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ABSTRACT

Neural causal discovery methods have recently improved in terms of scalability and
computational efficiency. However, there are still opportunities for improving their
accuracy in uncovering causal structures. We argue that the key obstacle in unlock-
ing this potential is the faithfulness assumption, commonly used by contemporary
neural approaches. We show that this assumption, which is often not satisfied in
real-world or synthetic datasets, limits the effectiveness of existing methods. We
evaluate the impact of faithfulness violations both qualitatively and quantitatively
and provide a unified evaluation framework to facilitate further research.

1 INTRODUCTION
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Figure 1: Neural causal discovery meth-
ods suffer from inherent performance
limit due to violation of faithfulness as-
sumption, but there is still room for
improvement. Values computed for
ER(5,1) class of graphs. See Sec-
tions 3, 5.

Causal discovery is essential to scientific research,
driving a growing demand for machine learning methods
to support this process. Despite the development of
several neural-based causal discovery methods in recent
years (Brouillard et al., 2020; Lorch et al., 2021; Annadani
et al., 2023; Nazaret et al., 2024), their performance
remains insufficient for real-world applications, particu-
larly in fields like medicine and biology (de Castro et al.,
2019; Peters et al., 2016). Furthermore, these methods
are usually evaluated using synthetic datasets, which vary
between studies, obscuring the overall picture and making
assessment of advancements difficult.

To address this challenge, we introduce a unified bench-
mark for evaluating neural causal discovery methods.
Specifically, we use identical datasets, tune hyperparam-
eters consistently, and use a standardized functional ap-
proximation across all methods. Our systematic evaluation
reveals that, although there has been progress in computa-
tional efficiency over the past few years, significant gains
in causal discovery accuracy have yet to emerge. Further
underscoring the challenges, we discover that the existing
methods can not take advantage of the increasing amount
of data, countering the universally held assumption that
more data leads to better learning.

The key claim of this work is that progress in causal discov-
ery requires moving beyond the faithfulness assumption.
Although it is widely known that real-world and synthetic
data rarely satisfy this assumption (Hoover, 2001; An-
dersen, 2013), most neural-based methods overlook its
impact. We develop techniques to measure how faith-
fulness violations degrade performance and set an upper
bound for current benchmarks. Our results show a clear
correlation: faithfulness violations significantly hinder performance, and improvements within the
current paradigm are limited.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We believe that our work establishes a solid foundation that will propel future research in ML methods
for causal discovery. Our original contributions are as follows:

• We identify violations of faithfulness as the core challenge and analyze its consequences
both qualitatively and quantitatively.

• We develop an open unified benchmark for causal discovery evaluation.
• We present a soft upper bound on the performance of neural causal discovery methods for

synthetic benchmarks.

2 BACKGROUND

Structural Causal Models (SCMs) and graph representation Causal relationships are commonly
formalized using SCMs, which represent causal dependencies through a set of structural equations.
For a directed acyclic graph (DAG) G = (V,E), an SCM is defined by a set of equations

Xi = fi(Pai, Ui), (1)

where i ∈ V , Xi is a random variable, fi : R|Pai|+1 → R is a function, Pai denotes the set of
parents of the vertex i in the graph G, and Ui is an independent noise term associated with Xi. In
this paper, we assume additive noise SCMs, also referred to as additive noise models (ANM), where:

fi(Pai, Ui) = gi(Pai) + Ui (2)

for some gi : R|Pai| → R.

Causal discovery Causal structure discovery aims to recover the ground truth DAG representing
causal relationships among variables. However, the unique solution cannot be indentified from the
observational data only; instead, one can only identify the structure up to a Markov Equivalence Class
(MEC), the set of DAGs that encode the same conditional independencies. This can be uniquely
represented by a Complete Partially Directed Acyclic Graph (CPDAG), which is a sum of DAGs from
the same class. This results in a graph that includes both directed and undirected edges, reflecting
consistent and uncertain causal directions within the MEC (Verma & Pearl, 1990).

Faithfulness assumption A probability distribution P is said to be faithful to a DAG G = (V,E)
if all the conditional independence relations present in the data correspond to those implied by the
d-separation criteria of the DAG (for more on d-separation, see Appendix A.1 or Pearl (2009)).
Formally, this can be written as:

Xa ⊥⊥ Xb | XS ⇒ a is d-separated from b | S, (3)

where ⊥⊥ denotes conditional independence of the variables, a, b ∈ V are nodes of the graph, and
S ⊆ V \ {a, b} is a set of nodes. Intuitively, the faithfulness assumption can be understood as the
statement that all statistical independencies in the observed data are the result of the underlying causal
structure. Faithfulness assumption can be violated, for example, in a situation when paths cancel
each other effects out, leading to statistical independence despite an existing causal relationship. An
example of this kind of violation is shown in Appendix A.2.

While the faithfulness is a useful and powerful assumption in causal discovery, it is rarely satisfied in
the practical scenarios (Cartwright, 2001; Andersen, 2013).

Score-based neural causal discovery To allow for scalable causal discovery on graphs with hun-
dreds of nodes, recent approaches focus on heuristics employing continuous optimization techniques
that use neural networks as functional approximators to model the underlying probability distribution
of the data (Nazaret et al., 2024). These approaches use a continuous representation of the graph struc-
ture, enforcing a differentiable acyclicity constraint to ensure the result is a valid DAG. The primary
objective is to maximize log pθ(X|G), that is the log-likelihood of the data given the graph while
incorporating regularization terms to control graph complexity. The training procedure comprises
two parts: fitting functional approximators and structure search. They are usually done in parallel to
maximize compute efficiency. Methods of this class are guaranteed to recover a DAG from the MEC
class of ground true graph when the faithfulness assumption is fulfilled (see Brouillard et al. (2020)).
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We benchmark four differentiable causal discovery methods DCDI (Brouillard et al., 2020),
SDCD (Nazaret et al., 2024), BayesDAG (Annadani et al., 2023), and DiBS (Lorch et al., 2021), as
they summarize various research directions and improvements explored in neural causal discovery
over the last four years (see Appendix E). DCDI and SDCD represent the graph using an adjacency
matrix, and optimize using the Augmented Lagrangian method (Zheng et al., 2018), aiming to find a
single graph that maximizes the likelihood, with regularization added to penalize complex structures.
In contrast, BayesDAG and DiBS take a Bayesian approach, approximating the posterior distribution
over graphs rather than finding a single solution, with regularization introduced via prior distributions
on graph structures. All four methods assume that the distribution is faithful to the ground truth DAG.

Structure evaluation We evaluate graph discovery within the MEC using ESHDCPDAG and
F1-ScoreCPDAG, where ESHDCPDAG = 0 and F1-ScoreCPDAG = 1 when the predicted graph is
in the same MEC as the ground truth. For Bayesian methods, we compute the average by sampling
100 graphs from the posterior; for non-Bayesian methods, we use a single graph.

The Structural Hamming Distance (SHD) (Tsamardinos et al., 2006) counts edge insertions, deletions,
and reversals needed to match the predicted graph to the true graph. We define Expected SHD
between CPDAGs as:

ESHDCPDAG(G,G) = EG∗∼G[SHD(CPDAG(G),CPDAG(G∗))], (4)

where G is the resulting distribution of graphs, G∗ is a graph sampled from G and G is the ground
true graph. The F1-Score measures the harmonic mean of precision and recall for edge predictions.
We compute the Expected F1-Score between the CPDAGs as follows:

F1-ScoreCPDAG(G,G) = EG∗∼G[F1-Score(CPDAG(G),CPDAG(G∗))]. (5)

For more details and justification on the selection of metrics please refer to Appendix D.

3 UNIFIED BENCHMARK FOR SCORE-BASED NEURAL CAUSAL DISCOVERY
METHODS ON SYNTHETIC DATA

In this section, we present a unified benchmark that exposes both the strengths and limitations of
neural-based causal discovery methods. We evaluate methods DiBS, DCDI, BayesDAG, and SDCD
introduced in Section 2 on identical datasets, tune hyperparameters consistently, and use a common
functional approximation.

Our analysis spans several key dimensions of performance. In Section 3.2, we show that despite
advancements in causal discovery over the past few years, ESHDCPDAG and F1-ScoreCPDAG metrics
do not improve significantly. In Section 3.3, we demonstrate that structure discovery accuracy
does not scale with the amount of data. Finally, in Section 3.4, we confirm that variations in MLP
architecture have minimal impact on performance.

3.1 EXPERIMENTAL SETUP

Dataset generation We sample three types of graphs from the Erdős-Rényi (ER) distribution (Erdös
& Rényi, 1959): one with 5 nodes and the expected degree of 1, another with 10 nodes and the
expected degree of 2, and the third with 30 nodes and the expected degree of 2. These datasets are
referred to as ER(5, 1), ER(10, 2), and ER(30, 2), respectively. These parameter choices align with
commonly studied medium-sized graphs in causal discovery research (Brouillard et al., 2020; Nazaret
et al., 2024). Data generation follows the SCM formalism introduced in Section 2, with functional
relationships modeled by two-layer neural networks (hidden dimension 8, ReLU activation) and
additive Gaussian noise. The noise has zero mean, and its variance is sampled independently for each
node. This setup is known to be challenging (Geffner et al., 2024; Nazaret et al., 2024). For more
details refer to Appendix C.1.

Hyperparameter tuning To ensure a fair comparison across all methods, we perform systematic
hyperparameter tuning, selecting the best-performing parameters for each model. We employ a
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ER(5, 1) ER(10, 2) ER(30, 2)

Method ESHDCPDAG F1-ScoreCPDAG ESHDCPDAG F1-ScoreCPDAG ESHDCPDAG F1-ScoreCPDAG

DCDI 5.7 (3.7, 8.1) 0.60 (0.46, 0.74) 16.9 (15.7, 18.1) 0.52 (0.50, 0.56) 45.9 (42.0, 49.9) 0.73 (0.69, 0.77)

BayesDAG 3.9 (3.6, 4.3) 0.78 (0.77, 0.81) 18.3 (16.9, 19.8) 0.56 (0.54, 0.59) 51.7 (48.2, 55.9) 0.59 (0.57, 0.61)

DiBS 2.6 (1.7, 3.7) 0.85 (0.80, 0.90 21.3 (20.1, 22.5) 0.50 (0.49, 0.52) 68.0 (65.3, 70.9) 0.23 (0.22, 0.24)

SDCD 5.4 (3.8, 6.7) 0.60 (0.35, 0.69 20.9 (19.5, 22.2) 0.54 (0.46, .62) 62.8 (58.8, 67.7) 0.55 (0.53, 0.58)

Table 1: Comparison of ESHDCPDAG and F1-ScoreCPDAG for different methods on ER(10, 2) (left)
and ER(30, 2) (right) dataset. The numbers in the subscripts, correspond to 0.95 confidence intervals.
The statistics were computed based on 30 graphs.

grid search approach based on the parameter ranges suggested by the original authors. This process
optimizes key variables such as regularization coefficients, sparsity controls, and kernel configurations.
Details can be found in Appendix C.2.

Functional approximators We standardize the choice of functional approximators across all
experiments, using a two-layer MLP with a hidden dimension of 4. This model size is consistent with
previous work (Brouillard et al., 2020; Nazaret et al., 2024) and has proven to perform well across all
the benchmarked methods, as discussed in Section 3.4. Additionally, we use trainable variance to
allow the model to adapt to varying noise levels, in line with our dataset generation setup.

3.2 PERFORMANCE COMPARISON

Table 1, summarizes the benchmark results of neural-based causal discovery methods on graphs from
ER(5, 1), ER(10, 2), and ER(30, 2) classes. We tune hyperparameters to optimize the ESHDCPDAG
metric. For all classes of graphs, metrics were computed based on 30 graphs.

The results on larger graphs show that DCDI, the earliest approach here, achieves the best ESHDCPDAG
score and the best or comparable F1-ScoreCPDAG to all other methods on both graphs. Moreover, the
performance gap widens with the size of the model with the second best, the BayesDAG method, being
8% worse than DCDI on ER(10, 2) and 13% worse on ER(30, 2). Nevertheless, the performance
of the methods remains unsatisfactory with all methods predicting more than half of the edges
incorrectly. For ER(5, 1) trends in the presented results are slightly different, with DiBS performing
the best in terms of ESHDCPDAG and F1-ScoreCPDAG, and having the smallest confidence interval.
Nevertheless, all methods predict more than half of the ground truth edges wrong.

3.3 IMPACT OF SAMPLE SIZE

We investigate whether the number of observations affects the performance of causal discovery
methods. One could expect that neural based models, similarly to independence testing ones, will
improve when more data is supplied (Kalisch & Bühlmann, 2007). We compare benchmarked methods
on dataset with varying number of observational samples, ranging from 20 to 8,000 observations.

The results, presented in Figure 2, reveal no consistent pattern of improvement in the ESHDCPDAG
metric as observational sample size increases, despite extensive hyperparameter tuning (as described
in Section 3.1). For example, DCDI shows the best performance on larger datasets, but its improve-
ments plateau after around 250 samples. Similarly, BayesDAG shows only marginal improvements
with larger sample sizes and is unable to outperform DCDI. DiBS, notably, maintains consistent
performance regardless of the sample size. Interestingly, SDCD’s performance is poor on datasets
with small number of observations but begins to improve once sample sizes exceed 250, though is
unable to reach DCDI’s performance.

Further analysis of the effect of sample size on smaller graphs ER(5, 1)is presented in Figure 12 in
Appendix C.4. Overall, the results on smaller graphs align with the trends observed on larger graphs.
Specifically, while some methods improve with increasing sample size, others show inconsistent or
even degraded performance.
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Figure 2: Comparison of ESHDCPDAG for different methods using the [4, 4] architecture, for ER(10, 2)
dataset, averaged over 30 samples.
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Figure 3: Comparison of ESHDCPDAG using different MLP architectures as functional approximator
for ER(10, 2) dataset and 800 observational samples, averaged over 30 samples.
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Figure 4: Linear regression fit between the average performance of neural causal discovery methods
and faithfulness accuracy measure.

3.4 COMPARISON OF NEURAL MODEL ARCHITECTURES

Finally, we investigate the impact of the neural model architecture, used as the functional approxima-
tor, on the performance of the benchmarked methods. Specifically, we assess how the capacity of
different architectures influences the ability to uncover causal relationships from synthetic data. To
provide a comprehensive evaluation, we explored architectures with 1, 2, and 3 layers, configured
with 4, 8, and 16 hidden units.

Results, presented in Figure 3 show the comparison of ESHDCPDAG metric for the benchmarked
architectures across all methods on dataset with 800 samples. We find that the choice of neural
architecture has no significant impact on performance across methods. We conclude that any of the
tested MLP architectures provides sufficient capacity to model the underlying distribution effectively.
Additionally for BayesDAG and SDCD we implemented layer normalization and residual connections.
We investigated the impact of this changes in architectures and did not found any significant
differences, see Figure 11. The details and additional experimental results are in Appendix C.3.

4 MEASURING IMPACT OF FAITHFULNESS VIOLATION

In this section we explore how violations of the faithfulness assumption impact the performance of
neural causal discovery methods. In Section 3, we showed that despite various attempts to scale
up data and model complexity, the performance of these methods remains stagnant, possibly due
to deeper challenges related to the underlying data properties and the limitations inherent to the
algorithms. This leads us to investigate whether violations of the faithfulness assumption, common in
synthetic non-linear data, might be the key factor limiting performance improvements.

The faithfulness assumption translates into the set of conditional independence statements that all need
to be satisfied. As mentioned in Section 2, synthetic non-linear data rarely adheres to faithfulness
assumption, rendering binary criterion not practical. To address this, we introduce a degree of
faithfulness metric, denoted DeFaith, which captures the faithfulness violations on a continuous scale.

Inspired by Zhang & Spirtes (2003), we use Spearman’s rank correlation coefficient to quantify the
conditional dependencies in the dataset. We define a predictor that classifies nodes as independent if
conditional Spearman’s rank correlation coefficient computed based on a dataset D is smaller than a
certain threshold.

DeFaith is the quality of this predictor measured by Area Under Receiver Operator Curve computed
over all possible pairs of variables a, b and separation sets S ⊆ V \ {a, b}. Formally,
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Algorithm 1 Overview of NN-opt method
1: Input: Set of nodes V , training data {Di}i∈V , regularization coefficient λ, G the space of

DAGs with nodes V
2: # Part 1: Network fitting
3: for i ∈ V and π ⊆ V \ {i} do ▷ For each variable and each possible parent set
4: θi,π ← TRAINNETWORK(i,D, π) ▷ Train ensembles of 3 networks
5: end for
6: # Part 2: Exhaustive graph search
7: for G ∈ G do ▷ Evaluate all possible DAGs
8: scoreG ←

∑
i∈V COMPUTENLL(Di, DPaG

i
, θi,PaG

i
) ▷ Compute NLL using ensemble

9: scoreG ← scoreG + λ · |G| ▷ Add regularizing term
10: end for
11: Output: argmax{scoreG : G ∈ G}

DeFaith(D,G) = AUROC
a,b∈V,S⊆V \{a,b}

(1− abs(ρDs (a, b|S)),1[a ⊥G b|S)]

where V is set of nodes in graph G, a ⊥G b|S denotes d-separation between nodes a and b given
S, and ρDs (a, b|S) denotes conditional Spearman’s rank correlation coefficient computed based on
dataset D. The measure attains a value of 1.0 for faithful distributions.

In this experiment, we generate 30 graphs from the ER(10, 2) class, introduced in Section 3.1. Based
on each graph, we define three different SCMs, resulting in 90 distinct distributions. Each dataset
consists of 8,000 observational samples. We then evaluate the DeFaith of each distribution and
compute the performance of the selected neural-based causal discovery methods.

In Figure 4 we present the relationship between average performance of all methods and the degree
of faithfulness for all 90 distributions in the dataset. The performance is better (lower SHD) for
distributions with higher degree of faithfulness. The Spearman’s rank correlation coefficient is
ρ = −0.58. This result proves the strong anti-monotonicity between the faithfulness accuracy and
methods’ performance.

5 ESTIMATING UPPER BOUND ON PERFORMANCE

In this section, we investigate the limits of the performance of score-based neural causal discovery
methods. To do this we develop a method dubbed as NN-opt method, to compute an experimental
upper bound on the performance. As for the benchmarked methods, the goal of NN-opt method is
to find a structure that minimizes the regularized log-likelihood of data, therefore it is expected to
recover a graph from the correct MEC class when the faithfulness assumption holds (see Section 2).

The method overview is in Algorithm 1. It is based on the common approach used by score-based
neural causal discovery methods described in Section 2. The procedure consists of two steps. First,
we train neural networks to approximate functional relationships between variables. Contrary to
benchmarked methods we train a separate network for each parent set instead of training one for
all. This renders functional approximation fitting procedure completely independent from structure
search. Therefore, it simplifies the training task and allows for strict control of the training procedure
via validation loss monitoring. Second, we conduct an exhaustive search over the space of DAGs to
find the structure that minimizes the log-likelihood loss. For increased stability of this step, we use
an ensemble of 3 neural networks to compute the log-likelihood of the data under various structures.

The approach is exhaustive both in the sense of structure search and in neural network training,
trading computational efficiency for additional precision. NN-opt is a brute force technique intended
to be able to reach the limits of score-based neural causal discovery approaches. NN-opt is helpful as
an upper-bound benchmark but is not practical to use.

We expect the method to improve with the number of samples and stabilize when the data becomes
sufficiently large. Therefore, we applied NN-opt method to datasets of various sizes. The results
are presented in Figure 5 on the left. For very small datasets we observe rapid improvement in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

80 250 800 2.5K 8K
Obervational sample size

0

1

2

3

4

5

6

ES
HD

 b
et

we
en

 C
PD

AG
s

20 80 250 800 2.5K 8K
Obervational sample size

102

103

Nu
m

be
r o

f g
ra

ph
s

Neighbourhood of
 graphs where
 SHD=1
Neighbourhood of
 graphs where
 SHD<=2

Figure 5: Comparison of the performance of NN-opt method depending on data size (left), and
comparision of number of DAGs with score higher than true graph (right). Averaged over 90 samples

terms of ESHDCPDAG, but as the sample size grows, the structure discovery accuracy stabilizes. For
sample sizes of 2,500 and 8,000, the value of ESHDCPDAG is just below 2. In the dataset used for this
experiment, the average number of edges in CPDAG is around 8.4, meaning that on average almost
25% of the edges are predicted incorrectly.

Furthermore, to show that the problem is systematic, we present the number of graphs with a higher
score than the ground true DAG in Figure5 on the right. For smaller datasets (with no more than
250 samples) there are around 1000 graphs or more with scores higher than the ground true graph.
The number stabilizes around 65 structures, that scored higher than the ground true graph, for bigger
datasets. This number is close to the number of graphs with SHD distance ≤ 2 from the ground truth,
depicted by the green line in the figure. These findings demonstrate the methods’ consistent inability
to identify correct structures.

We argue that this result shows the inherent limitations of the score-based neural causal discovery
algorithms due to the violation of the faithfulness assumption. Our NN-opt method controls errors
raised from both functional approximations fitting and structure search. Thus violation of faithfulness
is the only probable source of errors.

To ensure the validity of the result we performed an extensive hyperparameter search, including
models with various architectures. Details of described experiments can be found in Appendix B.

6 RELATED WORK

Causal discovery without the faithfulness assumption While many causal discovery methods
rely on the faithfulness assumption, alternative conditions have been proposed. One notable approach
is the adjacency-faithfulness assumption, introduced by Ramsey et al. (2006) in the conservative PC
algorithm. This assumption, which is less restrictive than full faithfulness, leads to more robust with
minimal computational overhead. In the context of linear structural causal models (SCMs), Van de
Geer & Bühlmann (2013) demonstrated that a sparsity-based assumption can effectively reveal the
underlying causal structure. Similarly, Isozaki (2014) proposed a method to reduce unnecessary
independence tests during structure discovery, offering greater robustness against violations of
faithfulness due to statistical errors. More recently, Ng et al. (2021) suggested another causal
discover method, based on relaxed faithfulness assumption that requires less independence tests to
be fulfilled. Marx et al. (2021) explores a weaker alternative to the faithfulness assumption, called
the 2-faithfulness assumption, and suggests how to construct a causal discovery algorithm based on
it. Moreover, Lippe et al. (2022) introduced a neural-based approach that uses interventional data,
avoiding the faithfulness assumption altogether.

Describing faithfulness violations Faithfulness violation has been extensively explored in the
linear setting by (Uhler et al., 2013). They showed that the conditions that would allow for discovering

8
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the true independencies in a finite sample regime are rarely met when making use of linear synthetic
data. Additionally, they proved that the bigger the graph the more difficult it is to find a faithful
distribution. Zhang & Spirtes (2003) provided theoretical conditions for violation of faithfulness being
detectable during training. More generally, Andersen (2013) described reasons, why faithfulness is
likely violated in complex, evolved real-world systems. To the best of our knowledge, we are the first
to estimate the limits of the score-based neural causal discovery methods on unfaithful data.

Benchmarking There is a multitude of recent benchmarks that use real-world data to assess the
performance of causal discovery methods (Chevalley et al., 2022; Mehrjou et al., 2022). However,
these datasets lack the ground truth structure rendering structure discovery accuracy assessment
impossible. Additionally, these works usually focus on classical, not neural, causal discovery methods.
Some recent work is concerned with the quality of evaluations and performance under assumptions
violations. Karimi-Mamaghan et al. (2024) investigates metrics for Bayesian causal discovery in
a linear setting. Their finding suggests that the standard structure-based metrics do not align well
with downstream task performance when structure uncertainty is high (especially for bigger graphs),
Montagna et al. (2023) evaluates classical causal discovery methods under different assumption
violations. In our work, we focus on a unified, synthetic, and challenging setup to thoroughly evaluate
neural causal discovery claims of being general and accurate. Most recently, Zhou et al. (2024)
introduced a comprehensive benchmark, but they did not compare neural-based methods in their work.

7 LIMITATIONS & FUTURE WORK

• Work of Lippe et al. (2022) suggests that interventional data can replace the need for
faithfulness assumption. A valuable extension of our research would be to evaluate the
performance of the benchmarked methods on interventional datasets to understand their
limitations and potential improvements in this context.

• Our work provides experimental evidence for the scale of the impact of violation of faith-
fulness on performance in a challenging non-linear setting. It would be beneficial for the
community if some theoretical results (akin Uhler et al. (2013); Zhang & Spirtes (2003)
were derived in a non-linear setting.

• While our, experimental upper bound, NN-opt method is based on common, with bench-
marked methods, theoretical principles. We leave strict theoretical justification of its
optimality for future work.

• In this work we present the method that allows to estimate the upper bound on performance
of score-based neural causal discovery methods on any dataset and provide numerical results
for the Erodos-Renyi class of graphs. The results could be computed for more classes and
even some small real-world or real-world inspired graphs, see Elidan (2001).

8 CONCLUSIONS

In this work, we present compelling evidence that the faithfulness assumption is a major limiting
factor in advancing causal discovery. Our findings demonstrate that the accuracy of structure recovery
is correlated with the degree of faithfulness violation. Additionally, we introduce a novel method to
calculate the upper bound of performance for score-based neural causal discovery methods, revealing
serious limitations. Our results highlight the need for a paradigm shift. We argue that further progress
in causal discovery requires moving beyond the faithfulness assumption and encourage researchers to
explore alternative conditions. The implications of our work extend beyond theoretical advancements.
By challenging the faithfulness assumption, we open up avenues for more robust and generalizable
methods in causal discovery, which could have far-reaching consequences in fields like healthcare,
economics, and policy-making.

9 REPRODUCIBILITY STATMENT

We put effort and resources to ensure that presented experiments can be reproduced by the re-
search community. Specifically, we provide detailed descriptions of the data generation process,
benchmarking score-based neural causal discovery methods and proposed NN-opt method.

9
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Our dataset generation process is based on code included in DCDI code repository (Brouillard
et al., 2020) and the details of this processed can be found in Section 3.1 and Appendix C.1. The
performance of the selected causal discovery methods, for the benchmark, was compute using
official repositories released by authors: DCDI (Brouillard et al., 2020), SDCD (Nazaret et al., 2024),
BayesDag (Annadani et al., 2023) and DiBS (Lorch et al., 2021). The range of tested hyperparameters
and the selected values can be found in Section 3.1 and Appendix C.2.

The description on NN-opt method is provided in Section 5 moreover the high level overview of
method is in Algorithm1. Hyperparameter selection is described in Appendix B.
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A ADDITIONAL BACKGROUND INFORMATION

A.1 d-SEPARATION

Two nodes A and B in a DAG are said to be d-separated by a set of nodes Z if all paths between
A and B are blocked when conditioning on Z. A path is considered blocked under the following
conditions:

• If a path includes a non-collider node (a node where arrows do not converge, i.e., a chain
or fork), conditioning on that node blocks the path. For example, if A → C → B, or
A← C → B, conditioning on C makes A and B independent.

• If the path includes a collider (a node where arrows converge, i.e., A→ C ← B), the path
is blocked unless either the collider itself or one of its descendants is conditioned on. For
instance, in the path A→ C ← B, conditioning on C or its descendants would unblock the
path, making A and B dependent.

• If there are multiple paths connecting A and B, all paths must be blocked for A and B to
be considered d-separated. Even if one path remains unblocked, A and B are d-connected,
meaning they are dependent.

In causal discovery, we are interested in making statements about the relationship between the causal
graph and the data distribution. Given a causal graph G and the data distribution P , the Markov
assumption states that if variables A and B are d-separated in the graph G by some conditioning set
C, then A and B are conditionally independent in the distribution P when conditioned on the same
conditioning set C. Formally, this can be written as:

A ⊥⊥G B|C ⇒ A ⊥⊥P B|C (6)

A.2 EXAMPLE OF FAITHFULNESS VIOLATION

In this subsection we will illustrate a faithfulness violation for a simple 3 nodes structural causal
model with linear functions and additive Gaussian noise. Such a setup is aimed at showing example
of faithfulness violation while maintaining simplicity. The example and graphics is from (Uhler et al.,
2013).

Figure 6: Simple 3 nodes graph G.

First lets define a structural causal model on a graph G shown in graph 6.

X1 = ε1,

X2 = a12X1 + ε2,

X3 = a13X1 + a23X2 + ε3,

(ε1, ε2, ε3) ∼ N (0, I),

Since data is linear we can use covariance to measure dependency of variables. Using defined
structural causal model, we can write:

13
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cov(X1, X2) = a12, (7)
cov(X1, X3) = a13 + a12a23, (8)

cov(X2, X3) = a212a23 + a12a13 + a23, (9)
cov(X1, X2 | X3) = a13a23 − a12, (10)
cov(X1, X3 | X2) = −a13, (11)
cov(X2, X3 | X1) = −a23. (12)

If we define a13, a23, a12 in such a way that:

a13 ∗ a23 − a1,2 = 0

then we get a situation where: nodes 1 and 2 are not d-separated given node 3 in a graph G and
X1 ⊥⊥ X2|X3 which is a violation of faithfulness.

B NN-OPT METHOD DETAILS

Details of experiments with NN-opt method In order to test which architecture perform best,
we conducted an experiment, training NN-opt method with different sizes of neural networks. The
trained models were judged in terms of negative log likelihood and their performance on the task of
causal discovery measured as ESHDCPDAG. For each tested architecture, we performed the search for
the best regularization coefficient, the tested coefficients were: [0.1, 0.3, 1.0]. Among all models, the
best results were consistently obtained for regularization coefficient = 0.3. The learning rate was set
to 0.0003. The results of the experiments are shown in Table 2. As we can see, the best , both in case
of NLL and ESHDCPDAG was model with two layers and hidden dimension of size 8. Notably this is
the same architecture, as was used to generate data.

Selected hyperparameters: Number of layers = 2, hidden dimension = 8, regularization coefficient
= 0.3.

Model architecture NLL ESHDCPDAG

[4] 0.33(0.22, 0.43) 3.63(2.83, 4.67)

[4, 4] 0.2(0.1, 0.3) 3.15(2.0, 4.65)

[4, 4, 4] 0.23(0.14, 0.34) 3.03(2.33, 4.07)

[8] 0.18(0.06, 0.29) 2.13(1.43, 3.07)

[8, 8] 0.13(0.02, 0.24) 1.23(0.77, 1.87)

[8, 8, 8] 0.22(0.12, 0.32) 2.77(1.97, 3.67)

[16] 0.14(0.03, 0.26) 1.77(1.1, 2.73)

[16, 16] 0.33(0.24, 0.42) 2.4(1.0, 4.32)

[16, 16, 16] 0.88(0.8, 1.0) 4.0(3.07, 4.97)

Table 2: The performance of NN-opt method models with different architectures. The numbers in the
subscripts, correspond to 0.95 confidence intervals. The experiments were performed on 30 graphs.

C DETAILS ABOUT BENCHMARK AND EXTENSIONS

C.1 DATASET GENERATION DETAILS

The data is generated using a fully connected MLP with two hidden layers of 8 units each, initialized
with random weights drawn from a uniform distribution and use the ReLU (Nair & Hinton, 2010)
activation function to introduce non-linearity. The neural network models the relationships between
variables in the underlying DAG, where each node represents a variable and the edges capture
dependencies between these variables. The input variables, which serve as the initial causes in
the graph, are sampled from normal distributions. The noise added to the system is sampled from
a Gaussian distribution N (0, 0.12), simulating uncertainty in the model. The dataset consists of
100,000 data points, and the data is rescaled to maintain consistency across samples.
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C.2 MODEL HYPERPARAMETERS

We performed extensive hyperparameter tuning for all methods. In addition to the MLP architecture
grids described in Appendix C.3, the following hyperparameter grids were explored:

DCDI Grid search: Regularization coefficients tested: [0.1, 0.3, 1, 2]. Values below 0.001 or
above 5 led to poor performance. Selected: Regularization coefficient = 1, learning rate = 0.001,
Augmented Lagrangian tolerance = 10−8.

DiBS Grid search: Alpha linear: [0.01, 0.02, 0.05], kernel parameters: h latent: [0.5, 1.0, 2.0], h
theta: [20.0, 50.0, 200.0]. Selected: Alpha linear = 0.02, h latent = 1.0, h theta = 50.0, step size =
0.005.

BayesDAG Grid search: Scale noise: [0.1, 0.01], scale noise p: [0.1, 0.01, 1.0], lambda sparse:
[50.0, 100.0, 300.0, 500.0]. Selected: Scale noise = 0.1, scale noise p = 0.01, lambda sparse = 500.0.

SDCD Grid search: Constraint modes: [”exp”, ”spectral radius”, ”matrix power”]. The
ESHDCPDAG metric showed similar results across modes. Selected: Spectral radius was chosen
for faster computation, with a learning rate of 0.0003.

For each of these method, all other parameters were retained from the original paper or code.

C.3 MODEL ARCHITECTURE COMPARISION WITHIN METHOD
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Figure 7: Comparison of the ESHDCPDAG of DCDI for datasets with different observational sample
size. The result is based on 10 graphs.

DCDI In Figure 7, we present the performance analysis of the DCDI across various neural network
configurations. Our results reveal that the optimal performance is generally achieved by a two-layer
model with a hidden dimension of 4. Interestingly, we observe that more expressive models exhibit
diminished performance relative to the smaller models.

DiBS Figure 8 presents the performance analysis of the DiBS method across various neural network
configurations. As with the DCDI method, we evaluate models with different numbers of layers and
hidden dimension sizes. Consistent with DCDI, we find that the optimal performance for DiBS is
achieved by a two-layer model with a hidden dimension of 4. However, the performance landscape
for DiBS exhibits less variability across different model configurations. Single-layer models perform
nearly as well as the optimal two-layer model.
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Furthermore, we observe that more expressive models do not show a significant degradation in
performance as was seen with DCDI. The overall differences in metric across all tested configurations
are relatively small for DiBS, indicating a more consistent performance across varying levels of
model complexity.
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Figure 8: Comparison of the performance of DiBS depending on the model architecture and number
of samples.

BayesDAG Figure 9 compares the performance of BayesDAG across different model architectures
and sample sizes. For smaller sample sizes, BayesDAG’s performance remains consistent, with
noticeable differences emerging only at a sample size of 800. This suggests that BayesDAG requires
more data to fully leverage its model capacity, unlike what we observed for DCDI and DiBS, where
performance varied more significantly across sample sizes. Notably, the best-performing architecture
for DiBS is a two-layer MLP with a hidden dimension of 4.
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Figure 9: Comparison of the performance of DiBS depending on the model architecture and number
of samples.
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SDCD Figure 10 presents a similar comparison of SDCD performance across different MLP
architectures and sample sizes. Interestingly, the three-layer architectures show stagnant performance
regardless of sample size, while the one-layer models exhibit significant improvement as the sample
size increases. Overall, the best performance is achieved with a one-layer MLP with 8 hidden units,
although it remains comparable to the one-layer MLP with 4 hidden units and the two-layer MLP
with 4 hidden units.
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Figure 10: Comparison of the performance of SDCD depending on the model architecture and
number of samples.

Model architecture Inspired by BayesDAG, we also implemented layer normalization and residual
connections to assess their impact. We conducted additional experiments on both the best-performing
model ([4, 4]) and the largest model ([8, 8, 8]). The size of networks was similar to the one proposed
in articles introducing tested methods: in DCDI it was [16, 16], for SDCD it was [10, 10], for DiBS
[5, 5] and for BayesDAG it was a two layer network with a hidden size varying with dimensionality.
The results of these tests are presented Figure 11. We show, there is no significant and consistent
improvement across all networks, supporting our initial conclusion that variations in MLP architecture
have minimal impact on performance.

C.4 INFLUENCE OF SAMPLE SAMPLES ON PERFORMANCE ON THE GRAPH WITH ER(5, 1)

Figure 12 shows the ESHDCPDAG of benchmachmarked methods for different sample sizes. For all
observational sample sizes, SDCD and DCDI have a large confidence interval. For datasets with
2,500 and 8,000 samples, BayesDAG performs better than other benchmarked methods, getting small
confidence interval for 8,000 samples.

D JUSTIFICATION OF EVALUATION METRICS

We design metrics based on popular SHD, F1-score metrics, which we explain shortly below.

The Structural Hamming Distance. SHD (Tsamardinos et al., 2006) quantifies the difference
between the predicted graph and the ground truth graph by counting the number of edge insertions,
deletions, and reversals required to transform one into the other. SHD values indicate the degree
of error in recovering the true causal structure: lower SHD values signify better predictions, while
higher values indicate more significant discrepancies.
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Figure 11: Comparison of the performance of SDCD depending on the model architecture and
number of samples.
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Figure 12: Comparision of ESHDCPDAG for benchmarked methods on ER(5, 1) dataset, averaged
over 10 graphs.

The F1-score. The F1-Score measures the harmonic mean of precision and recall for edge predic-
tions, where precision reflects the fraction of correctly predicted edges among all predicted edges,
and recall reflects the fraction of correctly predicted edges among the true edges.

We evaluate causal discovery methods based on observational data. In general, in this setup, it is only
possible to recover true DAG up to a Markov Equivalence Class, a class of graphs with the same
conditional independence relationships, due to identifiability issues TODO cite pearl?. If we were to
compare the predicted and ground true graphs using standard metrics like SHD or F1-score we would
obtain distorted results — graphs from the MEC class do not generally receive these metrics’ optimal
values.
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Therefore, we modify the formulation of the metrics to account for the limitations of causal discovery
from observational data. We define ESHDCPDAG and F1-ScoreCPDAG. These metrics attain their
optimal values, 0 and 1 correspondingly, for all DAG from ground truth MEC. Additionally, some of
the benchmarked methods are Bayesian thus return the posterior over possible solutions. For those
methods, we design metrics that compute the expected value over the posterior and approximate it
with the Montecarlo estimator based on a sample of size 100.

We define Expected SHD between CPDAGs as:

ESHDCPDAG(G,G) = EG∗∼G[SHD(CPDAG(G),CPDAG(G∗))], (13)

where G is the resulting distribution of graphs, G∗ is a graph sampled from G and G is the ground
true graph. Similarly, we compute the Expected F1-Score between the CPDAGs:

F1-ScoreCPDAG(G,G) = EG∗∼G[F1-Score(CPDAG(G),CPDAG(G∗))]. (14)

E JUSTIFICATION OF THE SELECTION OF METHODS

During the preliminary phase, we considered the following methods NO-TEARS (Zheng et al.,
2018), NO-BEARS (Lee et al., 2019), NO-CURL (Yu et al., 2021), GRAN-DAG (Lachapelle et al.,
2019), SCORE (Rolland et al., 2022), DAGMA (Bello et al., 2022), DCDFG (Lopez et al., 2022),
DCDI (Brouillard et al., 2020), DiBS (Lorch et al., 2021), BayesDAG (Annadani et al., 2023),
SDCD (Nazaret et al., 2024), from which we chose DCDI, SDCD, DiBS and BayesDAG. Below we
explain why the included ones cover non-included methods.

NO-TEARS is the first method to use augmented Lagrangian and differentiable constraints to enforce
DAGness. However, the suggested formulation entangles functional and structural parameters,
making NO-TEARS applicable only to linear models or restricted neural networks. The NO-TEARS
method was improved in GRAN-DAG (introduces separate adjacency matrix and sampling based on
Gumbel softmax) and then in DCDI (accounts for interventional data). We chose to use DCDI as it is
the most developed method in this line of work and has clean implementation.

An interesting line of work shows articles introducing methods such as NO-BEARS and DAGMA,
that were focused on improving the acyclicity constraint introduced in NO-TEARS, all proposed
constraints were unified in the SDCD paper, and a new constraint was proposed, that was shown to
perform the best. Additionally, SDCD is compared against SCORE and DCDFG again presenting
better performance.

The two other methods are from the class of Bayesian approaches. DiBS method is selected as a
Bayesian approach that uses classic NO-TEARS-based regularization embedded in its prior. The
BayesDAG is based on the NO-CURL parametrization of DAGs and provides improvements to the
optimization pipeline (uses MCMC instead of SVGD).

We argue that this selection of four methods summarizes various research directions and improvements
explored in neural causal discovery over the last four years and well represents the spectrum of
existing approaches.
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