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Generalize to Fully Unseen Graphs: Learn Transferable
Hyper-Relation Structures for Inductive Link Prediction

Anonymous Authors

ABSTRACT
Inductive link prediction aims to infer missing triples on unseen
graphs, which contain unseen entities and relations during training.
The performances of existing inductive inference methods were hin-
dered by the limited generalization capability in fully unseen graphs,
which is rooted in the neglect of the intrinsic graph structure. In
this paper, we aim to enhance the model’s generalization ability
to unseen graphs and thus propose a novel Hyper-Relation aware
multi-views model (HyRel) for learning the global transferable
structure of graphs. Distinct from existing studies, we introduce a
novel perspective focused on learning the inherent hyper-relation
structure consisting of the relation positions and affinity. The hyper-
relation structure is independent of specific entities, relations, or
features, thus allowing for transferring the learned knowledge to
any unseen graphs. We adopt a multi-view approach to model
the hyper-relation structure. HyRel incorporates neighborhood
learning on each view, capturing nuanced semantics of relative
relation position. Meanwhile, dual views contrastive constraints
are designed to enforce the robustness of transferable structural
knowledge. To the best of our knowledge, our work makes one
of the first attempts to generalize the learning of hyper-relation
structures, offering high flexibility and ease of use without reliance
on any external resources. HyRel demonstrates SOTA performance
compared to existing methods under extensive inductive settings,
particularly on fully unseen graphs, and validates the efficacy of
learning hyper-relation structures for improving generalization.
The code is available online at https://github.com/hncps6/HyRel.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning.

KEYWORDS
Inductive Link Prediction; Representation Learning; Knowledge
Embedding

1 INTRODUCTION
Link prediction task [15] aims to predict missing triples in the
knowledge graph, where each triple consists of a head entity ℎ, a
relation 𝑟 , and a tail entity 𝑡 , denoted as (ℎ, 𝑟, 𝑡). For example, pre-
dicting the missing head entity ℎ in the triple (?, 𝑟 , 𝑡) or the missing
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(b): Illustration of inference process.
Figure 1: Simple examples of inductive inference(a) and the
inference process(b).

tail entity 𝑡 in the triple (ℎ, 𝑟, ?). Methods using low-dimensional
embedding vectors [6, 31] have proven effective for link predic-
tion. Entities and relations are transformed into embedding vec-
tors, enabling inference of missing triples. However, these methods
[2, 8, 19, 27, 36] follow the transductive setting, i.e. require entities
and relations to be present in the training set. When entities or
relations unseen during training occur, they no longer work.

Inductive link prediction aims to infer missing triples on unseen
graphs, which contain unseen entities and relations during training,
even fully unseen. The unseen entities and relations mean they are
not present in the training set. As shown in Fig.1(a), inference graph
(i) and (ii) contain unseen entity 𝐺 haven’t seen in training graph.
All entities and relations in inference graphs (ii) are not seen in
the training graph. An example of inductive link prediction is also
shown in inference graph (ii), e.g. infer missing tail entity 𝐻 in
the triple (𝐺,𝐶𝑙𝑎𝑠𝑠𝑚𝑎𝑡𝑒_𝑜 𝑓 , ?). In inductive link prediction, there
are two scenarios [10, 14] of inductive learning: (i) fully unseen
entity set with partially unseen relations set during inference (semi-
inductive link prediction) and (ii) fully unseen entity set with fully
unseen relations set (full-inductive link prediction). Inference graph
(i) and inference graph (ii) in Fig.1(a) show these scenarios.

A variety of inductive link prediction methods have been devel-
oped. Some works attempt to obtain embeddings for unseen entities
from pre-trained language models or textual descriptions, or prop-
agate information from seen entities to unseen entities through
graph neural networks [5, 11, 17, 29]. However, additional textual
descriptions or explicit associations between unseen entities and
seen entities may not always be available in practical application
scenarios. In addition, the approaches of learning transferable fea-
tures through meta-learning or other subgraph partitioning meth-
ods [4, 10], while not relying on external resources, lack access to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the global structural information of the given knowledge graph. Re-
cently, INGRAM[14] proposed to employ relation-level aggregation
methods to address full inductive link prediction. The performances
of such methods were hindered by the limited generalization capa-
bility.

To address the above issue, we tend to learn transferable knowl-
edge rather than rely on specific entities or relations, which is
similar to the way humans think. Take the scenario in Fig.1(b) as
an example, when inferring the triple (𝐵,𝐻𝑢𝑠𝑏𝑎𝑛𝑑_𝑜 𝑓 ,𝐶), relevant
information could be extracted from its associated relational struc-
ture, such as𝑀𝑜𝑡ℎ𝑒𝑟_𝑜 𝑓 and 𝐹𝑎𝑡ℎ𝑒𝑟_𝑜 𝑓 , while other relations such
as𝑊𝑜𝑟𝑘_𝑖𝑛 may be less relevant to the inference. This means that
the relation 𝐻𝑢𝑠𝑏𝑎𝑛𝑑_𝑜 𝑓 is more affinitive with 𝑀𝑜𝑡ℎ𝑒𝑟_𝑜 𝑓 and
𝐹𝑎𝑡ℎ𝑒𝑟_𝑜 𝑓 than with𝑊𝑜𝑟𝑘_𝑖𝑛 in this inference. After identifying
the affinitive relations, it’s crucial to assess their relative positions.
Specifically, if the relations 𝑀𝑜𝑡ℎ𝑒𝑟_𝑜 𝑓 and 𝐹𝑎𝑡ℎ𝑒𝑟_𝑜 𝑓 both di-
rected towards entity𝐴, it could be inferred that (𝐵,𝐻𝑢𝑠𝑏𝑎𝑛𝑑_𝑜 𝑓 ,𝐶)
holds true. Alternatively, if𝑀𝑜𝑡ℎ𝑒𝑟_𝑜 𝑓 and 𝐹𝑎𝑡ℎ𝑒𝑟_𝑜 𝑓 are not both
directed towards entity 𝐴, and the direction of 𝐹𝑎𝑡ℎ𝑒𝑟_𝑜 𝑓 is not
known, 𝐵 could be either the ℎ𝑢𝑠𝑏𝑎𝑛𝑑 or the 𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑 of 𝐶 .

The core of the inference process outlined above is the recog-
nition of affinity relations and the relative positions of these re-
lations. In the inference graph (ii) of Fig.1(a), the validity of (𝐺 ,
𝐶𝑙𝑎𝑠𝑠𝑚𝑎𝑡𝑒_𝑜 𝑓 , 𝐻 ) could be determined according to the affinitive
relations 𝑇𝑒𝑎𝑐ℎ𝑒𝑟_𝑜 𝑓 and 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑑 with their relative directions.
We refined affinitive relations and relative positions of relations,
which are independent of any specific entity, relation, or graph,
as Hyper-Relation Structure. It could be considered as transfer-
able knowledge because it naturally exists in any graph. We argue
that if the model learns this hyper-relation structure during train-
ing, it will enable the model to make inferences on unseen graphs,
i.e., achieve semi-inductive link prediction and full inductive link
prediction.

To this end, we propose a novel Hyper-Relation aware multi-
views approach for inductive link prediction (HyRel). It operates
independently of pre-trained models or external resources, which
provides high flexibility and ease of use. Specifically, we adopt a
multi-view approach to model the hyper-relation structure, where
different relative positions of relations form different views. In
each view, relations are treated as nodes, and the affinity (the mod-
eling of affinity between relations is formally defined in Section
4.1) between relations serves as edges. HyRel learns fine-grained
semantics of relation contexts at different positions within each
view and generalizes this learning to unseen graphs. Furthermore,
we propose dual views contrastive constraints to reduce the im-
pact of local information confusion, enhancing the robustness of
learned intrinsic and transferable structural knowledge. To the best
of our knowledge, our work makes one of the first attempts to
generalize the learning of hyper-relation structures. Specifically,
our contributions are summarized as follows:

• Distinct from existing studies, we introduce a novel perspec-
tive focused on learning the hyper-relation structure inherent in
graphs, allowing for transferring the learned knowledge to any
unseen graphs.

• We are the first to incorporate the affinity of different relative
positions of relations into inductive link prediction. By leveraging

the semantic differences between different relative positions, we
aggregate more refined semantic information.

• We propose dual views contrastive constraints to alleviate seman-
tic confusion of relations and enforce the robustness of transfer-
able structural knowledge.

The experimental results in various inductive settings demonstrate
that HyRel outperforms existingmodels in inductive link prediction,
particularly excelling in challenging fully inductive tasks where
entities and relations are entirely unseen.

2 RELATEDWORK
Inductive link prediction with associated seen entities. Early
exploration into inductive link prediction could be traced back to
[13] and [29]. They require these unseen entities to be associated
with seen entities in the training set. Therefore, such methods can-
not be generalized to settings where entities are entirely unseen.
Subgraph-based methods. These methods [20, 21, 25, 33] extract
local subgraphs and employ GNNmodules [3, 23] to enable relation
prediction. While these methods could handle scenarios involving
unseen entities, they cannot generalize to settings involving the
emergence of unseen relations. [10] also falls into this category but
could operate on inference graphs with unseen relations. The task
handled by [10] is similar to ours; however, its method of extract-
ing local subgraphs for each candidate entity to compute scores
does not calculate embedding vectors, rendering it inapplicable for
downstream tasks.

Rule-guided and path formulation. These approaches aim to
discover common logical rules or relation paths in graphs. As logi-
cal rules are not specific to particular entities, such methods could
be generalized to handle inductive tasks involving unseen entities.
Both [35] and [22] integrate parameter and structure learning of
first-order logical rules into end-to-end differentiable models. [38]
introduces a general framework for path representation learning,
proposing new operators for aggregating node pairs and path em-
beddings. [37] constructs more complex relational digraphs than
paths to capture local evidence. Language Models.Methods like
[1, 7, 11] encode the textual descriptions of each entity using pre-
trained language models. These approaches utilize the correspond-
ing text descriptions to obtain embedding for unseen entities. In
our work, embeddings for entities and relations are solely derived
from the graph structure, without relying on any external sources,
aiming to be resource-efficient and generalizable.

A method similar to ours. INGRAM[14] is similar to ours, as
both approaches could handle the scenario of complete inductive
link prediction, where entities and relations could be entirely un-
seen. INGRAM was the first to introduce the concept of affinity.
However, it measures the affinity between two relations by the sum
of the counts of shared head entities and shared tail entities. In
addition, it overlooks the significant differences in affinity between
different relative positions of relations. In other words, both the
positional information and affinity between each relation should be
considered simultaneously, as the affinity between relations varies
depending on different relative positions. We comprehensively con-
sider the relative positional information between relations and the
affinity, aggregating fine-grained relational semantic information
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Figure 2: The figure shows the importance of the hyper-relation structure.𝑀𝑜𝑡ℎ𝑒𝑟_𝑜 𝑓 and 𝑓 𝑎𝑡ℎ𝑒𝑟_𝑜 𝑓 have a high affinity in the
𝑡-𝑡 view, but these two relations do not appear in the ℎ-ℎ view because entities cannot be both the father and the mother.

by enhancing the distinctiveness of each relative positional infor-
mation(details will be provided in Section 4.2).

3 PRELIMINARIES
Next, we will explain the setup of the current task in this paper.
The training graph is defined as G̃tra = (Etra, Rtra, Ftra), where
Etra is the set of entities, Rtra is the set of relations, and Ftra is
the set of triples in the training graph G̃tra. We divide Ftra into
Fsup and Fopt, such that Ftra = Fsup ∪ Fopt. Fsup is a set of seen
factual triples aimed at obtaining representations for all entities
and relations in the training graph, while Fopt is a set of factual
triples used to calculate triple scores for the purpose of optimizing
the model. G̃inf is the inference graph, defined as G̃inf = (Einf , Rinf ,
Tinf ), where Einf represents the set of entities, Rinf represents the
set of relations, and Tinf represents the set of triples in the inference
graph G̃inf . We divide Tinf into three parts, Tsup, Tval, and Ttes,
such that Tinf = Tsup ∪ Tval ∪ Ttes. During testing, Tsup is used
to obtain embeddings for entities and relations in the inference
graph. Tval represents the validation set of the inference graph, and
Ttes represents the test set. After computing the embeddings for
entities and relations using Tsup, the corresponding embeddings
are obtained for Tval and Ttes to perform validation and testing,
respectively.

We set the ratio of Fsup to Fopt in the training graph as 3:1, and
the ratio of Tsup, Tval, and Ttes in the inference graph as 3:1:1, by
adapting the model to different graph structures through the trans-
formation of triplets in Fsup and Fopt within each epoch during
training, following the settings of previous work [1, 9, 14]. Entities
in the inference graph are unseen to the training graph, mean-
ing that all entities in the inference graph are new entities, i.e.,
Etra ∩ Einf = ∅. Furthermore, Our method can handle both cases
where partial relations are unseen, i.e., Rtra ≠ Rinf , and where rela-
tions are completely unseen, i.e., Rtra ∩ Rinf = ∅. Inverse triples
[24] induced by inverse relations are also encompassed within our
model.

4 METHOD
Fig.3 presents the architecture of HyRel. Specifically, (1) hyper-
relation structure is extracted from the global structure of the given

graph. Then, we adopt a multi-view approach to model the hyper-
relation structure, where different relative positions of relations
form different views. (2) Hyper-relation structure attention (HyRel-
Gat) mechanism is proposed for generating high-quality relation
embedding. (3) We impose dual views contrastive constraints across
views of hyper-relation structure to alleviate semantic confusion
of relations.

4.1 Defining Hyper-Relation Structure
We define hyper-relation structure by extracting structural infor-
mation from the original graph. Firstly, we divided four views based
on the distinct relative positions between relations. In other words,
each view represents different relative positions between relations.
Secondly, we computed the frequency of shared entities between re-
lations at different relative positions and defined it as affinity. This
definition is effective because affinitive relations tend to cluster
around entities, as shown in Fig.2 with kinship relations consis-
tently clustering together. Finally, each view treats relations as
nodes and the affinity as edges. Additionally, the affinity between
the same relation pairs varies across different views.

To obtain the four views, we first construct two matrices 𝑬h ∈
R𝑛×𝑚 and 𝑬 t ∈ R𝑛×𝑚 , where 𝑛 represents the number of entities
and𝑚 represents the number of relations. These matrices indicate
the frequency of each entity appearing as a head entity and tail
entity across all relations. For example, 𝑬h [𝑒1, 𝑟2] represents the
frequency of entity 𝑒1 appearing as the head entity for relation
𝑟2 in the original graph. Then, 𝑫ℎ ∈ R𝑛×𝑛 is the diagonal matrix
representing the degree of entities as head entities, i.e., 𝑫ℎ [𝑖, 𝑗]
=
∑

𝑗𝑬ℎ [𝑖, 𝑗]. Similarly, 𝑫𝑡 ∈ R𝑛×𝑛 is the diagonal matrix repre-
senting the degree of entities as tail entities. Finally, we define the
adjacency matrices of the four views as:

𝑨𝑝1-𝑝2 =
𝑬𝑇𝑝1𝑬𝑝2

𝑫𝑝1𝑫𝑝2
(1)

where 𝑝1-𝑝2 ∈ {ℎ-ℎ, 𝑡-𝑡, ℎ-𝑡, 𝑡-ℎ}. For example, 𝑎𝑖 𝑗 |ℎ−𝑡 ∈ 𝑨ℎ−𝑡 rep-
resents the affinity between relation 𝑟𝑖 and relation 𝑟 𝑗 at the ℎ-𝑡
position, ℎ-𝑡 refers to the case where the head entity connected
by relation 𝑟1 is the tail entity of relation 𝑟2. Through the above
definition, four views {Gℎ−ℎ,G𝑡−𝑡 ,Gℎ−𝑡 ,G𝑡−ℎ} could be obtained.
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Figure 3: The overall architecture of the HyRel model. HyRel follows the end-to-end paradigm. Given a graph, four views of the
hyper-relation structure are extracted from the original graph. Utilizing these four views, relation node embeddings are derived
for each view. Following that, the dual views contrastive constraints module is employed to alleviate semantic confusion of
relations. After obtaining relation and entity embeddings in this manner, scores are computed using the DistMult method.

The connections within each view are established based on the
affinity within that specific view. Fig.2 shows an example.

4.2 HyRelGat: Update Relation Representation
We use Glorot initialization [12] for initializing relation embed-
dings, denoted as v𝑖 ∈ R𝑑𝑟 , where 𝑖 represents the 𝑖-th relation,
and 𝑑𝑟 represents the dimension of the relation vectors. Then, the
embeddings of relations are updated using the four views. Each
relation in the four views obtains four different sets of neighboring
relations and their corresponding affinity weights. We define the
process of updating relations as follows:

x(𝑙+1)
𝑖

= 𝜎
©­­«
( ∑︁
𝑝∈P

∑︁
𝑟 𝑗 ∈N

𝑝

𝑖

𝛼
(𝑙 )
𝑖 𝑗 |𝑝𝑾

(𝑙 )
𝑝 x(𝑙 )

𝑗

)
+ 𝑲 (𝑙 )x(𝑙 )

𝑖

ª®®¬ (2)

where (𝑙) represents the 𝑙-th layer with 𝑙 ∈ {0, 1, · · · , 𝐿 − 1}. x(0)
𝑖

=𝑾 (𝑟𝑒𝑙 )v𝑖 ,𝑾 (𝑟𝑒𝑙 ) ∈ R𝑑𝑟
′×𝑑𝑟 is a learnable matrix, and 𝑑𝑟 ′ is the

hidden dimension. P = {Gℎ−ℎ , G𝑡−𝑡 , Gℎ−𝑡 , G𝑡−ℎ} represents the
set of four different views. 𝛼 (𝑙 )

𝑖 𝑗 |𝑝 and𝑾 (𝑙 )
𝑝 ∈ R𝑑𝑟 ′×𝑑𝑟 ′ represent four

different sets of relative attention parameters and weight matrices,
respectively. N𝑝

𝑖
indicates the set of neighbors for relation 𝑟𝑖 at

different relative positions. In order to fully leverage the hidden rep-
resentations at each layer, residual connections are also employed,
the output of each layer is transformed by a weight matrix and then
passed on to the next layer. 𝑲 (𝑙 ) ∈ R𝑑𝑟 ′×𝑑𝑟 ′ represents the weight
matrix and 𝜎 (·) represents the activation function.

Through concatenating relation feature vectors, we capture se-
mantic information of relations at different relative positions by

avoiding weight matrix sharing. The specific process is as follows:

𝑐
(𝑙 )
𝑖 𝑗 |𝑝 = 𝑯 (𝑙 )

𝑝

[
x(𝑙 )
𝑖

∥x(𝑙 )
𝑗

]
(3)

where ∥ represents concatenation, 𝑯 (𝑙 )
𝑝 ∈ R𝑑𝑟 ′×2𝑑𝑟 ′ represents

the weight matrix of different views. Next, we define the absolute
attention values 𝑏 (𝑙 )

𝑖 𝑗 |𝑝 to represent the importance of each triple in
different views, and we add learnable affinity parameters into the
absolute attention values. Specifically, the calculation process of
𝑏
(𝑙 )
𝑖 𝑗 |𝑝 as follows:

𝑏
(𝑙 )
𝑖 𝑗 |𝑝 =

(
𝜛 (𝑙 )𝜎

(
𝑐
(𝑙 )
𝑖 𝑗

)
+ 𝑜 (𝑖, 𝑗 ) |𝑝

)
(4)

where 𝑜 (𝑖, 𝑗 ) |𝑝 is the learnable parameter, and it is selected based on
the ranking of 𝑎𝑖 𝑗 within 𝑨𝑝1-𝑝2 , where a higher ranking indicates
a stronger affinity. 𝜛 (𝑙 ) ∈ R1×𝑑𝑟 ′ is a weight vector. Eq.(5) provides
a detailed definition of the relative attention coefficients 𝛼 (𝑙 )

𝑖 𝑗 |𝑝 :

𝛼
(𝑙 )
𝑖 𝑗 |𝑝 =

exp
(
𝑏
(𝑙 )
𝑖 𝑗 |𝑝 + 𝑡𝑝

)
∑
𝑟 𝑗 ′ ∈N

𝑝

𝑖
exp

(
𝑏
(𝑙 )
𝑖 𝑗 ′ |𝑝 + 𝑡𝑝

) (5)

where 𝑡𝑝 is the views-adaptive parameter. Due to the differing
structures among the four views, the relative attention coefficients
should be different accordingly and correspond to the structures
of the four views. For instance, if the relative attention coefficient
𝛼
(𝑙 )
𝑖 𝑗 |ℎ-ℎ obtained in Gℎ−ℎ is equal to 𝛼

(𝑙 )
𝑖 𝑗 |𝑡-𝑡 in G𝑡−𝑡 , HyRel could

differentiate them using 𝑡𝑝 .
In contrast to current inductive link prediction methods [4, 11,

17, 29], we consider the different importance of relations across
different relative positions. Specifically, each of the four views
in HyRel has its own independent set of weight parameters:𝑾𝑝 ,
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𝑯𝑝 , and views-adaptive parameter 𝑡𝑝 . Hence, HyRel can aggregate
more fine-grained semantic information by the differences between
different views. Then, the final relation embeddings are computed
based on the Eq.(2), denoted as x𝑖 = 𝑴𝑟x

(𝐿)
𝑖

(𝑖 = 1, · · · ,𝑚), where
𝑴𝑟 ∈ R𝑑𝑟×𝑑𝑟 ′ is a learnable mapping matrix.

4.3 Dual Views Contrastive Constraints
We design a novel contrastive learning, which imposes contrastive
constraints on four views. Specifically, unlike the construction of
negative sample pairs in common graph constrastive learning [16,
18, 30], here we only consider the neighbors of nodes as negative
pairs to avoid relational semantic confusion. In other words, the
anchor’s neighbors within the same view and across different views
are treated as negative pairs.

For instance, we define x(𝐿)
𝑖 |ℎ−ℎ and x(𝐿)

𝑖 |𝑡−ℎ as the L2-normalized
embeddings of relation 𝑟𝑖 learned from the ℎ-ℎ view and 𝑡-ℎ view,
then x(𝐿)

𝑖 |ℎ−ℎ serving as the anchor. In addition, positive samples are
the same nodes across different views, and negative samples are: (1)
nodes of neighbors within the ℎ-ℎ view, i.e.,

{
x(𝐿)
𝑗 |ℎ−ℎ |𝑟 𝑗 ∈ Nℎ−ℎ

𝑖

}
,

and (2) nodes of neighbors within the 𝑡-ℎ, i.e.,
{
x(𝐿)
𝑗 |𝑡−ℎ |𝑟 𝑗 ∈ N𝑡−ℎ

𝑖

}
.

The contrastive loss for x(𝐿)
𝑖 |ℎ−ℎ between the ℎ-ℎ and 𝑡-ℎ views is

formulated as follows:

ℓ

(
x(𝐿)
𝑖 |ℎ−ℎ, x

(𝐿)
𝑖 |𝑡−ℎ

)
= − log

sim(𝑝𝑜𝑠 )
sim(𝑝𝑜𝑠 ) + sim(𝑛𝑒𝑔)

(6)

where sim(𝑝𝑜𝑠 ) represents the similarity between positive pairs,
and is defined as:

sim(𝑝𝑜𝑠 ) = 𝑒
𝜃

(
x(𝐿)
𝑖 |ℎ−ℎ,x

(𝐿)
𝑖 |𝑡−ℎ

)
/𝜏 (7)

And sim(𝑛𝑒𝑔) represents the similarity between negative pairs:

sim(𝑛𝑒𝑔) =
∑︁

𝑟 𝑗 ∈Nℎ−ℎ
𝑖

𝑒
𝜃

(
x(𝐿)
𝑖 |ℎ−ℎ,x

(𝐿)
𝑗 |ℎ−ℎ

)
/𝜏 +

∑︁
𝑟 𝑗 ∈N𝑡−ℎ

𝑖

𝑒
𝜃

(
x(𝐿)
𝑖 |ℎ−ℎ,x

(𝐿)
𝑗 |𝑡−ℎ

)
/𝜏

(8)
where 𝜃 (·) is a similarity metric function(default inner product). 𝜏
is a temperature hyperparameter used to control the scale of the
similarity.

In the overall dual views contrastive constraints , the ℎ-ℎ view
serves as the central view and is contrastive with the other three
views, i.e., ℓ

(
x(𝐿)
𝑟 |ℎ−ℎ, x

(𝐿)
𝑟 |𝑡−ℎ

)
, ℓ

(
x(𝐿)
𝑟 |ℎ−ℎ, x

(𝐿)
𝑟 |𝑡−𝑡

)
and ℓ

(
x(𝐿)
𝑟 |ℎ−ℎ, x

(𝐿)
𝑟 |ℎ−𝑡

)
.

In Eq. (6), we explained the loss formulation with 𝑟𝑖 from the ℎ-ℎ
view as the anchor. Similarly, when 𝑟𝑖 from the other views is used
as the anchor, the contrastive loss can be obtained in the same
manner. To perform pairwise comparisons, the final contrastive
loss is defined as follows:

L𝑐 =

∑
𝑝∈P′

𝑁∑
𝑖=1

[
ℓ

(
x(𝐿)
𝑖 |ℎ−ℎ, x

(𝐿)
𝑖 |𝑝

)
+ ℓ

(
x(𝐿)
𝑖 |𝑝 , x(𝐿)

𝑖 |ℎ−ℎ

)]
2 | P′|𝑁 (9)

where P′ = {G𝑡−𝑡 ,Gℎ−𝑡 ,G𝑡−ℎ}. Section 5.6 explains that the selec-
tion of the central view has a minimal impact on performance.

4.4 Update The Entity Representation Vectors
We use Glorot initialization [12] for initializing entity embeddings,
denoted as e𝑖 ∈ R𝑑𝑒 , 𝑖 = 1, · · · , 𝑛, where 𝑑𝑒 is the dimension of
the entity vectors. Then, similar to updating relation embeddings,
the entity embeddings are updated by aggregating neighboring
entities through a multi-head attention mechanism and residual
connections.

We define z(𝑙 )
𝑖

∈ R𝑑𝑒′ as the hidden representation of entity
𝑒𝑖 , where (𝑙) represents the 𝑙-th layer with 𝑙 ∈ {0, 1, · · · , �̃� − 1}
and 𝑑𝑒′ is the hidden dimension. z(0)

𝑖
=𝑾 (𝑒𝑛𝑡 )e𝑖 , where𝑾 (𝑒𝑛𝑡 ) ∈

R𝑑𝑒
′×𝑑𝑒 is a learnable matrix. The specific process for updating

entity embeddings is as follows:

z(𝑙+1)
𝑖

= 𝜎
©­­«
∑︁

𝑒 𝑗 ∈Ñ𝑖

∑︁
𝑟 ∈R 𝑗𝑖

𝛼
(𝑙 )
𝑖 𝑗𝑟

�̃�
(𝑙 ) [z(𝑙 )

𝑗
∥x(𝐿)𝑟

]ª®®¬ (10)

where R 𝑗𝑖 is the set of relations from entity 𝑖 to 𝑗 , �̃� (𝑙 ) ∈ R𝑑𝑒′×𝑑𝑒′

is the weight matrix. 𝛼 (𝑙 )
𝑖 𝑗𝑟

is defined as the entity-level attention co-
efficient, which is computed by concatenating the feature vectors of
neighboring entities and connected relations for each entity. To com-
pute the attention weight for the self-loop of entities. We utilize the
mean vector of the representation vectors of the relations adjacent
to entities, which is similar to the strategies adopted in [14]. The
mean embedding x(𝐿)𝑟 is concatenated with z(𝑙 )

𝑖
and z(𝑙 )

𝑖
to calculate

the self-loop attention weight of the entity 𝑖 , i.e.,
[
z(𝑙 )
𝑖

∥z(𝑙 )
𝑖

∥x(𝐿)
𝑖

]
.

The final representation of the entity is z𝑒 = 𝑴𝑒z
(𝐿)
𝑖

(𝑖 = 1, · · · , 𝑛),
where 𝑴𝑒 ∈ R𝑑𝑒×𝑑𝑒′ is a learnable mapping matrix.

4.5 Model Learning
The model is trained to ensure that positive triples in Fopt obtain
higher scores compared to the sampled negative triples.We have em-
ployed a variant of the DistMult model [34] as the scoring function.
The scoring function is defined as 𝑓

(
𝑒′
𝑖
, 𝑟 , 𝑒′

𝑗

)
= z𝑇

𝑖
𝑑𝑖𝑎𝑔(𝑴𝑟𝑒x𝑟 )z𝑗 ,

where 𝑟 = (1, · · · ,𝑚), 𝑴𝑟𝑒 ∈ R𝑑𝑒×𝑑𝑟 is a weight matrix and
𝑑𝑖𝑎𝑔(𝑴𝑟𝑒x𝑟 ) represents a diagonal matrix. With this scoring func-
tion, we could derive a loss function specific to the link prediction.

L𝑔 =
∑︁

(𝑒𝑖 ,𝑟 ,𝑒 𝑗 )∈Fopt

∑︁
(𝑒′

𝑖
,𝑟 ,𝑒′

𝑗
) ∈F′

opt

max
(
0, 𝛾 − 𝑓

(
𝑒𝑖 , 𝑟 , 𝑒 𝑗

)
+ 𝑓

(
𝑒′𝑖 , 𝑟 , 𝑒

′
𝑗

))
(11)

F ′
opt is a set of negative triples, which are generated by altering

the head or tail entity of positive triples. The parameter 𝛾 serves
as a threshold to differentiate the margin between positive and
negative triples. By combining the contrastive constraints loss, we
can obtain a composite loss function for optimizing our model:

L = L𝑐 + L𝑔 (12)
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Table 1: The performance of HyRel and baselines in inductive link prediction is evaluated on twelve datasets. The number
following each dataset represents the proportion of new relations. ∗ represents the results obtained by replicating the model on
these datasets. + represents that we replicated the model, and for a fair comparison, we selected the best results reported in the
paper.

Model
NL-100 NL-75 NL-50 NL-25

MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

GraIL 0.135 0.173 0.114 0.096 0.205 0.036 0.162 0.288 0.104 0.216 0.366 0.160
CoMPILE 0.123 0.209 0.071 0.178 0.361 0.093 0.194 0.330 0.125 0.189 0.324 0.115
SNRI 0.042 0.064 0.029 0.088 0.177 0.040 0.130 0.187 0.095 0.190 0.270 0.140

INDIGO 0.160 0.247 0.109 0.121 0.156 0.098 0.167 0.217 0.134 0.166 0.206 0.134
RMPI 0.220 0.376 0.136 0.138 0.275 0.061 0.185 0.307 0.109 0.213 0.329 0.130

Neura1LP 0.084 0.181 0.035 0.117 0.273 0.048 0.101 0.190 0.064 0.148 0.271 0.101
DRUM 0.076 0.138 0.044 0.152 0.313 0.072 0.107 0.193 0.070 0.161 0.264 0.119
NBFNet 0.096 0.199 0.032 0.137 0.255 0.077 0.225 0.346 0.161 0.283 0.417 0.224

RED-GNN 0.212 0.385 0.114 0.203 0.353 0.129 0.179 0.280 0.115 0.214 0.266 0.166
MaKEr∗ 0.045 0.093 0.014 0.051 0.108 0.018 0.055 0.116 0.021 0.048 0.089 0.019

INGRAM+ 0.309 0.506 0.212 0.261 0.464 0.167 0.281 0.453 0.193 0.334 0.501 0.241

HyRel 0.394 0.574 0.299 0.305 0.502 0.205 0.321 0.520 0.222 0.348 0.541 0.263

Model
FB-100 FB-75 FB-50 FB-25

MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

Neura1LP 0.026 0.057 0.007 0.056 0.099 0.030 0.088 0.184 0.043 0.164 0.309 0.098
DRUM 0.034 0.077 0.011 0.065 0.121 0.034 0.101 0.191 0.061 0.175 0.320 0.109
NBFNet 0.072 0.154 0.026 0.089 0.166 0.048 0.130 0.259 0.071 0.224 0.410 0.137

RED-GNN 0.121 0.263 0.053 0.107 0.201 0.057 0.129 0.251 0.072 0.145 0.284 0.077
INGRAM+ 0.223 0.371 0.146 0.189 0.325 0.119 0.117 0.218 0.067 0.133 0.271 0.067

HyRel 0.282 0.463 0.188 0.277 0.433 0.196 0.178 0.333 0.101 0.210 0.420 0.114

Model
WK-100 WK-75 WK-50 WK-25

MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

Neura1LP 0.009 0.016 0.005 0.020 0.054 0.004 0.025 0.054 0.007 0.068 0.104 0.046
DRUM 0.010 0.019 0.004 0.020 0.043 0.007 0.017 0.046 0.002 0.064 0.116 0.035
NBFNet 0.014 0.026 0.005 0.072 0.172 0.028 0.062 0.105 0.036 0.154 0.301 0.092

RED-GNN 0.096 0.136 0.070 0.172 0.290 0.110 0.058 0.093 0.033 0.170 0.263 0.111
INGRAM+ 0.107 0.169 0.072 0.247 0.362 0.179 0.068 0.135 0.034 0.186 0.309 0.124

HyRel 0.091 0.165 0.059 0.255 0.389 0.187 0.068 0.138 0.036 0.191 0.316 0.125

5 EXPERIMENT
5.1 Datasets
The benchmarks used in our experiments are sourced from NELL-
995[32], Wikidata68K[11], and FB15K237[26], configured for in-
ductive settings. Each benchmark is subdivided into four datasets,
where the percentages of triples with new relations are 100%, 75%,
50%, and 25%. All entities in the G̃inf of the 12 datasets are not
observed during training. For instance, in NL-100, all triples in the
inference graph involve unseen relations. The detailed informa-
tion of the datasets and hyperparameters settings is presented in
supplementary materials.

5.2 Evaluation Metrics and Baselines
To assess the performance of different methods, we employ three
commonly used evaluation metrics: MRR, Hit@10, and Hit@1. MRR
represents the mean reciprocal rank, while Hit@10 and Hit@1
indicate the proportion of correct answers ranked within the top
10 and top 1 among all candidates.

We compared the performance of our method with 16 methods
on the task of inductive link prediction, including: INGRAM[14],
MaKEr[4], GraIL[25], INDIGO[20], CoMPILE[21], BLP[7], QBLP[1],
RAILD[11], CompGCN[28], NodePiece[9], NeuralLP[35], DRUM[22],
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Table 2: The performance of HyRel and baselines in induc-
tive link prediction is evaluated on the NELL-995-v1 dataset,
where all entities are unseen and the relations are seen.

Model
NELL-995-v1

MRR Hit@10 Hit@1

GraIL 0.499 0.595 0.405
CoMPILE 0.474 0.575 0.390
SNRI 0.419 0.520 0.330

INDIGO 0.521 0.595 0.495
RMPI 0.484 0.545 0.425

CompGCN 0.282 0.750 0.005
NodePiece 0.677 0.885 0.550
Neura1LP 0.547 0.785 0.400
DRUM 0.536 0.760 0.400
BLP 0.169 0.470 0.055
QBLP 0.326 0.545 0.230
NBFNet 0.613 0.875 0.500

RED-GNN 0.544 0.705 0.470
RAILD 0.052 0.205 0.000
MaKEr∗ 0.552 0.725 0.480

INGRAM+ 0.739 0.895 0.660

HyRel 0.750 0.910 0.660

NBFNet[38], RMPI[10], SNRI[33] and RED-GNN[37]. Among them,
results on FB and NL datasets cannot be given due to scalability
issues with GraIL, CoMPILE, SNRI, INDIGO, RMPI, and MaKEr.
InGram, MaKEr and RMPI achieve inductive link prediction where
entities and relations are unseen. For fair comparison, we set the
candidate entities for all methods to be all entities in Tinf . The ex-
perimental results and experimental settings of some methods are
derived from INGRAM[14].

5.3 Main Results of Inductive Link Prediction
From Table 1, it can be observed that our method outperforms the
baseline models in almost all of the 12 datasets.

Fully Inductive Inference. Specifically, concerning the most
challenging task: the fully inductive inference task on datasets NL-
100, FB-100, and WK-100, where both relations and entities are
entirely unseen, our method significantly outperforms all baseline
methods. In NL-100 and FB-100, our approach achieves noticeable
improvements of 8.5% and 5.9% in terms ofMRRmetric, respectively,
compared to the previous best results. Moreover, our model also
demonstrates competitive performance on WK-100.

Semi Inductive Inference.Apart fromNL-100, FB-100, andWK-
100, the other 9 datasets consist of both seen and unseen relations.
It is evident from these 9 datasets that our method outperforms
other baseline models significantly on 8 datasets, except for FB-25
where NBFNet[38] performs comparably to ours. Actually, simple
rules exist among the seen relations in FB-25, making methods rely
on rule-based predictions, more suitable for this dataset. Rule-based
prediction methods require capturing rules among seen relations,
whereas our method does not focus on fixed patterns; instead, we
emphasize general cases. Our model aims to ensure generalization

performance by adopting a more universally applicable approach
to embedding acquisition.

Inductive Inference With Seen Relations. We conducted
experiments under the setting where all relations are seen. We used
the existing benchmark dataset NELL-995-v1[14] for comparison.
The experimental results are shown in Table 2, indicating that our
model also exhibits the strongest inductive link prediction capability
when all relations are seen.

These strong performances from all comparative experiments
indicate the effectiveness of our HyRel in addressing inductive link
prediction tasks. HyRel adapts to various inductive settings, demon-
strating superior accuracy in embedding for both fully inductive
and semi-inductive KG.

Table 3: Ablation Studies of HyRel.

Model Variants
NL-100 NL-75

MRR Hit@1 MRR Hit@1
w/o Relation positions 0.324 0.209 0.267 0.155

w/o Affinity 0.374 0.288 0.286 0.183
w/o HyRelGat 0.251 0.136 0.204 0.103
w/o Dual CL 0.356 0.265 0.290 0.195
w Common CL 0.302 0.207 0.250 0.141

HyRel 0.394 0.299 0.305 0.205

Model Variants
FB-100 FB-75

MRR Hit@1 MRR Hit@1
w/o Relation positions 0.227 0.143 0.217 0.128

w/o Affinity 0.253 0.169 0.258 0.168
w/o HyRelGat 0.198 0.128 0.168 0.099
w/o Dual CL 0.249 0.165 0.252 0.166
w Common CL 0.266 0.168 0.244 0.159

HyRel 0.282 0.188 0.277 0.196

5.4 Ablation Study
We conducted ablation experiments to demonstrate the signifi-
cance of each module. The results of the ablation experiments are
presented in Table 3, where each ablation variants leads to a per-
formance decrease. Specifically, we trained our model under the
following ablation settings: (1) w/o relation positions: disregarding
relation positions by integrating the views under four positions
into a single graph, with embedding updates performed on the in-
tegrated graph. (2) w/o affinity: removing omitting affinity weights
during embedding updates for each view. (3) w/o HyRelGat: ab-
lating the four views of relations attention module. (4) w/o dual
CL: ablating the dual views contrastive constraints module. (5) w
common CL: replacing the dual views contrastive constraints ap-
proach with common contrastive learning, where only nodes of
the same relation across different views are pulled together, while
all other targets are pushed apart. The ablation results indicate the
importance of different components, and their joint modeling yields
the best results. The removal of the HyRelGat module resulted in a
noteworthy performance drop. This is because the variant cannot
utilize the relative positions and affinities of relations for learning
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Figure 4: Comparison of the magnitude of randomness be-
tween HyRel and INGRAM.

5.5 Model Randomness
Some existing inductive link prediction methods alter the training
regimes to enhance model generalization, leading to randomness
in model outcomes. This situation also applies to how the training
set is divided in each epoch. We compare HyRel with INGRAM,
both of which are trained using this method of dividing the training
set. As shown in Fig. 4, our method exhibits significantly smaller
error ranges across all three metrics on the NL-100 and NL-75
datasets compared to INGRAM. This indicates that our model’s
good performance is not a result of random chance but rather its
ability to generate embeddings for unseen entities and relations
more reasonably.

Table 4: Performance comparison of different views as central
views on the NL-100 dataset.

Model
NL-100

MRR Hit@1

HyRel-(𝑡 -𝑡 ) 0.384 0.301
HyRel-(ℎ-𝑡 ) 0.396 0.306
HyRel-(𝑡 -ℎ) 0.387 0.303

HyRel-(ℎ-ℎ) 0.394 0.299

5.6 Experimental results of different central
views.

In practice, the choice of central view in four views has minimal
impact on performance, as shown in Table 4 with relevant experi-
mental results. It can be observed that the impact of different central

views on the experimental results is relatively small. Although there
are fluctuations, they are within an acceptable range due to the
presence of randomness.

5.7 Case Studies
Relation pairs outlined with dashed ellipses in Fig. 5 represent
adjacent nodes with high affinities. It can be observed that relations
with significant semantic correlations, such as𝐴𝑡ℎ𝑙𝑒𝑡𝑒_𝑝𝑙𝑎𝑦𝑠_𝑠𝑝𝑜𝑟𝑡
and 𝐴𝑡ℎ𝑙𝑒𝑡𝑒_𝑝𝑙𝑎𝑦𝑠_𝑖𝑛_𝑙𝑒𝑎𝑔𝑢𝑒 exhibit relatively smaller distances
in the visualization space compared to other nodes. For relation
𝑟1, 𝑟0 and 𝑟52 represent the relations with the highest and lowest
affinities, respectively. For relation 𝑟8, 𝑟9 and 𝑟37 are relations with
comparable affinities. Fig. 5 clearly demonstrates that the distances
of relation embeddings are consistent with the magnitudes of their
affinities. The distance between (𝑟9, 𝑟8) and (𝑟37, 𝑟8) is very close,
while the distance between (𝑟1, 𝑟0) is much smaller than that of
the zero-affinity relation pair (𝑟1, 𝑟52). The embedding visualization
proves semantic representations learned by our HyRel model are
reasonable, which affirms the effectiveness of HyRel embedding
unseen relations.

Agent_competes_with_agent

Mammal_such_as_mammal

Agent_involved_with_item

Automobile_maker_dealers_in_country

Specialization_of 

Organization_also_known_as

Synonym_for 

Athlete_plays_sport

Athlete_plays_in_league

Has_office_in_country

State_located_in_geopolitical_location

Person_graduated_from_university

Person_graduated_school

Animalis_type_of_animal

Figure 5: Visualization of HyRel’s relation embeddings using
T-SNE on the NL-100 dataset.

6 CONCLUSION
We introduce HyRel, a pioneering approach tailored for address-
ing inductive link prediction adopting the hyper-relation structure.
HyRel operates independently, void of dependencies on pre-trained
language models or external sources. Emphasizing the acquisition
of robust reasoning capabilities, HyRel leverages the hyper-relation
structure to effectively capture graph structural intricacies. This
empowers HyRel to generate precise embeddings for unseen rela-
tions and entities. Moreover, the proposed dual views contrastive
constraints are imposed across views, which alleviates semantic
confusion of relations. Extensive experiments across diverse induc-
tive settings validate HyRel’s superior performance. HyRel offers
a promising avenue for addressing the challenges of knowledge
extrapolation in evolving KG environments.
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