
Language-Bias-Resilient Visual Question Answering via Adaptive Multi-Margin Collaborative Debiasing

Huanjia Zhu

Beijing Institute of Technology, Zhuhai
bvyih3@gmail.com

Shuyuan Zheng

The University of Osaka
zheng@ist.osaka-u.ac.jp

Yishu Liu

Harbin Institute of Technology, Shenzhen
liuyishu@stu.hit.edu.cn

Sudong Cai*

Beijing Institute of Technology, Zhuhai
caisudong.ai@gmail.com

Bingzhi Chen*

Beijing Institute of Technology, Zhuhai
chenbingzhi@bit.edu.cn

Abstract

Language bias in Visual Question Answering (VQA) arises when models exploit spurious statistical correlations between question templates and answers, particularly in out-of-distribution scenarios, thereby neglecting essential visual cues and compromising genuine multimodal reasoning. Despite numerous efforts to enhance the robustness of VQA models, a principled understanding of how such bias originates and influences model behavior remains underdeveloped. In this paper, we address this gap through a comprehensive empirical and theoretical analysis, revealing that modality-specific gradient imbalances, which originate from the inherent heterogeneity of multimodal data, lead to skewed feature fusion and biased classifier weights. To alleviate these issues, we propose a novel Multi-Margin Collaborative Debiasing (MMCD) framework², which adaptively integrates frequency-aware, confidence-aware, and difficulty-aware angular margins with a dynamic, difficulty-aware contrastive learning mechanism to reshape decision boundaries under biased training conditions. Extensive experiments across multiple challenging VQA benchmarks confirm the consistent superiority of our proposed MMCD over state-of-the-art baselines in combating language bias.

1 Introduction

Visual Question Answering (VQA) has emerged as a challenging task that blends computer vision and natural language processing to provide answers to natural language questions about images. The core difficulty of VQA models lies in their ability to reason multimodally, combining visual information from images with language patterns in questions. Recent progress [36, 29, 42, 7, 4, 38] in deep learning has enhanced the capabilities of VQA models. However, studies have shown that networks still suffer from language bias [15, 6, 9, 17, 4, 29, 36], where the model learns spurious correlations between questions and answers. This bias occurs when models overly rely on common patterns in questions and answers, neglecting crucial visual information. These models often perform well

*Corresponding authors: Bingzhi Chen and Sudong Cai.

²Code is available at <https://github.com/bvyih3/2025-NIPS-MMCD>

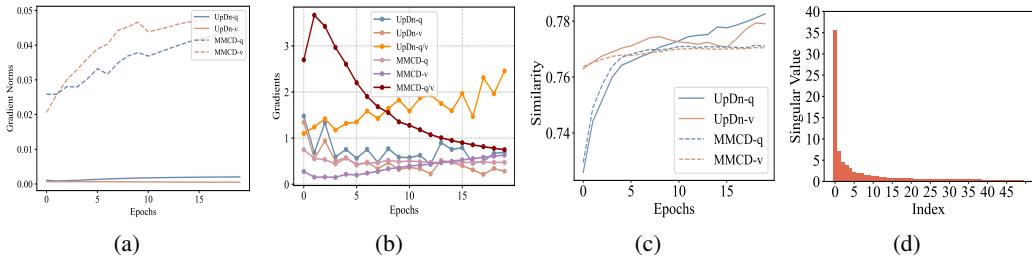


Figure 1: (a) The gradient norms across modalities differ considerably, reflecting an imbalance in how learning signals are propagated. (b) This imbalance leads to modality-specific optimization deviations, where the question modality of baseline disproportionately accumulates gradient updates, thereby amplifying its influence. (c) As a result, the fused representation becomes skewed, with question features occupying a dominant share of the multimodal space and suppressing contributions from visual features. (d) Furthermore, the classifier weights reveal directional bias: the singular value spectrum is highly uneven, suggesting that the model primarily aligns with directions that capture biased cues while overlooking secondary directions that encode meaningful information.

in standard in-distribution (ID) evaluation settings [15] but fail to generalize to out-of-distribution (OOD) data [1, 13, 21], where the distribution of answers differs from the training set.

To address this challenge, existing approaches can be grouped into three principal paradigms: ensemble-based [32, 6, 12, 28, 17, 18, 29, 36], augmentation-based [9, 25, 41, 45], and feature space-based [16, 4, 47] methods. Ensemble-based approaches [32, 6, 12] augment the base model with auxiliary bias estimators, such as question-only branches, to identify and subtract spurious correlations. Augmentation-based techniques synthesize counterfactual data [9, 25, 45] or inject negative samples [35, 41] via heuristic rules to rebalance answer distributions. Feature space-based methods impose angular margins [16, 4, 47] on the hyperspherical embedding to enforce class separability and suppress dominant priors. Despite notable progress in bias reduction [17, 4, 29, 36], a fundamental question remains unexplored: **How are language biases formed?**

Understanding the genesis of language bias is essential for advancing debiasing techniques. In this work, we conduct a comprehensive investigation into bias formation. First, we identify a modality gradient optimization deviation (see Fig. 1(b), Section 2.1), where the image modality is under-optimized and the question modality is over-optimized. Second, we observe a feature fusion component deviation (see Fig. 1(c), Section 2.2), in which question features dominate the joint representation and image features are marginalized. These phenomena culminate in directional deviation of the classifier weights (see Fig. 1(d), Section 2.2), amplifying primary (question-driven) directions and attenuating secondary (vision-driven) axes.

To mitigate language bias, we examine the efficacy of margin-based objectives, which refine model training by manipulating the angle between normalized feature and classifier weight vectors on the unit hypersphere. Despite their empirical success across diverse domains [5, 14, 27, 37, 8, 22, 24, 16, 4, 47], a fundamental question remains unanswered: **Why does margin mechanisms work?** Grounded in our analysis of bias, we show that margin penalties effectively balance modality gradient optimization (see Section 3.1), homogenize fused feature components (see Section 3.2), and equalize classifier weight directions (see Section 3.3), counteracting the skew induced by data heterogeneity.

Motivated by these findings, we propose an adaptive **Multi-Margin Collaborative Debiasing** paradigm called “**MMCD**”, which aims to reshape discriminative class boundaries. Specifically, the proposed MMCD incorporates two well-established mechanisms, i.e., **Multi-grained Adaptive Margins (MAM)** and **Difficulty-aware Contrastive Learning (DCL)**. Specifically, MAM augments class discriminability through three adaptive angular penalties: frequency-aware, confidence-aware, and difficulty-aware margins. **1)** Frequency-aware margins counteract class imbalance by assigning larger angular offsets to underrepresented answers. **2)** Confidence-aware margins leverage logits as a proxy for sample uncertainty, dynamically tightening boundaries around ambiguous instances. **3)** Difficulty-aware margins employ an instance difficulty estimator constructed from per-sample learning speed and classification margins to further calibrate penalties at the sample level. Furthermore, DCL empowers the network to facilitate intra-class compactness and inter-class separation by incorporating the introduced difficulty model into the supervised contrastive framework. To the best of our knowledge, this is *the first attempt* to investigate the formation mechanisms of language bias in VQA.

2 How are Language Biases Formed?

Robust VQA has attracted extensive research interest in recent years, yielding a rich suite of debiasing techniques. Yet, the origin of language bias itself remains uncharted. In this section, we undertake a systematic investigation, combining empirical measurements with theoretical insights to trace the full trajectory by which spurious question–answer priors become entrenched in VQA models.

To begin with, we first establish some task-specific preliminaries. Given an image $v \in \mathcal{V}$ and a question $q \in \mathcal{Q}$, the goal of VQA is to predict an answer $a \in \mathcal{A}$ by optimizing a mapping $f : \mathcal{V} \times \mathcal{Q} \rightarrow \mathbb{R}^C$, where $f(v, q)$ is the logits for candidate answers, $C = |\mathcal{A}|$ is the number of candidate answers. Standard VQA frameworks [17, 18, 4, 47] typically adopt a four-stage pipeline: (1) image encoder e_v , (2) question encoder e_q , (3) multimodal fusion module g which fuses unimodal features to generate joint representations \mathcal{R} , (4) classifier c which maps \mathcal{R} to answer logits with learnable weights \mathcal{W} . The VQA problem is formulated as:

$$f(v, q) = c(g(e_v(v), e_q(q))). \quad (1)$$

Cross-Entropy Loss. The VQA model is trained by minimizing the Cross-Entropy (CE) loss:

$$\mathcal{L}_{\text{CE}} = \sum_{i=1}^{|\mathcal{A}|} -a_i \log \frac{\exp(f_i)}{\sum_{j=1}^{|\mathcal{A}|} \exp(f_j)}. \quad (2)$$

where f_i is the logit for the i -th answer. We adopt UpDn [2] as our baseline. The feature fusion strategy g is the Hadamard product \odot , thus $\mathcal{R} = \mathcal{R}_q \odot \mathcal{R}_v$, where \mathcal{R}_q and \mathcal{R}_v are question features and image features, respectively.

2.1 Modality Gradient Optimization Deviation

Generally, models store the critical information for unimodal features captured from training data in their encoder weights. We denote the weights of e_q and e_v as \mathcal{W}_q and \mathcal{W}_v , respectively. We calculate the gradient of encoder weights with respect to the loss \mathcal{L} :

$$\nabla_{\mathcal{W}_q} \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \mathcal{R}} \cdot \frac{\partial \mathcal{R}}{\partial \mathcal{W}_q} \cdot \frac{\partial \mathcal{R}_q}{\partial \mathcal{W}_q} = \left(\frac{\partial \mathcal{L}}{\partial \mathcal{R}} \odot \mathcal{R}_v \right) \cdot E_q^\top, \quad \nabla_{\mathcal{W}_v} \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \mathcal{R}} \cdot \frac{\partial \mathcal{R}}{\partial \mathcal{W}_v} \cdot \frac{\partial \mathcal{R}_v}{\partial \mathcal{W}_v} = \left(\frac{\partial \mathcal{L}}{\partial \mathcal{R}} \odot \mathcal{R}_q \right) \cdot E_v^\top, \quad (3)$$

where E_q and E_v is the question embeddings and image embeddings, separately. The corresponding Frobenius norms are:

$$\left\| \frac{\partial \mathcal{L}}{\partial \mathcal{W}_q} \right\|_F = \left\| \frac{\partial \mathcal{L}}{\partial \mathcal{R}} \odot \mathcal{R}_v \right\|_2 \cdot \|E_q\|_2, \quad \left\| \frac{\partial \mathcal{L}}{\partial \mathcal{W}_v} \right\|_F = \left\| \frac{\partial \mathcal{L}}{\partial \mathcal{R}} \odot \mathcal{R}_q \right\|_2 \cdot \|E_v\|_2. \quad (4)$$

After experimental exploration, we found that $\|E_q\|_2 < \|E_v\|_2$ and $\left\| \frac{\partial \mathcal{L}}{\partial \mathcal{R}} \odot \mathcal{R}_v \right\|_2 \gg \left\| \frac{\partial \mathcal{L}}{\partial \mathcal{R}} \odot \mathcal{R}_q \right\|_2$, which yields $\left\| \frac{\partial \mathcal{L}}{\partial \mathcal{W}_q} \right\|_F > \left\| \frac{\partial \mathcal{L}}{\partial \mathcal{W}_v} \right\|_F$ (see Fig. 1(b)). In other words, **modalities gradient optimization deviation arises from inherent data heterogeneity**. Specifically, question tokens are encoded into 300-dimensional GloVe embeddings [31] and aggregated via a single-layer GRU [11], whereas visual inputs are represented by 36 object vectors of dimension 2048 extracted by a Faster R-CNN [33]. Consequently, $\|E_q\|_2 < \|E_v\|_2$ and $\left\| \frac{\partial \mathcal{L}}{\partial \mathcal{R}} \odot \mathcal{R}_v \right\|_2 \gg \left\| \frac{\partial \mathcal{L}}{\partial \mathcal{R}} \odot \mathcal{R}_q \right\|_2$. **This difference in the inherent properties of the data is the culprit behind the imbalance in modal optimization.**

Crucially, gradient deviation can not directly explain language bias, since the final predictions depend on fused representations \mathcal{R} and classifier weights \mathcal{W} . To uncover the true bias formation, we next analyze (1) the proportion of unimodal components in \mathcal{R} and (2) the directional deviation of \mathcal{W} .

2.2 Feature Fusion Bias and Classifier Deviation

Fusion feature component deviation. In the previous subsection, we identified the modality gradient optimization deviation. Then we naturally ponder the question: **Which modality predominates the fusion feature?** Since the loss is essentially computed using fusion feature, this composition deviation determines the model’s reliance on visual versus textual cues at prediction time [26].

Inspired by [19], given \mathcal{R} , \mathcal{R}_q , and \mathcal{R}_v , we perform Singular Value Decomposition (SVD) and obtain the right-singular unitary matrices $V_{\mathcal{R}}$, $V_{\mathcal{R}_q}$, and $V_{\mathcal{R}_v}$. We assess the similarities of the subspace

spanned by the top- i singular vectors in $V_{\mathcal{R}}$ and that of the top- j singular vectors of $V_{\mathcal{R}_q}$ and $V_{\mathcal{R}_v}$, respectively. We compute the normalized subspace similarity based on the Grassmann distance as:

$$\psi(V_{\mathcal{R}}, V_{\mathcal{R}_q/\mathcal{R}_v}, i, j) = \frac{\|V_{\mathcal{R}}^{::i\top} V_{\mathcal{R}_q/\mathcal{R}_v}^{::j\top}\|_F^2}{\min(i, j)} \in [0, 1]. \quad (5)$$

Here, $\psi(\cdot)$ ranges from 0 to 1, where 1 indicates a complete overlap of subspaces and 0 signifies total separation. $V_{\mathcal{R}}^{::i}$ and $V_{\mathcal{R}_q/\mathcal{R}_v}^{::j}$ represents the top- i and top- j column vectors of $V_{\mathcal{R}}$ and $V_{\mathcal{R}_q/\mathcal{R}_v}$, respectively. As shown in Fig. 1(c), we observed an important phenomenon: **At the start of training, the question-subspace similarity is substantially lower than that of the image subspace, but by the mid- and late-training stages it exceeds the image-subspace similarity.** These findings reveal that the fused features are disproportionately governed by the question features, with visual features playing a subordinate role. **Such composition deviation causes the model to assign uneven importance to modality-specific information when learning from fused features.**

Classifier weight direction deviation. In general, the model stores key information about the classification task captured from the training data in its final classification weights. We perform SVD on \mathcal{W} to extract corresponding singular values Σ . As depicted in Fig. 1(d), the singular values appear significantly different. The top singular value greatly exceeds the remaining values, and the bottom singular value is almost 0. This implies that the classifier predominantly captures feature correlations along a primary axis, neglecting orthogonal (secondary) directions that may encode complementary information. To elucidate which features are emphasized, we consider the gradient of \mathcal{L}_{CE} for \mathcal{W} :

$$\nabla_{\mathcal{W}} \mathcal{L}_{\text{CE}} = (p - a)\mathcal{R}, \quad (6)$$

where $p = \frac{\exp(f_i)}{\sum_{j=1}^{|A|} \exp(f_j)}$. Here, the update for the correct class aligns exactly with the fused representation \mathcal{R} . Since \mathcal{R} is dominated by the question component (see above), the weight updates encode question-driven priors, while visual-semantic cues in secondary directions are largely ignored.

3 Why Does the Margin Mechanism Work?

Normalized CE loss for hypersphere embedding. To optimize the instance representation space, prior works [27, 16, 4, 46, 47] project features onto a unit hypersphere by $L2$ —normalizing classifier weights \mathcal{W} and joint representations \mathcal{R} . In light of this, the posterior probability is determined by the angle θ_i between \mathcal{W}_i and \mathcal{R}_i , and the answer feature space is converted from the Euclidean space to the angular space. The logit f_i for each representation \mathcal{R}_i is redefined as:

$$f_i = \mathcal{W}_i^\top \mathcal{R}_i = \|\mathcal{W}_i\| \|\mathcal{R}_i\| s \cos \theta_i = s \cos \theta_i, \quad (7)$$

where $\|\mathcal{W}_i\| = 1$, $\|\mathcal{R}_i\| = 1$, s is a scaling factor for more stable computation. The bias term is viewed as zero for simplicity. Thus, the joint representations \mathcal{R} are distributed on a hypersphere with a radius s . The standard CE loss is transformed into a normalized CE loss:

$$\mathcal{L}_{\text{NCE}} = \sum_{i=1}^{|A|} -a_i \log \frac{\exp(s \cos \theta_i)}{\sum_{j=1}^{|A|} \exp(s \cos \theta_j)}. \quad (8)$$

Rigorously, we theoretically analyze the rationale for spherical space learning and demonstrate its advantages in the supplementary materials. Recent studies [4, 47] have focused on optimizing the instance spacing in inverse cosine space by adding a margin m to the clamp angle θ :

$$\mathcal{L}_{\text{MARGIN}} = \sum_{i=1}^{|A|} -a_i \log \frac{\exp(s \cos(\theta_i + m_i))}{\sum_{j=1}^{|A|} \exp(s \cos(\theta_j + m_j))}. \quad (9)$$

3.1 Modality Gradient Optimization Balance

We analyze how the margin term m modulates encoder gradients by comparing the gradients of \mathcal{L}_{CE} and $\mathcal{L}_{\text{MARGIN}}$ concerning the fused feature \mathcal{R} :

$$\nabla_{\mathcal{R}} \mathcal{L}_{\text{CE}} = \mathcal{W}^\top (p - a), \quad (10)$$

$$\nabla_{\mathcal{R}} \mathcal{L}_{\text{MARGIN}} = s \mathcal{W}^\top ((p' - a) \odot \mathcal{C}), \text{ where } \mathcal{C} = \cos m + \cot \theta \cdot \sin m, \quad (11)$$

where $p' = \frac{\exp(f'_i)}{\sum_{j=1}^{|A|} \exp(f'_j)}$, $f'_i = s \cos(\theta_i + m_i)$. The margin mechanism thus (1) introduces the scale s to amplify gradient magnitude, (2) perturbs the predicted probabilities p' to reweight class-wise errors, and (3) applies an adaptive coefficient \mathcal{C} along each logit dimension. As each margin m_i and angle θ_i are independently specified, \mathcal{C} differentially scales the alignment of $\nabla_{\mathcal{R}}$ with the question subvector \mathcal{R}_q versus the visual subvector \mathcal{R}_v . Consequently, the margin term rebalances modality-specific gradient contributions and reduces the gradient deviation (see Fig. 1(b)).

3.2 Fusion Feature Component Uniformity

Fig. 1(c) illustrates that the question-modality contribution within the fused representation grows sharply and ultimately surpasses the image-modality contribution, resulting from disproportionate gradient updates favoring the question stream. In the previous subsection, we demonstrate that the margin mechanism counteracts this imbalance by harmonizing modality gradient magnitudes, thereby producing a more uniform multimodal feature composition.

3.3 Classifier Weight Direction Equalization

The margin m mitigates directional bias in \mathcal{W} by promoting a more uniform singular spectrum. The gradient of $\nabla_{\mathcal{W}} \mathcal{L}_{\text{MARGIN}}$ with respect to \mathcal{W} is:

$$\nabla_{\mathcal{W}} \mathcal{L}_{\text{MARGIN}} = s((p' - a) \odot \mathcal{C}) \mathcal{R}. \quad (12)$$

The first term of \mathcal{C} , $\cos m \in [-1, 1]$, uniformly scales updates along \mathcal{R} , attenuating the dominant (question-driven) component more strongly because of its larger magnitude. We then consider the second term of \mathcal{C} , $\cot \theta \cdot \sin m$. Defining the unit vector $\hat{\mathcal{W}}_i = \frac{\mathcal{W}_i}{\|\mathcal{W}_i\|}$, and \mathcal{U} as a unit vector orthogonal to $\hat{\mathcal{W}}$, we geometrically decompose \mathcal{R} into $\hat{\mathcal{W}}$ and \mathcal{U} :

$$\mathcal{R} = (\hat{\mathcal{W}}^\top \mathcal{R} \hat{\mathcal{W}}) + (\mathcal{R} - (\hat{\mathcal{W}}^\top \mathcal{R} \hat{\mathcal{W}})) = \cos \theta \cdot \hat{\mathcal{W}} + \sin \theta \cdot \mathcal{U}. \quad (13)$$

The second term of \mathcal{C} , $\cot \theta \cdot \sin m$ yields:

$$\cot \theta \cdot \sin m \cdot \mathcal{R} = \frac{\cos^2 \theta}{\sin \theta} \cdot \sin m \cdot \hat{\mathcal{W}} + \cos \theta \cdot \sin m \cdot \mathcal{U}. \quad (14)$$

Here, $\frac{\cos^2 \theta}{\sin \theta} \cdot \sin m \cdot \hat{\mathcal{W}}$ balances the principal component adaptively, while $\cos \theta \cdot \sin m \cdot \mathcal{U}$ injects a corrective push into the orthogonal subspace. As a result, primary singular values decrease and secondary singular values increase, equalizing the classifier’s learned directions and enhancing its ability to capture complementary cues. We provide a more rigorous theoretical proof in the supplementary materials.

4 Methodology

4.1 Multi-Grained Adaptive Margins

Inspired by margin learning [16, 4], our MAM mechanism aims to address the challenge of chaotic class boundaries posed by imbalanced data. By considering answer frequency and evaluating instance difficulty from coarse-grained and fine-grained perspectives, MAM enhances intra-class compactness and inter-class separation, thus refining a discriminative and robust feature space. Specifically, MAM integrates three components: frequency-aware, confidence-aware, and difficulty-aware margins.

Frequency-aware margins. As mentioned in [16], imposing larger margin penalties on minority classes is crucial for driving their representations closer to the respective class centers. Conversely, majority classes, which naturally have a robust representation, benefit from smaller margin penalties. Similar to [16, 4], the frequency-aware margins are defined as:

$$\hat{m}_i^{qt} = \frac{n_i^{qt} + \epsilon}{\sum_{j=1}^{|A|} n_j^{qt} + \epsilon}, \quad (15)$$

where \hat{m}_i^{qt} is the frequency of answer a_i with question type qt . n_i is the occurrence of answer a_i with qt . ϵ is a hyperparameter for avoiding computational overflow. Elasticface [5] demonstrates that

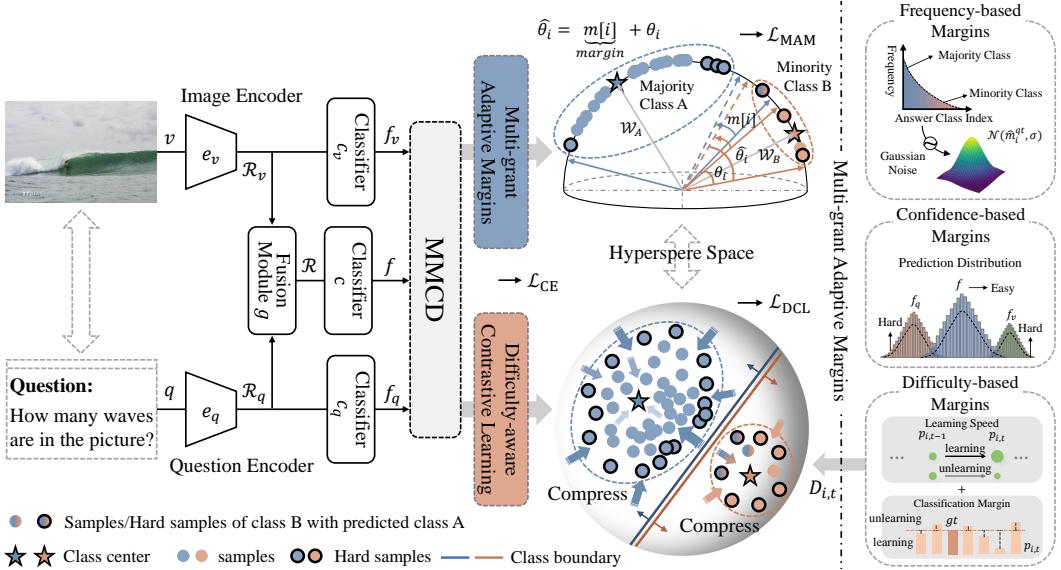


Figure 2: Illustration of our MMCD for combating language bias. *Up: Multi-Grained Adaptive Margins* rectify instance to reshape robust class boundaries. *Bottom: Difficulty-aware Contrastive Learning* improves intra-class compactness and inter-class separation, carving discriminative feature space. *Right: Multi-Grained Adaptive Margins* are driven by frequency and instance difficulty.

fixed margins fail to adapt to the dynamic inter- and intra-class variances in real-world data, thereby impairing the model’s discriminability and generalization. Following [4], we incorporate random Gaussian noise into frequency-aware margins m_{freq} :

$$m_i^{qt} = \mathcal{N}(\hat{m}_i^{qt}, \sigma), \quad (16)$$

where \mathcal{N} is the Gaussian distribution with standard deviation σ , and σ is a hyperparameter.

Confidence-aware margins. As mentioned above, sample difficulty significantly affects the discriminative decision margin and class separability. A simple yet effective measure of difficulty is the prediction logits. We incorporate auxiliary branches dedicated solely to the question and image modalities. These branches promote multimodal integration by deliberately introducing controlled modality bias. This strategy not only boosts ID performance but also prevents excessive bias correction.

Specifically, we introduce a question-only classifier c_q and an image-only classifier c_v . The corresponding logits f_q and f_v are:

$$f_q(q) = c_q(e_q(q)), \quad f_v(v) = c_v(e_v(v)). \quad (17)$$

Recognizing the challenges of imbalanced multimodal learning [39, 40], inspired by [30], we leverage the posterior distributions s_q and s_v as the weights for unimodal logits f_q and f_v , respectively.

$$s_q = \text{softmax}(\mathcal{W}_q \cdot e_q(q) + \frac{b}{2})[gt], \quad s_v = \text{softmax}(\mathcal{W}_v \cdot e_v(v) + \frac{b}{2})[gt], \quad (18)$$

where \mathcal{W}_q and \mathcal{W}_v are the parameters of c_q and c_v respectively. gt refers to the index of the ground truth class of the sample. We denote $s_f = f(v, q)$ as the weight applied to the multimodal logits f , and τ_1 as the temperature, which is a hyperparameter. Based on these definitions, the weighted hybrid confidence f_m and confidence-aware margins m_{conf} are formulated as follows:

$$f_m = \frac{s_f \cdot f + s_q \cdot f_q + s_v \cdot f_v}{s_f + s_q + s_v}, \quad m_{conf} = \text{softmax}(f_m / \tau_1), \quad (19)$$

Difficulty-aware margins. Although logits can simply and intuitively reflect sample difficulty, their static nature limits the fine-grained mining of intrinsic sample difficulty and makes it difficult to modulate stubborn decision boundaries. Inspired by [44], we develop a fine-grained difficulty

model that evaluates instance difficulty from two perspectives: **a) Learning Rate:** akin to human learning, where easy samples are learned quickly, and **b) Classification Margins:** reflecting relative confidence, where smaller margins indicate closer proximity to the decision boundary. Specifically, given an instance representation \mathcal{R}_i , its difficulty $D_{i,t}$ after t iterations is estimated as:

$$D_{i,t} = \underbrace{\alpha \cdot \frac{vu_{i,t} + c}{vl_{i,t} + c}}_{\text{learning speed}} + \underbrace{(1 - \alpha) \cdot \frac{mu_{i,t} + c}{ml_{i,t} + c}}_{\text{classification margins}}, \quad (20)$$

where $vu_{i,t}$ and $mu_{i,t}$ denote the prediction variation and marginal gap on the unlearning direction after t iterations respectively, $vl_{i,t}$ and $ml_{i,t}$ denote the prediction variation and marginal gap on the learning direction separately. α is a hyperparameter to balance the contribution of learning speed and classification margins. c is a prior parameter to control the sensitivity of $D_{i,t}$ for the variation of predictions and prevent division by zero. A larger $D_{i,t}$ indicates that the instance is difficult to learn.

We apply Jensen-Shannon (JS) divergence to quantify learning speed. Specifically, we denote $p_{i,t}$ as the prediction distribution of instance \mathcal{R}_i at t iteration and $p_{i,t-1}$ at $t-1$ iteration. The distance $v_{i,t}$ between $p_{i,t-1}$ and $p_{i,t}$ is defined as:

$$v_{i,t} = \frac{1}{2} \text{KL}(p_{i,t-1} \| q_{i,t}) + \frac{1}{2} \text{KL}(p_{i,t} \| q_{i,t}), \quad (21)$$

where $q_{i,t} = (p_{i,t-1} + p_{i,t})/2$, KL is Kullback-Leibler (KL) divergence. We denote $p_{i,t}^j$ as the probability of class j of \mathcal{R}_i at the t iteration. Obviously, $p_{i,t}^{gt} - p_{i,t-1}^{gt} < 0$ or $p_{i,t}^j - p_{i,t-1}^j > 0, j = 1 \dots C, j \neq gt$ indicates unlearning, and $p_{i,t}^{gt} - p_{i,t-1}^{gt} > 0$ or $p_{i,t}^j - p_{i,t-1}^j < 0, j = 1 \dots C, j \neq gt$ indicates learning, C is the number of candidate answers. Therefore, $vu_{i,t}$ and $vl_{i,t}$ can be defined as:

$$\begin{cases} vu_{i,t} = \beta \cdot vu_{i,t-1} + (1 - \beta) \cdot vu'_{i,t}, & vl_{i,t} = \beta \cdot vl_{i,t-1} + (1 - \beta) \cdot vl'_{i,t}, \\ vu'_{i,t} = \min(p_{i,t}^{gt} - p_{i,t-1}^{gt}, 0) v_{i,t}[gt] + \sum_{j=1, j \neq gt}^C \max(p_{i,t}^j - p_{i,t-1}^j, 0) v_{i,t}[j], \\ vl'_{i,t} = \max(p_{i,t}^{gt} - p_{i,t-1}^{gt}, 0) v_{i,t}[gt] + \sum_{j=1, j \neq gt}^C \min(p_{i,t}^j - p_{i,t-1}^j, 0) v_{i,t}[j], \end{cases} \quad (22)$$

which satisfy that $v_{i,t} = vu'_{i,t} + vl'_{i,t}$. $[.]$ denotes the index operator. $p_{i,0} = 1/C$ for all instances. β is a hyperparameter used to weight historical and real-time information, thus preserving historical trends while being sensitive to short-term changes. Furthermore, we innovatively quantify instance difficulty through classification margins. Specifically, the classification margins $mu_{i,t}$ is defined as:

$$mu_{i,t} = |p_{i,t}^{gt} - p_{i,t}^j|, \quad j = 1 \dots C, j \neq gt, \quad (23)$$

where $|\cdot|$ denotes the absolute value operation. Apparently, $p_{i,t}^{gt} - p_{i,t}^j > 0$ indicates learning, $p_{i,t}^{gt} - p_{i,t}^j < 0$ indicates unlearning. Therefore, $mu_{i,t}$ and $ml_{i,t}$ can be defined as:

$$\begin{cases} mu_{i,t} = \beta \cdot mu_{i,t-1} + (1 - \beta) \cdot mu'_{i,t}, & ml_{i,t} = \beta \cdot ml_{i,t-1} + (1 - \beta) \cdot ml'_{i,t}, \\ mu'_{i,t} = \log\left(\frac{1}{|\Psi|} \sum_{j \in \Psi} \exp(mu_{i,t}^j)\right), & ml'_{i,t} = \log\left(\frac{1}{|\Omega|} \sum_{j \in \Omega} \exp(mu_{i,t}^j)\right), \end{cases} \quad (24)$$

where Ψ is the set of class j satisfying $p_{i,t}^j - p_{i,t}^{gt} > 0$ and Ω is the set of class j satisfying $p_{i,t}^j - p_{i,t}^{gt} < 0$. The difficulty-aware margins m_{diff} are defined as:

$$m_{diff} = 1 - \text{softmax}(D_{i,t}), \quad (25)$$

Margin loss formulation. Ultimately, the various margin terms are aggregated in a cohesive manner to form the multi-grained adaptive margins m_{MAM} :

$$\begin{cases} m_{MAM} = m_{freq}, \\ m_{MAM}[gt] = (1 - \lambda_1) \cdot m_{MAM}[gt] + \lambda_1 \cdot m_{conf}[gt], \\ m_{MAM}[gt] = (1 - \lambda_2) \cdot m_{MAM}[gt] + \lambda_2 \cdot m_{diff}, \quad \text{epoch} \geq w, \\ m_{MAM} = 1 - m_{MAM}, \end{cases} \quad (26)$$

Table 1: Accuracy comparisons with other methods on the VQA-CP v2 and VQA-CP v1 datasets.

Datasets		VQA-CP v2				VQA-CP v1			
Methods		All	Y/N	Num	Others	All	Y/N	Num	Others
UpDn [2]	CVPR'18	39.74	42.27	11.93	46.05	37.96	42.79	12.41	42.53
RUBi [6]	NeurIPS'19	47.11	68.65	20.28	43.18	-	-	-	-
LMH [12]	EMNLP'19	52.15	70.29	44.10	44.86	55.73	78.59	24.68	45.47
GGE-iter [17]	ICCV'21	57.12	87.35	26.16	49.77	59.82	85.52	28.93	46.67
AdaVQA [16]	IJCAI'21	54.02	70.83	49.00	46.29	61.20	91.17	41.34	39.38
COB [20]	WACV'23	57.53	88.36	28.81	49.27	60.98	87.41	32.02	46.34
GENB [10]	CVPR'23	59.15	88.03	40.05	49.25	62.74	86.18	43.85	47.03
GGD [18]	TPAMI'23	59.37	88.23	38.11	49.82	-	-	-	-
CVIV [29]	TMM'24	60.08	88.85	40.77	50.30	-	-	-	-
PWVQA [36]	TMM'24	59.06	88.26	52.89	45.45	-	-	-	-
MMCD	Ours	61.34	88.93	55.68	48.44	63.62	90.72	52.67	41.08

Table 2: Performance of our approach with different network architectures

Methods	All	Y/N	Num	Other	Increased ↑
SAN	26.88	35.34	11.34	24.70	
SAN+MMCD	60.12	86.97	54.62	47.56	33.24
S-MRL	38.46	42.85	12.81	43.20	
S-MRL+MMCD	60.69	88.40	55.44	47.61	22.23
LXMERT	48.66	47.49	22.24	56.52	
LXMERT+MMCD	66.95	91.79	63.28	54.39	18.29

where w denotes a specific epoch that marks the end of the warm-up stage. The m_{MAM} are added to the angle θ_i as a margin penalty:

$$\mathcal{L}_{\text{MAM}} = \sum_{i=1}^{|\mathcal{A}|} -a_i \log \frac{\exp(s \cos(\theta_i + m_{\text{MAM}}))}{\sum_{j=1}^{|\mathcal{A}|} \exp(s \cos(\theta_j + m_{\text{MAM}}))}. \quad (27)$$

4.2 Difficulty-aware Contrastive Learning

We further propose the DCL mechanism that integrates our instance difficulty model into a supervised contrastive paradigm [23], which dynamically emphasizes hard samples by difficulty-adaptive weighting, effectively enhancing intra-class compactness and inter-class separation to form a discriminative feature space. Specifically, we consider a mini-batch $\mathcal{B} = \{(x_1, a_1), (x_2, a_2), \dots, (x_{|\mathcal{B}|}, a_{|\mathcal{B}|})\}$ of L_2 -normalized joint representations \mathcal{R} and corresponding answers a_i . For each anchor feature x_j with difficulty $D_{j,t}$ at t iteration, the positive set $P_j = \{i \in \mathcal{B} \mid a_i = a_j, i \neq j\}$ contains indices of all non-anchor samples with identical answers, and the negative set $N_j = \{i \in \mathcal{B} \mid a_i \neq a_j\}$ includes indices of samples with different answers. The DCL loss is formulated as:

$$\mathcal{L}_{\text{DCL}} = \sum_{j \in \mathcal{B}} \frac{-1}{|P_j|} \sum_{p \in P_j} \log \frac{\exp(D_{p,t}) \exp(x_j^\top x_p / \tau_2)}{\sum_{n \in N_j} \exp(D_{n,t}) \exp(x_j^\top x_n / \tau_2)}, \quad (28)$$

where temperature τ_2 is set to 1.0.

4.3 Training and Optimization

Based on the above analyses, the comprehensive training objective of the proposed MMCD approach encompasses a combination of various loss functions, i.e.,

$$\mathcal{L}_{\text{TOTAL}} = \begin{cases} \mathcal{L}_{\text{CE}} + \mathcal{L}_{\text{MAM}} + \lambda_3 \mathcal{L}_{\text{SupCon}}, & \text{epoch} < w, \\ \mathcal{L}_{\text{CE}} + \mathcal{L}_{\text{MAM}} + \lambda_3 \mathcal{L}_{\text{DCL}}, & \text{epoch} \geq w, \end{cases} \quad (29)$$

where $\mathcal{L}_{\text{SupCon}}$ is the standard supervised contrastive loss.

Table 3: Ablation experiments for different modules of the MMCD model on VQA-CP v2.

Methods	Frequency-aware Margins	Confidence-aware Margins	Difficulty-aware Margins	DCL	All
Baseline					39.74
Variant-I	✓				59.44
Variant-II	✓	✓			59.74
Variant-III	✓	✓	✓		61.09
Variant-IV				✓	41.09
MMCD (Ours)	✓	✓	✓	✓	61.34

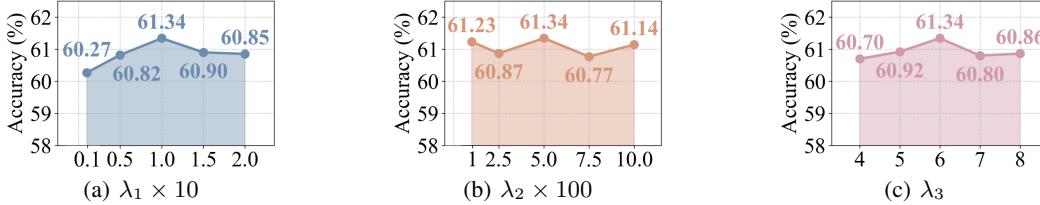


Figure 3: Comparison of Accuracy on the VQA-CP v2 dataset with different parameter configurations.

5 Experiments

5.1 Datasets & Implementation Details

We select various OOD benchmarks to assess the robustness of models against real-world biases, such as VQA-CP v2, VQA-CP v1 [1]. All experiments adopt the standard evaluation metric [3]. Further details on the experimental setup and implementation can be found in the supplementary materials.

5.2 Comparisons with State-of-the-Arts

As shown in Table 1, we report both the overall accuracy and the per-category performance across question types, including “yes/no”, “number”, and “other”. Compared to the second-best method, MMCD achieves gains of 1.26% and 0.72% in overall accuracy on the VQA-CP v2 and VQA-CP v1 datasets, respectively. Notably, MMCD achieves state-of-the-art performance on the “yes/no” and “number” categories, which are typically more susceptible to language priors. In particular, MMCD yields a substantial 2.79% improvement in the “number” category on VQA-CP v2, demonstrating its strong ability to mitigate language bias and enhance reasoning over numerical questions.

5.3 Extensive Experiments with Different Architectures

We further evaluate the generalizability and robustness of MMCD across additional architectures, including SAN [43], S-MRL [6], and LXMERT [34]. As shown in Table 2, the MMCD approach consistently outperforms the corresponding baselines, demonstrating strong adaptability and model-agnostic performance across diverse network designs. In particular, applying MMCD to LXMERT, a widely adopted vision-language pre-trained model commonly used in various multimodal downstream tasks, yields a notable 18.29% performance improvement, further highlighting its effectiveness in enhancing a broad range of model families.

5.4 Ablation Studies.

To assess the impact of each component in the proposed MMCD method, we perform a series of ablation experiments with various variations. The comparison results of the ablation study are shown in Table 3. Specifically, **Variant-I** outperforms baseline by 18.02%. The substantial performance enhancement demonstrates its critical function in mitigating language biases resulting from class imbalance by utilizing prior information. Furthermore, by incorporating confidence-aware margins, **Variant-II** achieves 0.3% performance gains compared to **Variant-I**, suggesting that the simple multimodal logits strategy effectively utilizes the inherent sample complexity and results in the

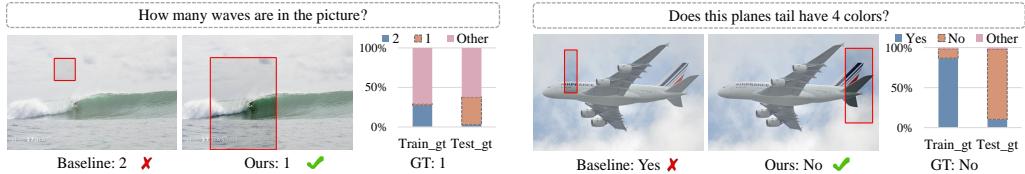


Figure 4: Visualization results of MMCD in robust reasoning and bias mitigation.

development of robust and discriminative feature spaces. With the integration of Difficulty-aware margins, **Variant-III** combines into a complete multi-grained adaptive margins mechanism, making a significant contribution to shaping a more structured and organized spherical representation space. Subsequently, **Variant-IV** emphasizes the pivotal role of the DCL mechanism in enhancing intra-class compactness and inter-class separation. Eventually, our full **MMCD** model achieves the best performance, demonstrating the effectiveness and availability of the designed components. More ablation analysis can be found in the supplementary materials.

5.5 Parameter Analysis.

As shown in Fig. 3, we systematically evaluate MMCD under a comprehensive range of hyperparameter settings. Our study focuses on three key hyperparameters: λ_1 and λ_2 in Eqn. (26), and λ_3 in Eqn. (29). Across all combinations, accuracy fluctuates by no more than 1.07%. Such minimal variance highlights MMCD’s robustness to hyperparameter selection, significantly reducing the need for exhaustive tuning. Moreover, this stability suggests that MMCD can be readily transferred to new VQA benchmarks or application domains without extensive reconfiguration. Overall, the insensitivity to parameter settings not only simplifies deployment but also confirms MMCD’s strong generalization capability in mitigating language bias. More parameter analysis can be found in the supplementary materials.

5.6 Qualitative Analysis.

As shown in Fig. 4, the MMCD method not only accurately localizes the correct area but also exhibits exceptional performance in removing bias. By enforcing a well-structured feature space, our approach facilitates the learning of highly discriminative features and the extraction of high-quality multimodal information. This structured representation enhances the model’s ability to identify and leverage key visual cues, which is critical for robust performance in VQA tasks.

6 Conclusion

In this paper, we investigated the origin of language bias in VQA and elucidated why margin-based mechanisms effectively mitigate it. Empirical evidence shows that multimodal data heterogeneity induces gradient optimization imbalances, leading to biased feature fusion and classifier weight deviations. We provide theoretical support from both gradient and spectral perspectives, demonstrating how margin-based objectives counteract these effects. Building on these insights, we propose MMCD, an adaptive multi-margin framework that incorporates sample frequency and difficulty to reshape decision boundaries and enhance feature discrimination via difficulty-aware contrastive learning. Extensive experiments confirm the superior robustness of MMCD, with potential implications for broader challenges such as shortcut learning, long-tail recognition, and class imbalance.

Acknowledgments

This work was supported in part by the Guangdong Basic and Applied Basic Research Foundation (Nos. 2025A1515010225, 2025A1515060001), in part by the National Natural Science Foundation of China (No. 62302172), and in part by the JSPS KAKENHI (No. JP25K21207) and JST CREST (No. JPMJCR22M2).

References

- [1] A. Agrawal, D. Batra, D. Parikh, and A. Kembhavi. Don’t just assume; look and answer: Overcoming priors for visual question answering. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 4971–4980, 2018.
- [2] P. Anderson, X. He, C. Buehler, D. Teney, and M. Johnson. Bottom-up and top-down attention for image captioning and visual question answering. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 6077–6086, 2018.
- [3] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pages 2425–2433, 2015.
- [4] A. Basu, S. Addepalli, and R. V. Babu. Rmlvqa: A margin loss approach for visual question answering with language biases. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 11671–11680, 2023.
- [5] F. Boutros, N. Damer, F. Kirchbuchner, and A. Kuijper. Elasticface: Elastic margin loss for deep face recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 1578–1587, 2022.
- [6] R. Cadene, C. Dancette, H. Ben-younes, M. Cord, and D. Parikh. Rubi: Reducing unimodal biases in visual question answering. In *Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 32, 2019.
- [7] L. Cai, H. Fang, N. Xu, and B. Ren. Counterfactual causal-effect intervention for interpretable medical visual question answering. *IEEE Transactions on Medical Imaging (TMI)*, 2024.
- [8] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma. Learning imbalanced datasets with label-distribution-aware margin loss. In *Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 32, 2019.
- [9] L. Chen, X. Yan, J. Xiao, H. Zhang, S. Pu, and Y. Zhuang. Counterfactual samples synthesizing for robust visual question answering. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 10800–10809, 2020.
- [10] J. W. Cho, D.-J. Kim, H. Ryu, and I. S. Kweon. Generative bias for robust visual question answering. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 11681–11690, 2023.
- [11] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.
- [12] C. Clark, M. Yatskar, and L. Zettlemoyer. Don’t take the easy way out: Ensemble based methods for avoiding known dataset biases. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2019.
- [13] C. Dancette, R. Cadene, D. Teney, and M. Cord. Beyond question-based biases: Assessing multimodal shortcut learning in visual question answering. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pages 1574–1583, 2021.
- [14] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular margin loss for deep face recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 4690–4699, 2019.
- [15] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the v in vqa matter: Elevating the role of image understanding in visual question answering. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 6904–6913, 2017.
- [16] Y. Guo, L. Nie, Z. Cheng, F. Ji, J. Zhang, and A. Del Bimbo. Adavqa: Overcoming language priors with adapted margin cosine loss. In *Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)*, pages 708–714, 2021.

[17] X. Han, S. Wang, and C. Su. Greedy gradient ensemble for robust visual question answering. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pages 1584–1593, 2021.

[18] X. Han, S. Wang, C. Su, Q. Huang, and Q. Tian. General greedy de-bias learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 45:1–17, 2023.

[19] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora: Low-rank adaptation of large language models. In *Proceedings of the International Conference on Learning Representations (ICLR)*, volume 1, page 3, 2022.

[20] A. Jha, B. Patro, L. Van Gool, and T. Tuytelaars. Barlow constrained optimization for visual question answering. In *Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV)*, pages 1084–1093, 2023.

[21] C. Kervadec, G. Antipov, M. Baccouche, and C. Wolf. Roses are red, violets are blue... but should vqa expect them to? In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2776–2785, 2021.

[22] S. Khan, M. Hayat, S. W. Zamir, J. Shen, and L. Shao. Striking the right balance with uncertainty. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 103–112, 2019.

[23] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan. Supervised contrastive learning. In *Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 33, pages 18661–18673, 2020.

[24] A. Li, W. Huang, X. Lan, J. Feng, Z. Li, and L. Wang. Boosting few-shot learning with adaptive margin loss. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 12576–12584, 2020.

[25] Z. Liang, W. Jiang, H. Hu, and J. Zhu. Learning to contrast the counterfactual samples for robust visual question answering. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 3285–3292, 2020.

[26] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pages 2980–2988, 2017.

[27] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. Sphereface: Deep hypersphere embedding for face recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 212–220, 2017.

[28] Y. Niu, K. Tang, H. Zhang, Z. Lu, X.-S. Hua, and J.-R. Wen. Counterfactual vqa: A cause-effect look at language bias. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 12700–12710, 2021.

[29] Y. Pan, J. Liu, L. Jin, and Z. Li. Unbiased visual question answering by leveraging instrumental variable. *IEEE Transactions on Multimedia (TMM)*, 26:6648–6662, 2024.

[30] X. Peng, Y. Wei, A. Deng, D. Wang, and D. Hu. Balanced multimodal learning via on-the-fly gradient modulation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 8238–8247, 2022.

[31] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 1532–1543, 2014.

[32] S. Ramakrishnan, A. Agrawal, and S. Lee. Overcoming language priors in visual question answering with adversarial regularization. In *Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 31, 2018.

[33] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In *Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 28, 2015.

[34] H. Tan and M. Bansal. Lxmert: Learning cross-modality encoder representations from transformers. *arXiv preprint arXiv:1908.07490*, 2019.

[35] D. Teney, E. Abbasnejad, K. Kafle, R. Shrestha, C. Kanan, and A. Van Den Hengel. On the value of out-of-distribution testing: An example of goodhart’s law. *Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)*, 33:407–417, 2020.

[36] A. Vosoughi, S. Deng, S. Zhang, Y. Tian, C. Xu, and J. Luo. Cross modality bias in visual question answering: A causal view with possible worlds vqa. *IEEE Transactions on Multimedia (TMM)*, 2024.

[37] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu. Cosface: Large margin cosine loss for deep face recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 5265–5274, 2018.

[38] Q. Wang, Y. Yu, Y. Yuan, R. Mao, and T. Zhou. Videorf: Incentivizing video reasoning capability in mllms via reinforced fine-tuning. *arXiv preprint arXiv:2505.12434*, 2025.

[39] Y. Wei, R. Feng, Z. Wang, and D. Hu. Enhancing multimodal cooperation via sample-level modality valuation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 27338–27347, 2024.

[40] Y. Wei, S. Li, R. Feng, and D. Hu. Diagnosing and re-learning for balanced multimodal learning. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 71–86. Springer, 2024.

[41] Z. Wen, G. Xu, M. Tan, Q. Wu, and Q. Wu. Debiased visual question answering from feature and sample perspectives. In *Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 34, pages 3784–3796, 2021.

[42] J. Xie, Y. Cai, J. Chen, R. Xu, J. Wang, and Q. Li. Knowledge-augmented visual question answering with natural language explanation. *IEEE Transactions on Image Processing (TIP)*, 33:2652–2664, 2024.

[43] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked attention networks for image question answering. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 21–29, 2016.

[44] S. Yu, J. Guo, R. Zhang, Y. Fan, Z. Wang, and X. Cheng. A re-balancing strategy for class-imbalanced classification based on instance difficulty. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 70–79, 2022.

[45] C. Zhan, P. Peng, H. Zhang, H. Sun, C. Shang, T. Chen, H. Wang, G. Wang, and H. Wang. Debiasing medical visual question answering via counterfactual training. In *Medical Image Computing and Computer Assisted Intervention (MICCAI)*, pages 382–393. Springer, 2023.

[46] Z. Zhou, J. Yao, F. Hong, Y. Zhang, B. Han, and Y. Wang. Combating representation learning disparity with geometric harmonization. In *Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)*, volume 36, pages 20394–20408, 2023.

[47] J. Zhu, Y. Liu, H. Zhu, H. Lin, Y. Jiang, Z. Zhang, and B. Chen. Combating visual question answering hallucinations via robust multi-space co-debias learning. In *Proceedings of the ACM International Conference on Multimedia (MM)*, pages 955–964, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The main claims in the abstract and introduction accurately summarize the key contributions and findings of the paper, and they align with the theoretical and experimental results presented.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: This paper discusses the limitations of the work in the supplementary materials.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[Yes\]](#)

Justification: The assumptions required for our theoretical results are described in the main paper, and proofs are provided in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: We provide detailed experimental settings in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: The code will be released once the paper is accepted.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide detailed experimental settings in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper does not contain statistical experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)

- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: We provided a description of the platform and hardware used for the experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: We adhere to the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: We discuss the potential positive social impacts of the work done in the supplementary materials.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The research involves only publicly available datasets and standard models, posing no significant misuse risks, thus no specific safeguards were necessary.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have cited the relevant papers.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets, thus documentation for such is not applicable.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects, thus the inclusion of participant instructions, screenshots, and compensation details is not applicable.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.

- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.