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Abstract

Language bias in Visual Question Answering (VQA) arises when models exploit
spurious statistical correlations between question templates and answers, partic-
ularly in out-of-distribution scenarios, thereby neglecting essential visual cues
and compromising genuine multimodal reasoning. Despite numerous efforts to
enhance the robustness of VQA models, a principled understanding of how such
bias originates and influences model behavior remains underdeveloped. In this
paper, we address this gap through a comprehensive empirical and theoretical
analysis, revealing that modality-specific gradient imbalances, which originate
from the inherent heterogeneity of multimodal data, lead to skewed feature fusion
and biased classifier weights. To alleviate these issues, we propose a novel Multi-
Margin Collaborative Debiasing (MMCD) framewor which adaptively integrates
frequency-aware, confidence-aware, and difficulty-aware angular margins with
a dynamic, difficulty-aware contrastive learning mechanism to reshape decision
boundaries under biased training conditions. Extensive experiments across multiple
challenging VQA benchmarks confirm the consistent superiority of our proposed
MMCD over state-of-the-art baselines in combating language bias.

1 Introduction

Visual Question Answering (VQA) has emerged as a challenging task that blends computer vision and
natural language processing to provide answers to natural language questions about images. The core
difficulty of VQA models lies in their ability to reason multimodally, combining visual information
from images with language patterns in questions. Recent progress [36} 29, 42 [7, |4, [38]] in deep
learning has enhanced the capabilities of VQA models. However, studies have shown that networks
still suffer from language bias [15}16, (9, |17, 14} 29, 36], where the model learns spurious correlations
between questions and answers. This bias occurs when models overly rely on common patterns
in questions and answers, neglecting crucial visual information. These models often perform well
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Figure 1: (a) The gradient norms across modalities differ considerably, reflecting an imbalance in
how learning signals are propagated. (b) This imbalance leads to modality-specific optimization
deviations, where the question modality of baseline disproportionately accumulates gradient updates,
thereby amplifying its influence. (c) As a result, the fused representation becomes skewed, with
question features occupying a dominant share of the multimodal space and suppressing contributions
from visual features. (d) Furthermore, the classifier weights reveal directional bias: the singular value
spectrum is highly uneven, suggesting that the model primarily aligns with directions that capture
biased cues while overlooking secondary directions that encode meaningful information.

in standard in-distribution (ID) evaluation settings [15] but fail to generalize to out-of-distribution
(OOD) data [1, 13 21]], where the distribution of answers differs from the training set.

To address this challenge, existing approaches can be grouped into three principal paradigms:
ensemble-based [32, 6, [12] 28], [17, [18l, 29, [36], augmentation-based [9} 25, |41} 45], and feature
space-based [I16} 14} 47]] methods. Ensemble-based approaches [32| 16l [12] augment the base model
with auxiliary bias estimators, such as question-only branches, to identify and subtract spurious corre-
lations. Augmentation-based techniques synthesize counterfactual data [9}125] 45] or inject negative
samples [35} 41]] via heuristic rules to rebalance answer distributions. Feature space-based methods
impose angular margins [[16} 4} 47| on the hyperspherical embedding to enforce class separability and
suppress dominant priors. Despite notable progress in bias reduction [17, 4,29} 136]], a fundamental
question remains unexplored: How are language biases formed?

Understanding the genesis of language bias is essential for advancing debiasing techniques. In
this work, we conduct a comprehensive investigation into bias formation. First, we identify a
modality gradient optimization deviation (see Fig. Section [2.1)), where the image modality is
under-optimized and the question modality is over-optimized. Second, we observe a feature fusion
component deviation (see Fig. Section [2.2)), in which question features dominate the joint
representation and image features are marginalized. These phenomena culminate in directional
deviation of the classifier weights (see Fig.[I(d)l Section[2.2), amplifying primary (question-driven)
directions and attenuating secondary (vision-driven) axes.

To mitigate language bias, we examine the efficacy of margin-based objectives, which refine model
training by manipulating the angle between normalized feature and classifier weight vectors on the
unit hypersphere. Despite their empirical success across diverse domains [15, [14} 27, 137, 18] 22} [24]
16, 4, 47]], a fundamental question remains unanswered: Why does margin mechanisms work?
Grounded in our analysis of bias, we show that margin penalties effectively balance modality gradient
optimization (see Section [3.1]), homogenize fused feature components (see Section [3.2), and equalize
classifier weight directions (see Section [3.3), counteracting the skew induced by data heterogeneity.

Motivated by these findings, we propose an adaptive Multi-Margin Collaborative Debiasing paradigm
called “MIMCD”, which aims to reshape discriminative class boundaries. Specifically, the proposed
MMCD incorporates two well-established mechanisms, i.e., Multi-grained Adaptive Margins (MAM)
and Difficulty-aware Contrastive Learning (DCL). Specifically, MAM augments class discriminabil-
ity through three adaptive angular penalties: frequency-aware, confidence-aware, and difficulty-aware
margins. 1) Frequency-aware margins counteract class imbalance by assigning larger angular offsets
to underrepresented answers. 2) Confidence-aware margins leverage logits as a proxy for sample
uncertainty, dynamically tightening boundaries around ambiguous instances. 3) Difficulty-aware
margins employ an instance difficulty estimator constructed from per-sample learning speed and
classification margins to further calibrate penalties at the sample level. Furthermore, DCL empowers
the network to facilitate intra-class compactness and inter-class separation by incorporating the
introduced difficulty model into the supervised contrastive framework. To the best of our knowledge,
this is the first attempt to investigate the formation mechanisms of language bias in VQA.



2 How are Language Biases Formed?

Robust VQA has attracted extensive research interest in recent years, yielding a rich suite of debiasing
techniques. Yet, the origin of language bias itself remains uncharted. In this section, we undertake a
systematic investigation, combining empirical measurements with theoretical insights to trace the full
trajectory by which spurious question—answer priors become entrenched in VQA models.

To begin with, we first establish some task-specific preliminaries. Given an image v € V and
a question ¢ € Q, the goal of VQA is to predict an answer a € A by optimizing a mapping
f:VxQ — RY where f(v,q) is the logits for candidate answers, C = |.A] is the number of
candidate answers. Standard VQA frameworks [17, (18| 14} 47] typically adopt a four-stage pipeline:
(1) image encoder e, (2) question encoder ¢, (3) multimodal fusion module g which fuses unimodal
features to generate joint representations R, (4) classifier ¢ which maps R to answer logits with
learnable weights V. The VQA problem is formulated as:

f(v,q) = clglen(v), €q(q)))- M
Cross-Entropy Loss. The VQA model is trained by minimizing the Cross-Entropy (CE) loss:
Al
exp(fi)
Log =y —a;log . )
i=1 ZL’:‘l exp(f;)

where f; is the logit for the i-th answer. We adopt UpDn [2] as our baseline. The feature fusion
strategy g is the Hadamard product ®, thus R = R, ® R, where R, and R, are question features
and image features, respectively.

2.1 Modality Gradient Optimization Deviation

Generally, models store the critical information for unimodal features captured from training data in

their encoder weights. We denote the weights of e, and e, as W, and W,, respectively. We calculate

the gradient of encoder weights with respect to the loss L:
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where E; and FE), is the question embeddings and image embeddings, separately. The corresponding
Frobenius norms are:
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After experimental exploration we found that ||E 2 < [|Ey]l2 and |25 © Ry l2 > [ 95 @ Ryllo,
which yields || 0)/6 |lF > || || r (see Fig. i In other words, modalltles gradient optlmlzatlon

deviation arises from mherent data heterogeneity. Specifically, question tokens are encoded into
300-dimensional GloVe embeddings [31]] and aggregated via a single-layer GRU [11], whereas visual
inputs are represented by 36 object Vectors of dimension 2048 extracted by a Faster R-CNN [33]].
Consequently, || Eyll> < || E, |2 and || 25 @ Ry |2 >> || 25 @ R4 ||2- This difference in the inherent
properties of the data is the culprit behmd the 1mbalance in modal optimization.

Crucially, gradient deviation can not directly explain language bias, since the final predictions depend
on fused representations R and classifier weights WW. To uncover the true bias formation, we next
analyze (1) the proportion of unimodal components in ‘R and (2) the directional deviation of V.

2.2 Feature Fusion Bias and Classifier Deviation

Fusion feature component deviation. In the previous subsection, we identified the modality gradi-
ent optimization deviation. Then we naturally ponder the question: Which modality predominates
the fusion feature? Since the loss is essentially computed using fusion feature, this composition
deviation determines the model’s reliance on visual versus textual cues at prediction time [26].

Inspired by [19]], given R, R, and R,,, we perform Singular Value Decomposition (SVD) and obtain
the right-singular unitary matrices Vz, Vg, and V. We assess the similarities of the subspace



spanned by the top-i singular vectors in Vx and that of the top-j singular vectors of V¢, and Vg,
respectively. We compute the normalized subspace similarity based on the Grassmann distance as:

Lt Ty T
Vi TV I3

min(i, 5)

w(VRaVRq/RUaZ’vj) = € [Ov 1} (5)

Here, v (+) ranges from O to 1, where 1 indicates a complete overlap of subspaces and 0 signifies
total separation. V" and VRqJ ', Tepresents the top-i and top-j column vectors of V and Vg, /%, .

respectively. As shown in Fig. we observed an important phenomenon: At the start of training,
the question-subspace similarity is substantially lower than that of the image subspace, but
by the mid- and late-training stages it exceeds the image-subspace similarity. These findings
reveal that the fused features are disproportionately governed by the question features, with visual
features playing a subordinate role. Such composition deviation causes the model to assign uneven
importance to modality-specific information when learning from fused features.

Classifier weight direction deviation. In general, the model stores key information about the
classification task captured from the training data in its final classification weights. We perform SVD
on W to extract corresponding singular values . As depicted in Fig. [I(d)] the singular values appear
significantly different. The top singular value greatly exceeds the remaining values, and the bottom
singular value is almost 0. This implies that the classifier predominantly captures feature correlations
along a primary axis, neglecting orthogonal (secondary) directions that may encode complementary
information. To elucidate which features are emphasized, we consider the gradient of Lcg for W:

VwLce = (p — a)R, 6)
exp(fi)
Z_LA:‘l exp(f;) '
representation R. Since R is dominated by the question component (see above), the weight updates
encode question-driven priors, while visual-semantic cues in secondary directions are largely ignored.

where p = Here, the update for the correct class aligns exactly with the fused

3 Why Does the Margin Mechanism Work?

Normalized CE loss for hypersphere embedding. To optimize the instance representation space,
prior works [27, 16} 4} 146l 147]] project features onto a unit hypersphere by L2— normalizing classifier
weights VW and joint representations R. In light of this, the posterior probability is determined by the
angle 6; between W; and R;, and the answer feature space is converted from the Euclidean space to
the angular space. The logit f; for each representation R; is redefined as:

fi= W] R = [Wil[[Ril|s cos 6; = s cos b;, ©)

where |[W;|| = 1, ||R:|| = 1, s is a scaling factor for more stable computation. The bias term is
viewed as zero for simplicity. Thus, the joint representations R are distributed on a hypersphere with
aradius s. The standard CE loss is transformed into a normalized CE loss:

A exp(s cos 6;)
Lnce = ) —a;log ST : ®)

1 exp(scosb;)

=1 Jj=

Rigorously, we theoretically analyze the rationale for spherical space learning and demonstrate its
advantages in the supplementary materials. Recent studies [4} 47] have focused on optimizing the
instance spacing in inverse cosine space by adding a margin m to the clamp angle 6:

A exp(scos(8; + m;))
LMARGIN = Z —a;log — 7, .
Py > j—1 exp(scos(f; +my))

©))

3.1 Modality Gradient Optimization Balance

We analyze how the margin term m modulates encoder gradients by comparing the gradients of Lcg
and Lyargin concerning the fused feature R:

VrLce =W (p—a), (10)
VrLyrarcin = W ((p' — a) ®C), where C = cosm + cot § - sinm, (11)



where p/ = — XU x f! = scos(6; +m;). The margin mechanism thus (1) introduces the scale s

AL exp(f]
to amplify gradient magnitude, (2) perturbs the predicted probabilities p’ to reweight class-wise errors,
and (3) applies an adaptive coefficient C along each logit dimension. As each margin m,; and angle 6;
are independently specified, C differentially scales the alignment of V¢ with the question subvector
‘R versus the visual subvector R,,. Consequently, the margin term rebalances modality-specific
gradient contributions and reduces the gradient deviation (see Fig. [I(b)).

3.2 Fusion Feature Component Uniformity

Fig. illustrates that the question-modality contribution within the fused representation grows
sharply and ultimately surpasses the image-modality contribution, resulting from disproportionate
gradient updates favoring the question stream. In the previous subsection, we demonstrate that the
margin mechanism counteracts this imbalance by harmonizing modality gradient magnitudes, thereby
producing a more uniform multimodal feature composition.

3.3 Classifier Weight Direction Equalization
The margin m mitigates directional bias in YV by promoting a more uniform singular spectrum. The
gradient of Vyy Lyarcin With respect to W is:

VwLmareiy = s((p —a) © C)R. (12)

The first term of C, cosm € [—1, 1], uniformly scales updates along R, attenuating the dominant
(question-driven) component more strongly because of its larger magnitude. We then consider the

second term of C, cot #-sin m. Defining the unit vector W; = T VV\\}} T and U as a unit vector orthogonal
to W, we geometrically decompose R into W and U:
R=WTRW)+ (R—-WTRW))=cosh - W +sinb - U. (13)
The second term of C, cot 8 - sin m yields:
2 0 R
cot@-sinm-chése -sinm - W + cosf -sinm - U. (14)
sin
Here, C;ffee -sinm - W balances the principal component adaptively, while cos 8 - sin m - U injects

a corrective push into the orthogonal subspace. As a result, primary singular values decrease and
secondary singular values increase, equalizing the classifier’s learned directions and enhancing
its ability to capture complementary cues. We provide a more rigorous theoretical proof in the
supplementary materials.

4 Methodology

4.1 Multi-Grained Adaptive Margins

Inspired by margin learning |16} 4], our MAM mechanism aims to address the challenge of chaotic
class boundaries posed by imbalanced data. By considering answer frequency and evaluating instance
difficulty from coarse-grained and fine-grained perspectives, MAM enhances intra-class compactness
and inter-class separation, thus refining a discriminative and robust feature space. Specifically, MAM
integrates three components: frequency-aware, confidence-aware, and difficulty-aware margins.

Frequency-aware margins. As mentioned in [16], imposing larger margin penalties on minority
classes is crucial for driving their representations closer to the respective class centers. Conversely,
majority classes, which naturally have a robust representation, benefit from smaller margin penalties.
Similar to [[16} 4], the frequency-aware margins are defined as:

qt
Aqt n,; + €

met— i T
v Al qt ’
Zj:lnj +e

15)

where mgt is the frequency of answer a,; with question type gt. n; is the occurrence of answer a;
with gt. e is a hyperparameter for avoiding computational overflow. Elasticface [5] demonstrates that
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Figure 2: Illustration of our MMCD for combating language bias. Up: Multi-Grained Adaptive
Margins rectify instance to reshape robust class boundaries. Bottom: Difficult-aware Contrastive
Learning improves intra-class compactness and inter-class separation, carving discriminative feature
space. Right: Multi-Grained Adaptive Margins are driven by frequency and instance difficulty.

fixed margins fail to adapt to the dynamic inter- and intra-class variances in real-world data, thereby
impairing the model’s discriminability and generalization. Following [4], we incorporate random
Gaussian noise into frequency-aware margins 17 f,.cq:

m? = N(m?, o), (16)

i i

where N is the Gaussian distribution with standard deviation ¢, and ¢ is a hyperparameter.

Confidence-aware margins. As mentioned above, sample difficulty significantly affects the dis-
criminative decision margin and class separability. A simple yet effective measure of difficulty is the
prediction logits. We incorporate auxiliary branches dedicated solely to the question and image modal-
ities. These branches promote multimodal integration by deliberately introducing controlled modality
bias. This strategy not only boosts ID performance but also prevents excessive bias correction.

Specifically, we introduce a question-only classifier ¢, and an image-only classifier ¢,. The corre-
sponding logits f, and f, are:

fa(@) = cqleq(@), folv) = culen(v)). (17)

Recognizing the challenges of imbalanced multimodal learning [39,40], inspired by [30], we leverage
the posterior distributions s, and s, as the weights for unimodal logits f, and f,,, respectively.

b b
sq = softmax(Wj - e4(q) + 5)[91&], 8y = softmax(W,, - e, (v) + 5)[97&], (18)
where W, and W, are the parameters of ¢, and ¢, respectively. gt refers to the index of the ground
truth class of the sample. We denote sy = f(v, ¢) as the weight applied to the multimodal logits
f, and 71 as the temperature, which is a hyperparameter. Based on these definitions, the weighted
hybrid confidence f,, and confidence-aware margins m.., s are formulated as follows:
Sf'f+5q'fq+5v'fv

m = y conf = ft m ) 19
f JP—— Meonf = softmax(f,/71) (19)

Difficulty-aware margins. Although logits can simply and intuitively reflect sample difficulty,
their static nature limits the fine-grained mining of intrinsic sample difficulty and makes it difficult
to modulate stubborn decision boundaries. Inspired by [44]], we develop a fine-grained difficulty



model that evaluates instance difficulty from two perspectives: a) Learning Rate: akin to human
learning, where easy samples are learned quickly, and b) Classification Margins: reflecting relative
confidence, where smaller margins indicate closer proximity to the decision boundary. Specifically,
given an instance representation R;, its difficulty D; , after ¢ iterations is estimated as:

VU + C

Dit =«
’ vl +c

+(1

mu; ¢ + ¢

—a)-

mlis+c’

learning speed

classification margins

(20)

where vu; ; and mu; ; denote the prediction variation and marginal gap on the unlearning direction
after ¢ iterations respectively, vl; + and ml; ; denote the prediction variation and marginal gap on the
learning direction separately. « is a hyperparameter to balance the contribution of learning speed
and classification margins. c is a prior parameter to control the sensitivity of D; ; for the variation of
predictions and prevent division by zero. A larger D; ; indicates that the instance is difficult to learn.

We apply Jensen-Shannon (JS) divergence to quantify learning speed. Specifically, we denote p; ¢ as
the prediction distribution of instance R; at ¢ iteration and p; ;1 at ¢ — 1 iteration. The distance v; ;
between p; ;1 and p; ; is defined as:

1 1
§KL(pi,t71 llgi,e) + iKL(pi,t llgie),

(pi,t—1 + pit)/2, KL is Kullback-Leibler (KL) divergence We denote p{’t as the

probability of class j of R; at the ¢ iteration. Obviously, pi p pl -1 < 0 or pl : pit_l >0,7 =

1...C,j # gt indicates unlearning, and p{, — p?}, _; > Oorp], — pm_1 <0,j=1...C,j#gt

indicates learning, C' is the number of candidate answers. Therefore, v, ; and vl; ; can be defined as:

vuie =B vui + (1= ) -vujy, vl =p6-vli 1+ (1—=3)-vl,,
c

Jj=1,j#gt
i

Jj=1,j#gt

which satisfy that v; ; = vu; , + vl; ;. [-] denotes the index operator. p; o = 1/C for all instances. 3
is a hyperparameter used to weight historical and real-time information, thus preserving historical
trends while being sensitive to short-term changes. Furthermore, we innovatively quantify instance
difficulty through classification margins. Specifically, the classification margins m; ; is defined as:

C,j # gt, (23)

where || denotes the absolute value operation. Apparently, pJ’, — pg . > 0 indicates learning,

21

Vit =

where ¢;; =

vuj, = min(pdy — pf 1, 0)vi[gt] + x(pl, — 1l 41, 0)vielil,

(22)

t t ] .
Ul;,t = max(pf,t - pgt 1, 0)vi e [gt] + pz t Pf,t_p O)Ui,t[]]a
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Mig = [ply =Pl G=1..
Pl — pg . < 0 indicates unlearning. Therefore, mu, ; and ml; ; can be defined as:
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(24)

mij , = log

where W is the set of class j satisfying pf-lt —pfft > 0 and (2 is the set of class j satisfying pz’t —p% < 0.
The difficulty-aware margins mg; s ¢ are defined as:

maips = 1 — softmax(D; ), @5)

Margin loss formulation. Ultimately, the various margin terms are aggregated in a cohesive manner
to form the multi-grained adaptive margins mpyam:
mMmMaM = M freq,
mmam(gt] = (1 — A1) - mmam[gt] + A1 - Meont(gt],
mmamgt] = (1 — X2) - mmamgt] + A2 - maifr, epoch > w,
mmam = 1 — Mmam,

(26)



Table 1: Accuracy comparisons with other methods on the VQA-CP v2 and VQA-CP v1 datasets.

Datasets VQA-CP v2 VQA-CP vl

Methods All Y/N Num  Others All Y/N Num  Others
UpDn [2] CVPR’18 39.74 4227 1193 46.05 3796 42779 1241 42.53
RUBI [6] NeurIPS’19  47.11 68.65 20.28  43.18 - - - -
LMH [12] EMNLP’19 52.15 70.29 4410 4486 5573 7859 24.68 4547

GGE-iter [17]] ICCV’21 57.12 8735 26.16 49.77 59.82 8552 2893  46.67
AdaVQA [16] 1JCAT'21 54.02 70.83 49.00 4629 6120 91.17 4134  39.38

COB [20] WACV’23 5753 8836 2881 4927 6098 8741 32.02 46.34
GENB [10] CVPR’23 59.15 88.03 40.05 4925 6274 86.18 4385 47.03
GGD [18]] TPAMI’23  59.37 88.23 38.11  49.82 - - - -
CVIV [29] TMM’24 60.08 88.85 40.77  50.30 - - - -
PWVQA [36] TMM’24 59.06 8826 52.89 4545 - - - -
MMCD Ours 61.34 8893 55.68 4844 63.62 90.72 52.67 41.08

Table 2: Performance of our approach with different network architectures

Methods All Y/N Num Other Increased 1
SAN 26.88 35.34 11.34 24.70 33.24
SAN+MMCD 60.12 86.97 54.62 47.56 o
S-MRL 38.46 42.85 12.81 43.20 2793
S-MRL+MMCD 60.69 88.40 55.44 47.61 ’
LXMERT 48.66 47.49 22.24 56.52 18.29
LXMERT+MMCD 66.95 91.79 63.28 54.39 ’

where w denotes a specific epoch that marks the end of the warm-up stage. The myam are added to
the angle 6; as a margin penalty:

Al exp(s cos(8; + mmam))
Lyviam = Z —a;log A

p =1 exp(scos(0; + mmam))

27)

4.2 Difficulty-aware Contrastive Learning

We further propose the DCL mechanism that integrates our instance difficulty model into a supervised
contrastive paradigm [23], which dynamically emphasizes hard samples by difficulty-adaptive weight-
ing, effectively enhancing intra-class compactness and inter-class separation to form a discriminative
feature space. Specifically, we consider a mini-batch B = {(z1, a1), (72, a2), ..., (2|5, ap)} of
Lo—normalized joint representations R and corresponding answers a;. For each anchor feature
with difficulty D, at ¢ iteration, the positive set P; = {i € B | a; = a;,i # j} contains indices of
all non-anchor samples with identical answers, and the negative set N; = {i € B | a; # a;} includes
indices of samples with different answers. The DCL loss is formulated as:

-1 exp(Dyp ¢) exp(xT:vp/Tg)
LpcL = — log ’ ! ; (28)
j%; | P51 p%;j Yo nen, eXP(Dnt) exp(z] n /T2)

where temperature 7 is set to 1.0.

4.3 Training and Optimization

Based on the above analyses, the comprehensive training objective of the proposed MMCD approach
encompasses a combination of various loss functions, i.e.,

Lce + Lvam + A3Lsupcons  €poch < w,

29
Lce + Lvam + A3LpcL,  epoch > w, (29)

LrotaL = {

where Lgypcon is the standard supervised contrastive loss.



Table 3: Ablation experiments for different modules of the MMCD model on VQA-CP v2.

Frequency-aware Confidence-aware Difficulty-aware

Methods Margins Margins Margins DCL All
Baseline 39.74
Variant-1 v 59.44
Variant-1I v v 59.74
Variant-III v v v 61.09
Variant-1V v 41.09
MMCD (Ours) v v v v 61.34
;\262 61.34 a5 ;\:62 ;\:62
el m»V\.ﬂ;" <6l <6l
Q Q Q
560 60.82 60.90 g 60 g 60
g5 259 g5
58 0.105 1.0 1.5 2.0 58 125 50 7.5 10.0 58 4 5 6 7 8
(a) A1 x 10 (b) A2 x 100 (©) A3

Figure 3: Comparison of Accuracy on the VQA-CP v2 dataset with different parameter configurations.

5 Experiments

5.1 Datasets & Implementation Details

We select various OOD benchmarks to assess the robustness of models against real-world biases, such
as VQA-CP v2, VQA-CP vl [1]]. All experiments adopt the standard evaluation metric [3]. Further
details on the experimental setup and implementation can be found in the supplementary materials.

5.2 Comparisons with State-of-the-Arts

As shown in Table|l| we report both the overall accuracy and the per-category performance across
question types, including “yes/no”, “number”, and “other”. Compared to the second-best method,
MMCD achieves gains of 1.26% and 0.72% in overall accuracy on the VQA-CP v2 and VQA-CP vl
datasets, respectively. Notably, MMCD achieves state-of-the-art performance on the “yes/no” and
“number” categories, which are typically more susceptible to language priors. In particular, MMCD
yields a substantial 2.79% improvement in the “number” category on VQA-CP v2, demonstrating its

strong ability to mitigate language bias and enhance reasoning over numerical questions.

5.3 Extensive Experiments with Different Architectures

We further evaluate the generalizability and robustness of MMCD across additional architectures,
including SAN [43], S-MRL [6], and LXMERT [34]. As shown in Table E], the MMCD approach
consistently outperforms the corresponding baselines, demonstrating strong adaptability and model-
agnostic performance across diverse network designs. In particular, applying MMCD to LXMERT, a
widely adopted vision-language pre-trained model commonly used in various multimodal downstream
tasks, yields a notable 18.29% performance improvement, further highlighting its effectiveness in
enhancing a broad range of model families.

5.4 Ablation Studies.

To assess the impact of each component in the proposed MMCD method, we perform a series of
ablation experiments with various variations. The comparison results of the ablation study are shown
in Table[3] Specifically, Variant-I outperforms baseline by 18.02%. The substantial performance
enhancement demonstrates its critical function in mitigating language biases resulting from class
imbalance by utilizing prior information. Furthermore, by incorporating confidence-aware margins,
Variant-II achieves 0.3% performance gains compared to Variant-I, suggesting that the simple
multimodal logits strategy effectively utilizes the inherent sample complexity and results in the
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Figure 4: Visualization results of MMCD in robust reasoning and bias mitigation.

development of robust and discriminative feature spaces. With the integration of Difficulty-aware
margins, Variant-III combines into a complete multi-grained adaptive margins mechanism, making
a significant contribution to shaping a more structured and organized spherical representation space.
Subsequently, Variant-I'V emphasizes the pivotal role of the DCL mechanism in enhancing intra-
class compactness and inter-class separation. Eventually, our full MMCD model achieves the best
performance, demonstrating the effectiveness and availability of the designed components. More
ablation analysis can be found in the supplementary materials.

5.5 Parameter Analysis.

As shown in Fig. 3] we systematically evaluate MMCD under a comprehensive range of hyperpa-
rameter settings. Our study focuses on three key hyperparameters: \; and A, in Eqn. (26)), and A3
in Eqn. (29). Across all combinations, accuracy fluctuates by no more than 1.07%. Such minimal
variance highlights MMCD’s robustness to hyperparameter selection, significantly reducing the need
for exhaustive tuning. Moreover, this stability suggests that MMCD can be readily transferred to new
VQA benchmarks or application domains without extensive reconfiguration. Overall, the insensitivity
to parameter settings not only simplifies deployment but also confirms MMCD’s strong generalization
capability in mitigating language bias. More parameter analysis can be found in the supplementary
materials.

5.6 Qualitative Analysis.

As shown in Fig.[4] the MMCD method not only accurately localizes the correct area but also exhibits
exceptional performance in removing bias. By enforcing a well-structured feature space, our approach
facilitates the learning of highly discriminative features and the extraction of high-quality multimodal
information. This structured representation enhances the model’s ability to identify and leverage key
visual cues, which is critical for robust performance in VQA tasks.

6 Conclusion

In this paper, we investigated the origin of language bias in VQA and elucidated why margin-based
mechanisms effectively mitigate it. Empirical evidence shows that multimodal data heterogeneity
induces gradient optimization imbalances, leading to biased feature fusion and classifier weight devi-
ations. We provide theoretical support from both gradient and spectral perspectives, demonstrating
how margin-based objectives counteract these effects. Building on these insights, we propose MMCD,
an adaptive multi-margin framework that incorporates sample frequency and difficulty to reshape
decision boundaries and enhance feature discrimination via difficulty-aware contrastive learning.
Extensive experiments confirm the superior robustness of MMCD, with potential implications for
broader challenges such as shortcut learning, long-tail recognition, and class imbalance.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately summarize the key
contributions and findings of the paper, and they align with the theoretical and experimental
results presented.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper discusses the limitations of the work in the supplementary materials.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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paper, and proofs are provided in the supplementary materials.
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All the theorems, formulas, and proofs in the paper should be numbered and cross-
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All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experimental settings in the supplementary materials.
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: The code will be released once the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide detailed experimental settings in the supplementary materials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This paper does not contain statistical experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided a description of the platform and hardware used for the experi-
ments.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive social impacts of the work done in the
supplementary materials.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research involves only publicly available datasets and standard models,
posing no significant misuse risks, thus no specific safeguards were necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the relevant papers.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets, thus documentation for such is
not applicable.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects,
thus the inclusion of participant instructions, screenshots, and compensation details is not
applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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