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ABSTRACT

Music is inherently hierarchical due to keys and variations of note sequences.
These dependencies need to be captured by the metric of choice to learn an ap-
propriate representation space. Although Euclidean geometry is frequently used
to embed music, it is clearly unable to capture the hierarchical structures. In this
paper, we propose to learn hyperbolic representation spaces for music using Vari-
ational Autoencoders with a Poincaré ball as a natural alternative to Euclidean
geometry. The resulting latent space is interpretable, reflects keys and musical
richness, and allows for meaningful interpolations due to a novel generalization
of Spherical Linear Interpolation to Riemannian manifolds. Empirically, we com-
pare our contribution to standard Euclidean representations and observe that the
latter fall short in terms of interpretation and reconstruction.

1 INTRODUCTION

In the wake of foundation models, the generation of music has recently become a topic of interest to
a constantly growing community. Over the last few years, several models have been proposed to gen-
erate high-quality audio samples that create desired pieces of music by conditioning the generation
process on annotations like genre or artist (Dhariwal et al., 2020), language prompts (Agostinelli
et al., 2023; Bhandari et al., 2025), or melodic inputs (Copet et al., 2023).

An alternative to controllable music generation is offered by variational autoencoders (VAEs)
which represent music in compact latent spaces (Roberts et al., 2018; Brunner et al., 2018;
Caillon & Esling, 2021). New compositions can be generated by modifying latent representa-
tions, allowing for a rather direct form of control. However, VAEs operate on Euclidean ge-
ometry and rely on the assumption that the data manifold in input space is intrinsically flat.

Figure 1: Two pairs of melodies encoded in the
Poincaré ball, demonstrating the musical richness
depending on the distance to origin while the keys
vary consistently with the angles θ1 and θ2. The
dotted lines show the newly proposed interpola-
tion scheme R-SLERP.

When this assumption is violated, representa-
tions in the latent space will necessarily be dis-
torted. This follows from Gauss’s Theorema
Egregium, stating that the Gaussian curvature
of a surface is invariant under isometric map-
pings (Gauss, 1828). Consequently, a mapping
onto another manifold with a different curva-
ture cannot be an isometry.

In this paper, we provide evidence that music
is naturally hierarchical. Intuitively, hierarchi-
cal relations between pieces of music emerge
because the combinatorial number of possible
ways to extend musical sequences grows with
the number of the involved unique notes: A
melody, consisting of a few notes, can be ex-
tended in multiple ways by adding only one
additional note, whereby the original melody
would be contained as a subset of every pos-
sible extension. This observation renders Eu-
clidean embeddings of music in general inap-
propriate and instead gives rise to hyperbolic
geometry that suggests itself for embedding hi-
erarchical structures (Nickel & Kiela, 2017).
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To embed music in hyperbolic space, we develop a music VAE with a Poincaré ball as latent space.
Figure 1 illustrates how the described hierarchy is organized on the ball. Sequences with only a few
notes occupy higher levels of the hierarchy and are embedded close to the origin. Musical pieces
with more notes and hence a richer structure are located farther away at lower levels, such that
the growth of the hierarchy aligns with the expansion of the hyperbolic space. Moreover, musical
keys spread out in distinct directions from the origin, preserving their relations known from music
theory and allow for semantic interpretation. For example, changing the key of a composition can
be realized by a rotation in latent space, where the angle is dictating the difference between original
and target key.

Exploiting this natural embedding becomes possible by a generalization of spherical interpolations
(SLERP, Shoemake (1985)) to Riemannian manifolds. Our contribution allows for the first time
to compute interpolation paths with respect to different levels of hierarchies in hyperbolic spaces,
leading to smooth and meaningful transitions of keys and musical richness for music generation. In
general, R-SLERP offers a volume-controlled interpolation scheme on Riemannian manifolds.

We empirically demonstrate the utility of hyperbolic music representations by comparing VAEs
with hyperbolic and Euclidean latent spaces. To demonstrate the generalisability of the approach,
we perform experiments on both symbolic and and raw waveform data. The results show that the
hyperbolic model outperforms its Euclidean peers in terms of both interpretability and reconstruction
performance.

2 RELATED WORK

Manifold-aware representations can be obtained by analysing the mappings between input and latent
spaces for distortions. For example, Arvanitidis et al. (2018) propose a manifold-aware interpreta-
tion of latent spaces of VAEs by deriving a stochastic Riemannian metric from the encoder. Similarly,
deterministic Riemannian metrics for measuring distances in latent spaces of VAEs and generative
adversarial networks (GANs) can be derived from the generator models (Chen et al., 2018). While
these approaches improve the interpretability of latent spaces, the spaces are intrinsically Euclidean
during model training.

Alternatively, colleagues propose to utilize prior knowledge on non-Euclidean structures to embed
data on specific (Riemannian) manifolds like Poincaré balls (Nickel & Kiela, 2017). A key publica-
tion by Nagano et al. (2019) introduces the Wrapped Normal distribution as a generalization of the
Normal distribution to hyperbolic geometry, allowing to learn VAEs with hyperbolic latent spaces.
Mathieu et al. (2019) and Ovinnikov (2019) develop alternative hyperbolic VAEs on the Poincaré
ball model, which differ in the formulation of the optimization objective and both demonstrate the
fit of hierarchical data to the geometry. Going beyond latent spaces with constant curvature, Skopek
et al. (2020) propose VAEs on product manifolds, composed of component spaces with constant
curvature. Building on these approaches, we develop a VAE that embeds music on a Poincaré ball.
Moreover, we generalize SLERP to Riemannian manifolds to allow for interpolations that respect
the organization of hierarchies in hyperbolic space, also giving rise to new applications of the previ-
ously proposed models.

VAEs are frequently used to learn smooth latent spaces for music (Fabius et al., 2015; Roberts
et al., 2018) with the goal of obtaining interpretable and disentangled latent spaces. For example,
Brunner et al. (2018) propose to train classifiers alongside a VAE that act on only a subspace of the
latent representation to yield a disentangled encoding of the style of a composition. Consequentially,
disentanglements of static and dynamic features (Li & Mandt, 2018), pitch and rhythm (Yang et al.,
2019), or chords and texture (Wang et al., 2020b) have been studied with altered VAEs. While these
approaches successfully disentangle certain attributes of music by supervision or tailored changes
in model architecture, they all rely on Euclidean geometry. By contrast, we show in this paper
that embedding music in hyperbolic space naturally yields interpretable representations of keys and
musical richness without supervision and, hence, consider our approach orthogonal to this line of
prior work.

Nevertheless, there already exist a few publications that deal with non-Euclidean representations of
music. For example Nakashima et al. (2022) propose a hyperbolic VAE to embed sounds of single
notes, played with different instruments, and Huang et al. (2023) propose a hyperbolic transformer

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

that makes use of hierarchical structures within individual pieces of music, such as the relations
between beats, bars, and phrases. Chen et al. (2022) study a flat manifold as latent space by regula-
rising its metric to be a scaled version of the Euclidean metric. While this improves the smoothness
of the latent space, the space remains effectively Euclidean. By contrast, we focus on capturing non-
Euclidean structures in music in form of hierarchies to reduce distortions of distances, ultimately
aiming at interpretable latent spaces for music.

3 RIEMANNIAN GEOMETRY

In the following, foundational concepts of Riemannian geometry are briefly reviewed. For a more
exhaustive description we confer to Lee (2018), which we also follow notation-wise.

A Riemannian manifold is a smooth, differentiable manifold M which is equipped with a Rie-
mannian metric g, together forming the tuple (M, g). At each point z ∈ M there exists a Eu-
clidean space, called the tangent space TzM, of the same dimensionality as the manifold that
lies tangential to it. The Riemannian metric g defines an inner product on each tangent space
gz = 〈·, ·〉z : TzM×TzM→ R. This inner product gives rise to the norm: ‖ · ‖z =

√
〈·, ·〉z .

Distances and geodesics Assume a curve γ(t) onM, where t ∈ [0, 1]. For each point along the
curve, its velocity is defined as γ′(t). The norm of the velocity vector ‖γ′(t)‖γ(t) can be integrated
to calculate the length of the curve by

L(γ) =

∫ 1

0

‖γ′(t)‖γ(t) dt. (1)

The infimum of the lengths of all curves connecting two points z and y onM is considered their
distance, formally defined as

dist(z,y) = inf
γ

L(γ) with γ(0) = z, γ(1) = y. (2)

Curves that locally minimize distances are called geodesics. While such curves can generally be
defined with different parametrizations, geodesics are parametrized such that their speed ‖γ′(t)‖γ(t)
is constant. If all geodesics of a manifold can be extended to any t ∈ R, the manifold is geodesically
complete. All Riemannian manifolds considered in this work, i.e. the Poincaré ball, are known to
be geodesically complete (Lee, 2018).

The infimum in equation 2 is always realized by some geodesic (Lee, 2018). Intuitively, geodesics
can be seen as a generalization of straight lines to curved surfaces. In Euclidean space, where the
curvature of space is zero, geodesics appear as straight lines in the conventional sense.

Exponential and logarithmic map The exponential map expz defines a mapping of velocity
vectors v that live in the tangent space TzM to a corresponding point on the manifold. This is done
by traveling along the unique geodesic that passes through z at t = 0 with velocity v for a unit time
interval, denoted as γ(z,v):

expz : TzM→M, v 7→ expz(v) = γ(z,v)(1). (3)

As the geodesic γ(z,v) has constant speed ‖γ′
(z,v)(t)‖γ(z,v)(t) = ‖v‖z ∀ t, the (Riemannian) distance

between z and expz(v) can be calculated as

dist(z, expz(v)) = L(γ(z,v)) =

∫ 1

0

‖γ′
(z,v)(t)‖γ(z,v)(t) dt =

∫ 1

0

‖v‖z dt = ‖v‖z. (4)

This shows that the exponential map preserves distances with respect to z when mapping from TzM
toM.

The logarithmic map logz(y) is the inverse of the exponential map. For two points z and y on the
manifold, it calculates the velocity v in tangent space TzM that the connecting geodesic γ(z,v) must
have to reach y in unit time:

logz = exp−1
z :M→ TzM, y 7→ logz(y) = log−1

z (y) = γ′
(z,y)(0). (5)

As the exponential map, the logarithmic map preserves distances with respect to z.
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(a) Poincaré ball (with curvature c < 0) (b) Hierarchy of note combinations

Figure 2: Left: Tessellation of the Poincaré ball of congruent triangles. Right: Hierarchical relations
between notes of music.

Parallel transport Parallel transport is an operation which transports velocities v from TzM to
TyM while keeping the angle between v and its transported variant ṽ constant. Technically, the
parallel transport PT along a geodesic γ(z,v) is written as PTz→y : TzM → TyM. The length
of a velocity vector v ∈ TzM is preserved under parallel transport, i.e. ‖v‖z = ‖PTz→y(v)‖y .
The inverse mapping of PTz→y transports velocities from TyM back to TzM and is denoted as
PT−1

z→y = PTy→z .

Poincaré ball The most important invariant of Riemannian manifolds is the curvature c, which
describes how the metric influences the space around a point. For example, values c > 0 contract
the space and result in spherical geometry, c = 0 is the flat Euclidean case and c < 0 expands
the space, yielding hyperbolic geometry. Different isometric models of hyperbolic geometry are
available, the Poincaré ball is the one we utilise in this work. The Poincaré ball with d dimensions
and curvature c is defined as Pd

c = (Bdc , gcP(z)). Here, Bdc is the open ball {z ∈ Rd | ‖z‖2 < R}
with radius R = 1/

√
c, the Riemannian metric gcP(z) is defined as

gcP(z) = (λP
z)

2gE with λP
z =

2

1 + c‖z‖22
(6)

where gE is the Euclidean metric (Mathieu et al., 2019). The exponential map, the logarithmic map
and distance function for the Poincaré ball are given in Appendix A.

4 LEARNING TO REPRESENT MUSIC

4.1 MOTIVATION

Hierarchically structured data is commonly represented in form of trees. When such a tree is em-
bedded in a metric space, the nodes and leafs become naturally denser with increasing levels of
hierarchy. Embedding a tree in a Euclidean space renders the leafs difficult to separate if they are
deep enough in the tree because the distance between them decreases, while the space does not ex-
pand. By contrast, in hyperbolic geometry, the space expands under the influence of the negative
curvature and directly counteracts large tree widths by providing more space to deeper levels and,
hence, leafs become easier separable (Nickel & Kiela, 2017). Figure 2a visualises this growth by
showing a tessellation of the Poincaré ball of congruent triangles: The space expands with respect
to the distance to the origin and culminates in infinite distance at the boundary. We now show that
embedding music in a Poincaré ball offers a direct (semantic) interpretation of the representation.

Musical compositions are not randomly structured, they adhere to different paradigms and ideas
about structures and tonal combinations. Clearly, not all notes sound harmonic together.1 Choosing
one note influences the choice of other notes being played simultaneously. The resulting ’harmonic’
hierarchy is visualized in Figure 2b and resembles a tree-like structure as the choice of the third note
also depends on the former two and so forth. Playing more notes together while staying harmonic

1We do not differentiate between harmonic consonance or dissonance and simply refer to harmonic.
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constitutes an increase in musical richness, which we, together with the key of the music, consider
essential ingredients of latent representations of music. In Figure 1 and 2b, the musical richness
increases with the distance to the origin (Figure 1) and vice versa with increasing tree depths (Figure
2b). Hence, there is a direct relation between n-note chords and their embedding in a Poincaré ball.

4.2 LEARNING MUSIC VAES WITH POINCARÉ BALLS

Variational autoencoders (Kingma & Welling, 2014; Rezende et al., 2014) aim at modeling data gen-
erating processes in form of a prior p(z) and a conditional distribution p(x|z) to generate instances
x given their latent representation z. The encoder-decoder architecture learns the variational poste-
rior q(z|x) (encoder) and p(x|z) (decoder) by optimizing the ELBO criterion, a lower bound of the
marginal log-likelihood.

In conventional VAEs, the latent space and all computations and distributions are assumed to be
Euclidean. Following our argumentation, we now sketch how to define a VAE with a hyperbolic
latent space for hierarchical structures such as music (Mathieu et al., 2019; Nagano et al., 2019). To
parametrize the variational posterior, the encoder needs to output a velocity vµ at T0M leading to a
mean µ onM along with a variance σ. We denote the origin on the manifoldM by a subscript 0.
Sampling can then be performed via a Wrapped Normal distribution (Nagano et al., 2019).

Samples are drawn fromWN (µ, σ) as follows: A velocity vσ is sampled from a Gaussian defined
in the tangent space at the origin. This sampled velocity is transported into the tangent space at
the mean µ of the distribution via PT0→µ(vσ), resulting in ṽσ . Finally, the transported velocity is
mapped onto the manifold via expµ(ṽσ) to obtain the sample z. Summarizing, this process can be
written as

vσ ∼ N (0, σ) ∈ T0M, ṽσ = PT0→µ(vσ) ∈ TµM, z = expµ(ṽσ) ∈M. (7)

The result of log0(z) is then decoded in standard fashion to produce x̂.

The hyperbolic VAE with Poincaré ball is optimized by minimizing an adapted version of the ELBO
that approximates the KL-divergence between variational posterior and prior as an unbiased Monte
Carlo estimate, calculated as

L(x, x̂, µ, σ) = RE(x,y) + β

 1

N

N∑
j=1

log q(zj |x)− log p(zj)

 (8)

with

q(z|x) =WN (µ, σ · I), p(z) =WN (0, I), zj ∼ q(z|x) for j = 1, ..., N (9)

where RE is the reconstruction error, q(z|x) is the variational posterior, and p(z) is the prior. A
hyperparameter β controls the scaling of the KL divergence term to balance reconstruction quality
and latent space regularization, following the β-VAE approach (Higgins et al., 2017). Appendix B
shows the log-probability of the Wrapped Normal.

To address the sequential structure of music, our encoder network is a bidirectional LSTM with
two layers (Hochreiter & Schmidhuber, 1997; Schuster & Paliwal, 1997), following the architecture
from Roberts et al. (2018) and the decoder a two-layer unidirectional LSTM.

4.3 RIEMANNNIAN SLERP

Recall that distance to the origin is proportional to hierarchy levels in embeddings on Poincaré balls.
We now aim to generate interpolations on the ball that change linearly in the distance to the origin
along the interpolation path. That is, two instances on the ball are interpolated in a way that the
hierarchy level of the interpolation curve changes at a constant rate and is guaranteed to stay within
the hierarchy levels of its start and end point.

We propose to construct interpolation paths in the tangent space at the origin of the Poincaré ball.
Latent representations of the original instances z1, z2 ∈ Pd

c are mapped to velocities v1,v2 ∈ T0Pd
c ,

which are used to compute the interpolated velocities vint(t) ∈ T0Pd
c . We map the velocities back

onto the Poincaré ball to obtain the corresponding interpolation points zint(t) ∈ Pd
c . The map

5
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between Pd
c and T0Pd

c is carried out using exponential and logarithmic maps (cf. Section 3) that
preserve distances with respect to their anchor points. Consequentially, the geodesic distances of the
interpolated points zint(t) to the origin will change linearly with t, given that such behaviour holds
for vint(t).

In general, interpolations by straight lines in Euclidean space or geodesics on manifolds fail to
preserve the norm towards the origin. We thus resort to SLERP (Shoemake, 1985) to render the norm
of the rotating vectors constant. Therefore, interpolations between two velocities v1,v2 ∈ T0Pd

c are
calculated as follows. The direction of the interpolated velocity v̂int(t) is determined independently
of its magnitude by normalizing v1 and v2 to unit length. Given the two unit vectors v̂1 and v̂2,
SLERP is defined as

SLERP(v̂1, v̂2; t) =
sin((1− t)θ)

sin(θ)
v̂1 +

sin(tθ)

sin(θ)
v̂2 with θ = arccos (v̂1 · v̂2). (10)

We now generalise this approach to Riemannian manifolds and add a scaling component. The result-
ing Riemannian spherical linear interpolation (R-SLERP) is derived as follows.

Firstly, note that changing v̂1 and v̂2 from a Euclidean space E to a Riemannian manifold
M has several implications. Viewing E from differential geometry, the tangent space TM
does not depend on v̂1 or v̂2, but is globally identified with E. However, on Riemannian
manifolds, TzM depends on z and the Riemannian volume element ωg changes accordingly.
As this change would displace linear interpolations, we need to control the volume element.

Figure 3: Interpolation paths obtained with R-
SLERP compared to interpolation along geodesic
on P2 and in T0P2.

The Riemannian volume form ωg, given in lo-
cal coordinates of a manifold M of finite di-
mension d, is defined as

ωg =
√
det(gij)dz

1 ∧ . . . ∧ dzd, (11)

where gij are the components of g in these co-
ordinates. A complete, simply connected Rie-
mannian manifold with constant sectional cur-
vature is isometric to one of the model spaces,
i.e. R, S,P, due to the Killing-Hopf theorem (cf.
12.4 Lee (2018)). Recall that the model spaces
are isotropic, furthermore, we can assume an
origin.

Thus, we can focus on dist(0, z) to control ωg

and do not need to care about the exact value
of ωg to maintain the exact positions of interpo-
lated values. Note that the norm ‖vz‖ ∈ T0M
can be used to control the distance of z to the origin since ‖vz‖ = dist(0, exp0(vz)) = dist(0, z)
(see equation 4).

We now make use of this distance preserving property of the exponential map to map from TzM 7→
M. That is, we draw the calculation of the interpolation into T0M and obtain vi = log0(zi) for
i = 1, 2. The resulting velocities v1,v2 ∈ T0M are now used to compute the interpolated velocities
vint(t) ∈ T0M.

Normalising v1,v2 to unit length allows the application of vanilla SLERP in T0M, resulting in
v̂int(t). As vanilla SLERP uses unit vectors, we calculate

α(t) = (1− t)‖v1‖+ t‖v2‖ (12)

to be able to scale linearly between the different-norm vectors. The rescaled vint(t) = α(t)v̂int(t) is
then pushed back onto the manifoldM, resulting in the interpolated point zint(t) given by

zint(t) = exp0(vint(t)). (13)

Algorithm 1 summarizes the operations for R-SLERP. The blue curves in Figure 3 exemplarily show
the interpolation paths obtained by the proposed method on a Poincaré ball and in the tangent space
at its origin, respectively.
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Algorithm 1 Riemannian-SLERP (R-SLERP)

Require: latent representations z1, z2 ∈ Pd
c , parameter t ∈ [0, 1]

1: v1 ∈ T0Pd
c ← log0(z1), v2 ∈ T0Pd

c ← log0(z2)
2: v̂1 ← v1

∥v1∥ , v̂2 ← v2

∥v2∥
3: v̂int(t)← SLERP(v̂1, v̂2; t)
4: α(t)← (1− t)‖v1‖+ t‖v2‖
5: vint(t)← α(t)v̂int(t)
6: zint(t) ∈ Pd

c ← exp0(vint(t))
7: return zint(t)

5 EXPERIMENTS

Data We run experiments on three datasets with different modalities: For symbolic music we
use the POP909 (Wang et al., 2020a) and MIDICAPS (Melechovský et al., 2024) datasets, for raw
waveform the MAESTRO (Hawthorne et al., 2019) dataset.

POP909 consists of 909 piano versions of popular songs in MIDI format with a total duration of
60 hours, the annotations include musical keys. MIDICAPS is based on the Lakh MIDI data (Raffel,
2016) and consists of 168,407 MIDI files. MAESTRO (Hawthorne et al., 2019) contains 1,276
recorded piano performances with a total duration of 199 hours in raw waveform.

Both symbolic music datasets are split into 70% training, 15% validation and 15% test sets. The
data is preprocessed from piano rolls into pseudo wave form, following Prang & Esling (2021). We
use the signal-like representation for VAE inputs and outputs and resort to piano rolls for evaluations
and visualizations. For MAESTRO, we transform the raw audio into Mel spectrograms and we use
the original train, validation and test splits. Confer Appendix C.1 for details.

Models Recall that prior work on VAEs for music primarily focuses on optimized architectures
(Roberts et al., 2018; Caillon & Esling, 2021) or disentanglements of certain characteristics (Brunner
et al., 2018; Li & Mandt, 2018; Yang et al., 2019; Wang et al., 2020b), while relying entirely on
Euclidean geometry. Chen et al. (2022) propose a regularized Riemannian metric to approximate a
scaled Euclidean geometry, which effectively yields a flat latent space with improved smoothness.
As we aim at comparing hyperbolic against Euclidean geometry for representing music, all of these
previously proposed contributions are orthogonal to our study and may further improve results.

To have a principled setup, we compare of a VAE with a Poincaré ball as latent space (P-VAE) with
a VAE operating on Euclidean geometry (E-VAE). As the implementations of VAEs on Riemannian
manifolds naturally differ from the default case, we additionally implement a standard Euclidean
VAE (Kingma & Welling, 2014) and compare it to the E-VAE on POP909 across ten runs. The
performances do not differ significantly, which is expected, as they are mathematically equivalent.

We use latent spaces of dimensionality 128 for the experiments on POP909 and MAESTRO, and
512 for MIDICAPS. For hyperparameters that are integral for the effect of the latent space geometry,
concerning β-values and curvature, grid searches are conducted, cf. Appendix C.2.

Results We evaluate reconstruction performance on the test splits of all datasets over ten repeti-
tions. Table 1 and 2 show the results. Values in bold face indicate significant results according to
Welch’s t-test at p < 0.05.

The P-VAE outperforms the E-VAE significantly on POP909 (F1, p < 0.001), MIDICAPS (F1,
p = 0.046) and MAESTRO (MSE, p < 0.001). These results demonstrate impressively that
hyperbolic latent spaces capture the internal structures of music data more effectively than Euclidean
geometry. This indicates that the match of hyperbolic geometry with music holds for symbolic music
and raw audio, and irrespectively of the size of data and latent space.

In terms of computational efficiency, utilising a hyperbolic latent space increases the runtime per
epoch by approximately 7-40%. Further analysis of training times and hyperparameter sensitivities
are available in Appendix C.3 and C.2.
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Table 1: Reconstruction performance on symbolic music. We report means and standard deviations.

Model F1-score (%) Precision (%) Recall (%)
POP909 E-VAE 88.76±0.18 90.88±0.14 86.73±0.25

P-VAE 90.90±0.06 92.15±0.11 89.68±0.08

MIDICAPS E-VAE 97.68±0.05 98.51±0.04 96.86±0.06

P-VAE 97.74±0.08 98.82±0.05 96.68±0.11

Table 2: Reconstruction per-
formance on MAESTRO.

Model MSE
E-VAE 27.60±0.20

P-VAE 25.13±0.11

UMAP projection To show the natural organization of musical
keys in hyperbolic space, latent representations of the P-VAE are
visualized with UMAP (McInnes & Healy, 2018). We sample 2,000
instances from the POP909 test set and use their embeddings of the
best performing model as inputs. The set of musical keys of these
instances consists of every second major key in the circle of fifths
(cf. Figure 4b), implying that the groups of notes associated with
the keys differ by at least two notes. Embedding similarities are
calculated as geodesic distances directly on the manifold.

Figure 4a shows that the keys are well separated in the hyperbolic latent space. Interestingly, the
ordering of keys matches exactly their order in the circle of fifths. It becomes evident that the model
learns the dependencies between keys known from music theory without supervision, meaning that
the relations between musical pieces which are based on different sets of notes are preserved. The
circular arrangement of keys is centered at the origin of the Poincaré ball, suggesting that R-SLERP
enables meaningful transitions of keys, as the method is based on vector rotation around the origin.

(a) Latent space of the P-VAE (b) Circle of fifths

Figure 4: Left: UMAP visualization showing the latent space of the P-VAE, based on instances with
major keys from the set {C, D, E, Gb, Ab, Bb} (mirrored and rotated). Right: The musical circle of
fifths. The keys are perfectly aligned with the naturally learnt structure of the model.

Interpolation with R-SLERP To illustrate the hierarchical organization of music in hyperbolic
latent spaces, interpolations between instances from POP909 are performed using the best perform-
ing P-VAE model. We compare three different interpolations: (a) The piano rolls in Figure 5a are
computed using our R-SLERP as described in Section 4.3. (b) For comparison, we interpolate along
the connecting geodesic, the canonical approach to interpolation on manifolds (Arvanitidis et al.,
2018; Chen et al., 2018). (c) Finally, the encoding of musical richness as distance to the origin is
demonstrated through an additional interpolation from the origin towards an instance.

The geodesic interpolation in Figure 5b decreases the richness of the piano rolls towards the midpoint
of the interpolation path that is only scarcely occupied by notes, corresponding to a higher level of
hierarchy. Geodesics on the Poincaré ball are curved inwards, thus being unable to consistently vary
hierarchy levels. Complementing this observation, the interpolation from origin to instance in Figure

8
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(a) Interpolation between two instances using R-SLERP.

(b) Interpolation between two instances along geodesic.

(c) Interpolation from origin to instance along geodesic.

Figure 5: Exemplary interpolations. Vertical lines mark the beginning of new piano rolls.

5c shows an increasing musical richness over time, whereby the origin corresponds to the almost
’empty’ song. In contrast, the piano rolls obtained using R-SLERP in Figure 5a are distinguished by
consistent musical richness along the entire interpolation path. By design, R-SLERP is guaranteed
to stay within the hierarchical levels of the two instances and decreases/increases complexity linearly
along the path, thus constituting an appropriate interpolation scheme for music.

6 CONCLUSION

Utilising hyperbolic geometry, we proposed to design latent spaces that explicitly reflect hierarchies
in music. We generalized spherical linear interpolation to Riemannian manifolds to allow for mean-
ingful interpolations. Empirically, we observed that hyperbolic music representations outperform
Euclidean counterparts in terms of reconstruction and interpretation.

While we demonstrated our approach on both symbolic and raw waveform data, the benefit for other
datasets (e.g., recordings with multiple instruments or singing) needs yet to be confirmed. Another
limitation is the exploration of downstream tasks, which we left for future work in order to maintain a
clear focus and principled approach. As the increase in structure in the latent space already improves
reconstruction, we expect excellent performances of hyperbolic approaches in a variety of tasks
beyond music generation. The hyperbolic embeddings capture the internal structure of music very
well, rendering our approach a natural choice for applications that are based on similarities such as
classification, recommendation, retrieval, or plagiarism detection.

In the field of music generation, powerful foundational models are readily available that are reshap-
ing the process of music creation. Our work provides a first step towards reclaiming explicit control.
We provide a building block for future model architectures which increases the internal represen-
tation quality, allowing for more interpretability and thus interactivity with the model. Time will
tell whether this enhanced control allows for more human-model interaction to foster the creative
process instead of replacing it.

9
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REPRODUCIBILITY STATEMENT

All experiments and models are described in the main text in Section 5, additional details are given
in Appendix C. To enable the reproducibility of results, the experiments only involve datasets which
are publicly available. The source code will be released upon publication. If further questions arise,
the authors are available via e-mail.
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A OPERATORS ON THE POINCARÉ BALL

The Poincaré ball Pc of dimension d is a model of hyperbolic geometry. This geometry is especially
useful for embedding data with hierarchical structures, as demonstrated by Mathieu et al. (2019).
Due to the property of the space expanding when influenced by negative curvature, data structures
do not exhibit the problem of becoming increasingly dense. The metric tensor of the Poincaré ball
is given by:

gcP(z) = (λc
z)

2 gE(z), λc
z =

2

1− c‖z‖2
, (14)

where λc
z is the conformal factor and gE is the Euclidean metric tensor. Please note that these

formulas expect c to be a positive value, even though it is a negative curvature. We choose to adhere
to Mathieu et al. (2019) for consistency and to not add to the already extensive available inventory
of formulas.

The exponential map is given by:

expcz(v) = µ⊕
(
tanh

√
c
λc
z||v||
2

v√
c||v||

)
(15)

where ⊕ is denoting the Möbius addition (Ungar, 2009). The Möbius addition composes velocities,
which is possible in spaces that are equipped with a gyrovector-structure, which hyperbolic geometry
does. The inverse operation for the exponential map, the logarithm map is given by:

logcz(y) =
2√
cλc

z

tanh−1

(√
c|| − z ⊕c y||)

−z ⊕c y

|| − z ⊕c y||

)
(16)

Distance on the Poincaré ball is given by:

dc(z,y) =
1√
c
cosh−1

(
1 + 2c

||z − y||2

(1− c||z||2)(1− c||y||2)

)
(17)

B LOG-PROBABILITY OF THE WRAPPED NORMAL DISTRIBUTION

Let f(v) = expµ(v) ◦ PT0→µ(v) be the composed function mapping velocities sampled at the
origin onto the manifold. Then, the log-probability of a sample z ∈M can be calculated as

log p(z) = log p(v)− log det(Jf (v)) (18)

whereby the velocity v ∈ T0M, corresponding to the sample, can be obtained by applying the
inverse of f which is f−1 = PTµ→0 ◦ logµ to z (Nagano et al., 2019). Conceptually, log p(v) is
the log-probability of v with respect to the Gaussian defined in T0M, and log det(Jf (v)) is the log-
determinant of the Jacobian of f , accounting for the effect of f on the probability density (Pennec,
2006).

C EXPERIMENTAL DETAILS

C.1 DATA PREPROCESSING

Symbolic music We convert the MIDI files into binary piano rolls by sampling the notes at 16
equidistant points in time per bar, which effectively discretises the time dimension and normalises
tempo. Binary piano rolls are matrices where rows indicate pitch and columns indicate time. In a
binary piano roll, every pitch can only be on or off at a time. The resulting piano rolls are split into
sequences with a length of two bars using a sliding window, resulting in about 70,000 instances for
POP909, and 1.5 million for MIDICAPS.

While the piano roll representation is intuitive and interpretable, it is usually very sparse because
only a fraction of the available pitches are played at the same time. Thus, we transform the piano
rolls into artificial sound waves, the so-called signal-like representation (Prang & Esling, 2021). The
transformation is invertible and yields spectrograms by mapping pitches to arbitrary frequencies,
from which signals can be obtained via short-time Fourier synthesis (Rabiner & Schafer, 2007). The
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representations are visualized in Figure 6. We use the signal-like representation for VAE inputs and
outputs and resort to piano rolls for evaluations and visualisations.

Figure 6: Symbolic music representations

Raw audio For the experiments on recorded audio, we downsample the raw waveform to 22,050
Hz and divide each piece into segments with a length of 4 seconds using a hop size of 2 seconds,
yielding approximately 360,000 instances for MAESTRO. Further, the snippets are converted into
Mel spectrograms with 173 time steps and 128 Mel bands per segment, whereby values are clipped
to lie in the range of -80 to 0 decibel. For VAE inputs and outputs, the Mel spectrograms are
normalised to range (0, 1), evaluations are performed on the unnormalised spectrograms.

C.2 MODEL CONFIGURATIONS

Model selection Model hyperparameters that are integral for the effect of the latent space geom-
etry on model performance are optimized via grid searches for each model and dataset. For the
E-VAE, different weights of the KL term in the loss function β ∈ {0, 0.001, 0.01, 0.1, 1.0} are
considered. Also for the P-VAE, β is varied using the same search grid. In addition, different
curvature values of the Poincaré ball c ∈ {−0.75,−1.0,−1.5} are considered on POP909 and
MAESTRO. For the experiments on MIDICAPS, the search grid is extended by curvature values
{−0.1,−0.25,−0.5}. Table 3 displays the hyperparameter combinations yielding the best perfor-
mances on the validation splits.

Table 3: Best hyperparameter configurations

POP909 MIDICAPS MAESTRO

E-VAE β 0.01 0.1 0.01
P-VAE β 0.01 0.01 0.001

c −0.75 −0.1 −1.5

Hyperparameter sensitivity The hyperparameter sensitivities of the E-VAE and P-VAE on
POP909 are shown in figure 7. One can observe that both models are relatively ro-
bust towards moderate changes in β, however, large values seem to degrade performance.

Figure 7: Hyperparameter sensitivities.

Similarly, high curvature values decrease the
performance of the P-VAE, in particular if β is
suboptimally chosen.

C.3 TRAINING

Training configurations Due to the choice
of input representations, mean squared error
is used as the reconstruction error term in the
training objectives. Model trainings are per-
formed using early stopping with a patience
of five epochs and a maximum number of 50
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epochs. For optimization, the Adam optimizer (Kingma & Ba, 2015) is used with an initial learning
rate of 0.0001 which is reduced every 10 epochs by a factor of 0.5. Further, batch sizes of 32, 2048,
and 512 are chosen for trainings on POP909, MIDICAPS, and MAESTRO, respectively. A weight
decay of 1 × 10−5 is used. For the KL divergence estimation via MC sampling, 32 samples are
drawn per instance.

Runtimes To compare the computational efficiency of the E-VAE and P-VAE, we track training
durations over ten repetitions per model and dataset on NVIDIA A100 GPUs. Table 4 shows the
runtimes in seconds per epoch. We observe that the P-VAE requires 7-40% more computation time,
depending on the model and training configurations.

Table 4: Runtimes in seconds per epoch. We report means and standard deviations.

POP909 MIDICAPS MAESTRO

E-VAE 98.02±1.20 507.73±14.58 263.03±2.16

P-VAE 137.23±4.39 556.87±7.67 280.52±2.59

C.4 IMPLEMENTATION DETAILS

Packages The VAE models are implemented using the deep learning library PyTorch (Paszke
et al., 2019). As a basis for the implementation of operations on manifolds, Geoopt (Kochurov
et al., 2020) is used. MIDI files are processed using Pretty_midi (Raffel & Ellis, 2014). The library
Librosa (McFee et al., 2015) is used to perform short-time Fourier transform and synthesis, and to
produce Mel spectrograms.

Numerical stability In the implementations of VAEs on manifolds, numerical stability is im-
proved with the following two measures. At first, the log-variances outputted by the encoder net-
works are clipped at a minimum of -18 and a maximum of 0, which stabilizes the estimation of KL
divergences. This should not limit the models significantly, as extremely small values below -18
cause very large KL divergences and thus are unlikely to be beneficial. Further, when log-variances
increase to values greater than 0, the KL divergence increases while reconstructions get more noisy,
which is also unlikely to have a positive effect on the loss. As a second measure, the exponential
map of the Poincaré ball is implemented such that a minimum distance of outputted points to the
border of the manifold can be enforced to prevent situations in which numerical imprecisions cause
points to be mapped directly onto the border of the manifold where distances go to infinity.
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