, it will conflict the ordering A𝑡𝑘 ⊆ A𝑡 𝑗 or
D𝑠𝑘 ⊆ D𝑠 𝑗 . According to Lemma C.2, we have B𝑡𝑘 ⊆ B𝑡 𝑗 and
E𝑠𝑘 ⊆ E𝑠 𝑗 for any 𝑗 ≤ 𝑘 . Therefore region B must be upper-left as

well. In addition, according to Lemma C.2, we must have C𝑡𝑘 ⊆ C𝑡 𝑗
and E𝑠𝑘 ⊆ E𝑠 𝑗 for any 𝑗 ≥ 𝑘 . Then for the same reason, region C
must be lower-right. We thus prove the lemma. □

D PROOF OF THEOREM 4.1
Proof. Suppose 𝑠1, . . . , 𝑠𝑛 ∈ S are ordered in decreasing order

of P (𝑌 = 1|𝑆 = 𝑠). For any 𝜀-inferentially-private Blackwell optimal

information structure
ˆP
(
𝑌, 𝑆,𝑇

)
, suppose there are 𝑘 unique values

of
ˆP
(
𝑌 = 1|𝑇

)
, denoted as 𝑣1, . . . , 𝑣𝑘 . Suppose 𝑣1 > . . . > 𝑣𝑘 with-

out loss of generality, and denote
ˆT𝑖 =

{
𝑡 ∈ ˆT :

ˆP
(
𝑌 = 1|𝑇 = 𝑡

)
= 𝑣𝑖

}
where 𝑖 ∈ [𝑘]. Based on Lemmas 4.2 and 4.3, we can get that

∀𝑠 ∈ S, 𝑖 ∈ [𝑘 ] , 𝑡1, 𝑡2 ∈ ˆT𝑖 : ˆP
(
𝑌 = 1 |𝑆 = 𝑠,𝑇 = 𝑡1

)
= ˆP

(
𝑌 = 1 |𝑆 = 𝑠,𝑇 = 𝑡2

)
,

∀𝑠 ∈ S, 𝑖 ∈ [𝑘 ] , 𝑡1, 𝑡2 ∈ ˆT𝑖 : ˆP
(
𝑆 = 𝑠 |𝑇 = 𝑡1

)
= ˆP

(
𝑆 = 𝑠 |𝑇 = 𝑡2

)
.
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We can construct an information structure P (𝑆,𝑌 ,𝑇 ) such that

∀𝑠 ∈ S : P (𝑇 = 𝑡𝑖 |𝑆 = 𝑠) =
∑︁
𝑡 ∈ ˆT𝑖

ˆP
(
𝑇 = 𝑡 |𝑆 = 𝑠

)
.

With simple calculations, we can get that P (𝑇 = 𝑡𝑖 ) =
∑
𝑡 ∈ ˆT𝑖

ˆP
(
𝑇 = 𝑡

)
,

P (𝑌 = 1|𝑇 = 𝑡𝑖 ) = 𝑣𝑖 , and P (𝑆 = 𝑠 |𝑇 = 𝑡𝑖 ) = ˆP
(
𝑆 = 𝑠 |𝑇 = 𝑡

)
, ∀𝑖 ∈

[𝑘] , 𝑠 ∈ S, 𝑡 ∈ ˆT𝑖 . Therefore, P (𝑆,𝑌 ,𝑇 ) is an equivalent information

structure to
ˆP
(
𝑆,𝑌 ,𝑇

)
, and 𝑡1, . . . , 𝑡𝑘 ∈ T are ordered in decreasing

order of 𝑞𝑡 = P (𝑌 = 1|𝑇 = 𝑡).
Intuitively, P (𝑆,𝑌 ,𝑇 ) is a compressed version of

ˆP
(
𝑆,𝑌 ,𝑇

)
, by

merging the columns that share the same geometric characteriza-

tion. As illustrated in Fig. 9, the columns corresponding to 𝑡3 and

𝑡4 in ˆP
(
𝑆,𝑌 ,𝑇

)
shares the same geometric pattern, and thus can be

merged as a single column (corresponding to 𝑡3) in P (𝑆,𝑌 ,𝑇 ).

𝑠*

𝑠!

�̂�! �̂�" �̂�+

𝑠*

𝑠!

𝑡! 𝑡" 𝑡)𝑡(

�̂�( �̂�)

𝟏

𝟏

𝟎

𝟏

𝟏

𝟎

Figure 9: Information structure of ˆP
(
𝑆,𝑌 ,𝑇

)
(left) and

P (𝑆,𝑌 ,𝑇 ) (right) with binary secret 𝑆 ∈ {𝑠0, 𝑠1}. In ˆP
(
𝑆,𝑌 ,𝑇

)
,

the columns corresponding to 𝑡3 and 𝑡4 has the same geo-
metric pattern. In P (𝑆,𝑌 ,𝑇 ), those columns are merged as a
single column (the column corresponding to 𝑡3).

For any convex utility function 𝑢, we have

E𝑡 [𝑢 (𝑞𝑡 )] =
∑︁
𝑖∈[𝑘 ]

P (𝑇 = 𝑡𝑖 ) 𝑢
(
𝑞𝑡𝑖

)
=

∑︁
𝑖∈[𝑘 ]

∑︁
𝑡 ∈ ˆT𝑖

ˆP
(
𝑇 = 𝑡

)
𝑢 (𝑣𝑖 )

=
∑︁
𝑡 ∈ ˆT

ˆP
(
𝑇 = 𝑡

)
𝑢
(
𝑞𝑡
)

= E𝑡
[
𝑢
(
𝑞𝑡
) ]
.

Therefore, from Thm. 2.1, we know that P (𝑆,𝑌 ,𝑇 ) is an optimal

information structure equivalent to
ˆP
(
𝑆,𝑌 ,𝑇

)
.

For each 𝑡 ∈ T̃ , define A𝑡 to be the set of 𝑠 ∈ S that has

P (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡) = 1, and define B𝑡 to be the set of 𝑠 ∈ A𝑡
that has P (𝑇 = 𝑡 |𝑆 = 𝑠) = 𝐻𝑡 , and define C𝑡 to be the set of 𝑠 ∉ A𝑡
that has P (𝑇 = 𝑡 |𝑆 = 𝑠) = 𝐻𝑡 . From Lemma 4.3, we know that for

any 𝑖 ∈ {2, · · · , 𝑘 − 1}, we have A𝑡𝑖 = {𝑠1, . . . , 𝑠𝑎𝑖 } and B𝑡𝑖 =

{𝑠1, . . . , 𝑠𝑏𝑖 } and C𝑡𝑖 = {𝑠𝑐𝑖 , . . . , 𝑠𝑛} for some 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 with

1 ≤ 𝑎𝑖 < 𝑛, 0 ≤ 𝑏𝑖 < 𝑛, 1 < 𝑐𝑖 ≤ 𝑛 + 1,
𝑎𝑖+1 ≤ 𝑎𝑖 ≤ 𝑎𝑖−1, 𝑏𝑖+1 ≤ 𝑏𝑖 ≤ 𝑏𝑖−1, 𝑐𝑖+1 ≤ 𝑐𝑖 ≤ 𝑐𝑖−1,

where B𝑡𝑖 = ∅ when 𝑏𝑖 = 0 and C𝑡𝑖 = ∅ when 𝑐𝑖 = 𝑛 + 1. Since
(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ) and (𝑎𝑖+1, 𝑏𝑖+1, 𝑐𝑖+1) differ for at least one element in

P (𝑆,𝑌 ,𝑇 ), we have 𝑘 − 2 ≤ 𝑛 − 1 + 𝑛 + 𝑛 = 3𝑛 − 1, i.e., |T | = 𝑘 ≤
3𝑛 + 1 = 3 |S| + 1. □

E PROOF OF LEMMA 5.1
Proof. Without loss of generality, we let P (𝑌 = 1|𝑆 = 𝑠1) ≤

P (𝑌 = 1|𝑆 = 𝑠0). From the proof of Thm. 4.1, we know that there

is an 𝜀-inferentially-private Blackwell optimal information struc-

ture
ˆP
(
𝑆,𝑌 ,𝑇

)
where there is only one output, denoted as 𝑡1 and

𝑡𝑘 , that satisfies
ˆP
(
𝑌 = 1|𝑇 = 𝑡1

)
= 1 and

ˆP
(
𝑌 = 1|𝑇 = 𝑡𝑘

)
= 0 re-

spectively. Then we can get that
ˆP
(
𝑌 = 1|𝑆 = 𝑠1,𝑇 = 𝑡

)
= 0,∀𝑡 ≠

𝑡1 and
ˆP
(
𝑌 = 1|𝑆 = 𝑠0,𝑇 = 𝑡

)
= 1,∀𝑡 ≠ 𝑡𝑘 , because otherwise,

based on Lemma 4.3, we have
ˆP
(
𝑌 = 1|𝑇 = 𝑡

)
= 1, ∃𝑡 ≠ 𝑡1 or

ˆP
(
𝑌 = 1|𝑇 = 𝑡

)
= 0, ∃𝑡 ≠ 𝑡𝑛+1. With simple calculation, we can get

that
ˆP
(
𝑇 = 𝑡1 |𝑆 = 𝑠1

)
= 𝑞𝑠1 and

ˆP
(
𝑇 = 𝑡1 |𝑆 = 𝑠0

)
= 1 − 𝑞𝑠0 . Based

on Lemmas 4.2 and 4.3, we can get that ∃1 ≤ 𝑖0 ≤ 𝑘 :

ˆP
(
𝑇 = 𝑡𝑖 |𝑆 = 𝑠0

)
=

{
𝐻𝑡𝑖 , 1 < 𝑖 ≤ 𝑖0
𝐿𝑡𝑖 , 𝑖0 < 𝑖 < 𝑘

,

ˆP
(
𝑇 = 𝑡𝑖 |𝑆 = 𝑠1

)
=

{
𝐻𝑡𝑖 , 𝑖0 < 𝑖 < 𝑘

𝐿𝑡𝑖 , 1 < 𝑖 ≤ 𝑖0
.

We can construct an information structure P (𝑆,𝑌 ,𝑇 ) where ∀𝑗 ∈
{0, 1} :

𝑙
( 𝑗 )
1

= P
(
𝑇 = 𝑡1 |𝑆 = 𝑠 𝑗

)
= ˆP

(
𝑇 = 𝑡1 |𝑆 = 𝑠 𝑗

)
,

𝑙
( 𝑗 )
2

= P
(
𝑇 = 𝑡2 |𝑆 = 𝑠 𝑗

)
=

∑︁
1<𝑖≤𝑖0

ˆP
(
𝑇 = 𝑡𝑖 |𝑆 = 𝑠 𝑗

)
,

𝑙
( 𝑗 )
3

= P
(
𝑇 = 𝑡3 |𝑆 = 𝑠 𝑗

)
=

∑︁
𝑖0<𝑖<𝑘

ˆP
(
𝑇 = 𝑡𝑖 |𝑆 = 𝑠 𝑗

)
,

𝑙
( 𝑗 )
4

= P
(
𝑇 = 𝑡4 |𝑆 = 𝑠 𝑗

)
= ˆP

(
𝑇 = 𝑡𝑘 |𝑆 = 𝑠 𝑗

)
.

With similar analysis of the proof of Thm. 4.1, we can verify that

P (𝑆,𝑌 ,𝑇 ) is an optimal information structure equivalent toP
(
𝑆,𝑌 ,𝑇

)
.

We have 𝑙
(1)
1

= ˆP
(
𝑇 = 𝑡1 |𝑆 = 𝑠 𝑗

)
= 𝑞𝑠1 and 𝑙

(0)
4

= ˆP
(
𝑇 = 𝑡𝑘 |𝑆 = 𝑠 𝑗

)
=

1 − 𝑞𝑠0 . Following the inferential privacy constraints, we have
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𝑙
(0)
1
/𝑙 (1)
1
∈ [𝑒−𝜀 , 𝑒𝜀 ] , 𝑙 (0)

4
/𝑙 (1)
4
∈ [𝑒−𝜀 , 𝑒𝜀 ]. Besides, we can get that

𝑙
(0)
2

𝑙
(1)
2

=

∑
1<𝑖≤𝑖0

ˆP
(
𝑇 = 𝑡𝑖 |𝑆 = 𝑠0

)∑
1<𝑖≤𝑖0

ˆP
(
𝑇 = 𝑡𝑖 |𝑆 = 𝑠1

) =

∑
1<𝑖≤𝑖0 𝐻𝑡𝑖∑
1<𝑖≤𝑖0 𝐿𝑡𝑖

= 𝑒𝜀 ,

𝑙
(1)
3

𝑙
(0)
3

=

∑
𝑖0<𝑖<𝑘

ˆP
(
𝑇 = 𝑡𝑖 |𝑆 = 𝑠1

)∑
𝑖0<𝑖<𝑘

ˆP
(
𝑇 = 𝑡𝑖 |𝑆 = 𝑠0

) =

∑
𝑖0<𝑖<𝑘 𝐻𝑡𝑖∑
𝑖0<𝑖<𝑘 𝐿𝑡𝑖

= 𝑒𝜀 .

Finally, we have∀𝑗 ∈ {0, 1} : ∑𝑖∈[4] 𝑙 ( 𝑗 )𝑖 =
∑
𝑖∈[4] P

(
𝑇 = 𝑡𝑖 |𝑆 = 𝑠 𝑗

)
=

1. □

F PROOF OF LEMMA 5.2
Proof. We first prove that there exists a unique feasible dom-

inant point. According to Lemma 5.1, we have 𝑙
(1)
1

= 𝑞𝑠1 , 𝑙
(0)
4

=

1 − 𝑞𝑠0 , 𝑙
(0)
2

= 𝑒𝜀𝑙
(1)
2
, 𝑙
(1)
3

= 𝑒𝜀𝑙
(0)
3

,

∑
𝑖∈[4] 𝑙

(0)
𝑖

=
∑
𝑖∈[4] 𝑙

(1)
𝑖

= 1.

Therefore, we can represent 𝑙
(1)
2
, 𝑙
(1)
3

by 𝑙
(0)
1

and 𝑙
(1)
4

based on the

following two equations:

𝑞𝑠1 + 𝑙
(1)
2
+ 𝑙 (1)

3
+ 𝑙 (1)

4
= 1,

𝑙
(0)
1
+ 𝑒𝜀𝑙 (1)

2
+ 𝑒−𝜀𝑙 (1)

3
+ 1 − 𝑞𝑠0 = 1.

We can get that

𝑙
(1)
2

=
−𝑒𝜀𝑙 (0)

1
+ 𝑙 (1)

4
+ 𝑒𝜀𝑞𝑠0 + 𝑞𝑠1 − 1

𝑒2𝜀 − 1
, (10)

𝑙
(1)
3

= 𝑒𝜀 ·
𝑙
(0)
1
− 𝑒𝜀𝑙 (1)

4
− 𝑞𝑠0 − 𝑒𝜀𝑞𝑠1 + 𝑒𝜀

𝑒2𝜀 − 1
. (11)

Based on the constraints that ∀𝑖 ∈ [4], 𝑗 ∈ [2] : 𝑙 ( 𝑗 )
𝑖
≥ 0, 𝑙

(0)
1
∈[

𝑒−𝜀𝑙 (1)
1
, 𝑒𝜀𝑙
(1)
1

]
, and 𝑙

(1)
4
∈
[
𝑒−𝜀𝑙 (0)

4
, 𝑒𝜀𝑙
(0)
4

]
, we have

− 𝑒𝜀𝑙 (0)
1
+ 𝑙 (1)

4
+ 𝑒𝜀𝑞𝑠0 + 𝑞𝑠1 − 1 ≥ 0,

𝑙
(0)
1
− 𝑒𝜀𝑙 (1)

4
− 𝑞𝑠0 − 𝑒𝜀𝑞𝑠1 + 𝑒𝜀 ≥ 0,

𝑒𝜀𝑞𝑠1 ≥ 𝑙
(0)
1
≥ 𝑒−𝜀𝑞𝑠1 ,

𝑒𝜀
(
1 − 𝑞𝑠0

)
≥ 𝑙 (1)

4
≥ 𝑒−𝜀

(
1 − 𝑞𝑠0

)
.

Let 𝑅1 =
𝑞𝑠

0

𝑞𝑠
1

, and 𝑅2 =
1−𝑞𝑠

1

1−𝑞𝑠
0

. Then we can get that

𝑙
(0)
1
≤


𝑞𝑠0 , 𝑅1 ≤ 𝑒𝜀 ∩ 𝑅2 ≤ 𝑒𝜀

𝑒𝜀𝑞𝑠1 , 𝑅1 > 𝑒
𝜀 ∩

(
𝑅2 ≤ 𝑒𝜀 ∪

(
𝑅2 > 𝑒

𝜀 ∩ 𝑞𝑠1 < 1

1+𝑒𝜀
) )

1 − 𝑒−𝜀
(
1 − 𝑞𝑠1

)
, 𝑅2 > 𝑒

𝜀 ∩
(
𝑅1 ≤ 𝑒𝜀 ∪

(
𝑅1 > 𝑒

𝜀 ∩ 𝑞𝑠1 ≥ 1

1+𝑒𝜀
) ) ,

𝑙
(1)
4
≤


1 − 𝑞𝑠1 , 𝑅1 ≤ 𝑒𝜀 ∩ 𝑅2 ≤ 𝑒𝜀

1 − 𝑒−𝜀𝑞𝑠0 , 𝑅1 > 𝑒
𝜀 ∩

(
𝑅2 ≤ 𝑒𝜀 ∪

(
𝑅2 > 𝑒

𝜀 ∩ 𝑞𝑠0 ≤ 1

1+𝑒−𝜀
) )

𝑒𝜀
(
1 − 𝑞𝑠0

)
, 𝑅2 > 𝑒

𝜀 ∩
(
𝑅1 ≤ 𝑒𝜀 ∪

(
𝑅1 > 𝑒

𝜀 ∩ 𝑞𝑠0 > 1

1+𝑒−𝜀
) ) ,
(12)

and the upper bounds of 𝑙
(0)
1

and 𝑙
(1)
4

can be achieved simultane-

ously, i.e., there exists a unique feasible dominant point.

To prove the feasible dominant point universally maximizing the

objective function, we first prove the following two inequalities for

any convex utility function 𝑢:

𝑝𝑠1𝑢 (𝑞𝑡4 ) +
𝑝𝑠1 + 𝑒𝜀𝑝𝑠0
𝑒2𝜀 − 1

𝑢 (𝑞𝑡2 ) ≥
𝑒2𝜀𝑝𝑠1 + 𝑒𝜀𝑝𝑠0

𝑒2𝜀 − 1
𝑢 (𝑞𝑡3 ), (13)

𝑝𝑠0𝑢 (𝑞𝑡1 ) +
𝑒𝜀𝑝𝑠1 + 𝑝𝑠0
𝑒2𝜀 − 1

𝑢 (𝑞𝑡3 ) ≥
𝑒2𝜀𝑝𝑠0 + 𝑒𝜀𝑝𝑠1

𝑒2𝜀 − 1
𝑢 (𝑞𝑡2 ) . (14)

Since we have 𝑞𝑡1 = 1, 𝑞𝑡4 = 0, 𝑞𝑡2 =
𝑙
(0)
2
𝑝𝑠

0

𝑙
(0)
2
𝑝𝑠

0
+𝑙 (1)

2
𝑝𝑠

1

=
𝑒𝜀𝑝𝑠

0

𝑒𝜀𝑝𝑠
0
+𝑝𝑠

1

,

𝑞𝑡3 =
𝑙
(0)
3
𝑝𝑠

0

𝑙
(0)
3
𝑝𝑠

0
+𝑙 (1)

3
𝑝𝑠

1

=
𝑝𝑠

0

𝑝𝑠
0
+𝑒𝜀𝑝𝑠

1

, we can get that

𝑝𝑠1𝑞𝑡4 +
𝑝𝑠1 + 𝑒𝜀𝑝𝑠0
𝑒2𝜀 − 1

𝑞𝑡2 =
𝑒𝜀𝑝𝑠0

𝑒2𝜀 − 1
=
𝑒2𝜀𝑝𝑠1 + 𝑒𝜀𝑝𝑠0

𝑒2𝜀 − 1
𝑞𝑡3 ,

𝑝𝑠0𝑞𝑡1 +
𝑒𝜀𝑝𝑠1 + 𝑝𝑠0
𝑒2𝜀 − 1

𝑞𝑡3 =
𝑒2𝜀𝑝𝑠0

𝑒2𝜀 − 1
=
𝑒2𝜀𝑝𝑠0 + 𝑒𝜀𝑝𝑠1

𝑒2𝜀 − 1
𝑞𝑡2 .

Since𝑢 is a convex function, we can easily get that Eqs. (13) and (14)

hold based on Jensen’s inequality.

Then we prove that if we fix the value of 𝑙
(0)
1

and reduce 𝑙
(1)
4

, the

value of objective function decreases. For a feasible set of values{
𝑙
( 𝑗 )
𝑖

}
𝑖∈[4], 𝑗∈[2]

, where 𝑙
(1)
2

> 0, let 𝑈 be the value of objective

function, i.e., 𝑈 =
∑
𝑖∈[4] 𝑝𝑡𝑖 · 𝑢 (𝑞𝑡𝑖 ). Suppose we fix 𝑙

(0)
1

and de-

crease 𝑙
(1)
4

to �̃�
(1)
4

= 𝑙
(1)
4
− Δ𝑙 , then based on Eqs. (10) and (11), we

have �̃�
(1)
2

= 𝑙
(1)
2
− Δ𝑙
𝑒2𝜀−1 , �̃�

(1)
3

= 𝑙
(1)
3
+ 𝑒2𝜀Δ𝑙
𝑒2𝜀−1 . Therefore, based on

Eq. (13), we have

𝑈 =
∑︁
𝑖∈ [4]

𝑃𝑡𝑖 · 𝑢 (𝑞𝑡𝑖 )

=
∑︁
𝑖∈ [4]

𝑝𝑡𝑖 · 𝑢 (𝑞𝑡𝑖 ) +
∑︁

𝑗 ∈{2,3,4}

[ (̃
𝑙
(0)
𝑗
− 𝑙 (0)

𝑗

)
𝑝𝑠0 +

(̃
𝑙
(1)
𝑗
− 𝑙 (1)

𝑗

)
𝑝𝑠1

]
𝑢 (𝑞𝑡 𝑗 )

= 𝑈 +
𝑒2𝜀𝑝𝑠1 + 𝑒𝜀𝑝𝑠0

𝑒2𝜀 − 1

𝑢 (𝑞𝑡3 ) −
𝑝𝑠1 + 𝑒𝜀𝑝𝑠0
𝑒2𝜀 − 1

𝑢 (𝑞𝑡2 ) − 𝑝𝑠1𝑢 (𝑞𝑡4 )

≤ 𝑈 .

Similarly, based on Eq. (14), we can prove that if we fix the value

of 𝑙
(1)
4

and reduce 𝑙
(0)
1

, the value of objective function decreases.

Above all, we know that a necessary condition of the objective

function E𝑡 [𝑢 (𝑞𝑡 )] being maximized is that 𝑙
(0)
1

and 𝑙
(1)
4

are on the

Pareto frontier maximizing each of these quantities individually.

□

G PROOF OF THEOREM 5.1
Proof. When 𝑙

(0)
1

and 𝑙
(1)
4

achieve their feasible maximal val-

ues simultaneously, based on Eq. (12) and feasibility conditions in

Lemma 5.1, we can easily get that

• When 𝑅1 ≤ 𝑒𝜀 , 𝑅2 ≤ 𝑒𝜀 :
𝑙
(1)
4

= 1 − 𝑞𝑠1 , 𝑙
(0)
1

= 𝑞𝑠0 , 𝑙
(1)
2

= 𝑙
(1)
3

= 0.

• When 𝑅1 ≤ 𝑒𝜀 , 𝑅2 > 𝑒𝜀 or 𝑅1 > 𝑒𝜀 , 𝑅2 > 𝑒𝜀 , 𝑞𝑠1 ≥ 1

1+𝑒𝜀 :

𝑙
(1)
4

= 𝑒𝜀 (1 − 𝑞𝑠0 ), 𝑙
(0)
1

= 1 − 𝑒−𝜀 (1 − 𝑞𝑠1 ), 𝑙
(1)
2

=

0, 𝑙
(1)
3

= 1 − 𝑞𝑠1 − 𝑒𝜀 (1 − 𝑞𝑠0 ).
• When 𝑅1 > 𝑒𝜀 , 𝑅2 ≤ 𝑒𝜀 or 𝑅1 > 𝑒𝜀 , 𝑅2 > 𝑒𝜀 , 𝑞𝑠0 ≤ 1

1+𝑒−𝜀 :

𝑙
(1)
4

= 1−𝑒−𝜀𝑞𝑠0 , 𝑙
(0)
1

= 𝑒𝜀𝑞𝑠1 , 𝑙
(1)
2

= 𝑒−𝜀𝑞𝑠0−𝑞𝑠1 , 𝑙
(1)
3

=

0.

• When 𝑅1 > 𝑒𝜀 , 𝑅2 > 𝑒𝜀 , 𝑞𝑠0 >
1

1+𝑒−𝜀 , 𝑞𝑠1 <
1

1+𝑒𝜀 :

𝑙
(1)
4

= 𝑒𝜀 (1−𝑞𝑠0 ), 𝑙
(0)
1

= 𝑒𝜀𝑞𝑠1 , 𝑙
(1)
2

= 1

𝑒𝜀+1−𝑞𝑠1 , 𝑙
(1)
3

=

𝑒𝜀𝑞𝑠0 − 𝑒2𝜀

𝑒𝜀+1 .

From Lemma 5.1, we know that this Blackwell optimal informa-

tion structure is unique up to equivalence.

□
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Figure 10: When 𝑅1, 𝑅2 > 𝑒𝜀 and 𝑅 =
1−𝑙 (1)

1
−𝑙 (1)

4

1−𝑙 (0)
4
−𝑙 (0)

1

∈ (𝑒−𝜀 , 𝑒𝜀 ) (i.e.,

𝑞𝑠0 >
1

1+𝑒−𝜀 and 𝑞𝑠1 <
1

1+𝑒𝜀 ), both 𝑙
(0)
1

and 𝑙 (1)
4

can achieve their

upper bounds 𝑙 (0)
1

and 𝑙 (1)
4

, and we can get feasible positive

values of 𝑙 (1)
2

and 𝑙 (1)
3

based on Lemma 5.1.

𝟎

𝟎

𝟏

𝟏

𝒔𝟏
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(')
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Figure 11: When 𝑅1, 𝑅2 > 𝑒𝜀 and 𝑅 =
1−𝑙 (1)

1
−𝑙 (1)

4

1−𝑙 (0)
4
−𝑙 (0)

1

≥ 𝑒𝜀 (i.e.,

𝑞𝑠1 ≥ 1

1+𝑒𝜀 ), 𝑙
(1)
4

can achieve its upper bound 𝑙 (1)
4

. To ensure
𝑙
(0)
1

to achieve its feasible maximal value, 𝑙 (0)
2

and 𝑙 (1)
2

should
be set as 0.

Wegive an intuitive explanation of the optimal information struc-

ture under the case where 𝑅1, 𝑅2 > 𝑒𝜀 , i.e, the inferential privacy

property does not hold in the original secret-state structure P (𝑆,𝑌 ).
Let 𝑙

(0)
1

= 𝑒𝜀𝑙
(1)
1

and 𝑙
(1)
4

= 𝑒𝜀𝑙
(0)
4

. From Lemma 5.1, we know

that 𝑙
(0)
1
≤ 𝑙 (0)

1
and 𝑙

(1)
4
≤ 𝑙 (1)

4
, and denote 𝑅 as 𝑅 =

1−𝑙 (1)
1
−𝑙 (1)

4

1−𝑙 (0)
4
−𝑙 (0)

1

.

When 𝑞𝑠0 >
1

1+𝑒−𝜀 and 𝑞𝑠1 <
1

1+𝑒𝜀 , we have 𝑅 ∈ (𝑒
−𝜀 , 𝑒𝜀 ), and both

𝑙
(0)
1

and 𝑙
(1)
4

can achieve their upper bounds 𝑙
(0)
1

and 𝑙
(1)
4

. This is

because in this case, 𝑅 =
𝑙
(1)
2
+𝑙 (1)

3

𝑙
(0)
2
+𝑙 (0)

3

∈ (𝑒−𝜀 , 𝑒𝜀 ), and combining with

Eq. (6), we can get feasible positive values of 𝑙
(1)
2

and 𝑙
(1)
3

. When

𝑞𝑠0 ≤ 1

1+𝑒−𝜀 or 𝑞𝑠1 ≥ 1

1+𝑒𝜀 , i.e., when 𝑅 ≤ 𝑒
−𝜀

or 𝑅 ≥ 𝑒𝜀 , to ensure
both 𝑙

(0)
1

and 𝑙
(1)
4

reach their feasible maximal values, we have

1−𝑙 (1)
1
−𝑙 (1)

4

1−𝑙 (0)
4
−𝑙 (0)

1

=
𝑙
(1)
2
+𝑙 (1)

3

𝑙
(0)
2
+𝑙 (0)

3

∈ {𝑒−𝜀 , 𝑒𝜀 }, and thus 𝑙
(1)
2

or 𝑙
(1)
3

should be

set as 0. The illustrations in Figs. 10 and 11 show the cases where

𝑅 ∈ (𝑒−𝜀 , 𝑒𝜀 ) and 𝑅 ≥ 𝑒𝜀 .
Furthermore, under differentP (𝑆,𝑌 ), we illustrate the 𝜀-inferentially-

private Blackwell optimal information structure in Fig. 12. With

different values of 𝑅1, 𝑅2, 𝑞𝑠0 , 𝑞𝑠1 , the output signal set T varies.

H PROOF OF PROPOSITION 5.1
Proof. Consider a utility function

𝑢 (𝑞𝑡 ) =
{
𝐿
2
− 𝐿𝑞𝑡 , 𝑞𝑡 ≤ 1

2

−𝐿
2
+ 𝐿𝑞𝑡 , 𝑞𝑡 >

1

2

and a joint distribution P (𝑆,𝑌 ) where P (𝑆 = 𝑠0) = P (𝑆 = 𝑠1) = 1

2
,

𝑞𝑠0 = 𝑒𝜀

1+𝑒𝜀 , 𝑞𝑠1 = 1

1+𝑒𝜀 . From Corollary 5.1, we know that the

optimal mechanism contains two output signals 𝑡1, 𝑡4, and satisfies

𝑝𝑡1 = 𝑝𝑡4 =
1

2
, 𝑞𝑡1 = 1, 𝑞𝑡4 = 0. Then we can get that 𝑈𝜀 =

1

2
𝑢 (0) +

1

2
𝑢 (1) = 𝐿

2
. Under the perfect privacy constraint, from Thm. 3.1, we

know that the optimal mechanism contains three outputs 𝑡 ′
1
, 𝑡 ′
2
, 𝑡 ′
3
,

where 𝑝𝑡1 = 𝑝𝑡3 = 1

1+𝑒𝜀 , 𝑝𝑡2 = 𝑒𝜀−1
1+𝑒𝜀 , 𝑞𝑡1 = 1, 𝑞𝑡3 = 0, 𝑞𝑡2 = 1

2
. Then

we can get that 𝑈0 = 1

1+𝑒𝜀 (𝑢 (0) + 𝑢 (1)) +
𝑒𝜀−1
1+𝑒𝜀 𝑢

(
1

2

)
= 𝐿

1+𝑒𝜀 . Let

𝐿 = 3Δ
(
1 + 2

𝑒𝜀−1

)
, we have𝑈𝜀 −𝑈0 =

𝐿 (𝑒𝜀−1)
2(1+𝑒𝜀 ) ≥ Δ. □

I MECHANISM DESIGN FOR 𝑛 > 2 SECRETS
In this section, we focus on general secrets with 𝑛 (𝑛 > 2) possible

values, i.e., S = {𝑠1, . . . , 𝑠𝑛}. The main result is to derive a set of

programs that lead to an optimal solution for any given utility

function in the downstream decision-making problem. The design

of the programs depends on our geometric characterization, which

ensures that each program is linear.

We first capture the inferentially-private Blackwell optimal in-

formation structure as follows. Without loss of generality, we

suppose 𝑠1, . . . , 𝑠𝑛 ∈ S are ordered in decreasing order of 𝑞𝑠 =

P (𝑌 = 1|𝑆 = 𝑠). Let 𝑞𝑡 = P(𝑌 = 1|𝑇 = 𝑡), 𝑝𝑡 = P(𝑇 = 𝑡), and
𝑙
( 𝑗 )
𝑖

= P (𝑇 = 𝑡𝑖 |𝑆 = 𝑠𝑖 ). From Thm. 4.1 and its proof, we know that

any 𝜀-inferentially-private Blackwell optimal information struc-

ture has an equivalent structure P (𝑆,𝑌 ,𝑇 ) where the number of

output signals is at most 3𝑛 + 1, and there is only one output, de-

noted as 𝑡1 and 𝑡𝑛+1, that satisfies 𝑞𝑡1 = P (𝑌 = 1|𝑇 = 𝑡1) = 1 and
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Figure 12: For any P (𝑆,𝑌 ), we can construct a unique 𝜀-
inferentially-private Blackwell optimal information struc-
ture P (𝑆,𝑌 ,𝑇 ), where the output signal setT has four possible
choices, depending on 𝑅1, 𝑅2, 𝑞𝑠0 , 𝑞𝑠1 .

𝑞𝑡𝑛+1 = P (𝑌 = 1|𝑇 = 𝑡𝑛+1) = 0 respectively. Using a similar analysis

to the proof of Lemma 5.1, we can get that

P (𝑇 = 𝑡1 |𝑆 = 𝑠𝑛) = P (𝑌 = 1|𝑆 = 𝑠𝑛) = 𝑞𝑠𝑛 ,
P (𝑇 = 𝑡𝑛+1 |𝑆 = 𝑠1) = P (𝑌 = 0|𝑆 = 𝑠1) = 1 − 𝑞𝑠1 .

(15)

FromLemma 4.1, we know thatP (𝑌 = 1|𝑆 = 𝑠,𝑇 = 𝑡) ∈ {0, 1} , ∀𝑠
∈ S, 𝑡 ∈ T . Denote set T𝑖 =

{
𝑡𝑖𝑘

}
𝑘∈[𝐾 ] , where 𝑖 ∈ {2, . . . , 𝑛} and

the value of𝐾 is specified later, such thatP
(
𝑌 = 1|𝑆 = 𝑠𝑛+2−𝑖 ,𝑇 = 𝑡𝑖𝑘

)
= 0,∀𝑡𝑖𝑘 ∈ T𝑖 , and P

(
𝑌 = 1|𝑆 = 𝑠𝑛+1−𝑖 ,𝑇 = 𝑡𝑖𝑘

)
= 1. FromLemma 4.3,

we know that the region A is in T -upper-left, and therefore, we

can get that ∀𝑖 ∈ {2, . . . , 𝑛} , 𝑡𝑖𝑘 ∈ T𝑖 ,
P
(
𝑌 = 1|𝑆 = 𝑠 𝑗 ,𝑇 = 𝑡𝑖𝑘

)
= 1, iff 𝑗 ∈ [𝑛 + 1 − 𝑖] . (16)

We set 𝐾 = 3𝑛 to ensure that

{
𝑡1, 𝑡𝑛+1, 𝑡𝑖𝑘

}
𝑖∈{2,...,𝑛}, 𝑘∈[𝐾 ] can cap-

ture any 𝜀-inferentially-private Blackwell optimal information struc-

ture with at most 3𝑛 + 1 output signals.
We then show that given a convex utility function 𝑢 and a joint

distribution 𝑃 (𝑆,𝑌 ), we can find an 𝜀-inferentially-private infor-

mation structure 𝑃 (𝑌, 𝑆,𝑇 ) that maximizes the expected utility

by a set of linear programs with different instantiations of 𝑐
( 𝑗 )
𝑖𝑘

.

Roughly, 𝑐
( 𝑗 )
𝑖𝑘

represents whether a secret-output pair

(
𝑠 𝑗 , 𝑡𝑖𝑘

)
is

associated with a wide cell with red outline (𝑐
( 𝑗 )
𝑖𝑘

= 1) or a narrow

cell with blue outline (𝑐
( 𝑗 )
𝑖𝑘

= 𝑒𝜀 ) in Fig. 4. From Lemma 4.3, we

know that under a Blackwell optimal structure, the values of 𝑐
( 𝑗 )
𝑖𝑘

satisfy ∀𝑖 ∈ {2, . . . , 𝑛} , 𝑘 ∈ [3𝑛]:

𝑐
( 𝑗 )
𝑖𝑘
≤ 𝑐 ( 𝑗

′ )
𝑖′
𝑘′
, ∀𝑗 ∈ [𝑛 + 1 − 𝑖] , 𝑗 ′ ≤ 𝑗, 𝑖′

𝑘 ′ ⪯ 𝑖𝑘 ,

𝑐
( 𝑗 )
𝑖𝑘
≤ 𝑐 ( 𝑗

′ )
𝑖′
𝑘′
, ∀𝑗 ∈ [𝑛] \ [𝑛 + 1 − 𝑖] , 𝑗 ′ ≥ 𝑗, 𝑖′

𝑘 ′ ⪰ 𝑖𝑘 ,
(17)

where 𝑖′
𝑘 ′
⪯ 𝑖𝑘 if 𝑖′ < 𝑖 or 𝑘′ ≤ 𝑘 when 𝑖′ = 𝑖 , and 𝑖′

𝑘 ′
⪰ 𝑖𝑘 if 𝑖′ > 𝑖

or 𝑘′ ≥ 𝑘 when 𝑖′ = 𝑖 .
With the predefined values 𝑐

( 𝑗 )
𝑖𝑘
∈ {1, 𝑒𝜀 }, each program maxi-

mizes the expected utilityE𝑡 [𝑢 (𝑞𝑡 )] under the geometric character-

izations of the 𝜀-inferentially-private Blackwell optimal information

structure.
3
The program is shown below. Specifically, conditions

19,20,23, and 24 calculate 𝑝𝑇 , 𝑞𝑇 by P (𝑆) , P (𝑇 |𝑆) based on Eq. (16).

Conditions 21 and 22 introduce the inferential privacy constraints

for outputs 𝑡1 and 𝑡𝑛+1 based on Eq. (15). Condition 25 calculates

𝑙
( 𝑗 )
𝑖𝑘

= P
(
𝑇 = 𝑡𝑖𝑘 |𝑆 = 𝑠 𝑗

)
, ∀𝑖 ∈ {2, . . . , 𝑛} , 𝑘 ∈ [3𝑛] based on the

predefined value 𝑐
( 𝑗 )
𝑖𝑘
∈ {1, 𝑒𝜀 }. Conditions 26 and 27 introduce

constraints on the value of P (𝑇 |𝑆) based on Eq. (16). The variables

in the program are 𝑟
( 𝑗 )
1

( 𝑗 ∈ [𝑛 − 1]), 𝑟 ( 𝑗 )
𝑛+1 ( 𝑗 ∈ {2, . . . , 𝑛}), and 𝑙

(𝑛)
𝑖𝑘

(𝑖 ∈ {2, . . . , 𝑛} , 𝑘 ∈ [3𝑛]). Based on condition 25, we can rewrite

condition 23 as 𝑞𝑡𝑖𝑘
=

∑
𝑗 ∈ [𝑛+1−𝑖 ] P(𝑆=𝑠 𝑗 ) ·𝑐 ( 𝑗 )𝑖𝑘∑

𝑗 ∈ [𝑛] P(𝑆=𝑠 𝑗 ) ·𝑐 ( 𝑗 )𝑖𝑘

, which is fixed in each

program. Therefore, our program is linear.

Finally, we provide a mechanism that maximizes the expected

utility under utility function𝑢 in Alg. 1. To design an optimal mech-

anism, we first enumerate all feasible 𝑐
( 𝑗 )
𝑖𝑘

based on constraints in

Eq. (17). The number of enumerations is exponential with respect

3
According to Thm. 2.1, the information structure that maximizes the expected utility

under function𝑢 must follow the geometric characterizations of the Blackwell optimal

structure.
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ALGORITHM 1: Information disclosure mechanism maximizing the

expected utility for non-binary secrets.

Input :utility function 𝑢, distribution P (𝑆,𝑌 ) , inferential privacy level

𝜀 .

1 Enumerate 𝑐
( 𝑗 )
𝑖𝑘
∈ {1, 𝑒𝜀 } , ∀𝑖 ∈ {2, . . . , 𝑛} , 𝑗 ∈ [𝑛] , 𝑘 ∈ [3𝑛],

subject to the constraints in Eq. (17);

2 for each instantiation 𝑐
( 𝑗 )
𝑖𝑘

: solve the optimization above;

3 ˆ𝑙
( 𝑗 )
1
, ˆ𝑙
( 𝑗 )
𝑛+1,

ˆ𝑙
( 𝑗 )
𝑖𝑘
← 𝑙

( 𝑗 )
1
, 𝑙
( 𝑗 )
𝑛+1, 𝑙

( 𝑗 )
𝑖𝑘

that corresponds to the optimization

achieving the maximal objective value;

4 Output the mechanism with

P
(
𝑇 = 𝑡1 |𝑆 = 𝑠 𝑗 , 𝑌 = 1

)
=

ˆ𝑙
( 𝑗 )
1

𝑞𝑠 𝑗
, ∀ 𝑗 ∈ [𝑛] ,

P
(
𝑇 = 𝑡𝑖𝑘 |𝑆 = 𝑠 𝑗 , 𝑌 = 1

)
=

ˆ𝑙
( 𝑗 )
𝑖𝑘

𝑞𝑠 𝑗
,

∀ 𝑗 ∈ [𝑛 − 1] , 𝑖 ∈ {2, . . . , 𝑛 + 1 − 𝑗 } , 𝑘 ∈ [3𝑛] ,

P
(
𝑇 = 𝑡𝑛+1 |𝑆 = 𝑠 𝑗 , 𝑌 = 0

)
=

ˆ𝑙
( 𝑗 )
𝑛+1

1 − 𝑞𝑠 𝑗
, ∀ 𝑗 ∈ [𝑛] ,

P
(
𝑇 = 𝑡𝑖𝑘 |𝑆 = 𝑠 𝑗 , 𝑌 = 0

)
=

ˆ𝑙
( 𝑗 )
𝑖𝑘

1 − 𝑞𝑠 𝑗
,

∀ 𝑗 ∈ [𝑛] \ {1} , 𝑖 ∈ {𝑛 + 2 − 𝑗, . . . , 𝑛} , 𝑘 ∈ [3𝑛] .

to the number of secret 𝑛. The most straightforward way to obtain

all feasible 𝑐
( 𝑗 )
𝑖𝑘

is to first enumerate the entire value space and then

filter according to Eq. (17). Exploring more efficient enumeration

methods may be an interesting direction for future work and could

be of independent interest. For each enumeration, we solve the

optimization described above. We can get an optimal structure—in

the sense of maximizing expected utility under the utility function

𝑢—represented by ˆ𝑙
( 𝑗 )
1
, ˆ𝑙
( 𝑗 )
𝑛+1,

ˆ𝑙
( 𝑗 )
𝑖𝑘

, based on the optimization achiev-

ing the maximal expected utility. Finally, based on the fact that

P(𝑆,𝑌 ,𝑇 ) = P(𝑌 |𝑆,𝑇 ) · P(𝑇 |𝑆) · P(𝑆) and P(𝑇 |𝑆,𝑌 ) = P(𝑆,𝑌,𝑇 )
P(𝑆,𝑌 ) , we

can design the optimal mechanism, represented by P (𝑇 |𝑆,𝑌 ), that
maximizes the expected utility under utility function 𝑢.

max

𝑙
( 𝑗 )
1

, 𝑙
( 𝑗 )
𝑛+1, 𝑙

( 𝑗 )
𝑖𝑘

,

∀𝑖∈{2,...,𝑛}, 𝑗 ∈ [𝑛],
𝑘∈ [3𝑛]

𝑝𝑡1 · 𝑢 (𝑞𝑡1 ) + 𝑝𝑡𝑛+1 · 𝑢 (𝑞𝑡𝑛+1 ) +
∑︁

𝑖∈{2,...,𝑛}
𝑘∈ [3𝑛]

𝑝𝑡𝑖𝑘
· 𝑢 (𝑞𝑡𝑖𝑘 )

(18)

subject to 𝑞𝑡1 = 1, 𝑝𝑡1 =
∑︁
𝑗 ∈ [𝑛]

P
(
𝑆 = 𝑠 𝑗

)
· 𝑙 ( 𝑗 )

1
, (19)

𝑞𝑡𝑛+1 = 0, 𝑝𝑡𝑛+1 =
∑︁
𝑗 ∈ [𝑛]

P
(
𝑆 = 𝑠 𝑗

)
· 𝑙 ( 𝑗 )
𝑛+1, (20)

∀ 𝑗 ∈ [𝑛 − 1] :

𝑙
( 𝑗 )
1

= 𝑟
( 𝑗 )
1
· 𝑙 (𝑛)

1
, 𝑙

(𝑛)
1

= 𝑞𝑠𝑛 , 𝑟
( 𝑗 )
1
∈ [𝑒−𝜀 , 𝑒𝜀 ] ,

(21)

∀ 𝑗 ∈ {2, . . . , 𝑛} :

𝑙
( 𝑗 )
𝑛+1 = 𝑟

( 𝑗 )
𝑛+1 · 𝑙

(1)
𝑛+1, 𝑙

(1)
𝑛+1 = 1 − 𝑞𝑠1 , 𝑟

( 𝑗 )
𝑛+1 ∈ [𝑒

−𝜀 , 𝑒𝜀 ] ,
(22)

∀𝑖 ∈ {2, . . . , 𝑛} , 𝑘 ∈ [3𝑛] :

𝑞𝑡𝑖𝑘
=

∑
𝑗 ∈ [𝑛+1−𝑖 ] P

(
𝑆 = 𝑠 𝑗

)
· 𝑙 ( 𝑗 )
𝑖𝑘∑

𝑗 ∈ [𝑛] P
(
𝑆 = 𝑠 𝑗

)
· 𝑙 ( 𝑗 )
𝑖𝑘

, (23)

𝑝𝑡𝑖𝑘
=

∑︁
𝑗 ∈ [𝑛]

P
(
𝑆 = 𝑠 𝑗

)
· 𝑙 ( 𝑗 )
𝑖𝑘
, (24)

𝑙
( 𝑗 )
𝑖𝑘

=
𝑐
( 𝑗 )
𝑖𝑘

𝑐
(𝑛)
𝑖𝑘

· 𝑙 (𝑛)
𝑖𝑘
, 𝑙

(𝑛)
𝑖𝑘
≥ 0, ∀ 𝑗 ∈ [𝑛 − 1] , (25)

∀ 𝑗 ∈ [𝑛] : 𝑙
( 𝑗 )
1
+ 𝑙 ( 𝑗 )

𝑛+1 +
∑︁

𝑖∈{2,...,𝑛}
𝑘∈ [3𝑛]

𝑙
( 𝑗 )
𝑖𝑘

= 1, (26)

𝑙
( 𝑗 )
1
+

∑︁
𝑖∈{2,...,𝑛+1− 𝑗 }

𝑘∈ [3𝑛]

𝑙
( 𝑗 )
𝑖𝑘

= 𝑞𝑠 𝑗 . (27)
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